101
|
Jastreboff AM, Sinha R, Lacadie C, Small DM, Sherwin RS, Potenza MN. Neural correlates of stress- and food cue-induced food craving in obesity: association with insulin levels. Diabetes Care 2013; 36:394-402. [PMID: 23069840 PMCID: PMC3554293 DOI: 10.2337/dc12-1112] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. RESEARCH DESIGN AND METHODS Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. RESULTS Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. CONCLUSIONS These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity.
Collapse
Affiliation(s)
- Ania M Jastreboff
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
102
|
García-García I, Narberhaus A, Marqués-Iturria I, Garolera M, Rădoi A, Segura B, Pueyo R, Ariza M, Jurado MA. Neural Responses to Visual Food Cues: Insights from Functional Magnetic Resonance Imaging. EUROPEAN EATING DISORDERS REVIEW 2013; 21:89-98. [DOI: 10.1002/erv.2216] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - A. Rădoi
- Neurotraumatology and Neurosurgery Research Unit; Vall d'Hebron Research Institute; Barcelona; Spain
| | | | | | | | | |
Collapse
|
103
|
Cornier MA, McFadden KL, Thomas EA, Bechtell JL, Eichman LS, Bessesen DH, Tregellas JR. Differences in the neuronal response to food in obesity-resistant as compared to obesity-prone individuals. Physiol Behav 2013; 110-111:122-8. [PMID: 23313402 DOI: 10.1016/j.physbeh.2013.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/14/2012] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
Abstract
Despite living in an obesogenic environment, some individuals maintain a thin phenotype compared to the majority who are at risk for weight gain and obesity. Understanding how these different phenotypes regulate energy intake is critical. The objective of this study was to examine the differences in neuronal response to visual food cues in adults recruited as either obesity-resistant (OR) or obesity-prone (OP) based on self-identification, BMI, and personal/family weight history. 25 OR and 28 OP individuals were studied after 4 days of eucaloric energy intake. Functional magnetic resonance imaging (fMRI) was performed in the fasted and acute fed states (30 min after a test meal) while subjects viewed images of foods of high hedonic value and neutral non-food objects. Measures of appetite using visual analog scales were performed before and every 30 min after the test meal for 3 h. In the fasted state, food as compared to nonfood images elicited significant response in the insula, somatosensory cortex, parietal cortex, and visual cortex in both OR and OP. The acute fed state resulted in significant attenuation of these and other brain areas in the OR but not OP individuals. Furthermore, OP as compared to OR individuals showed greater activation of medial and anterior prefrontal cortex (PFC) in response to the test meal. Adjusting for fat mass did not impact these results. Attenuation of insula/PFC response to food images in the fed state was associated with greater reductions in hunger. These findings suggest that individuals prone to weight gain and obesity have altered neuronal responses to food cues in brain regions known to be important in energy intake regulation. These altered responses may represent an important mechanism contributing to excess energy intake and risk for obesity.
Collapse
Affiliation(s)
- Marc-Andre Cornier
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
104
|
Reinert KRS, Po'e EK, Barkin SL. The relationship between executive function and obesity in children and adolescents: a systematic literature review. J Obes 2013; 2013:820956. [PMID: 23533726 PMCID: PMC3595670 DOI: 10.1155/2013/820956] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/07/2013] [Accepted: 01/21/2013] [Indexed: 01/09/2023] Open
Abstract
The objective of this paper is to examine the relationship between the development of executive function (EF) and obesity in children and adolescents. We reviewed 1,065 unique abstracts: 31 from PubMed, 87 from Google Scholar, 16 from Science Direct, and 931 from PsycINFO. Of those abstracts, 28 met inclusion criteria and were reviewed. From the articles reviewed, an additional 3 articles were added from article references (N = 31). Twenty-three studies pertained to EF (2 also studied the prefrontal and orbitofrontal cortices (OFCs); 6 also studied cognitive function), five studied the relationship between obesity and prefrontal and orbitofrontal cortices, and three evaluated cognitive function and obesity. Inhibitory control was most often studied in both childhood (76.9%) and adolescent (72.7%) studies, and obese children performed significantly worse (P < 0.05) than healthy weight controls on various tasks measuring this EF domain. Although 27.3% of adolescent studies measured mental flexibility, no childhood studies examined this EF domain. Adolescents with higher BMI had a strong association with neurostructural deficits evident in the OFC. Future research should be longitudinal and use a uniform method of EF measurement to better establish causality between EF and obesity and consequently direct future intervention strategies.
