101
|
Li H, Chaitankar V, Zhu J, Chin K, Liu W, Pirooznia M, Rodgers GP. Olfactomedin 4 mediation of prostate stem/progenitor-like cell proliferation and differentiation via MYC. Sci Rep 2020; 10:21924. [PMID: 33318499 PMCID: PMC7736579 DOI: 10.1038/s41598-020-78774-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
Olfactomedin 4 (OLFM4) is expressed in normal prostate epithelial cells and immortalized normal human prostate epithelial cells (RWPE1), but the identity of OLFM4-expressing cells within these populations and OLFM4's physiological functions in these cells have not been elucidated. Using single-cell RNA sequencing analysis, we found here that OLFM4 was expressed in multiple stem/progenitor-like cell populations in both the normal prostate epithelium and RWPE1 cells and was frequently co-expressed with KRT13 and LY6D in RWPE1 cells. Functionally, OLFM4-knockout RWPE1 cells exhibited enhanced proliferation of the stem/progenitor-like cell population, shifts stem/progenitor-like cell division to favor symmetric division and differentiated into higher levels PSA expression cells in organoid assays compared with OLFM4-wild RWPE1 cells. Bulk-cell RNA sequencing analysis pinpointed that cMYC expression were enhanced in the OLFM4-knockout RWPE1 cells compared with OLFM4-wild cells. Molecular and signaling pathway studies revealed an increase in the WNT/APC/MYC signaling pathway gene signature, as well as that of MYC target genes that regulate multiple biological processes, in OLFM4-knockout RWPE1 cells. These findings indicated that OLFM4 is co-expressed with multiple stem/progenitor cell marker genes in prostate epithelial cells and acts as a novel mediator in prostate stem/progenitor cell proliferation and differentiation.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Kyung Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
102
|
Cancer Alters the Metabolic Fingerprint of Extracellular Vesicles. Cancers (Basel) 2020; 12:cancers12113292. [PMID: 33172086 PMCID: PMC7694806 DOI: 10.3390/cancers12113292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer alters cell metabolism. How these changes are manifested in the metabolite cargo of cancer-derived extracellular vesicles (EVs) remains poorly understood. To explore these changes, EVs from prostate, cutaneous T-cell lymphoma (CTCL), colon cancer cell lines, and control EVs from their noncancerous counterparts were isolated by differential ultracentrifugation and analyzed by nanoparticle tracking analysis (NTA), electron microscopy (EM), Western blotting, and liquid chromatography-mass spectrometry (LC-MS). Although minor differences between the cancerous and non-cancerous cell-derived EVs were observed by NTA and Western blotting, the largest differences were detected in their metabolite cargo. Compared to EVs from noncancerous cells, cancer EVs contained elevated levels of soluble metabolites, e.g., amino acids and B vitamins. Two metabolites, proline and succinate, were elevated in the EV samples of all three cancer types. In addition, folate and creatinine were elevated in the EVs from prostate and CTCL cancer cell lines. In conclusion, we present the first evidence in vitro that the altered metabolism of different cancer cells is reflected in common metabolite changes in their EVs. These results warrant further studies on the significance and usability of this metabolic fingerprint in cancer.
Collapse
|
103
|
Bowen C, Shibata M, Zhang H, Bergren SK, Shen MM, Gelmann EP. CRISPR/Cas9-Mediated Point Mutation in Nkx3.1 Prolongs Protein Half-Life and Reverses Effects Nkx3.1 Allelic Loss. Cancer Res 2020; 80:4805-4814. [PMID: 32943441 PMCID: PMC7642110 DOI: 10.1158/0008-5472.can-20-1742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
NKX3.1 is the most commonly deleted gene in prostate cancer and is a gatekeeper suppressor. NKX3.1 is haploinsufficient, and pathogenic reduction in protein levels may result from genetic loss, decreased transcription, and increased protein degradation caused by inflammation or PTEN loss. NKX3.1 acts by retarding proliferation, activating antioxidants, and enhancing DNA repair. DYRK1B-mediated phosphorylation at serine 185 of NKX3.1 leads to its polyubiquitination and proteasomal degradation. Because NKX3.1 protein levels are reduced, but never entirely lost, in prostate adenocarcinoma, enhancement of NKX3.1 protein levels represents a potential therapeutic strategy. As a proof of principle, we used CRISPR/Cas9-mediated editing to engineer in vivo a point mutation in murine Nkx3.1 to code for a serine to alanine missense at amino acid 186, the target for Dyrk1b phosphorylation. Nkx3.1S186A/-, Nkx3.1+/- , and Nkx3.1+/+ mice were analyzed over one year to determine the levels of Nkx3.1 expression and effects of the mutant protein on the prostate. Allelic loss of Nkx3.1 caused reduced levels of Nkx3.1 protein, increased proliferation, and prostate hyperplasia and dysplasia, whereas Nkx3.1S186A/- mouse prostates had increased levels of Nkx3.1 protein, reduced prostate size, normal histology, reduced proliferation, and increased DNA end labeling. At 2 months of age, when all mice had normal prostate histology, Nkx3.1+/- mice demonstrated indices of metabolic activation, DNA damage response, and stress response. These data suggest that modulation of Nkx3.1 levels alone can exert long-term control over premalignant changes and susceptibility to DNA damage in the prostate. SIGNIFICANCE: These findings show that prolonging the half-life of Nkx3.1 reduces proliferation, enhances DNA end-labeling, and protects from DNA damage, ultimately blocking the proneoplastic effects of Nkx3.1 allelic loss.
Collapse
Affiliation(s)
- Cai Bowen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Maho Shibata
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Hailan Zhang
- Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona
| | - Sarah K Bergren
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Edward P Gelmann
- Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona.
| |
Collapse
|
104
|
Arriaga JM, Panja S, Alshalalfa M, Zhao J, Zou M, Giacobbe A, Madubata CJ, Kim JY, Rodriguez A, Coleman I, Virk RK, Hibshoosh H, Ertunc O, Ozbek B, Fountain J, Jeffrey Karnes R, Luo J, Antonarakis ES, Nelson PS, Feng FY, Rubin MA, De Marzo AM, Rabadan R, Sims PA, Mitrofanova A, Abate-Shen C. A MYC and RAS co-activation signature in localized prostate cancer drives bone metastasis and castration resistance. NATURE CANCER 2020; 1:1082-1096. [PMID: 34085047 PMCID: PMC8171279 DOI: 10.1038/s43018-020-00125-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Understanding the intricacies of lethal prostate cancer poses specific challenges due to difficulties in accurate modeling of metastasis in vivo. Here we show that NPK EYFP mice (for Nkx3.1 CreERT2/+ ; Pten flox/flox ; Kras LSL-G12D/+ ; R26R-CAG-LSL-EYFP/+) develop prostate cancer with a high penetrance of metastasis to bone, thereby enabling detection and tracking of bone metastasis in vivo and ex vivo. Transcriptomic and whole-exome analyses of bone metastasis from these mice revealed distinct molecular profiles conserved between human and mouse and specific patterns of subclonal branching from the primary tumor. Integrating bulk and single-cell transcriptomic data from mouse and human datasets with functional studies in vivo unravels a unique MYC/RAS co-activation signature associated with prostate cancer metastasis. Finally, we identify a gene signature with prognostic value for time to metastasis and predictive of treatment response in human patients undergoing androgen receptor therapy across clinical cohorts, thus uncovering conserved mechanisms of metastasis with potential translational significance.
