101
|
Van Acker ZP, Perdok A, Hellemans R, North K, Vorsters I, Cappel C, Dehairs J, Swinnen JV, Sannerud R, Bretou M, Damme M, Annaert W. Phospholipase D3 degrades mitochondrial DNA to regulate nucleotide signaling and APP metabolism. Nat Commun 2023; 14:2847. [PMID: 37225734 DOI: 10.1038/s41467-023-38501-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Phospholipase D3 (PLD3) polymorphisms are linked to late-onset Alzheimer's disease (LOAD). Being a lysosomal 5'-3' exonuclease, its neuronal substrates remained unknown as well as how a defective lysosomal nucleotide catabolism connects to AD-proteinopathy. We identified mitochondrial DNA (mtDNA) as a major physiological substrate and show its manifest build-up in lysosomes of PLD3-defective cells. mtDNA accretion creates a degradative (proteolytic) bottleneck that presents at the ultrastructural level as a marked abundance of multilamellar bodies, often containing mitochondrial remnants, which correlates with increased PINK1-dependent mitophagy. Lysosomal leakage of mtDNA to the cytosol activates cGAS-STING signaling that upregulates autophagy and induces amyloid precursor C-terminal fragment (APP-CTF) and cholesterol accumulation. STING inhibition largely normalizes APP-CTF levels, whereas an APP knockout in PLD3-deficient backgrounds lowers STING activation and normalizes cholesterol biosynthesis. Collectively, we demonstrate molecular cross-talks through feedforward loops between lysosomal nucleotide turnover, cGAS-STING and APP metabolism that, when dysregulated, result in neuronal endolysosomal demise as observed in LOAD.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Ruben Hellemans
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Katherine North
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Cedric Cappel
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Markus Damme
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium.
| |
Collapse
|
102
|
Luo L, Zhu J, Guo Y, Li C. Mitophagy and immune infiltration in vitiligo: evidence from bioinformatics analysis. Front Immunol 2023; 14:1164124. [PMID: 37287971 PMCID: PMC10242039 DOI: 10.3389/fimmu.2023.1164124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Vitiligo is an acquired, autoimmune, depigmented skin disease with unclear pathogenesis. Mitochondrial dysfunction contributes significantly to vitiligo, and mitophagy is vital for removing damaged mitochondria. Herein, using bioinformatic analysis, we sought to determine the possible role of mitophagy-associated genes in vitiligo and immune infiltration. Methods Microarrays GSE53146 and GSE75819 were used to identify differentially expressed genes (DEGs) in vitiligo. By crossing vitiligo DEGs with mitophagy-related genes, the mitophagy-related DEGs were identified. Functional enrichment and protein-protein intersection (PPI) analyses were conducted. Then, the hub genes were identified using two machine algorithms, and receiver operating characteristic (ROC) curves were generated. Next, the immune infiltration and its connection with hub genes in vitiligo were investigated. Finally, the Regnetwork database and NetworkAnalyst were used to predict the upstream transcriptional factors (TFs), microRNAs (miRNAs), and the protein-compound network. Results A total of 24 mitophagy-related genes were screened. Then, five mitophagy hub genes (GABARAPL2, SP1, USP8, RELA, and TBC1D17) were identified using two machine learning algorithms, and these genes showed high diagnostic specificity for vitiligo. The PPI network showed that hub genes interacted with each other. The mRNA expression levels of five hub genes were validated in vitiligo lesions by qRT-PCR and were compatible with the bioinformatic results. Compared with controls, the abundance of activated CD4+ T cells, CD8+ T cells, immature dendritic cells and B cells, myeloid-derived suppressor cells (MDSCs), gamma delta T cells, mast cells, regulatory T cells (Tregs), and T helper 2 (Th2) cells was higher. However, the abundance of CD56 bright natural killer (NK) cells, monocytes, and NK cells was lower. Correlation analysis revealed a link between hub genes and immune infiltration. Meanwhile, we predicted the upstream TFs and miRNAs and the target compounds of hub genes. Conclusion Five hub mitophagy-related genes were identified and correlated with immune infiltration in vitiligo. These findings suggested that mitophagy may promote the development of vitiligo by activating immune infiltration. Our study might enhance our comprehension of the pathogenic mechanism of vitiligo and offer a treatment option for vitiligo.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
103
|
Borah S, Mishra R, Dey S, Suchanti S, Bhowmick NA, Giri B, Haldar S. Prognostic Value of Circulating Mitochondrial DNA in Prostate Cancer and Underlying Mechanism. Mitochondrion 2023; 71:40-49. [PMID: 37211294 DOI: 10.1016/j.mito.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Circulating DNAs are considered as degraded DNA fragments of approximately 50-200 bp, found in blood plasma, consisting of cell-free mitochondrial and nuclear DNA. Such cell-free DNAs in the blood are found to be altered in different pathological conditions including lupus, heart disease, and malignancies. While nuclear DNAs are being used and being developed as a powerful clinical biomarker in liquid biopsies, mitochondrial DNAs (mtDNAs) are associated with inflammatory conditions including cancer progression. Patients with cancer including prostate cancer are found to have measurable concentrations of mitochondrial DNA in circulation in comparison with healthy controls. The plasma content of mitochondrial DNA is dramatically elevated in both prostate cancer patients and mouse models treated with the chemotherapeutic drug. Cell-free mtDNA, in its oxidized form, induced a pro-inflammatory condition and activates NLRP3-mediated inflammasome formation which causes IL-1β-mediated activation of growth factors. On the other hand, interacting with TLR9, mtDNAs trigger NF-κB-mediated complement C3a positive feedback paracrine loop and activate pro-proliferating signaling through upregulating AKT, ERK, and Bcl2 in the prostate tumor microenvironment. In this review, we discuss the growing evidence supporting cell-free mitochondrial DNA copy number, size, and mutations in mtDNA genes as potential prognostic biomarkers in different cancers and targetable prostate cancer therapeutic candidates impacting stromal-epithelial interactions essential for chemotherapy response.