Collapse
Affiliation(s)
- Kaela R. S. Reinert
- Medical Student at the Medical University of South Carolina, 169 Ashley Avenue, Charleston, SC 29403, USA
| | - Eli K. Po'e
- Department of Pediatrics, Vanderbilt University Medical Center, 2146 Belcourt Avenue, 2nd Floor, Nashville, TN 37212, USA
| | - Shari L. Barkin
- Department of Pediatrics, Vanderbilt University Medical Center, 2146 Belcourt Avenue, 2nd Floor, Nashville, TN 37212, USA
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37212, USA
- *Shari L. Barkin:
| |
Collapse
|
105
|
Bruce AS, Bruce JM, Black WR, Lepping RJ, Henry JM, Cherry JBC, Martin LE, Papa VB, Davis AM, Brooks WM, Savage CR. Branding and a child's brain: an fMRI study of neural responses to logos. Soc Cogn Affect Neurosci 2012; 9:118-22. [PMID: 22997054 PMCID: PMC3871732 DOI: 10.1093/scan/nss109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children’s brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing.
Collapse
Affiliation(s)
- Amanda S Bruce
- Department of Psychology, The University of Missouri-Kansas City, 5030 Cherry Street, 307 Cherry Hall, Kansas City, MO 64110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Hendrick OM, Luo X, Zhang S, Li CSR. Saliency processing and obesity: a preliminary imaging study of the stop signal task. Obesity (Silver Spring) 2012; 20:1796-802. [PMID: 21720427 PMCID: PMC3653271 DOI: 10.1038/oby.2011.180] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity has been associated with altered cerebral functions including cognitive control. The stop signal task (SST) has been widely used to study cognitive control by producing high conflict stop trials among many low conflict go trials. Contrasting these stop trials with go trials provides a measure of saliency processing and response inhibition. By comparing functional magnetic resonance images of obese (BMI >30) and lean (BMI <22) females performing the SST, we observed differences in regional brain activations despite similar behavioral performance between groups. Specifically, lean females had greater activations in the insula, inferior parietal cortex, cuneus, and supplementary motor area than obese females during stop as compared to go trials. This difference was caused by diminished brain activations in obese females in stop as compared to go trials. Furthermore, the brain activations in these regions inversely correlated to BMI across subjects. These preliminary findings suggest altered neural processes of cognitive control in obesity.
Collapse
Affiliation(s)
- Olivia M Hendrick
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
107
|
The potential role of and deficits in frontal cortical brain areas implicated in executive control of food intake. Int J Obes (Lond) 2012; 36:625-6. [PMID: 22565508 DOI: 10.1038/ijo.2011.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
108
|
Szalay C, Aradi M, Schwarcz A, Orsi G, Perlaki G, Németh L, Hanna S, Takács G, Szabó I, Bajnok L, Vereczkei A, Dóczi T, Janszky J, Komoly S, Örs Horváth P, Lénárd L, Karadi Z. Gustatory perception alterations in obesity: an fMRI study. Brain Res 2012; 1473:131-40. [PMID: 22885291 DOI: 10.1016/j.brainres.2012.07.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/27/2022]
Abstract
The background of feeding associated and metabolic diseases is not sufficiently understood yet. Since gustatory alterations may be of particular significance in the above illnesses, in the present experiments, cerebral activation was detected by fMRI in twelve obese patients and twelve, age and gender matched healthy subjects. The gustatory stimulus solutions were delivered via intraorally positioned polyvinyl tubes. Each session consisted of three runs. Sucrose was used as a pleasant; quinine HCl as an aversive; and a high-calorie, vanilla flavored nourishment solution as a complex taste of high palatability. In each run, only one taste was used as a stimulus. During all runs, distilled water served as a neutral stimulus. Group analysis was made by using the FSL software package. The taste stimuli elicited characteristic and distinct activity changes of the two groups. In contrast to the controls, in the obese patients, stronger activation was detected in various cortical (anterior cingulate cortex, insular and opercular cortices, orbitofrontal cortex) and subcortical (amygdala, nucleus accumbens, putamen and pallidum) structures in case of all three stimuli. The present examinations elucidated differential activation of various brain structures to pleasant and unpleasant gustatory stimuli in obese patients compared to control subjects. These taste alterations are supposed to be of particular significance in obesity, and our findings may contribute to develop better strategies for prevention and effective therapies in the future.