Collapse
Affiliation(s)
- Juan M Arriaga
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Min Zou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Arvinas, New Haven, CT, USA
| | - Arianna Giacobbe
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chioma J Madubata
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Jaime Yeji Kim
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Antonio Rodriguez
- Department for BioMedical Research, University of Bern and Inselspital, Bern, Switzerland
- Institute of Pathology, University of Bern and Inselspital, Bern, Switzerland
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Renu K Virk
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Onur Ertunc
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Suleyman Demirel University, Training and Research Hospital, Isparta, Turkey
| | - Büşra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia Fountain
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern and Inselspital, Bern, Switzerland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
105
|
Chen W, Hornick JL, Fletcher CDM. NKX3.1 immunoreactivity is not identified in mesenchymal chondrosarcoma: a 25-case cohort study. Histopathology 2020; 78:334-337. [PMID: 32779239 DOI: 10.1111/his.14231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/01/2022]
Abstract
AIMS Mesenchymal chondrosarcoma (MC) is characterised typically by a bimorphic microscopic appearance of islands of a well-differentiated cartilaginous component, admixed with a primitive small cell component, which commonly expresses CD99 and NKX2.2. Given the variable relative abundance of each component and histological overlap with other small round cell tumours, the diagnosis can be challenging, especially in a limited sample. A distinctive gene fusion between HEY1 (located in 8q21) and NCOA2 (located in 8q13) was identified in MC, but the downstream molecular events are unknown. NKX3.1 (coding gene located in 8p21.1) was recently reported to be expressed in a small number of MC cases. The purpose of this study was to evaluate the potential diagnostic utility of NKX3.1 immunohistochemistry in MC. METHODS AND RESULTS We evaluated sections from 25 cases of MC, including 20 extraskeletal and five osseous. The tumour affected nine females and 16 males, with a median age of 34 years (age range = 7-82 years). Two different rabbit antibodies against NKX3.1 (monoclonal and polyclonal) were used for immunohistochemistry. However, no immunoreactivity was observed with either of the antibodies in all 25 (100%) MC. CONCLUSIONS NKX3.1 immunoreactivity was not identified in our cohort. Clonality of the antibody could not explain the negativity.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
106
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
107
|
Mevel R, Steiner I, Mason S, Galbraith LCA, Patel R, Fadlullah MZH, Ahmad I, Leung HY, Oliveira P, Blyth K, Baena E, Lacaud G. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. eLife 2020; 9:e60225. [PMID: 33025905 PMCID: PMC7644213 DOI: 10.7554/elife.60225] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to understand its regenerative properties and malignancies. Here, we report that the transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the periurethral region of the developing and adult mouse prostate, and distinct from the previously identified NKX3.1+ luminal castration-resistant cells. Using scRNA-seq profiling and genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic prostate specification to populate the proximal region of the ducts. Collectively, our results reveal that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early during prostate development and provide new insights into the lineage relationships of the prostate epithelium.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Ivana Steiner
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Susan Mason
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Laura CA Galbraith
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Rahima Patel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Muhammad ZH Fadlullah
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Imran Ahmad
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Hing Y Leung
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation TrustManchesterUnited Kingdom
| | - Karen Blyth
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Esther Baena
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
- Belfast-Manchester Movember Centre of Excellence, Cancer Research United Kingdom Manchester Institute, The University of ManchesterAlderley ParkUnited Kingdom
| | - Georges Lacaud
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| |
Collapse
|
108
|
Kyprianou N. Re: Regenerative Potential of Prostate Luminal Cells Revealed by Single-cell Analysis. Eur Urol 2020; 79:161-162. [PMID: 32943261 DOI: 10.1016/j.eururo.2020.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Natasha Kyprianou
- Departments of Urology and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
109
|
Tremblay M, Viala S, Shafer ME, Graham-Paquin AL, Liu C, Bouchard M. Regulation of stem/progenitor cell maintenance by BMP5 in prostate homeostasis and cancer initiation. eLife 2020; 9:54542. [PMID: 32894216 PMCID: PMC7525654 DOI: 10.7554/elife.54542] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/06/2020] [Indexed: 12/25/2022] Open
Abstract
Tissue homeostasis relies on the fine regulation between stem and progenitor cell maintenance and lineage commitment. In the adult prostate, stem cells have been identified in both basal and luminal cell compartments. However, basal stem/progenitor cell homeostasis is still poorly understood. We show that basal stem/progenitor cell maintenance is regulated by a balance between BMP5 self-renewal signal and GATA3 dampening activity. Deleting Gata3 enhances adult prostate stem/progenitor cells self-renewal capacity in both organoid and allograft assays. This phenotype results from a local increase in BMP5 activity in basal cells as shown by the impaired self-renewal capacity of Bmp5-deficient stem/progenitor cells. Strikingly, Bmp5 gene inactivation or BMP signaling inhibition with a small molecule inhibitor are also sufficient to delay prostate and skin cancer initiation of Pten-deficient mice. Together, these results establish BMP5 as a key regulator of basal prostate stem cell homeostasis and identifies a potential therapeutic approach against Pten-deficient cancers.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Sophie Viala
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Maxwell Er Shafer
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Adda-Lee Graham-Paquin
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Chloe Liu
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
110
|
Jung Y, Kim JK, Lee E, Cackowski FC, Decker AM, Krebsbach PH, Taichman RS. CXCL12γ induces human prostate and mammary gland development. Prostate 2020; 80:1145-1156. [PMID: 32659025 PMCID: PMC7491592 DOI: 10.1002/pros.24043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Epithelial stem cells (ESCs) demonstrate a capacity to maintain normal tissues homeostasis and ESCs with a deregulated behavior can contribute to cancer development. The ability to reprogram normal tissue epithelial cells into prostate or mammary stem-like cells holds great promise to help understand cell of origin and lineage plasticity in prostate and breast cancers in addition to understanding normal gland development. We previously showed that an intracellular chemokine, CXCL12γ induced cancer stem cells and neuroendocrine characteristics in both prostate and breast adenocarcinoma cell lines. However, its role in normal prostate or mammary epithelial cell fate and development remains unknown. Therefore, we sought to elucidate the functional role of CXCL12γ in the regulation of ESCs and tissue development. METHODS Prostate epithelial cells (PNT2) or mammary epithelial cells (MCF10A) with overexpressed CXCL12γ was characterized by quantitative real-time polymerase chain reaction, Western blots, and immunofluorescence for lineage marker expression, and fluorescence activated cell sorting analyses and sphere formation assays to examine stem cell surface phenotype and function. Xenotransplantation animal models were used to evaluate gland or acini formation in vivo. RESULTS Overexpression of CXCL12γ promotes the reprogramming of cells with a differentiated luminal phenotype to a nonluminal phenotype in both prostate (PNT2) and mammary (MCF10A) epithelial cells. The CXCL12γ-mediated nonluminal type cells results in an increase of epithelial stem-like phenotype including the subpopulation of EPCAMLo /CD49fHi /CD24Lo /CD44Hi cells capable of sphere formation. Critically, overexpression of CXCL12γ promotes the generation of robust gland-like structures from both prostate and mammary epithelial cells in in vivo xenograft animal models. CONCLUSIONS CXCL12γ supports the reprogramming of epithelial cells into nonluminal cell-derived stem cells, which facilitates gland development.
Collapse
Affiliation(s)
- Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Co-senior authors
| | - Jin Koo Kim
- Section of Periodontics, University of California Los Angeles School of Dentistry, Los Angeles, CA 90095, USA
| | - Eunsohl Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Frank C. Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ann M. Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Paul H. Krebsbach
- Section of Periodontics, University of California Los Angeles School of Dentistry, Los Angeles, CA 90095, USA
| | - Russell S. Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Periodontics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Co-senior authors
- Corresponding Author Russell S. Taichman D.M.D., D.M.Sc., School of Dentistry, The University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294-0007, Phone: 205-934-4720,
| |
Collapse
|
111
|
Federer-Gsponer JR, Müller DC, Zellweger T, Eggimann M, Marston K, Ruiz C, Seifert HH, Rentsch CA, Bubendorf L, Le Magnen C. Patterns of stemness-associated markers in the development of castration-resistant prostate cancer. Prostate 2020; 80:1108-1117. [PMID: 32628318 DOI: 10.1002/pros.24039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Putative castration-resistant (CR) stem-like cells (CRSC) have been identified based on their ability to initiate and drive prostate cancer (PCa) recurrence following castration in vivo. Yet the relevance of these CRSC in the course of the human disease and particularly for the transition from hormone-naive (HN) to castration-resistance is unclear. In this study, we aimed at deciphering the significance of CRSC markers in PCa progression. METHODS We constructed a tissue microarray comprising 112 matched HN and CR tissue specimens derived from 55 PCa patients. Expression of eight stemness-associated markers (ALDH1A1, ALDH1A3, ALDH3A1, BMI1, NANOG, NKX3.1, OCT4, SOX2) was assessed by immunohistochemistry and scored as a percentage of positive tumor cells. For each marker, the resulting scores were statistically analyzed and compared to pathological and clinical data associated with the samples. Unsupervised clustering analysis was performed to stratify patients according to the expression of the eight CRSC markers. Publicly-available transcriptional datasets comprising HN and CR PCa samples were interrogated to assess the expression of the factors in silico. RESULTS Immunohistochemical assessment of paired samples revealed atypical patterns of expression and intra- and intertumor heterogeneity for a subset of CRSC markers. While the expression of particular CRSC markers was dynamic over time in some patients, none of the markers showed significant changes in expression upon the development of castration resistance (CR vs HN). Using unsupervised clustering approaches, we identified phenotypic subtypes based on the expression of specific stem-associated markers. In particular, we found (a) patterns of mutual exclusivity for ALDH1A1 and ALDH1A3 expression, which was also observed at the transcriptomic level in publicly-available PCa datasets, and (b) a phenotypic cluster associated with more aggressive features. Finally, by comparing HN and CR matched samples, we identified phenotypic cluster switches (ie, change of phenotypic cluster between the HN and CR state), that may be associated with clinical and predictive relevance. CONCLUSIONS Our findings indicate stemness-associated patterns that are associated with the development of castration-resistance. These results pave the way toward a deeper understanding of the relevance of CRSC markers in PCa progression and resistance to androgen-deprivation therapy.
Collapse
Affiliation(s)
| | - David C Müller
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | | | - Maurice Eggimann
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina Marston
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Ruiz
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Clémentine Le Magnen
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
112
|
Crowell PD, Fox JJ, Hashimoto T, Diaz JA, Navarro HI, Henry GH, Feldmar BA, Lowe MG, Garcia AJ, Wu YE, Sajed DP, Strand DW, Goldstein AS. Expansion of Luminal Progenitor Cells in the Aging Mouse and Human Prostate. Cell Rep 2020; 28:1499-1510.e6. [PMID: 31390564 PMCID: PMC6710009 DOI: 10.1016/j.celrep.2019.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022] Open
Abstract
Aging is associated with loss of tissue mass and a decline in adult stem cell function in many tissues. In contrast, aging in the prostate is associated with growth-related diseases including benign prostatic hyperplasia (BPH). Surprisingly, the effects of aging on prostate epithelial cells have not been established. Here we find that organoid-forming progenitor activity of mouse prostate basal and luminal cells is maintained with age. This is caused by an age-related expansion of progenitor-like luminal cells that share features with human prostate luminal progenitor cells. The increase in luminal progenitor cells may contribute to greater risk for growth-related disease in the aging prostate. Importantly, we demonstrate expansion of human luminal progenitor cells in BPH. In summary, we define a Trop2+ luminal progenitor subset and identify an age-related shift in the luminal compartment of the mouse and human prostate epithelium.