Collapse
Affiliation(s)
- Supriya Borah
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA
| | - Rajeev Mishra
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh 208012, India
| | - Sananda Dey
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA; Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, India.
| | - Subhash Haldar
- Department of Biochemistry, Bose Institute, Kolkata 700091, India.
| |
Collapse
|
104
|
Zhao Y, Gao C, Pan X, Lei K. Emerging roles of mitochondria in animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:14. [PMID: 37142814 PMCID: PMC10160293 DOI: 10.1186/s13619-023-00158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 05/06/2023]
Abstract
The regeneration capacity after an injury is critical to the survival of living organisms. In animals, regeneration ability can be classified into five primary types: cellular, tissue, organ, structure, and whole-body regeneration. Multiple organelles and signaling pathways are involved in the processes of initiation, progression, and completion of regeneration. Mitochondria, as intracellular signaling platforms of pleiotropic functions in animals, have recently gained attention in animal regeneration. However, most studies to date have focused on cellular and tissue regeneration. A mechanistic understanding of the mitochondrial role in large-scale regeneration is unclear. Here, we reviewed findings related to mitochondrial involvement in animal regeneration. We outlined the evidence of mitochondrial dynamics across different animal models. Moreover, we emphasized the impact of defects and perturbation in mitochondria resulting in regeneration failure. Ultimately, we discussed the regulation of aging by mitochondria in animal regeneration and recommended this for future study. We hope this review will serve as a means to advocate for more mechanistic studies of mitochondria related to animal regeneration on different scales.
Collapse
Affiliation(s)
- Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Fudan University, Shanghai, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
105
|
Cohen CD, Rousseau ST, Bermea KC, Bhalodia A, Lovell JP, Dina Zita M, Čiháková D, Adamo L. Myocardial Immune Cells: The Basis of Cardiac Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1198-1207. [PMID: 37068299 PMCID: PMC10111214 DOI: 10.4049/jimmunol.2200924] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/14/2023] [Indexed: 04/19/2023]
Abstract
The mammalian heart is characterized by the presence of striated myocytes, which allow continuous rhythmic contraction from early embryonic development until the last moments of life. However, the myocardium contains a significant contingent of leukocytes from every major class. This leukocyte pool includes both resident and nonresident immune cells. Over recent decades, it has become increasingly apparent that the heart is intimately sensitive to immune signaling and that myocardial leukocytes exhibit an array of critical functions, both in homeostasis and in the context of cardiac adaptation to injury. Here, we systematically review current knowledge of all major leukocyte classes in the heart, discussing their functions in health and disease. We also highlight the connection between the myocardium, immune cells, lymphoid organs, and both local and systemic immune responses.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Sylvie T. Rousseau
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kevin C. Bermea
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Aashik Bhalodia
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jana P. Lovell
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marcelle Dina Zita
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Luigi Adamo
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
106
|
Luo X, Zhai Z, Lin Z, Wu S, Xu W, Li Y, Zhuang J, Li J, Yang F, He Y. Cyclophosphamide induced intestinal injury is alleviated by blocking the TLR9/caspase3/GSDME mediated intestinal epithelium pyroptosis. Int Immunopharmacol 2023; 119:110244. [PMID: 37137263 DOI: 10.1016/j.intimp.2023.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Cyclophosphamide (CYC) was commonly used to treat autoimmune disorders, and it could also cause side effects such as intestinal damage. This study aimed to explore the mechanism of CYC-induced intestinal cytotoxicity and provide evidence for protecting from intestinal damage by blocking TLR9/caspase3/GSDME mediated pyroptosis. METHODS Intestinal epithelial cells (IEC-6) were treated with 4-hydroxycyclophosphamide (4HC), a key active metabolite of CYC. The pyroptotic rate of IEC-6 cells was detected by Annexin V/PI-Flow cytometry, microscopy imaging, and PI staining. The expression and activation of TLR9, caspase3 and GSDME in IEC-6 cells were detected by western blot and immunofluorescence staining. In addition, hydroxychloroquine (HCQ) and ODN2088 were used to inhibit TLR9 to investigate the role of TLR9 on caspase3/GSDME-mediated pyroptosis. Finally, mice lacking Gsdme or TLR9 or pretreating with HCQ were injected intraperitoneally with CYC, and the incidence and severity of intestinal damage were assessed. RESULTS CYC induced lytic cell death in IEC-6 cells and increased the expression of TLR9, activated caspase3, and GSDME-N. Besides, both ODN2088 and HCQ could inhibit CYC-induced pyroptosis in IEC-6 cells. In vivo, CYC-induced intestinal injury was characterized by a large amount of intestinal villi abscission and structural disordered. Gsdme or TLR9 deficiency, or pretreatment of HCQ effectively attenuated intestinal damage in CYC-induced model mice. CONCLUSIONS These results indicate an alternative mechanism for CYC-induced intestinal damage, which actives TLR9/caspase3/GSDME signaling pathway, leading to pyroptosis of intestinal epithelial cells. And targeting pyroptosis might be a potential therapeutic approach for CYC-induced intestinal damage.
Collapse
Affiliation(s)
- Xiaoqing Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zhangmei Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Shufan Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Wenchao Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yehao Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jian Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jie Li
- Department of Neurology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China; Department of Rheumatology and Immunology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
107
|
Schenkl C, Heyne E, Doenst T, Schulze PC, Nguyen TD. Targeting Mitochondrial Metabolism to Save the Failing Heart. Life (Basel) 2023; 13:life13041027. [PMID: 37109556 PMCID: PMC10143865 DOI: 10.3390/life13041027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable progress in treating cardiac disorders, the prevalence of heart failure (HF) keeps growing, making it a global medical and economic burden. HF is characterized by profound metabolic remodeling, which mostly occurs in the mitochondria. Although it is well established that the failing heart is energy-deficient, the role of mitochondria in the pathophysiology of HF extends beyond the energetic aspects. Changes in substrate oxidation, tricarboxylic acid cycle and the respiratory chain have emerged as key players in regulating myocardial energy homeostasis, Ca2+ handling, oxidative stress and inflammation. This work aims to highlight metabolic alterations in the mitochondria and their far-reaching effects on the pathophysiology of HF. Based on this knowledge, we will also discuss potential metabolic approaches to improve cardiac function.