Collapse
Affiliation(s)
- Csaba Szalay
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences, Pécs University, Medical School, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Michaelides M, Thanos PK, Volkow ND, Wang GJ. Dopamine-related frontostriatal abnormalities in obesity and binge-eating disorder: emerging evidence for developmental psychopathology. Int Rev Psychiatry 2012; 24:211-8. [PMID: 22724642 PMCID: PMC4827426 DOI: 10.3109/09540261.2012.679918] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Obesity and binge-eating disorder (BED) frequently arise in adolescence, which is a critical developmental time period where self-regulatory processes are formed. Indeed, both obesity and BED are thought to arise partly due to deficits in self-regulatory processes (i.e. lack of inhibitory control to overeat or binge). Recent neuroimaging studies have implicated the frontal cortex, a brain region involved in regulating inhibitory-control, and the striatum, which is thought to be involved in food reward, satiety and pleasure, in mediating responses to food cues and feeding in normal-weight individuals as well as obese and BED subjects. Intriguingly, frontostriatal circuits have been observed to be preferentially modulated in obese adults and similar associations have been observed in obese/overweight adolescents. Furthermore, brain dopamine (DA) is selectively altered in striatum in obese relative to normal-weight individuals, and frontostriatal regions constitute a major component of DA circuitry. The aim of this review will be to present the main findings from neuroimaging studies in obese and BED adults and adolescents, as these relate to frontostriatal circuitry, and to emphasize the potential for using functional neuroimaging in both humans and animals with the scope of obtaining information on developmental and molecular contributions to obesity and BED.
Collapse
Affiliation(s)
- Michael Michaelides
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Brookhaven National Laboratory, Upton, New York,Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Brookhaven National Laboratory, Upton, New York,Laboratory of Neuroimaging, National Institute for Alcohol Abuse and Alcoholism, Bethesda, Maryland,Department of Psychology, Stony Brook University, New York,Department of Neuroscience, Stony Brook University, Stony Brook, New York, USA
| | - Nora D. Volkow
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Brookhaven National Laboratory, Upton, New York,Laboratory of Neuroimaging, National Institute for Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Gene-Jack Wang
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Brookhaven National Laboratory, Upton, New York,Department of Psychiatry, Mount Sinai School of Medicine, New York
| |
Collapse
|
110
|
Carnell S, Kim Y, Pryor K. Fat brains, greedy genes, and parent power: a biobehavioural risk model of child and adult obesity. Int Rev Psychiatry 2012; 24:189-99. [PMID: 22724640 DOI: 10.3109/09540261.2012.676988] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We live in a world replete with opportunities to overeat highly calorific, palatable foods - yet not everyone becomes obese. Why? We propose that individuals show differences in appetitive traits (e.g. food cue responsiveness, satiety sensitivity) that manifest early in life and predict their eating behaviours and weight trajectories. What determines these traits? Parental feeding restriction is associated with higher child adiposity, pressure to eat with lower adiposity, and both strategies with less healthy eating behaviours, while authoritative feeding styles coincide with more positive outcomes. But, on the whole, twin and family studies argue that nature has a greater influence than nurture on adiposity and eating behaviour, and behavioural investigations of genetic variants that are robustly associated with obesity (e.g. FTO) confirm that genes influence appetite. Meanwhile, a growing body of neuroimaging studies in adults, children and high risk populations suggests that structural and functional variation in brain networks associated with reward, emotion and control might also predict appetite and obesity, and show genetic influence. Together these different strands of evidence support a biobehavioural risk model of obesity development. Parental feeding recommendations should therefore acknowledge the powerful - but modifiable - contribution of genetic and neurological influences to children's eating behaviour.