Collapse
Affiliation(s)
- Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan J Fox
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Johnny A Diaz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Héctor I Navarro
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gervaise H Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Blake A Feldmar
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew G Lowe
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro J Garcia
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ye E Wu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dipti P Sajed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
113
|
Kwon OJ, Choi JM, Zhang L, Jia D, Li Z, Zhang Y, Jung SY, Creighton CJ, Xin L. The Sca-1 + and Sca-1 - mouse prostatic luminal cell lineages are independently sustained. Stem Cells 2020; 38:1479-1491. [PMID: 32627901 DOI: 10.1002/stem.3253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
The phenotypic and functional heterogeneity of the mouse prostate epithelial cell lineages remains incompletely characterized. We show that the Sca-1+ luminal cells at the mouse proximal prostate express Sox2. These cells are replicative quiescent, castration resistant, and do not possess secretory function. We use the Probasin-CreERT2 and Sox2-CreERT2 models in concert with a fluorescent reporter line to label the Sca-1- and Sca-1+ luminal cells, respectively. By a lineage tracing approach, we show that the two luminal cell populations are independently sustained. Sox2 is dispensable for the maintenance of the Sca-1+ luminal cells but is essential for their facultative bipotent differentiation capacity. The Sca-1+ luminal cells share molecular features with the human TACSTD2+ luminal cells. This study corroborates the heterogeneity of the mouse prostate luminal cell lineage and shows that the adult mouse prostate luminal cell lineage is maintained by distinct cellular entities rather than a single progenitor population.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Jong Min Choi
- Department of Chemistry and Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Deyong Jia
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Zhouyihan Li
- Department of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Sung Yun Jung
- Department of Chemistry and Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, Washington, USA.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
114
|
Joseph DB, Henry GH, Malewska A, Iqbal NS, Ruetten HM, Turco AE, Abler LL, Sandhu SK, Cadena MT, Malladi VS, Reese JC, Mauck RJ, Gahan JC, Hutchinson RC, Roehrborn CG, Baker LA, Vezina CM, Strand DW. Urethral luminal epithelia are castration-insensitive cells of the proximal prostate. Prostate 2020; 80:872-884. [PMID: 32497356 PMCID: PMC7339731 DOI: 10.1002/pros.24020] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Castration-insensitive epithelial progenitors capable of regenerating the prostate have been proposed to be concentrated in the proximal region based on facultative assays. Functional characterization of prostate epithelial populations isolated with individual cell surface markers has failed to provide a consensus on the anatomical and transcriptional identity of proximal prostate progenitors. METHODS Here, we use single-cell RNA sequencing to obtain a complete transcriptomic profile of all epithelial cells in the mouse prostate and urethra to objectively identify cellular subtypes. Pan-transcriptomic comparison to human prostate cell types identified a mouse equivalent of human urethral luminal cells, which highly expressed putative prostate progenitor markers. Validation of the urethral luminal cell cluster was performed using immunostaining and flow cytometry. RESULTS Our data reveal that previously identified facultative progenitors marked by Trop2, Sca-1, KRT4, and PSCA are actually luminal epithelial cells of the urethra that extend into the proximal region of the prostate, and are resistant to castration-induced androgen deprivation. Mouse urethral luminal cells were identified to be the equivalent of previously identified human club and hillock cells that similarly extend into proximal prostate ducts. Benign prostatic hyperplasia (BPH) has long been considered an "embryonic reawakening," but the cellular origin of the hyperplastic growth concentrated in the periurethral region is unclear. We demonstrate an increase in urethral luminal cells within glandular nodules from BPH patients. Urethral luminal cells are further increased in patients treated with a 5-α reductase inhibitor. CONCLUSIONS Our data demonstrate that cells of the proximal prostate that express putative progenitor markers, and are enriched by castration in the proximal prostate, are urethral luminal cells and that these cells may play an important role in the etiology of human BPH.
Collapse
Affiliation(s)
- Diya B. Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Gervaise H. Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Nida S. Iqbal
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Hannah M. Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anne E. Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lisa L. Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Simran K. Sandhu
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark T. Cadena
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Venkat S. Malladi
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | | | - Ryan J. Mauck
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Jeffrey C. Gahan
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | | | | | - Linda A. Baker
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
115
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
116
|
Liu Y, Shi Y. Mitochondria as a target in cancer treatment. MedComm (Beijing) 2020; 1:129-139. [PMID: 34766113 PMCID: PMC8491233 DOI: 10.1002/mco2.16] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center Shanghai Tenth People's Hospital of Tongji University School of Medicine Tongji University Shanghai China
| | - Yufeng Shi
- Tongji University Cancer Center Shanghai Tenth People's Hospital of Tongji University School of Medicine Tongji University Shanghai China
- Center for Brain and Spinal Cord Research School of Medicine Tongji University Shanghai China
| |
Collapse
|
117
|
Bonollo F, Thalmann GN, Kruithof-de Julio M, Karkampouna S. The Role of Cancer-Associated Fibroblasts in Prostate Cancer Tumorigenesis. Cancers (Basel) 2020; 12:E1887. [PMID: 32668821 PMCID: PMC7409163 DOI: 10.3390/cancers12071887] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor-stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.
Collapse
Affiliation(s)
- Francesco Bonollo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
| | - George N. Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
| |
Collapse
|
118
|
Hepburn AC, Curry EL, Moad M, Steele RE, Franco OE, Wilson L, Singh P, Buskin A, Crawford SE, Gaughan L, Mills IG, Hayward SW, Robson CN, Heer R. Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Transl Med 2020; 9:734-745. [PMID: 32170918 PMCID: PMC7308643 DOI: 10.1002/sctm.19-0286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Primary culture of human prostate organoids and patient-derived xenografts is inefficient and has limited access to clinical tissues. This hampers their use for translational study to identify new treatments. To overcome this, we established a complementary approach where rapidly proliferating and easily handled induced pluripotent stem cells enabled the generation of human prostate tissue in vivo and in vitro. By using a coculture technique with inductive urogenital sinus mesenchyme, we comprehensively recapitulated in situ 3D prostate histology, and overcame limitations in the primary culture of human prostate stem, luminal and neuroendocrine cells, as well as the stromal microenvironment. This model now unlocks new opportunities to undertake translational studies of benign and malignant prostate disease.
Collapse
Affiliation(s)
- Anastasia C. Hepburn
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Curry
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Mohammad Moad
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
- Acute Internal MedicineUniversity Hospital of North TeesStockton on TeesUK
| | - Rebecca E. Steele
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Omar E. Franco
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Laura Wilson
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Parmveer Singh
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Adriana Buskin
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Susan E. Crawford
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Luke Gaughan
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Ian G. Mills
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Simon W. Hayward
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Craig N. Robson
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
- Department of Urology, Freeman HospitalThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
119
|
La Manna F, De Menna M, Patel N, Karkampouna S, De Filippo MR, Klima I, Kloen P, Beimers L, Thalmann GN, Pelger RCM, Jacinto E, Kruithof-de Julio M. Dual-mTOR Inhibitor Rapalink-1 Reduces Prostate Cancer Patient-Derived Xenograft Growth and Alters Tumor Heterogeneity. Front Oncol 2020; 10:1012. [PMID: 32656088 PMCID: PMC7324765 DOI: 10.3389/fonc.2020.01012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone metastasis is the leading cause of prostate cancer (PCa) mortality, frequently marking the progression to castration-resistant PCa. Dysregulation of the androgen receptor pathway is a common feature of castration-resistant PCa, frequently appearing in association with mTOR pathway deregulations. Advanced PCa is also characterized by increased tumor heterogeneity and cancer stem cell (CSC) frequency. CSC-targeted therapy is currently being explored in advanced PCa, with the aim of reducing cancer clonal divergence and preventing disease progression. In this study, we compared the molecular pathways enriched in a set of bone metastasis from breast and prostate cancer from snap-frozen tissue. To further model PCa drug resistance mechanisms, we used two patient-derived xenografts (PDX) models of bone-metastatic PCa, BM18, and LAPC9. We developed in vitro organoids assay and ex vivo tumor slice drug assays to investigate the effects of mTOR- and CSC-targeting compounds. We found that both PDXs could be effectively targeted by treatment with the bivalent mTORC1/2 inhibitor Rapalink-1. Exposure of LAPC9 to Rapalink-1 but not to the CSC-targeting drug disulfiram blocked mTORC1/2 signaling, diminished expression of metabolic enzymes involved in glutamine and lipid metabolism and reduced the fraction of CD44+ and ALDEFluorhigh cells, in vitro. Mice treated with Rapalink-1 showed a significantly delayed tumor growth compared to control and cells recovered from the tumors of treated animals showed a marked decrease of CD44 expression. Taken together these results highlight the increased dependence of advanced PCa on the mTOR pathway, supporting the development of a targeted approach for advanced, bone metastatic PCa.