Collapse
Affiliation(s)
- Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Paul Christian Schulze
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tien Dung Nguyen
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
108
|
Abstract
Chronic kidney disease is associated with an increased risk for the development and progression of cardiovascular disorders including hypertension, dyslipidemia, and coronary artery disease. Chronic kidney disease may also affect the myocardium through complex systemic changes, resulting in structural remodeling such as hypertrophy and fibrosis, as well as impairments in both diastolic and systolic function. These cardiac changes in the setting of chronic kidney disease define a specific cardiomyopathic phenotype known as uremic cardiomyopathy. Cardiac function is tightly linked to its metabolism, and research over the past 3 decades has revealed significant metabolic remodeling in the myocardium during the development of heart failure. Because the concept of uremic cardiomyopathy has only been recognized in recent years, there are limited data on metabolism in the uremic heart. Nonetheless, recent findings suggest overlapping mechanisms with heart failure. This work reviews key features of metabolic remodeling in the failing heart in the general population and extends this to patients with chronic kidney disease. The knowledge of similarities and differences in cardiac metabolism between heart failure and uremic cardiomyopathy may help identify new targets for mechanistic and therapeutic research on uremic cardiomyopathy.
Collapse
Affiliation(s)
- T Dung Nguyen
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
109
|
Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Front Immunol 2023; 14:1160035. [PMID: 37122709 PMCID: PMC10130412 DOI: 10.3389/fimmu.2023.1160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Autoimmune diseases are characterized by vast alterations in immune responses, but the pathogenesis remains sophisticated and yet to be fully elucidated. Multiple mechanisms regulating cell differentiation, maturation, and death are critical, among which mitochondria-related cellular organelle functions have recently gained accumulating attention. Mitochondria, as a highly preserved organelle in eukaryotes, have crucial roles in the cellular response to both exogenous and endogenous stress beyond their fundamental functions in chemical energy conversion. In this review, we aim to summarize recent findings on the function of mitochondria in the innate immune response and its aberrancy in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, etc., mainly focusing on its direct impact on cellular metabolism and its machinery on regulating immune response signaling pathways. More importantly, we summarize the status quo of potential therapeutic targets found in the mitochondrial regulation in the setting of autoimmune diseases and wish to shed light on future studies.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- 4+4 Medical Doctor Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
110
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, Yang G, Zhang Z. The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med 2023; 10:1088575. [PMID: 37063954 PMCID: PMC10090687 DOI: 10.3389/fcvm.2023.1088575] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic proteins and organelles, which realizes the metabolic needs of cells and the renewal of organelles. Autophagy-related genes (ATGs) are the main molecular mechanisms controlling autophagy, and their functions can coordinate the whole autophagic process. Autophagy can also play a role in cardiovascular disease through several key signaling pathways, including PI3K/Akt/mTOR, IGF/EGF, AMPK/mTOR, MAPKs, p53, Nrf2/p62, Wnt/β-catenin and NF-κB pathways. In this paper, we reviewed the signaling pathway of cross-interference between autophagy and cardiovascular diseases, and analyzed the development status of novel cardiovascular disease treatment by targeting the core molecular mechanism of autophagy as well as the critical signaling pathway. Induction or inhibition of autophagy through molecular mechanisms and signaling pathways can provide therapeutic benefits for patients. Meanwhile, we hope to provide a unique insight into cardiovascular treatment strategies by understanding the molecular mechanism and signaling pathway of crosstalk between autophagy and cardiovascular diseases.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Yang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linlin Wang
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Longfei Feng
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng Wang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jin Xu
- Department of First Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Wang
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Haixiang Su
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - GuoWei Yang
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
111
|
Wu Y, Tang L, Huang H, Yu Q, Hu B, Wang G, Ge F, Yin T, Li S, Yu X. Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence. Nat Commun 2023; 14:1323. [PMID: 36899022 PMCID: PMC10006232 DOI: 10.1038/s41467-023-37094-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Vascular endothelial cells (ECs) senescence correlates with the increase of cardiovascular diseases in ageing population. Although ECs rely on glycolysis for energy production, little is known about the role of glycolysis in ECs senescence. Here, we report a critical role for glycolysis-derived serine biosynthesis in preventing ECs senescence. During senescence, the expression of serine biosynthetic enzyme PHGDH is significantly reduced due to decreased transcription of the activating transcription factor ATF4, which leads to reduction of intracellular serine. PHGDH prevents premature senescence primarily by enhancing the stability and activity of pyruvate kinase M2 (PKM2). Mechanistically, PHGDH interacts with PKM2, which prevents PCAF-catalyzed PKM2 K305 acetylation and subsequent degradation by autophagy. In addition, PHGDH facilitates p300-catalyzed PKM2 K433 acetylation, which promotes PKM2 nuclear translocation and stimulates its activity to phosphorylate H3T11 and regulate the transcription of senescence-associated genes. Vascular endothelium-targeted expression of PHGDH and PKM2 ameliorates ageing in mice. Our findings reveal that enhancing serine biosynthesis could become a therapy to promote healthy ageing.
Collapse
Affiliation(s)
- Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan, Hubei, 430079, China
| | - Han Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Gang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
112
|
Ma M, Hou C, Liu J. Effect of PCSK9 on atherosclerotic cardiovascular diseases and its mechanisms: Focus on immune regulation. Front Cardiovasc Med 2023; 10:1148486. [PMID: 36970356 PMCID: PMC10036592 DOI: 10.3389/fcvm.2023.1148486] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Atherosclerosis is a basic pathological characteristic of many cardiovascular diseases, and if not effectively treated, patients with such disease may progress to atherosclerotic cardiovascular diseases (ASCVDs) and even heart failure. The level of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) is significantly higher in patients with ASCVDs than in the healthy population, suggesting that it may be a promising new target for the treatment of ASCVDs. PCSK9 produced by the liver and released into circulation inhibits the clearance of plasma low-density lipoprotein-cholesterol (LDL-C), mainly by downregulating the level of LDL-C receptor (LDLR) on the surface of hepatocytes, leading to upregulated LDL-C in plasma. Numerous studies have revealed that PCSK9 may cause poor prognosis of ASCVDs by activating the inflammatory response and promoting the process of thrombosis and cell death independent of its lipid-regulatory function, yet the underlying mechanisms still need to be further clarified. In patients with ASCVDs who are intolerant to statins or whose plasma LDL-C levels fail to descend to the target value after treatment with high-dose statins, PCSK9 inhibitors often improve their clinical outcomes. Here, we summarize the biological characteristics and functional mechanisms of PCSK9, highlighting its immunoregulatory function. We also discuss the effects of PCSK9 on common ASCVDs.