Collapse
Affiliation(s)
- Susan Carnell
- New York Obesity Nutrition Research Center, Department of Medicine, St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, NY 10025, USA.
| | | | | |
Collapse
|
111
|
Verbeken S, Braet C, Lammertyn J, Goossens L, Moens E. How is reward sensitivity related to bodyweight in children? Appetite 2012; 58:478-83. [DOI: 10.1016/j.appet.2011.11.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/10/2011] [Accepted: 11/18/2011] [Indexed: 11/26/2022]
|
112
|
Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci 2012; 13:279-86. [PMID: 22414944 DOI: 10.1038/nrn3212] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An increasingly influential perspective conceptualizes both obesity and overeating as a food addiction accompanied by corresponding brain changes. Because there are far-reaching implications for clinical practice and social policy if it becomes widely accepted, a critical evaluation of this model is important. We examine the current evidence for the link between addiction and obesity, identifying several fundamental shortcomings in the model, as well as weaknesses and inconsistencies in the empirical support for it from human neuroscientific research.
Collapse
Affiliation(s)
- Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Addenbrooke's Hospital, Cambridge CB2 0SZ, UK
| | | | | |
Collapse
|
113
|
Wathen AB, West ES, Lydic R, Baghdoyan HA. Olanzapine causes a leptin-dependent increase in acetylcholine release in mouse prefrontal cortex. Sleep 2012; 35:315-23. [PMID: 22379237 PMCID: PMC3274332 DOI: 10.5665/sleep.1686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
STUDY OBJECTIVES The atypical antipsychotic olanzapine is used effectively for treating symptoms of schizophrenia and bipolar disorder. Unwanted effects of olanzapine include slowing of the electroencephalogram (EEG) during wakefulness and increased circulating levels of leptin. The mechanisms underlying the desired and undesired effects of olanzapine are poorly understood. Sleep and wakefulness are modulated by acetylcholine (ACh) in the prefrontal cortex, and leptin alters cholinergic transmission. This study tested the hypothesis that olanzapine interacts with leptin to regulate ACh release in the prefrontal cortex. DESIGN Within/between subjects. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Adult male C57BL/6J (B6) mice (n = 33) and B6.V-Lep(ob) (leptin-deficient) mice (n = 31). INTERVENTIONS Olanzapine was delivered to the prefrontal cortex by microdialysis. Leptin-replacement in leptin-deficient mice was achieved using subcutaneous micro-osmotic pumps. MEASUREMENTS AND RESULTS Olanzapine caused a concentration-dependent increase in ACh release in B6 and leptin-deficient mice. Olanzapine was 230-fold more potent in leptin-deficient than in B6 mice for increasing ACh release, yet olanzapine caused a 51% greater ACh increase in B6 than in leptin-deficient mice. Olanzapine had no effect on recovery time from general anesthesia. Olanzapine increased EEG power in the delta (0.5-4 Hz) range. Thus, olanzapine dissociated the normal coupling between increased cortical ACh release, increased behavioral arousal, and EEG activation. Leptin replacement significantly enhanced (75%) the olanzapine-induced increase in ACh release. CONCLUSION Replacing leptin by systemic administration restored the olanzapine-induced enhancement of ACh release in the prefrontal cortex of leptin-deficient mouse.