Collapse
Affiliation(s)
- Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | - Marta De Menna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Nikhil Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Maria Rosaria De Filippo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Irena Klima
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Kloen
- Department of Orthopedic Trauma Surgery, Academic Medical Center, Amsterdam, Netherlands
| | - Lijkele Beimers
- Department of Orthopedic Surgery, MC Slotervaart, Amsterdam, Netherlands
| | - George N. Thalmann
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Rob C. M. Pelger
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
120
|
Huang YH, Zhang YQ, Huang JT. Neuroendocrine cells of prostate cancer: biologic functions and molecular mechanisms. Asian J Androl 2020; 21:291-295. [PMID: 30924452 PMCID: PMC6498729 DOI: 10.4103/aja.aja_128_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is a major health risk for older men worldwide. Existing systemic therapies mostly target androgen receptor (AR). Although treatments are initially effective, the disease always recurs. A potential mechanism for the treatment failure is that PCa contains, in addition to the AR-positive luminal type tumor cells, a small component of neuroendocrine (NE) cells. The function of NE cells in PCa remains poorly understood, and one important characteristic of these cells is their lack of expression of AR and resistance to hormonal therapy. In addition, many patients develop the more aggressive small-cell neuroendocrine carcinoma (SCNC) after hormonal therapy. Although this clinical phenomenon of disease transformation from adenocarcinoma to SCNC is well established, the cell of origin for SCNC remains unclear. Recently, loss of function of Rb and TP53 and amplification and overexpression of MYCN and Aurora A kinase have been identified as important biomarkers and potential disease drivers. In this article, we systematically review the histology of normal prostate and prostate cancer including the main histologic types: adenocarcinoma and SCNC. We also review the findings from many studies using cellular and animal models as well as human specimens that attempt to understand the molecular mechanisms of treatment failure, disease progression, and tumor transformation from adenocarcinoma to SCNC.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ya-Qun Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Jiao-Ti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27514, USA
| |
Collapse
|
121
|
Karthaus WR, Hofree M, Choi D, Linton EL, Turkekul M, Bejnood A, Carver B, Gopalan A, Abida W, Laudone V, Biton M, Chaudhary O, Xu T, Masilionis I, Manova K, Mazutis L, Pe'er D, Regev A, Sawyers CL. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 2020; 368:497-505. [PMID: 32355025 DOI: 10.1126/science.aay0267] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/14/2020] [Indexed: 01/20/2023]
Abstract
Androgen deprivation is the cornerstone of prostate cancer treatment. It results in involution of the normal gland to ~90% of its original size because of the loss of luminal cells. The prostate regenerates when androgen is restored, a process postulated to involve stem cells. Using single-cell RNA sequencing, we identified a rare luminal population in the mouse prostate that expresses stemlike genes (Sca1 + and Psca +) and a large population of differentiated cells (Nkx3.1 +, Pbsn +). In organoids and in mice, both populations contribute equally to prostate regeneration, partly through androgen-driven expression of growth factors (Nrg2, Rspo3) by mesenchymal cells acting in a paracrine fashion on luminal cells. Analysis of human prostate tissue revealed similar differentiated and stemlike luminal subpopulations that likewise acquire enhanced regenerative potential after androgen ablation. We propose that prostate regeneration is driven by nearly all persisting luminal cells, not just by rare stem cells.
Collapse
Affiliation(s)
- Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Danielle Choi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eliot L Linton
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mesruh Turkekul
- Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alborz Bejnood
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Brett Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wassim Abida
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vincent Laudone
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katia Manova
- Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
122
|
Gleave AM, Ci X, Lin D, Wang Y. A synopsis of prostate organoid methodologies, applications, and limitations. Prostate 2020; 80:518-526. [PMID: 32084293 DOI: 10.1002/pros.23966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Current in vitro modeling systems do not fully reflect the biologic and clinical diversity of prostate cancer (PCa). Organoids are 3D in vitro cell cultures that recapitulate disease heterogeneity, retain prostate gland architecture, and mirror parental tumor characteristics. METHODS To make better use of organoid models in the PCa research field, we provide a review of cutting-edge prostate organoid methodologies, applications, and limitations. RESULTS We summarize methodologies for the establishment of benign prostate and PCa organoids and describe some of the model's practical applications and challenges. We highlight the patient-derived xenograft (PDX)-organoid interface model, which may allow for the generation of organoids from primary and rare PCa subtypes. Finally, we discuss potential future utilizations of PCa organoids in the realms of drug development and precision oncology. CONCLUSIONS AND FUTURE DIRECTIONS Organoids represent a quasi in vivo modeling system that can be easily amenable to genetic modification and functional studies. As such, organoids may serve as an intermediate preclinical model for studying PCa. Future directions may include the refinement of culturing conditions to increase drug response fidelity in PCa organoids. The PDX-organoid interface model may enable the future establishment of primary and rare subtype PCa organoid lines.
Collapse
Affiliation(s)
- Anna M Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinpei Ci
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Dong Lin
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
123
|
The Prospect of Identifying Resistance Mechanisms for Castrate-Resistant Prostate Cancer Using Circulating Tumor Cells: Is Epithelial-to-Mesenchymal Transition a Key Player? Prostate Cancer 2020; 2020:7938280. [PMID: 32292603 PMCID: PMC7149487 DOI: 10.1155/2020/7938280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is initially driven by excessive androgen receptor (AR) signaling with androgen deprivation therapy (ADT) being a major therapeutic approach to its treatment. However, the development of drug resistance is a significant limitation on the effectiveness of both first-line and more recently developed second-line ADTs. There is a need then to study AR signaling within the context of other oncogenic signaling pathways that likely mediate this resistance. This review focuses on interactions between AR signaling, the well-known phosphatidylinositol-3-kinase/AKT pathway, and an emerging mediator of these pathways, the Hippo/YAP1 axis in metastatic castrate-resistant PCa, and their involvement in the regulation of epithelial-mesenchymal transition (EMT), a feature of disease progression and ADT resistance. Analysis of these pathways in circulating tumor cells (CTCs) may provide an opportunity to evaluate their utility as biomarkers and address their importance in the development of resistance to current ADT with potential to guide future therapies.
Collapse
|
124
|
Elbadawy M, Abugomaa A, Yamawaki H, Usui T, Sasaki K. Development of Prostate Cancer Organoid Culture Models in Basic Medicine and Translational Research. Cancers (Basel) 2020; 12:E777. [PMID: 32218271 PMCID: PMC7226333 DOI: 10.3390/cancers12040777] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PC) is the most prevalent cancer in men and the second main cause of cancer-related death in Western society. The lack of proper PC models that recapitulate the molecular and genomic landscape of clinical disease has hampered progress toward translational research to understand the disease initiation, progression, and therapeutic responses in each patient. Although several models have been developed, they hardly emulated the complicated PC microenvironment. Precision medicine is an emerging approach predicting appropriate therapies for individual cancer patients by means of various analyses of individual genomic profiling and targeting specific cancer pathways. In PC, precision medicine also has the potential to impose changes in clinical practices. Here, we describe the various PC models with special focus on PC organoids and their values in basic medicine, personalized therapy, and translational researches in vitro and in vivo, which could help to achieve the full transformative power of cancer precision medicine.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (M.E.); (A.A.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (M.E.); (A.A.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (M.E.); (A.A.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (M.E.); (A.A.); (K.S.)
| |
Collapse
|
125
|
Zhou X, Han S, Wilder-Romans K, Sun GY, Zhu H, Liu X, Tan M, Wang G, Feng FY, Sun Y. Neddylation inactivation represses androgen receptor transcription and inhibits growth, survival and invasion of prostate cancer cells. Neoplasia 2020; 22:192-202. [PMID: 32145689 PMCID: PMC7058827 DOI: 10.1016/j.neo.2020.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Androgen receptor (AR) and its constitutively active variants (AR-Vs) have been extensively implicated in the progression and recurrence of prostate cancer, making them attractive targets in the treatment of this disease. Whether and how neddylation modification regulates AR, and the therapeutic implications of this potential regulation, are relatively unexplored areas of investigation. Here we report that neddylation inactivation by the pharmacological inhibitor MLN4924 or Lenti-shRNA-based genetic knockdown of neddylation activating enzyme (NAE) selectively suppressed growth and survival of prostate cancer cells with minor, if any, effect on normal prostate epithelial cells. MLN4924 also significantly suppressed the invasive capacity of prostate cancer cells. Furthermore, compared to monotherapy, the combination of MLN4924 with AR antagonist or castration significantly enhanced growth suppression of prostate cancer cells in vitro, and tumor growth in an in vivo xenograft model. Mechanistically, MLN4924 repressed the transcription of AR/AR-V7 and its downstream targets, and blocked MMP2 and MMP9 expression. Taken together, our study reveals that the neddylation pathway positively regulates AR/AR-V7 transcription, and that the neddylation inhibitor MLN4924 has therapeutic potential for the treatment of aggressive prostate cancers.