Collapse
Affiliation(s)
- Minglu Ma
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
| | - Chang Hou
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
| | - Jian Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
- Correspondence: Jian Liu
| |
Collapse
|
113
|
Ryan KM, Doody E, McLoughlin DM. Whole blood mitochondrial DNA copy number in depression and response to electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110656. [PMID: 36216200 DOI: 10.1016/j.pnpbp.2022.110656] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction may play a role in various psychiatric conditions. Mitochondrial DNA copy number (mtDNAcn), the ratio of mitochondrial DNA to nuclear DNA, represents an attractive marker of mitochondrial health that is easily measured from stored DNA samples, and has been shown to be altered in depression. In this study, we measured mtDNAcn in whole blood samples from medicated patients with depression (n = 100) compared to healthy controls (n = 89) and determined the relationship between mtDNAcn and depression severity and the therapeutic response to electroconvulsive therapy (ECT). We also explored the relationship between mtDNAcn and telomere length and inflammatory markers. Our results show that mtDNAcn was significantly elevated in blood from patients with depression when compared to control samples, and this result survived statistical adjustment for potential confounders (p = 0.002). mtDNAcn was significantly elevated in blood from subgroups of patients with non-psychotic or unipolar depression. There was no difference in mtDNAcn noted in subgroups of ECT remitters/non-remitters or responders/non-responders. Moreover, mtDNAcn was not associated with depression severity, telomere length, or circulating inflammatory marker concentrations. Overall, our results show that mtDNAcn is elevated in blood from patients with depression, though whether this translates to mitochondrial function is unknown. Further work is required to clarify the contribution of mitochondria and mtDNA to the pathophysiology of depression and the therapeutic response to antidepressant treatments.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland
| | - Eimear Doody
- Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland.
| |
Collapse
|
114
|
Singh D, Regar R, Soppina P, Soppina V, Kanvah S. Imaging of mitochondria/lysosomes in live cells and C. elegans. Org Biomol Chem 2023; 21:2220-2231. [PMID: 36805145 DOI: 10.1039/d3ob00086a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Two rhodamine-phenothiazine conjugates, RP1 and RP2, were synthesized, and their photophysical properties, subcellular localization, and photocytotoxicity were investigated. We observed robust localization of RP1 in mitochondria and dual localization in mitochondria and lysosomes with RP2 in live cells. Live cell imaging with these probes allowed us to track the dynamics of mitochondria and lysosomes during ROS-induced mitochondrial damage and the subsequent lysosomal digestion of the damaged mitochondria. The fluorophores also demonstrated preferential accumulation in cancer cells compared to normal cells and had strong photo-cytotoxicity. However, no cytotoxicity was observed in the dark. The mitochondrial staining and light-induced ROS production were not limited to mammalian cell lines, but were also observed in the animal model C. elegans. The study demonstrated the potential applications of these probes in visualizing the mitochondria-lysosome cross-talk after ROS production and for photodynamic therapy.
Collapse
Affiliation(s)
- Deepmala Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Ramprasad Regar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Pushpanjali Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India. .,Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa 768019, India
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| |
Collapse
|
115
|
Kalani K, Chaturvedi P, Chaturvedi P, Kumar Verma V, Lal N, Awasthi SK, Kalani A. Mitochondrial mechanisms in Alzheimer's disease: Quest for therapeutics. Drug Discov Today 2023; 28:103547. [PMID: 36871845 DOI: 10.1016/j.drudis.2023.103547] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Mitochondrial function is essential for maintaining neuronal integrity, because neurons have a high energy demand. Neurodegenerative diseases, such as Alzheimer's disease (AD), are exacerbated by mitochondrial dysfunction. Mitochondrial autophagy (mitophagy) attenuates neurodegenerative diseases by eradicating dysfunctional mitochondria. In neurodegenerative disorders, there is disruption of the mitophagy process. High levels of iron also interfere with the mitophagy process and the mtDNA released after mitophagy is proinflammatory and triggers the cGAS-STING pathway that aids AD pathology. In this review, we critically discuss the factors that affect mitochondrial impairment and different mitophagy processes in AD. Furthermore, we discuss the molecules used in mouse studies as well as clinical trials that could result in potential therapeutics in the future.
Collapse
Affiliation(s)
- Komal Kalani
- Department of Chemistry, The University of Texas at San Antonio, San Antonio 78249, TX, USA; Regulatory Scientist, Vestaron Cooperation, Durham 27703, NC, USA
| | - Poonam Chaturvedi
- Department of Physiotherapy, Lovely Professional University, Phagwara 144402, Punjab, India
| | - Pankaj Chaturvedi
- Department of Physiology, University of Louisville, Louisville 40202, KY, USA
| | - Vinod Kumar Verma
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Nand Lal
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Sudhir K Awasthi
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Anuradha Kalani
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India.