Collapse
Affiliation(s)
| | - Emily S. West
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Ralph Lydic
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
114
|
Roth CL, Aylward E, Liang O, Kleinhans NM, Pauley G, Schur EA. Functional neuroimaging in craniopharyngioma: a useful tool to better understand hypothalamic obesity? Obes Facts 2012; 5:243-53. [PMID: 22647305 PMCID: PMC6902258 DOI: 10.1159/000338695] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 11/08/2011] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To use functional magnetic resonance imaging (fMRI) in craniopharyngioma (CP) patients to examine the hypothesis that hypothalamic damage due to CP and its treatment results in enhanced perception of food reward and/or impaired central satiety processing. METHODS Pre- and post-meal responses to visual food cues in brain regions of interest (ROI; bilateral nucleus accumbens, bilateral insula, and medial orbitofrontal cortex) were assessed in 4 CP patients versus 4 age- and weight-matched controls. Stimuli consisted of images of high- ('fattening') and low-calorie ('non-fattening') foods in blocks, alternating with non-food object blocks. After the first fMRI scan, subjects drank a high-calorie test meal to suppress appetite, then completed a second fMRI scan. Within each ROI, we calculated mean z-scores for activation by fattening as compared to non-fattening food images. RESULTS Following the test meal, controls showed suppression of activation by food cues while CP patients showed trends towards higher activation. CONCLUSION These data, albeit in a small group of patients, support our hypothesis that perception of food cues may be altered in hypothalamic obesity (HO), especially after eating, i.e. in the satiated state. The fMRI approach is encouraging for performing future mechanistic studies of the brain response to food cues and satiety in patients with hypothalamic or other forms of childhood obesity.
Collapse
Affiliation(s)
- Christian L. Roth
- Seattle Children's Research Institute, Center of Integrative Brain Research, Seattle, WA, USA
- *Christian L. Roth, MD, Division of Endocrinology, Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101 (USA), Tel. +1 206 987 5428, E-Mail
| | - Elizabeth Aylward
- Seattle Children's Research Institute, Center of Integrative Brain Research, Seattle, WA, USA
| | - Olivia Liang
- Department of Radiology and Integrated Brain Imaging Center, Seattle, WA, USA
| | | | - Gregory Pauley
- Department of Radiology and Integrated Brain Imaging Center, Seattle, WA, USA
| | - Ellen A. Schur
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
115
|
Vereczkei A, Szalay C, Aradi M, Schwarcz A, Orsi G, Perlaki G, Karádi Z, Németh L, Hanna S, Takács G, Szabó I, Bajnok L, Mohos E, Lénárd L, Dóczi T, Janszky J, Komoly S, Horváth OP. [Functional MRI investigation of brain activity triggered by taste stimulation]. Magy Seb 2011; 64:289-293. [PMID: 22169342 DOI: 10.1556/maseb.64.2011.6.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Many factors contribute to the pathogenesis of morbid obesity, and the central nervous system - as one of those - also has an important role. Numerous studies focus on the central regulation of eating and metabolism, since associated problems like obesity, anorexia, diabetes or metabolic syndrome put an increasing burden on the health system of modern societies. Neither the pathophysiologic changes, nor the normal regulation of these systems are known adequately. Functional MR (fMRI) imaging, which has certainly gained popularity recently, aims to better understand these mechanisms. In this series we studied the brain fMRI activity changes of normal and obese persons, triggered by gustatory stimulation. METHODS 10 obese and 10 normal weight healthy volunteers took part in the study, with comparable age and sex distribution. Gustatory stimulation was performed by 0.1 M sucrose (pleasant), 0.5 mM quinine HCl (unpleasant) and complex vanilla flavored (Nutridrink) solutions, which were administered through 0.5 mm PVC tubes, in 5-5 ml portions. For rinsing distilled water with neutral flavor was used. Imaging was performed in a 3T MRI, applying standard EPI sequences. Post processing of data was accomplished by FSL software package. RESULTS Brain activation for gustatory stimuli was characteristically different between the two groups. There were high intensity activations in more cortical and subcortical regions of the obese volunteers compared to the normal ones. CONCLUSIONS Our current fMRI investigations revealed different activations of numerous brain regions of normal and obese individuals, triggered by pleasant and unpleasant gustatory stimulation. Based on these results this method can help to recognize the role of the central nervous system in obesity, and may contribute to develop new therapies for weight loss.