Collapse
Affiliation(s)
- Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sumin Han
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Wilder-Romans
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Grace Y Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Hong Zhu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Felix Y Feng
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; Departments of Radiation Oncology, Urology, and Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
126
|
Karthaus WR, Sawyers CL. Strategies to Identify and Target Cells of Origin in Prostate Cancer. J Natl Cancer Inst 2020; 111:221-223. [PMID: 30312421 DOI: 10.1093/jnci/djy146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023] Open
Affiliation(s)
- Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
127
|
Klf5 acetylation regulates luminal differentiation of basal progenitors in prostate development and regeneration. Nat Commun 2020; 11:997. [PMID: 32081850 PMCID: PMC7035357 DOI: 10.1038/s41467-020-14737-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Prostate development depends on balanced cell proliferation and differentiation, and acetylated KLF5 is known to alter epithelial proliferation. It remains elusive whether post-translational modifications of transcription factors can differentially determine adult stem/progenitor cell fate. Here we report that, in human and mouse prostates, Klf5 is expressed in both basal and luminal cells, with basal cells preferentially expressing acetylated Klf5. Functionally, Klf5 is indispensable for maintaining basal progenitors, their luminal differentiation, and the proliferation of their basal and luminal progenies. Acetylated Klf5 is also essential for basal progenitors' maintenance and proper luminal differentiation, as deacetylation of Klf5 causes excess basal-to-luminal differentiation; attenuates androgen-mediated organoid organization; and retards postnatal prostate development. In basal progenitor-derived luminal cells, Klf5 deacetylation increases their proliferation and attenuates their survival and regeneration following castration and subsequent androgen restoration. Mechanistically, Klf5 deacetylation activates Notch signaling. Klf5 and its acetylation thus contribute to postnatal prostate development and regeneration by controlling basal progenitor cell fate.
Collapse
|
128
|
Prokhnevska N, Emerson DA, Kissick HT, Redmond WL. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:121-147. [PMID: 31900908 DOI: 10.1007/978-3-030-32656-2_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the most common cancers in men and a leading cause of cancer-related death. Recent advances in the treatment of advanced prostate cancer, including the use of more potent and selective inhibitors of the androgen signaling pathway, have provided significant clinical benefit for men with metastatic castration-resistant prostate cancer (mCRPC). However, most patients develop progressive lethal disease, highlighting the need for more effective treatments. One such approach is immunotherapy, which harness the power of the patient's immune system to identify and destroy cancer cells through the activation of cytotoxic CD8 T cells specific for tumor antigens. Although immunotherapy, particularly checkpoint blockade, can induce significant clinical responses in patients with solid tumors or hematological malignancies, minimal efficacy has been observed in men with mCRPC. In the current review, we discuss our current understanding of the immunological complexity of the immunosuppressive prostate cancer microenvironment, preclinical models of prostate cancer, and recent advances in immunotherapy clinical trials to improve outcomes for men with mCRPC.
Collapse
Affiliation(s)
| | - Dana A Emerson
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.,Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
129
|
Wang X, Xu H, Cheng C, Ji Z, Zhao H, Sheng Y, Li X, Wang J, Shu Y, He Y, Fan L, Dong B, Xue W, Wai Chua C, Wu D, Gao WQ, He Zhu H. Identification of a Zeb1 expressing basal stem cell subpopulation in the prostate. Nat Commun 2020; 11:706. [PMID: 32024836 PMCID: PMC7002669 DOI: 10.1038/s41467-020-14296-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022] Open
Abstract
The basal cell compartment in many epithelial tissues is generally believed to serve as an important pool of stem cells. However, basal cells are heterogenous and the stem cell subpopulation within basal cells is not well elucidated. Here we uncover that the core epithelial-to-mesenchymal transition (EMT) inducer Zeb1 is expressed in a prostate basal cell subpopulation. The Zeb1+ prostate epithelial cells are multipotent prostate basal stem cells (PBSCs) that can self-renew and generate functional prostatic glandular structures at the single-cell level. Genetic ablation studies reveal an indispensable role for Zeb1 in prostate basal cell development. Utilizing unbiased single-cell transcriptomic analysis of over 9000 mouse prostate basal cells, we confirm the existence of the Zeb1+ basal cell subset. Moreover, Zeb1+ epithelial cells can be detected in mouse and human prostate tumors. Identification of the PBSC and its transcriptome profile is crucial to advance our understanding of prostate development and tumorigenesis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaru Sheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoxia Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liancheng Fan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Sciences, Kunming, 650223, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
130
|
TIP5 primes prostate luminal cells for the oncogenic transformation mediated by PTEN-loss. Proc Natl Acad Sci U S A 2020; 117:3637-3647. [PMID: 32024754 PMCID: PMC7035629 DOI: 10.1073/pnas.1911673117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell of origin and the temporal order of oncogenic events in tumors play important roles for disease state. This is of particular interest for PCa due to its highly variable clinical outcome. However, these features are difficult to analyze in tumors. We established an in vitro murine PCa organoid model taking into account the cell of origin and the temporal order of events. We found that TIP5 primes luminal prostate cells for Pten-loss mediated oncogenic transformation whereas it is dispensable once the transformation is established. Cross-species transcriptomic analyses revealed a PTEN-loss gene signature that identified a set of aggressive tumors with PTEN-del, or low PTEN expression, and high-TIP5 expression. This paper provides a powerful tool to elucidate PCa mechanisms. Prostate cancer (PCa) is the second leading cause of cancer death in men. Its clinical and molecular heterogeneities and the lack of in vitro models outline the complexity of PCa in the clinical and research settings. We established an in vitro mouse PCa model based on organoid technology that takes into account the cell of origin and the order of events. Primary PCa with deletion of the tumor suppressor gene PTEN (PTEN-del) can be modeled through Pten-down-regulation in mouse organoids. We used this system to elucidate the contribution of TIP5 in PCa initiation, a chromatin regulator that is implicated in aggressive PCa. High TIP5 expression correlates with primary PTEN-del PCa and this combination strongly associates with reduced prostate-specific antigen (PSA) recurrence-free survival. TIP5 is critical for the initiation of PCa of luminal origin mediated by Pten-loss whereas it is dispensable once Pten-loss mediated transformation is established. Cross-species analyses revealed a PTEN gene signature that identified a group of aggressive primary PCas characterized by PTEN-del, high-TIP5 expression, and a TIP5-regulated gene expression profile. The results highlight the modeling of PCa with organoids as a powerful tool to elucidate the role of genetic alterations found in recent studies in their time orders and cells of origin, thereby providing further optimization for tumor stratification to improve the clinical management of PCa.
Collapse
|
131
|
Patel R, Brzezinska EA, Repiscak P, Ahmad I, Mui E, Gao M, Blomme A, Harle V, Tan EH, Malviya G, Mrowinska A, Loveridge CJ, Rushworth LK, Edwards J, Ntala C, Nixon C, Hedley A, Mackay G, Tardito S, Sansom OJ, Leung HY. Activation of β-Catenin Cooperates with Loss of Pten to Drive AR-Independent Castration-Resistant Prostate Cancer. Cancer Res 2020; 80:576-590. [PMID: 31719098 DOI: 10.1158/0008-5472.can-19-1684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
Inhibition of the androgen receptor (AR) is the main strategy to treat advanced prostate cancers. AR-independent treatment-resistant prostate cancer is a major unresolved clinical problem. Patients with prostate cancer with alterations in canonical WNT pathway genes, which lead to β-catenin activation, are refractory to AR-targeted therapies. Here, using clinically relevant murine prostate cancer models, we investigated the significance of β-catenin activation in prostate cancer progression and treatment resistance. β-Catenin activation, independent of the cell of origin, cooperated with Pten loss to drive AR-independent castration-resistant prostate cancer. Prostate tumors with β-catenin activation relied on the noncanonical WNT ligand WNT5a for sustained growth. WNT5a repressed AR expression and maintained the expression of c-Myc, an oncogenic effector of β-catenin activation, by mediating nuclear localization of NFκBp65 and β-catenin. Overall, WNT/β-catenin and AR signaling are reciprocally inhibited. Therefore, inhibiting WNT/β-catenin signaling by limiting WNT secretion in concert with AR inhibition may be useful for treating prostate cancers with alterations in WNT pathway genes. SIGNIFICANCE: Targeting of both AR and WNT/β-catenin signaling may be required to treat prostate cancers that exhibit alterations of the WNT pathway.
Collapse
MESH Headings
- Androgen Receptor Antagonists/pharmacology
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- PTEN Phosphohydrolase/deficiency
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Wnt-5a Protein/genetics
- Wnt-5a Protein/metabolism
- Xenograft Model Antitumor Assays
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Rachana Patel
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom.
| | | | - Peter Repiscak
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Imran Ahmad
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Ernest Mui
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Meiling Gao
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Arnaud Blomme
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Victoria Harle
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Ee Hong Tan
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Agata Mrowinska
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Carolyn J Loveridge
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Linda K Rushworth
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Joanne Edwards
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Chara Ntala
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Gillian Mackay
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom.
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| |
Collapse
|
132
|
Pang B, Zhu Y, Ni J, Thompson J, Malouf D, Bucci J, Graham P, Li Y. Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics 2020; 10:2309-2326. [PMID: 32089744 PMCID: PMC7019149 DOI: 10.7150/thno.39486] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death for males in western countries. The current gold standard for PCa diagnosis - template needle biopsies - often does not convey a true representation of the molecular profile given sampling error and complex tumour heterogeneity. Presently available biomarker blood tests have limited accuracy. There is a growing demand for novel diagnostic approaches to reduce both the number of men with an abnormal PSA/ DRE who undergo invasive biopsy and the number of cores collected per biopsy. 'Liquid biopsy' is a minimally invasive biofluid-based approach that has the potential to provide information and improve the accuracy of diagnosis for patients' treatment selection, prognostic counselling and development of risk-adjusted follow-up protocols. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by tumour cells which may provide a real-time snapshot of the entire tumour in a non-invasive way. EVs can regulate physiological processes and mediate systemic dissemination of various types of cancers. Emerging evidence suggests that EVs have crucial roles in PCa development and metastasis. Most importantly, EVs are directly derived from their parent cells with their information. EVs contain components including proteins, mRNAs, DNA fragments, non-coding RNAs and lipids, and play a critical role in intercellular communication. Therefore, EVs hold promise for the discovery of liquid biopsy-based biomarkers for PCa diagnosis. Here, we review the current approaches for EV isolation and analysis, summarise the recent advances in EV protein biomarkers in PCa and focus on liquid biopsy-based EV biomarkers in PCa diagnosis for personalised medicine.