| |
Collapse
|
116
|
Lu T, Zhang Z, Bi Z, Lan T, Zeng H, Liu Y, Mo F, Yang J, Chen S, He X, Hong W, Zhang Z, Pi R, Ren W, Tian X, Wei Y, Luo M, Wei X. TFAM deficiency in dendritic cells leads to mitochondrial dysfunction and enhanced antitumor immunity through cGAS-STING pathway. J Immunother Cancer 2023; 11:jitc-2022-005430. [PMID: 36858460 PMCID: PMC9980377 DOI: 10.1136/jitc-2022-005430] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Mitochondrial transcription factor A (TFAM) is a transcription factor that maintains mitochondrial DNA (mtDNA) stabilization and initiates mtDNA replication. However, little is known about the immune regulation function and TFAM expression in immune cells in the tumors. METHODS Mouse tumor models were applied to analyze the effect of TFAM deficiency in myeloid cell lineage on tumor progression and tumor microenvironment (TME) modification. In vitro, primary mouse bone marrow-derived dendritic cells (BMDCs) were used in the investigation of the altered function and the activated pathway. OVA was used as the model antigen to validate the activation of immune responses in vivo. STING inhibitors were used to confirm the STING activation provoked by Tfam deficient in DCs. RESULTS The deletion of TFAM in DCs led to mitochondrial dysfunction and mtDNA cytosolic leakage resulting in the cGAS-STING pathway activation in DCs, which contributed to the enhanced antigen presentation. The deletion of TFAM in DCs has interestingly reversed the immune suppressive TME and inhibited tumor growth and metastasis in tumor models. CONCLUSIONS We have revealed that TFAM knockout in DCs ameliorated immune-suppressive microenvironment in tumors through STING pathway. Our work suggests that specific TFAM knockout in DCs might be a compelling strategy for designing novel immunotherapy methods in the future.
Collapse
Affiliation(s)
- Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Hao Zeng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Yu Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Department of Medical Oncology, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Siyuan Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China ;
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, China ;
| |
Collapse
|
117
|
Abstract
Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
118
|
Xian H, Karin M. Oxidized mitochondrial DNA: a protective signal gone awry. Trends Immunol 2023; 44:188-200. [PMID: 36739208 DOI: 10.1016/j.it.2023.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Despite the emergence of mitochondria as key regulators of innate immunity, the mechanisms underlying the generation and release of immunostimulatory alarmins by stressed mitochondria remains nebulous. We propose that the major mitochondrial alarmin in myeloid cells is oxidized mitochondrial DNA (Ox-mtDNA). Fragmented Ox-mtDNA enters the cytosol where it activates the NLRP3 inflammasome and generates IL-1β, IL-18, and cGAS-STING to induce type I interferons and interferon-stimulated genes. Inflammasome activation further enables the circulatory release of Ox-mtDNA by opening gasdermin D pores. We summarize new data showing that, in addition to being an autoimmune disease biomarker, Ox-mtDNA converts beneficial transient inflammation into long-lasting immunopathology. We discuss how Ox-mtDNA induces short- and long-term immune activation, and highlight its homeostatic and immunopathogenic functions.
Collapse
Affiliation(s)
- Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA.
| |
Collapse
|
119
|
Torp MK, Vaage J, Stensløkken KO. Mitochondria-derived damage-associated molecular patterns and inflammation in the ischemic-reperfused heart. Acta Physiol (Oxf) 2023; 237:e13920. [PMID: 36617670 DOI: 10.1111/apha.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
Cardiac cell death after myocardial infarction release endogenous structures termed damage-associated molecular patterns (DAMPs) that trigger the innate immune system and initiate a sterile inflammation in the myocardium. Cardiomyocytes are energy demanding cells and 30% of their volume are mitochondria. Mitochondria are evolutionary endosymbionts originating from bacteria containing molecular patterns similar to bacteria, termed mitochondrial DAMPs (mDAMPs). Consequently, mitochondrial debris may be particularly immunogenic and damaging. However, the role of mDAMPs in myocardial infarction is not clarified. Identifying the most harmful mDAMPs and inhibiting their early inflammatory signaling may reduce infarct size and the risk of developing post-infarct heart failure. The focus of this review is the role of mDAMPs in the immediate pro-inflammatory phase after myocardial infarction before arrival of immune cells in the myocardium. We discuss different mDAMPs, their role in physiology and present knowledge regarding their role in the inflammatory response of acute myocardial infarction.
Collapse
Affiliation(s)
- May-Kristin Torp
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
120
|
Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem Soc Trans 2023; 51:41-56. [PMID: 36815717 PMCID: PMC9988003 DOI: 10.1042/bst20220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evidence also posits these organelles as hubs for innate immune signalling and activation, particularly in macrophages. Macrophages are front-line cellular defenders against endogenous and exogenous threats in mammals. These cells use an array of receptors and downstream signalling molecules to respond to a diverse range of stimuli, with mitochondrial biology implicated in many of these responses. Mitochondria have the capacity to both divide through mitochondrial fission and coalesce through mitochondrial fusion. Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular functions, including innate immune pathways in macrophages. In these cells, mitochondrial fission has primarily been associated with pro-inflammatory responses and metabolic adaptation, so can be considered as a combative strategy utilised by immune cells. In contrast, mitochondrial fusion has a more protective role in limiting cell death under conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strategy. Here we broadly review the role of mitochondria in macrophage functions, with a focus on how regulated mitochondrial dynamics control different functional responses in these cells.
Collapse
|
121
|
Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus. Nat Commun 2023; 14:872. [PMID: 36797275 PMCID: PMC9935630 DOI: 10.1038/s41467-023-36522-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Although extracellular DNA is known to form immune complexes (ICs) with autoantibodies in systemic lupus erythematosus (SLE), the mechanisms leading to the release of DNA from cells remain poorly characterized. Here, we show that the pore-forming protein, gasdermin D (GSDMD), is required for nuclear DNA and mitochondrial DNA (mtDNA) release from neutrophils and lytic cell death following ex vivo stimulation with serum from patients with SLE and IFN-γ. Mechanistically, the activation of FcγR downregulated Serpinb1 following ex vivo stimulation with serum from patients with SLE, leading to spontaneous activation of both caspase-1/caspase-11 and cleavage of GSDMD into GSDMD-N. Furthermore, mtDNA oxidization promoted GSDMD-N oligomerization and cell death. In addition, GSDMD, but not peptidyl arginine deiminase 4 is necessary for extracellular mtDNA release from low-density granulocytes from SLE patients or healthy human neutrophils following incubation with ICs. Using the pristane-induced lupus model, we show that disease severity is significantly reduced in mice with neutrophil-specific Gsdmd deficiency or following treatment with the GSDMD inhibitor, disulfiram. Altogether, our study highlights an important role for oxidized mtDNA in inducing GSDMD oligomerization and pore formation. These findings also suggest that GSDMD might represent a possible therapeutic target in SLE.