Collapse
|
116
|
Holsen LM, Savage CR, Martin LE, Bruce AS, Lepping RJ, Ko E, Brooks WM, Butler MG, Zarcone JR, Goldstein JM. Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs simple obesity. Int J Obes (Lond) 2011; 36:638-47. [PMID: 22024642 PMCID: PMC3270121 DOI: 10.1038/ijo.2011.204] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background The majority of research on obesity has focused primarily on clinical features (eating behavior, adiposity measures), or peripheral appetite-regulatory peptides (leptin, ghrelin). However, recent functional neuroimaging studies have demonstrated that some reward circuitry regions which are associated with appetite-regulatory hormones are also involved in the development and maintenance of obesity. Prader-Willi syndrome (PWS), characterized by hyperphagia and hyperghrelinemia reflecting multi-system dysfunction in inhibitory and satiety mechanisms, serves as an extreme model of genetic obesity. Simple (non-PWS) obesity (OB) represents an obesity control state. Objective This study investigated subcortical food motivation circuitry and prefrontal inhibitory circuitry functioning in response to food stimuli before and after eating in individuals with PWS compared with OB. We hypothesized that groups would differ in limbic regions (i.e., hypothalamus, amygdala) and prefrontal regions associated with cognitive control [i.e., dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC)] after eating. Design and Participants Fourteen individuals with PWS, 14 BMI- and age-matched individuals with OB, and 15 age-matched healthy-weight controls (HWC) viewed food and non-food images while undergoing functional MRI before (pre-meal) and after (post-meal) eating. Using SPM8, group contrasts were tested for hypothesized regions: hypothalamus, nucleus accumbens (NAc), amygdala, hippocampus, OFC, medial PFC, and DLPFC. Results Compared with OB and HWC, PWS demonstrated higher activity in reward/limbic regions (NAc, amygdala) and lower activity in hypothalamus and hippocampus, in response to food (vs. non-food) images pre-meal. Post-meal, PWS exhibited higher subcortical activation (hypothalamus, amygdala, hippocampus) compared to OB and HWC. OB showed significantly higher activity versus PWS and HWC in cortical regions (DLPFC, OFC) associated with inhibitory control. Conclusion In PWS compared with obesity per se, results suggest hyperactivations in subcortical reward circuitry and hypoactivations in cortical inhibitory regions after eating, which provides evidence of neural substrates associated with variable abnormal food motivation phenotypes in PWS and simple obesity.
Collapse
Affiliation(s)
- L M Holsen
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Schendzielorz N, Männistö PT, Karayiorgou M, Gogos JA, Raasmaja A. A transient inhibition and permanent lack of catechol-O-methyltransferase have minor effects on feeding pattern of female rodents. Basic Clin Pharmacol Toxicol 2011; 110:307-13. [PMID: 21851556 DOI: 10.1111/j.1742-7843.2011.00783.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abnormal feeding behaviours have long been linked to disruptions in brain dopaminergic activity. Dopamine is metabolized, amongst others, by catechol-O-methyltransferase (COMT). Normally, COMT only plays a subordinate role in dopamine metabolism. However, changes in COMT activity, especially in the prefrontal cortex, become more important during events that evoke dopamine release. The current study investigated the effect of acute COMT inhibition on feeding in Wistar rats and C57BL/6 mice using a selective, brain penetrating COMT inhibitor (OR-1139). Furthermore, the effect of a long-term lack of COMT on feeding behaviour was studied in COMT-deficient (COMT -/-) mice. Apart from following the gross feeding behaviour of fasted rats and mice, the first 4 hr of re-feeding were recorded with a video camera to allow a more detailed analysis of feeding microstructure. In the acute study, rats and mice received a single injection of OR-1139 (3, 10 or 30 mg/kg), just before the experiment. We found that rats and mice receiving OR-1139 had fewer very short meals but more long meals than the controls. Treated mice even ate more frequently than the controls, but other feeding parameters remained unchanged. Conversely, COMT -/- mice displayed an increased latency to initiate the first meal and spent less total time eating than wild-type mice. In conclusion, although decreased/lack of COMT activity did not robustly alter feeding behaviour of female rodents, we observed some alterations in the microstructure of feeding. However, these minor changes were highly dependent on the extent and fashion in which COMT was manipulated.