Collapse
Affiliation(s)
- Bairen Pang
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Ying Zhu
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - James Thompson
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Urology, St George Hospital, Sydney, NSW 2217, Australia
- Garvan Institute of Medical Research/ APCRC, Sydney, UNSW, 2010, Australia
| | - David Malouf
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
- Department of Urology, St George Hospital, Sydney, NSW 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
- School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China
| |
Collapse
|
133
|
Mapelli SN, Albino D, Mello-Grand M, Shinde D, Scimeca M, Bonfiglio R, Bonanno E, Chiorino G, Garcia-Escudero R, Catapano CV, Carbone GM. A Novel Prostate Cell Type-Specific Gene Signature to Interrogate Prostate Tumor Differentiation Status and Monitor Therapeutic Response (Running Title: Phenotypic Classification of Prostate Tumors). Cancers (Basel) 2020; 12:cancers12010176. [PMID: 31936761 PMCID: PMC7016595 DOI: 10.3390/cancers12010176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we extracted prostate cell-specific gene sets (metagenes) to define the epithelial differentiation status of prostate cancers and, using a deconvolution-based strategy, interrogated thousands of primary and metastatic tumors in public gene profiling datasets. We identified a subgroup of primary prostate tumors with low luminal epithelial enrichment (LumElow). LumElow tumors were associated with higher Gleason score and mutational burden, reduced relapse-free and overall survival, and were more likely to progress to castration-resistant prostate cancer (CRPC). Using discriminant function analysis, we generate a predictive 10-gene classifier for clinical implementation. This mini-classifier predicted with high accuracy the luminal status in both primary tumors and CRPCs. Immunohistochemistry for COL4A1, a low-luminal marker, sustained the association of attenuated luminal phenotype with metastatic disease. We found also an association of LumE score with tumor phenotype in genetically engineered mouse models (GEMMs) of prostate cancer. Notably, the metagene approach led to the discovery of drugs that could revert the low luminal status in prostate cell lines and mouse models. This study describes a novel tool to dissect the intrinsic heterogeneity of prostate tumors and provide predictive information on clinical outcome and treatment response in experimental and clinical samples.
Collapse
Affiliation(s)
- Sarah N. Mapelli
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
| | - Maurizia Mello-Grand
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia Valenta, 13900 Biella, Italy; (M.M.-G.); (G.C.)
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Rita Bonfiglio
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia Valenta, 13900 Biella, Italy; (M.M.-G.); (G.C.)
| | - Ramon Garcia-Escudero
- Molecular Oncology Unit, CIEMAT, 28040 Madrid, Spain
- Biomedicine Research Institute, Hospital 12 octubre, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28040 Madrid, Spain
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| | - Carlo V. Catapano
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| |
Collapse
|
134
|
O'Reilly D, Johnson P, Buchanan PJ. Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer. Steroids 2019; 152:108497. [PMID: 31521707 DOI: 10.1016/j.steroids.2019.108497] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Androgen deprivation therapy (ADT) is the main treatment to prolong survival in advance stage prostate cancer (PCa) but associated resistance leads to the development of terminal castrate resistant PCa (CRPC). Current research demonstrates that prostate cancer stem cells (PCSC) play a critical role in the development of treatment resistance and subsequent disease progression. Despite uncertainty surrounding the origin of these cells, studies clearly show they are associated with poorer outcomes and that ADT significantly enhances their numbers. Here in we highlight how activation of HIF signalling, in response to hypoxic conditions within the tumour microenvironment, results in the expression of genes associated with stemness and EMT promoting PCSC emergence which ultimately drives tumour relapse to CRPC. Hypoxic conditions are not only enhanced by ADT but the associated decrease in AR activation also promotes PI3K/AKT signalling which actively enhances HIF and its effects on PCSC's. Furthermore, emerging evidence now indicates that HIF-2α, rather than the commonly considered HIF-1α, is the main family member that drives PCSC emergence. Taken together this clearly identifies HIF and associated pathways as key targets for new therapeutic strategies that could potentially prevent or slow PCSC promoted resistance to ADT, thus holding potential to prolong patient survival.
Collapse
Affiliation(s)
- Debbie O'Reilly
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Patricia Johnson
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland
| | - Paul J Buchanan
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
135
|
Davis JE, Kirk J, Ji Y, Tang DG. Tumor Dormancy and Slow-Cycling Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:199-206. [PMID: 31576550 DOI: 10.1007/978-3-030-22254-3_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer cell heterogeneity is a universal feature of human tumors and represents a significant barrier to the efficacy and duration of anticancer therapies, especially targeted therapeutics. Among the heterogeneous cancer cell populations is a subpopulation of relatively quiescent cancer cells, which are in the G0/G1 cell-cycle phase and refractory to anti-mitotic drugs that target proliferative cells. These slow-cycling cells (SCCs) preexist in untreated tumors and frequently become enriched in treatment-failed tumors, raising the possibility that these cells may mediate therapy resistance and tumor relapse. Here we review several general concepts on tumor cell heterogeneity, quiescence, and tumor dormancy. We discuss the potential relationship between SCCs and cancer stem cells (CSCs). We also present our current understanding of how SCCs and cancer dormancy might be regulated. Increasing knowledge of SCCs and tumor dormancy should lead to identification of novel molecular regulators and therapeutic targets of tumor relapse, residual diseases, and metastasis.
Collapse
Affiliation(s)
- John E Davis
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
136
|
Madueke I, Hu WY, Hu D, Swanson SM, Griend DV, Abern M, Prins GS. The role of WNT10B in normal prostate gland development and prostate cancer. Prostate 2019; 79:1692-1704. [PMID: 31433503 PMCID: PMC9639854 DOI: 10.1002/pros.23894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND WNT signaling is implicated in embryonic development, and in adult tissue homeostasis, while its deregulation is evident in disease. This study investigates the unique roles of canonical WNT10B in both normal prostate development and prostate cancer (PCa) progression. METHODS Organ culture and rat ventral prostates (VPs) were used to study Wnt10b ontogeny and growth effect of WNT10B protein. PB-SV40 LTag rat VPs were utilized for Wnt expression polymerase chain reaction (PCR) array and immunohistochemistry. Human localized PCa tissue microarrays (TMAs) were investigated for differential WNT10B expression. Human RNA-seq data sets were queried for differential expression of WNT10B in metastatic and localized PCa. Knockdown of WNT10B in PC3 cells was utilized to study its effects on proliferation, stemness, epithelial to mesenchymal transition (EMT), and xenograft propagation. RESULTS Wnt10b expression was highest at birth and rapidly declined in the postnatal rat VP. Exogenous WNT10B addition to culture developing VPs decreased growth suggesting an antiproliferative role. VPs from PB-SV40 LTag rats with localized PCa showed a 25-fold reduction in Wnt10b messenger RNA (mRNA) expession, confirmed at the protein level. Human PCa TMAs revealed elevated WNT10B protein in prostate intraepithelial neoplasia compared with normal prostates but reduced levels in localized PCa specimens. In contrast, RNA-seq data set of annotated human PCa metastasis found a significant increase in WNT10B mRNA expression compared with localized tumors suggesting stage-specific functions of WNT10B. Similarly, WNT10B mRNA levels were increased in metastatic cell lines PC3, PC3M, as well as in HuSLC, a PCa stem-like cell line, as compared with disease-free primary prostate epithelial cells. WNT10B knockdown in PC3 cells reduced expression of EMT genes, MMP9 and stemness genes NANOG and SOX2 and markedly reduced the stem cell-like side population. Furthermore, loss of WNT10B abrogated the ability of PC3 cells to propagate tumors via serial transplantation. CONCLUSIONS Taken together, these results suggest a dual role for WNT10B in normal development and in PCa progression with opposing functions depending on disease stage. We propose that decreased WNT10B levels in localized cancer allow for a hyperproliferative state, whereas increased levels in advanced disease confer a stemness and malignant propensity which is mitigated by knocking down WNT10B levels. This raises the potential for WNT10B as a novel target for therapeutic intervention in metastatic PCa.