Collapse
|
122
|
Toll-like receptor 9 signaling after myocardial infarction: Role of p66ShcA adaptor protein. Biochem Biophys Res Commun 2023; 644:70-78. [PMID: 36634584 DOI: 10.1016/j.bbrc.2022.12.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
During myocardial infarction, cellular debris is released, causing a sterile inflammation via pattern recognition receptors. These reactions amplify damage and promotes secondary heart failure. The pattern recognition receptor, Toll-like receptor 9 (TLR9) detects immunogenic fragments of endogenous DNA, inducing inflammation by NFκB. The p66ShcA adaptor protein plays an important role in both ischemic myocardial damage and immune responses. We hypothesized that p66ShcA adaptor protein promotes DNA-sensing signaling via the TLR9 pathway after myocardial infarction. TLR9 protein expression increased in cardiac tissue from patients with end-stage heart failure due to ischemic heart disease. Myocardial ischemia in mice in vivo induced gene expression of key TLR9 pathway proteins (MyD88 and Unc93b1). In this model, a functional link between TLR9 and p66ShcA was revealed as; (i) ischemia-induced upregulation of TLR9 protein was abrogated in myocardium of p66ShcA knockout mice; (ii) when p66ShcA was overexpressed in NFkB reporter cells stably expressing TLR9, NFkB-activation increased during stimulation with the TLR9 agonist CpG B; (iii) in cardiac fibroblasts, p66ShcA overexpression caused TLR9 upregulation. Co-immunoprecipitation showed that ShcA proteins and TLR9 may be found in the same protein complex, which was dissipated upon TLR9 stimulation in vivo. A proximity assay confirmed the co-localization of TLR9 and ShcA proteins. The systemic immune response after myocardial ischemia was dampened in p66ShcA knockout mice as interleukin-4, -17 and -22 expression in mononuclear cells isolated from spleens was reduced. In conclusion, p66ShcA adaptor may be an interaction partner and a regulator of the TLR9 pathway post-infarction.
Collapse
|
123
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
124
|
Quantitative assessment of mitophagy in irradiated cancer cells. Methods Cell Biol 2023; 174:93-111. [PMID: 36710054 DOI: 10.1016/bs.mcb.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitophagy is a finely regulated mechanism through which eukaryotic cells selectively dispose of supernumerary, permeabilized or otherwise damaged mitochondria through lysosomal degradation. Dysfunctional mitochondria are prone to release potentially cytotoxic factors including reactive oxygen species (ROS) and caspase activators, such as cytochrome c, somatic (CYCS). Thus, proficient mitophagic responses mediate prominent cytoprotective functions. Moreover, the rapid degradation of permeabilized mitochondria limits the release of mitochondrial components that may drive inflammatory reactions, such as mitochondrial DNA (mtDNA) and transcription factor A, mitochondrial (TFAM), implying that mitophagy also mediates potent anti-inflammatory effects. Here, we detail a simple, flow cytometry-assisted protocol for the specific measurement of mitophagic responses as driven by radiation therapy (RT) in mouse hormone receptor (HR)+ mammary carcinoma TS/A cells. With some variations, this method - which relies on the mitochondria-restricted expression of a fluorescent reporter that is sensitive to pH and hence changes excitation wavelength within lysosomes (mt-mKeima) - can be adapted to a variety of human and mouse cancer cell lines and/or straightforwardly implemented on fluorescence microscopy platforms.
Collapse
|
125
|
Bock FJ, Riley JS. When cell death goes wrong: inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ 2023; 30:293-303. [PMID: 36376381 PMCID: PMC9661468 DOI: 10.1038/s41418-022-01082-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a regulated cellular pathway that ensures that a cell dies in a structured fashion to prevent negative consequences for the tissue or the organism. Dysfunctional apoptosis is a hallmark of numerous pathologies, and treatments for various diseases are successful based on the induction of apoptosis. Under homeostatic conditions, apoptosis is a non-inflammatory event, as the activation of caspases ensures that inflammatory pathways are disabled. However, there is an increasing understanding that under specific conditions, such as caspase inhibition, apoptosis and the apoptotic machinery can be re-wired into a process which is inflammatory. In this review we discuss how the death receptor and mitochondrial pathways of apoptosis can activate inflammation. Furthermore, we will highlight how cell death due to mitotic stress might be a special case when it comes to cell death and the induction of inflammation.
Collapse
Affiliation(s)
- Florian J Bock
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Joel S Riley
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
126
|
Ueda K, Sakai C, Ishida T, Morita K, Kobayashi Y, Horikoshi Y, Baba A, Okazaki Y, Yoshizumi M, Tashiro S, Ishida M. Cigarette smoke induces mitochondrial DNA damage and activates cGAS-STING pathway: application to a biomarker for atherosclerosis. Clin Sci (Lond) 2023; 137:163-180. [PMID: 36598778 PMCID: PMC9874975 DOI: 10.1042/cs20220525] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Cigarette smoking is a major risk factor for atherosclerosis. We previously reported that DNA damage was accumulated in atherosclerotic plaque, and was increased in human mononuclear cells by smoking. As vascular endothelial cells are known to modulate inflammation, we investigated the mechanism by which smoking activates innate immunity in endothelial cells focusing on DNA damage. Furthermore, we sought to characterize the plasma level of cell-free DNA (cfDNA), a result of mitochondrial and/or genomic DNA damage, as a biomarker for atherosclerosis. Cigarette smoke extract (CSE) increased DNA damage in the nucleus and mitochondria in human endothelial cells. Mitochondrial damage induced minority mitochondrial outer membrane permeabilization, which was insufficient for cell death but instead led to nuclear DNA damage. DNA fragments, derived from the nucleus and mitochondria, were accumulated in the cytosol, and caused a persistent increase in IL-6 mRNA expression via the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. cfDNA, quantified with quantitative PCR in culture medium was increased by CSE. Consistent with in vitro results, plasma mitochondrial cfDNA (mt-cfDNA) and nuclear cfDNA (n-cfDNA) were increased in young healthy smokers compared with age-matched nonsmokers. Additionally, both mt-cfDNA and n-cfDNA were significantly increased in patients with atherosclerosis compared with the normal controls. Our multivariate analysis revealed that only mt-cfDNA predicted the risk of atherosclerosis. In conclusion, accumulated cytosolic DNA caused by cigarette smoke and the resultant activation of the cGAS-STING pathway may be a mechanism of atherosclerosis development. The plasma level of mt-cfDNA, possibly as a result of DNA damage, may be a useful biomarker for atherosclerosis.