Collapse
Affiliation(s)
- Nadia Schendzielorz
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
118
|
Abstract
OBJECTIVE Childhood obesity rates have increased over the last 40 years and have a detrimental impact on public health. While the causes of the obesity epidemic are complex, obesity ultimately arises from chronic imbalances between energy intake and expenditure. An emerging area of research in obesity has focused on the role of the brain in evaluating the rewarding properties of food and making decisions about what and how much to eat. METHOD This article reviews recent scientific literature regarding the brain's role in pediatric food motivation and childhood obesity. RESULTS The article will begin by reviewing some of the recent literature discussing challenges associated with neuroimaging in children and the relevant developmental brain changes that occur in childhood and adolescence. The article will then review studies regarding neural mechanisms of food motivation and the ability to delay gratification in children and how these responses differ in obese compared to healthy weight children. CONCLUSION Increasing our understanding about how brain function and behavior may differ in children will inform future research, obesity prevention, and interventions targeting childhood obesity.
Collapse
Affiliation(s)
- Amanda S Bruce
- Department of Psychology, University of Missouri-Kansas City, USA.
| | | | | |
Collapse
|
119
|
Mood disorders and obesity: understanding inflammation as a pathophysiological nexus. Neuromolecular Med 2010; 13:93-116. [PMID: 21165712 DOI: 10.1007/s12017-010-8140-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/19/2010] [Indexed: 02/06/2023]
Abstract
The aim of this review is to evaluate the evidentiary base supporting the hypothesis that the increased hazard for obesity in mood disorder populations (and vice versa) is a consequence of shared pathophysiological pathways. We conducted a PubMed search of all English-language articles with the following search terms: obesity, inflammation, hypothalamic-pituitary-adrenal axis, insulin, cognition, CNS, and neurotransmitters, cross-referenced with major depressive disorder and bipolar disorder. The frequent co-occurrence of mood disorders and obesity may be characterized by interconnected pathophysiology. Both conditions are marked by structural and functional abnormalities in multiple cortical and subcortical brain regions that subserve cognitive and/or affective processing. Abnormalities in several interacting biological networks (e.g. immuno-inflammatory, insulin signaling, and counterregulatory hormones) contribute to the co-occurence of mood disorders and obesity. Unequivocal evidence now indicates that obesity and mood disorders are chronic low-grade pro-inflammatory states that result in a gradual accumulation of allostatic load. Abnormalities in key effector proteins of the pro-inflammatory cascade include, but are not limited to, cytokines/adipokines such as adiponectin, leptin, and resistin as well as tumor necrosis factor alpha and interleukin-6. Taken together, the bidirectional relationship between obesity and mood disorders may represent an exophenotypic manifestation of aberrant neural and inflammatory networks. The clinical implications of these observations are that, practitioners should screen individuals with obesity for the presence of clinically significant depressive symptoms (and vice versa). This clinical recommendation is amplified in individuals presenting with biochemical indicators of insulin resistance and other concurrent conditions associated with abnormal inflammatory signaling (e.g. cardiovascular disease).
Collapse
|
120
|
van der Laan LN, de Ridder DTD, Viergever MA, Smeets PAM. The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage 2010; 55:296-303. [PMID: 21111829 DOI: 10.1016/j.neuroimage.2010.11.055] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/08/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022] Open
Abstract
Food selection is primarily guided by the visual system. Multiple functional neuro-imaging studies have examined the brain responses to visual food stimuli. However, the results of these studies are heterogeneous and there still is uncertainty about the core brain regions involved in the neural processing of viewing food pictures. The aims of the present study were to determine the concurrence in the brain regions activated in response to viewing pictures of food and to assess the modulating effects of hunger state and the food's energy content. We performed three Activation Likelihood Estimation (ALE) meta-analyses on data from healthy normal weight subjects in which we examined: 1) the contrast between viewing food and nonfood pictures (17 studies, 189 foci), 2) the modulation by hunger state (five studies, 48 foci) and 3) the modulation by energy content (seven studies, 86 foci). The most concurrent brain regions activated in response to viewing food pictures, both in terms of ALE values and the number of contributing experiments, were the bilateral posterior fusiform gyrus, the left lateral orbitofrontal cortex (OFC) and the left middle insula. Hunger modulated the response to food pictures in the right amygdala and left lateral OFC, and energy content modulated the response in the hypothalamus/ventral striatum. Overall, the concurrence between studies was moderate: at best 41% of the experiments contributed to the clusters for the contrast between food and nonfood. Therefore, future research should further elucidate the separate effects of methodological and physiological factors on between-study variations.