Collapse
Affiliation(s)
- Ikenna Madueke
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Danping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Steven M. Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Donald Vander Griend
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| | - Michael Abern
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| | - Gail S. Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
137
|
Horton C, Liu Y, Yu C, Xie Q, Wang ZA. Luminal-contact-inhibition of epithelial basal stem cell multipotency in prostate organogenesis and homeostasis. Biol Open 2019; 8:bio.045724. [PMID: 31540905 PMCID: PMC6826291 DOI: 10.1242/bio.045724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prostate epithelial basal cells are highly plastic in their luminal differentiation capability. Basal stem cells actively produce luminal cells during organogenesis, but become restricted in the adult prostate unless receiving oncogenic or inflammatory stimuli. Given that the number of luminal cells increases relative to basal cells through development and that equilibrium is reached in the adulthood, we hypothesize that a negative-feedback mechanism exists to inhibit basal-to-luminal differentiation. We provide evidence supporting this hypothesis by comparing murine prostatic growth in a tissue reconstitution assay with cell recombinants of different basal-to-luminal ratios. Additionally, in organoid culture, hybrid organoids derived from adjacent basal and luminal cells showed reduced basal stem cell activities, suggesting contact inhibition. Importantly, removal of adult luminal cells in vivo via either an inducible Cre/loxP-Dre/rox dual-lineage-tracing system or orthotopic trypsin injection led to robust reactivation of basal stem cell activities, which acts independent of androgen. These data illustrate the prostate organ as a distinctive paradigm where cell contact from differentiated daughter cells restricts adult stem cell multipotency to maintain the steady-state epithelial architecture.
Collapse
Affiliation(s)
- Corrigan Horton
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Chuan Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Qing Xie
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
138
|
Bowen C, Ostrowski MC, Leone G, Gelmann EP. Loss of PTEN Accelerates NKX3.1 Degradation to Promote Prostate Cancer Progression. Cancer Res 2019; 79:4124-4134. [PMID: 31213464 PMCID: PMC6753942 DOI: 10.1158/0008-5472.can-18-4110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/28/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
NKX3.1 is the most commonly deleted gene in prostate cancer and a gatekeeper suppressor. NKX3.1 is a growth suppressor, mediator of apoptosis, inducer of antioxidants, and enhancer of DNA repair. PTEN is a ubiquitous tumor suppressor that is often decreased in prostate cancer during tumor progression. Steady-state turnover of NKX3.1 is mediated by DYRK1B phosphorylation at NKX3.1 serine 185 that leads to polyubiquitination and proteasomal degradation. In this study, we show PTEN is an NKX3.1 phosphatase that protects NKX3.1 from degradation. PTEN specifically opposed phosphorylation at NKX3.1(S185) and prolonged NKX3.1 half-life. PTEN and NKX3.1 interacted primarily in the nucleus as loss of PTEN nuclear localization abrogated its ability to bind to and protect NKX3.1 from degradation. The effect of PTEN on NKX3.1 was mediated via rapid enzyme-substrate interaction. An effect of PTEN on Nkx3.1 gene transcription was seen in vitro, but not in vivo. In gene-targeted mice, Nkx3.1 expression significantly diminished shortly after loss of Pten expression in the prostate. Nkx3.1 loss primarily increased prostate epithelial cell proliferation in vivo. In these mice, Nkx3.1 mRNA was not affected by Pten expression. Thus, the prostate cancer suppressors PTEN and NKX3.1 interact and loss of PTEN is responsible, at least in part, for progressive loss of NKX3.1 that occurs during tumor progression. SIGNIFICANCE: PTEN functions as a phosphatase of NKX3.1, a gatekeeper suppressor of prostate cancer.
Collapse
Affiliation(s)
- Cai Bowen
- Departments of Medicine and of Pathology and Cell Biology, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, Columbia University, 177 Ft. Washington Ave., MHB 6N-435, New York, NY, 10032
| | - Michael C. Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Gustavo Leone
- Medical University of South Carolina, Hollings Cancer Center, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425
| | - Edward P. Gelmann
- Departments of Medicine and of Pathology and Cell Biology, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, Columbia University, 177 Ft. Washington Ave., MHB 6N-435, New York, NY, 10032
- Corresponding author present address: University of Arizona Medical Center, Division of Hematology/Oncology, 1515 N Campbell Avenue, Room 1969K, Tucson, AZ 85724-5024
| |
Collapse
|
139
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
140
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
141
|
Circulating IGF-1 promotes prostate adenocarcinoma via FOXO3A/BIM signaling in a double-transgenic mouse model. Oncogene 2019; 38:6338-6353. [DOI: 10.1038/s41388-019-0880-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/05/2019] [Accepted: 04/18/2019] [Indexed: 11/08/2022]
|
142
|
Shu Y, Chua CW. An Organoid Assay for Long-Term Maintenance and Propagation of Mouse Prostate Luminal Epithelial Progenitors and Cancer Cells. Methods Mol Biol 2019; 1940:231-254. [PMID: 30788830 DOI: 10.1007/978-1-4939-9086-3_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Historically, prostate luminal epithelial progenitors and cancer cells have been difficult to culture, thus hampering the generation of representative models for the study of prostate homeostasis, epithelial lineage hierarchy relationship and cancer drug efficacy assessment. Here, we describe a newly developed culture methodology that can efficiently grow prostate luminal epithelial progenitors and cancer cells as organoids. Notably, the organoid assay favors prostate luminal cell growth, thus minimizing basal cell dominance upon the establishment and continuous propagation of prostate epithelial cells. Importantly, organoids cultured under this condition have demonstrated preservation of androgen responsiveness and intact androgen receptor signaling, providing a representative system to study castration resistance and androgen receptor independence.
Collapse
Affiliation(s)
- Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
143
|
Gonthier K, Poluri RTK, Audet-Walsh É. Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. J Steroid Biochem Mol Biol 2019; 191:105367. [PMID: 31051242 DOI: 10.1016/j.jsbmb.2019.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Sex-steroid hormones have been investigated for decades for their oncogenic properties in hormone-dependent cancers. The increasing body of knowledge on the biological actions of androgens in prostate cancer has led to the development of several targeted therapies that still represent the standard of care for cancer patients to this day. In the prostate, androgens promote cellular differentiation and proper tissue development. These hormones also promote the aberrant proliferation and survival of prostate cancer cells. Over the past few years, sequencing technologies for functional genomic analyses have rapidly expanded, revealing novel functions of sex-steroid hormone receptors other than their classic roles. In this article, we will focus on transcriptomic- and genomic-based evidence that demonstrates the importance of the androgen receptor signaling in the regulation of prostate cancer cell metabolism. This is significant because the reprogramming of cell metabolism is a hallmark of cancer. In fact, it is clear now that the androgen receptor contributes to the reprogramming of specific cellular metabolic pathways that promote tumor growth and disease progression, including aerobic glycolysis, mitochondrial respiration, fatty acid ß-oxidation, and de novo lipid synthesis. Overall, beyond regulating development, differentiation, and proliferation, the androgen receptor is also a master regulator of cellular energy metabolism.
Collapse
Affiliation(s)
- Kevin Gonthier
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada
| | - Raghavendra Tejo Karthik Poluri
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Axe Endocrinologie - Néphrologie du Centre de recherche du CHU de Québec, Canada; Centre de recherche sur le cancer - Université Laval, Canada.
| |
Collapse
|
144
|
Laudato S, Aparicio A, Giancotti FG. Clonal Evolution and Epithelial Plasticity in the Emergence of AR-Independent Prostate Carcinoma. Trends Cancer 2019; 5:440-455. [PMID: 31311658 DOI: 10.1016/j.trecan.2019.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
In spite of an initial clinical response to androgen deprivation therapy (ADT), the majority of prostate cancer patients eventually develop castration-resistant prostate cancer (CRPC). Recent studies have highlighted the role of epithelial plasticity, including transdifferentiation and epithelial-to-mesenchymal transition (EMT), in the development of AR pathway-negative CRPC, a form of the disease that has increased in incidence after the introduction of potent AR inhibitors. In this review, we will discuss the switches between different cell fates that occur in response to AR blockade or acquisition of specific oncogenic mutations, such as those in TP53 and RB1, during the evolution to CRPC. We highlight the urgent need to dissect the mechanistic underpinnings of these transitions and identify novel vulnerabilities that can be targeted therapeutically.
Collapse
Affiliation(s)
- Sara Laudato
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. )
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
145
|
Fararjeh AS, Liu YN. ZBTB46, SPDEF, and ETV6: Novel Potential Biomarkers and Therapeutic Targets in Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:E2802. [PMID: 31181727 PMCID: PMC6600524 DOI: 10.3390/ijms20112802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the second most common killer among men in Western countries. Targeting androgen receptor (AR) signaling by androgen deprivation therapy (ADT) is the current therapeutic regime for patients newly diagnosed with metastatic PCa. However, most patients relapse and become resistant to ADT, leading to metastatic castration-resistant PCa (CRPC) and eventually death. Several proposed mechanisms have been proposed for CRPC; however, the exact mechanism through which CRPC develops is still unclear. One possible pathway is that the AR remains active in CRPC cases. Therefore, understanding AR signaling networks as primary PCa changes into metastatic CRPC is key to developing future biomarkers and therapeutic strategies for PCa and CRPC. In the current review, we focused on three novel biomarkers (ZBTB46, SPDEF, and ETV6) that were demonstrated to play critical roles in CRPC progression, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) drug resistance, and the epithelial-to-mesenchymal transition (EMT) for patients treated with ADT or AR inhibition. In addition, we summarize how these potential biomarkers can be used in the clinic for diagnosis and as therapeutic targets of PCa.
Collapse
Affiliation(s)
- AbdulFattah Salah Fararjeh
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yen-Nien Liu
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
146
|
Abstract
Stem/progenitor cells play central roles in processes of organogenesis and tissue maintenance, whereas cancer stem cells (CSCs) are thought to drive tumor malignancy. Here, we review recent progress in the identification and analysis of normal prostate stem/progenitor cells as well as putative CSCs in both genetically engineered mouse models as well as in human tissue. We also discuss studies that have investigated the cell type of origin for prostate cancer. In addition, we provide a critical assessment of methodologies used in stem cell analyses and outline directions for future research.