Collapse
Affiliation(s)
- Keitaro Ueda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Kosuke Morita
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yusuke Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| | - Akiko Baba
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yuma Okazaki
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
127
|
Mitochondria Dysfunction at the Heart of Viral Myocarditis: Mechanistic Insights and Therapeutic Implications. Viruses 2023; 15:v15020351. [PMID: 36851568 PMCID: PMC9963085 DOI: 10.3390/v15020351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The myocardium/heart is the most mitochondria-rich tissue in the human body with mitochondria comprising approximately 30% of total cardiomyocyte volume. As the resident "powerhouse" of cells, mitochondria help to fuel the high energy demands of a continuously beating myocardium. It is no surprise that mitochondrial dysfunction underscores the pathogenesis of many cardiovascular ailments, including those of viral origin such as virus-induced myocarditis. Enteroviruses have been especially linked to injuries of the myocardium and its sequelae dilated cardiomyopathy for which no effective therapies currently exist. Intriguingly, recent mechanistic insights have demonstrated viral infections to directly damage mitochondria, impair the mitochondrial quality control processes of the cell, such as disrupting mitochondrial antiviral innate immune signaling, and promoting mitochondrial-dependent pathological inflammation of the infected myocardium. In this review, we briefly highlight recent insights on the virus-mitochondria crosstalk and discuss the therapeutic implications of targeting mitochondria to preserve heart function and ultimately combat viral myocarditis.
Collapse
|
128
|
Higashikuni Y, Liu W, Numata G, Tanaka K, Fukuda D, Tanaka Y, Hirata Y, Imamura T, Takimoto E, Komuro I, Sata M. NLRP3 Inflammasome Activation Through Heart-Brain Interaction Initiates Cardiac Inflammation and Hypertrophy During Pressure Overload. Circulation 2023; 147:338-355. [PMID: 36440584 DOI: 10.1161/circulationaha.122.060860] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stress on the heart, such as high blood pressure, initiates inflammation and causes hypertrophic heart disease. However, the regulatory mechanism of inflammation and its role in the stressed heart remain unclear. IL-1β (interleukin-1β) is a proinflammatory cytokine that causes cardiac hypertrophy and heart failure. Here, we show that neural signals activate the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3) inflammasome for IL-1β production to induce adaptive hypertrophy in the stressed heart. METHODS C57BL/6 mice, knockout mouse strains for NLRP3 and P2RX7 (P2X purinoceptor 7), and adrenergic neuron-specific knockout mice for SLC17A9, a secretory vesicle protein responsible for the storage and release of ATP, were used for analysis. Pressure overload was induced by transverse aortic constriction. Various animal models were used, including pharmacological treatment with apyrase, lipopolysaccharide, 2'(3')-O-(4-benzoylbenzoyl)-ATP, MCC950, anti-IL-1β antibodies, clonidine, pseudoephedrine, isoproterenol, and bisoprolol, left stellate ganglionectomy, and ablation of cardiac afferent nerves with capsaicin. Cardiac function and morphology, gene expression, myocardial IL-1β and caspase-1 activity, and extracellular ATP level were assessed. In vitro experiments were performed using primary cardiomyocytes and fibroblasts from rat neonates and human microvascular endothelial cell line. Cell surface area and proliferation were assessed. RESULTS Genetic disruption of NLRP3 resulted in significant loss of IL-1β production, cardiac hypertrophy, and contractile function during pressure overload. A bone marrow transplantation experiment revealed an essential role of NLRP3 in cardiac nonimmune cells in myocardial IL-1β production and cardiac phenotype. Pharmacological depletion of extracellular ATP or genetic disruption of the P2X7 receptor suppressed myocardial NLRP3 inflammasome activity during pressure overload, indicating an important role of ATP/P2X7 axis in cardiac inflammation and hypertrophy. Extracellular ATP induced hypertrophic changes of cardiac cells in an NLRP3- and IL-1β-dependent manner in vitro. Manipulation of the sympathetic nervous system suggested sympathetic efferent nerves as the main source of extracellular ATP. Depletion of ATP release from sympathetic efferent nerves, ablation of cardiac afferent nerves, or a lipophilic β-blocker reduced cardiac extracellular ATP level, and inhibited NLRP3 inflammasome activation, IL-1β production, and adaptive cardiac hypertrophy during pressure overload. CONCLUSIONS Cardiac inflammation and hypertrophy are regulated by heart-brain interaction. Controlling neural signals might be important for the treatment of hypertensive heart disease.