Collapse
Affiliation(s)
- L N van der Laan
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
121
|
Bruce AS, Holsen LM, Chambers RJ, Martin LE, Brooks WM, Zarcone JR, Butler MG, Savage CR. Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int J Obes (Lond) 2010; 34:1494-500. [PMID: 20440296 PMCID: PMC6800141 DOI: 10.1038/ijo.2010.84] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the neural mechanisms of food motivation in children and adolescents, and examine brain activation differences between healthy weight (HW) and obese participants. SUBJECTS Ten HW children (ages 11-16; BMI < 85%ile) and 10 obese children (ages 10-17; BMI >95%ile) matched for age, gender and years of education. MEASUREMENTS Functional magnetic resonance imaging (fMRI) scans were conducted twice: when participants were hungry (pre-meal) and immediately after a standardized meal (post-meal). During the fMRI scans, the participants passively viewed blocked images of food, non-food (animals) and blurred baseline control. RESULTS Both groups of children showed brain activation to food images in the limbic and paralimbic regions (PFC/OFC). The obese group showed significantly greater activation to food pictures in the PFC (pre-meal) and OFC (post-meal) than the HW group. In addition, the obese group showed less post-meal reduction of activation (vs pre-meal) in the PFC, limbic and the reward-processing regions, including the nucleus accumbens. CONCLUSION Limbic and paralimbic activation in high food motivation states was noted in both groups of participants. However, obese children were hyper-responsive to food stimuli as compared with HW children. In addition, unlike HW children, brain activations in response to food stimuli in obese children failed to diminish significantly after eating. This study provides initial evidence that obesity, even among children, is associated with abnormalities in neural networks involved in food motivation, and that the origins of neural circuitry dysfunction associated with obesity may begin early in life.
Collapse
Affiliation(s)
- AS Bruce
- Department of Preventive Medicine, Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS, USA
| | - LM Holsen
- Department of Psychiatry, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - RJ Chambers
- Department of Preventive Medicine, Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS, USA
| | - LE Martin
- Department of Preventive Medicine, Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS, USA
| | - WM Brooks
- Department of Preventive Medicine, Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - JR Zarcone
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - MG Butler
- University of Missouri-Kansas City School of Medicine, MO, USA
| | - CR Savage
- Department of Preventive Medicine, Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS, USA
- Department of Psychiatry, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
122
|
Bragulat V, Dzemidzic M, Bruno C, Cox CA, Talavage T, Considine RV, Kareken DA. Food-related odor probes of brain reward circuits during hunger: a pilot FMRI study. Obesity (Silver Spring) 2010; 18:1566-71. [PMID: 20339365 DOI: 10.1038/oby.2010.57] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Food aromas can be powerful appetitive cues in the natural environment. Although several studies have examined the cerebral responses to food images, none have used naturalistic food aromas to study obesity. Ten individuals (five normal-weight and five obese) were recruited to undergo 24 h of food deprivation. Subjects were then imaged on a 3T Siemens Trio-Tim scanner (Siemens, Erlangen, Germany) while smelling four food-related odors (FRO; two sweet odors and two fat-related) and four "nonappetitive odors" (NApO; e.g., Douglas fir). Before the imaging session, subjects rated their desire to eat each type of food to determine their most preferred (P-FRO). Across all 10 subjects, P-FRO elicited a greater blood oxygenation level dependent (BOLD) response than the NApO in limbic and reward-related areas, including the bilateral insula and opercular (gustatory) cortex, the anterior and posterior cingulate, and ventral striatum. Obese subjects showed greater activation in the bilateral hippocampus/parahippocampal gyrus, but lean controls showed more activation in the posterior insula. Brain areas activated by food odors are similar to those elicited by cues of addictive substances, such as alcohol. Food odors are highly naturalistic stimuli, and may be effective probes of reward-related networks in the context of hunger and obesity.
Collapse
Affiliation(s)
- Veronique Bragulat
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|