Collapse
Affiliation(s)
- Jia J Li
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
147
|
Lee JY, Lin SY, Lin CY, Chuang YH, Huang SH, Tseng YY, Wang HJ, Yang JM. Identification of the PCA29 gene signature as a predictor in prostate cancer. J Bioinform Comput Biol 2019; 17:1940006. [PMID: 31288639 DOI: 10.1142/s0219720019400067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death among men worldwide. About 70% of PCa patients were diagnosed at later stage, and metastasis has been observed. Additionally, the cure rate of PCa closely relies on the early diagnosis with biomarkers. The identification of biomarkers for diagnosis and prognosis is an urgent clinical issue for PCa. Here, we developed a novel scoring strategy, including cluster score (CS) and predicting score (PS), to identify 29 PCa genes (called PCa29) for early diagnostic biomarkers from two datasets in Gene Expression Omnibus. The result indicates that PCa29 can discriminate between normal and tumor tissues and are specific for prostate cancer. To validate PCa29, we found that 97% of PCa29 were consistently significant with these gene expressions in The Cancer Genome Atlas; furthermore, ∼ 70% of PCa29 are consensus to the protein expression in The Human Protein Atlas. Finally, we examined 10 genes in PCa29 on three PCa cell lines by real-time quantitative polymerase chain reaction. The experimental results show that the trend of the differential PCa29 expression is consistent with the analyzed results from our novel scoring method. We believe that our method is useful and PCa29 are potential biomarkers that provide the clues to develop targeting therapy for PCa.
Collapse
Affiliation(s)
- Jung-Yu Lee
- * Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Si-Yu Lin
- * Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chun-Yu Lin
- † Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Yi-Huan Chuang
- * Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Sing-Han Huang
- * Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Yao Tseng
- * Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Hung-Jung Wang
- ‡ Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan
| | | |
Collapse
|
148
|
Hanoun M, Arnal-Estapé A, Maryanovich M, Zahalka AH, Bergren SK, Chua CW, Leftin A, Brodin PN, Shen MM, Guha C, Frenette PS. Nestin +NG2 + Cells Form a Reserve Stem Cell Population in the Mouse Prostate. Stem Cell Reports 2019; 12:1201-1211. [PMID: 31130357 PMCID: PMC6565923 DOI: 10.1016/j.stemcr.2019.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
In the prostate, stem and progenitor cell regenerative capacities have been ascribed to both basal and luminal epithelial cells. Here, we show that a rare subset of mesenchymal cells in the prostate are epithelial-primed Nestin-expressing cells (EPNECs) that can generate self-renewing prostate organoids with bipotential capacity. Upon transplantation, these EPNECs can form prostate gland tissue grafts at the clonal level. Lineage-tracing analyses show that cells marked by Nestin or NG2 transgenic mice contribute to prostate epithelium during organogenesis. In the adult, modest contributions in repeated rounds of regression and regeneration are observed, whereas prostate epithelial cells derived from Nestin/NG2-marked cells are dramatically increased after severe irradiation-induced organ damage. These results indicate that Nestin/NG2 expression marks a novel radioresistant prostate stem cell that is active during development and displays reserve stem cell activity for tissue maintenance. The murine prostate mesenchyme contains epithelial-primed Nestin+ cells Nestin+ cells generate self-renewing prostate organoids and glands at clonal level NG2/Nestin+ cells contribute to prostate epithelium during organogenesis NG2/Nestin+ cells retain reserve stem cell activity for tissue regeneration in the adult
Collapse
Affiliation(s)
- Maher Hanoun
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Hematology, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Anna Arnal-Estapé
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sarah K Bergren
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Chee W Chua
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Avigdor Leftin
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrik N Brodin
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
149
|
Frame FM, Maitland NJ. Epigenetic Control of Gene Expression in the Normal and Malignant Human Prostate: A Rapid Response Which Promotes Therapeutic Resistance. Int J Mol Sci 2019; 20:E2437. [PMID: 31108832 PMCID: PMC6566891 DOI: 10.3390/ijms20102437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
A successful prostate cancer must be capable of changing its phenotype in response to a variety of microenvironmental influences, such as adaptation to treatment or successful proliferation at a particular metastatic site. New cell phenotypes emerge by selection from the large, genotypically heterogeneous pool of candidate cells present within any tumor mass, including a distinct stem cell-like population. In such a multicellular model of human prostate cancer, flexible responses are primarily governed not only by de novo mutations but appear to be dominated by a combination of epigenetic controls, whose application results in treatment resistance and tumor relapse. Detailed studies of these individual cell populations have resulted in an epigenetic model for epithelial cell differentiation, which is also instructive in explaining the reported high and inevitable relapse rates of human prostate cancers to a multitude of treatment types.
Collapse
Affiliation(s)
- Fiona M Frame
- The Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Norman J Maitland
- The Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
150
|
Zhao SG, Chang SL, Erho N, Yu M, Lehrer J, Alshalalfa M, Speers C, Cooperberg MR, Kim W, Ryan CJ, Den RB, Freedland SJ, Posadas E, Sandler H, Klein EA, Black P, Seiler R, Tomlins SA, Chinnaiyan AM, Jenkins RB, Davicioni E, Ross AE, Schaeffer EM, Nguyen PL, Carroll PR, Karnes RJ, Spratt DE, Feng FY. Associations of Luminal and Basal Subtyping of Prostate Cancer With Prognosis and Response to Androgen Deprivation Therapy. JAMA Oncol 2019; 3:1663-1672. [PMID: 28494073 DOI: 10.1001/jamaoncol.2017.0751] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Importance There is a clear need for a molecular subtyping approach in prostate cancer to identify clinically distinct subgroups that benefit from specific therapies. Objectives To identify prostate cancer subtypes based on luminal and basal lineage and to determine associations with clinical outcomes and response to treatment. Design, Setting, and Participants The PAM50 classifier was used to subtype 1567 retrospectively collected (median follow-up, 10 years) and 2215 prospectively collected prostate cancer samples into luminal- and basal-like subtypes. Main Outcomes and Measures Metastasis, biochemical recurrence, overall survival, prostate cancer–specific survival, associations with biological pathways, and clinicopathologic variables were the main outcomes. Results Among the 3782 samples, the PAM50 classifier consistently segregated prostate cancer into 3 subtypes in both the retrospective and prospective cohorts: luminal A (retrospective, 538 [34.3%]; prospective, 737 [33.3%]), luminal B (retrospective, 447 [28.5%]; prospective, 723 [32.6%]), and basal (retrospective, 582 [37.1%]; prospective, 755 [34.1%]). Known luminal lineage markers, such as NKX3.1 and KRT18, were enriched in luminal-like cancers, and the basal lineage CD49f signature was enriched in basal-like cancers, demonstrating the connection between these subtypes and established prostate cancer biology. In the retrospective cohort, luminal B prostate cancers exhibited the poorest clinical prognoses on both univariable and multivariable analyses accounting for standard clinicopathologic prognostic factors (10-year biochemical recurrence-free survival [bRFS], 29%; distant metastasis-free survival [DMFS], 53%; prostate cancer-specific survival [PCSS], 78%; overall survival [OS], 69%), followed by basal prostate cancers (10-year bRFS, 39%; DMFS, 73%; PCSS, 86%; OS, 80%) and luminal A prostate cancers (10-year bRFS, 41%; DMFS, 73%; PCSS, 89%; OS, 82%). Although both luminal-like subtypes were associated with increased androgen receptor expression and signaling, only luminal B prostate cancers were significantly associated with postoperative response to androgen deprivation therapy (ADT) in a subset analysis in our retrospective cohorts (n = 315) matching patients based on clinicopathologic variables (luminal B 10-year metastasis: treated, 33% vs untreated, 55%; nonluminal B 10-year metastasis: treated, 37% vs untreated, 21%; P = .006 for interaction). Conclusions and Relevance Luminal- and basal-like prostate cancers demonstrate divergent clinical behavior, and patients with luminal B tumors respond better to postoperative ADT than do patients with non–luminal B tumors. These findings contribute novel insight into prostate cancer biology, providing a potential clinical tool to personalize ADT treatment for prostate cancer by predicting which men may benefit from ADT after surgery.
Collapse
Affiliation(s)
- Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - S Laura Chang
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Nicholas Erho
- GenomeDx Biosciences Inc, Vancouver, British Columbia, Canada
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison
| | - Jonathan Lehrer
- GenomeDx Biosciences Inc, Vancouver, British Columbia, Canada
| | | | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Matthew R Cooperberg
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | - Won Kim
- Department of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | - Charles J Ryan
- Department of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Edwin Posadas
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Howard Sandler
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Peter Black
- Department of Urology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roland Seiler
- Department of Urology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott A Tomlins
- Department of Pathology, University of Michigan, Ann Arbor,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor,Department of Urology, University of Michigan, Ann Arbor,Howard Hughes Medical Institute, University of Michigan, Ann Arbor
| | | | - Elai Davicioni
- GenomeDx Biosciences Inc, Vancouver, British Columbia, Canada
| | - Ashley E Ross
- James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Peter R Carroll
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | | | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan, Ann Arbor,Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco,Department of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor,Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| |
Collapse
|