Collapse
Affiliation(s)
- Yasutomi Higashikuni
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Wenhao Liu
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Kimie Tanaka
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan.,Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (K. Tanaka)
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan (D.F.)
| | - Yu Tanaka
- Department of Pediatrics (Y. Tanaka, Y.H.), The University of Tokyo, Japan
| | - Yoichiro Hirata
- Department of Pediatrics (Y. Tanaka, Y.H.), The University of Tokyo, Japan
| | - Teruhiko Imamura
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan.,Second Department of Medicine, University of Toyama, Japan (T.I.)
| | - Eiki Takimoto
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine (Y.H., W.L., G.N., K. Tanaka, T.I., E.T., I.K.), The University of Tokyo, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan (M.S.)
| |
Collapse
|
129
|
Ye W, Wen C, Zeng A, Hu X. Increased levels of circulating oxidized mitochondrial DNA contribute to chronic inflammation in metabolic syndrome, and MitoQ-based antioxidant therapy alleviates this DNA-induced inflammation. Mol Cell Endocrinol 2023; 560:111812. [PMID: 36334615 DOI: 10.1016/j.mce.2022.111812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Here, the aim was to investigate the role of circulating oxidized mitochondrial DNA (ox-mtDNA) in metabolic syndrome (MetS)-associated chronic inflammation and evaluate the effect of Mito-Quinone (MitoQ)-based antioxidant therapy on inflammation. A total of 112 MetS patients and 111 healthy control individuals (HCs) were recruited. Peripheral blood was collected, and mononuclear cells (PBMCs) were separated. In a preclinical study, MitoQ, a mitochondrial-targeted antioxidant, was administered to Sprague-Dawley (SD) rats fed a high-fat diet (HFD). In vitro, H2O2- or MitoQ-treated HUVECs served as the oxidative or antioxidative cell models to detect the cell-free ox-mtDNA level. Plasma or cell-free ox-mtDNA levels were measured by qPCR. Additionally, THP-1 cells were incubated with plasma cell-free DNA (cfDNA) from MetS patients and HCs or cell-free ox-mtDNA to detect TLR9-NF-κB pathway activation. Plasma ox-mtDNA levels and TLR9 expression levels in PBMCs were increased in MetS patients. In vivo, HFD-fed rats showed elevated plasma ox-mtDNA and TLR9 expression levels in cardiac-residing immune cells, but MitoQ administration attenuated these increases. In vitro, a significant lower level of cell-free ox-mtDNA was detected in MitoQ-treated cells, compared with H2O2-treated cells. Coincubation of plasma cfDNA from MetS patients or cell-free ox-mtDNA and THP-1 cells increased TLR9-NF-κB p65 expression, and promoted IL-1β, IL-6 and IL-8 secretion in THP-1 cells. In conclusion, increased circulating ox-mtDNA contributes to chronic inflammation in MetS by activating the TLR9-NF-κB pathway. MitoQ-based antioxidant therapy effectively alleviates inflammation by reducing ox-mtDNA release.
Collapse
Affiliation(s)
- Wei Ye
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Chaowei Wen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Aibing Zeng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xingzhong Hu
- Department of Clinical Laboratory Medicine, Wenzhou Central Hospital, Dingli Clinical School of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
130
|
Fathieh S, Grieve SM, Negishi K, Figtree GA. Potential Biological Mediators of Myocardial and Vascular Complications of Air Pollution-A State-of-the-Art Review. Heart Lung Circ 2023; 32:26-42. [PMID: 36585310 DOI: 10.1016/j.hlc.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022]
Abstract
Ambient air pollution is recognised globally as a significant contributor to the burden of cardiovascular diseases. The evidence from both human and animal studies supporting the cardiovascular impact of exposure to air pollution has grown substantially, implicating numerous pathophysiological pathways and related signalling mediators. In this review, we summarise the list of activated mediators for each pathway that lead to myocardial and vascular injury in response to air pollutants. We performed a systematic search of multiple databases, including articles between 1990 and Jan 2022, summarising the evidence for activated pathways in response to each significant air pollutant. Particulate matter <2.5 μm (PM2.5) was the most studied pollutant, followed by particulate matter between 2.5 μm-10 μm (PM10), nitrogen dioxide (NO2) and ozone (O3). Key pathogenic pathways that emerged included activation of systemic and local inflammation, oxidative stress, endothelial dysfunction, and autonomic dysfunction. We looked at how potential mediators of each of these pathways were linked to both cardiovascular disease and air pollution and included the overlapping mediators. This review illustrates the complex relationship between air pollution and cardiovascular diseases, and discusses challenges in moving beyond associations, towards understanding causal contributions of specific pathways and markers that may inform us regarding an individual's exposure, response, and likely risk.
Collapse
Affiliation(s)
- Sina Fathieh
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Stuart M Grieve
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kazuaki Negishi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas, Australia; Department of Cardiology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan; Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, Sydney, NSW, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.
| |
Collapse
|
131
|
Zhang K, Wang Y, Chen S, Mao J, Jin Y, Ye H, Zhang Y, Liu X, Gong C, Cheng X, Huang X, Hoeft A, Chen Q, Li X, Fang X. TREM2 hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat Metab 2023; 5:129-146. [PMID: 36635449 PMCID: PMC9886554 DOI: 10.1038/s42255-022-00715-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/22/2022] [Indexed: 01/14/2023]
Abstract
Sepsis-induced cardiomyopathy (SICM) is common in septic patients with a high mortality and is characterized by an abnormal immune response. Owing to cellular heterogeneity, understanding the roles of immune cell subsets in SICM has been challenging. Here we identify a unique subpopulation of cardiac-resident macrophages termed CD163+RETNLA+ (Mac1), which undergoes self-renewal during sepsis and can be targeted to prevent SICM. By combining single-cell RNA sequencing with fate mapping in a mouse model of sepsis, we demonstrate that the Mac1 subpopulation has distinct transcriptomic signatures enriched in endocytosis and displays high expression of TREM2 (TREM2hi). TREM2hi Mac1 cells actively scavenge cardiomyocyte-ejected dysfunctional mitochondria. Trem2 deficiency in macrophages impairs the self-renewal capability of the Mac1 subpopulation and consequently results in defective elimination of damaged mitochondria, excessive inflammatory response in cardiac tissue, exacerbated cardiac dysfunction and decreased survival. Notably, intrapericardial administration of TREM2hi Mac1 cells prevents SICM. Our findings suggest that the modulation of TREM2hi Mac1 cells could serve as a therapeutic strategy for SICM.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyu Chen
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Mao
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwang Liu
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenchen Gong
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Bonn, Germany
| | - Qixing Chen
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
132
|
Zhang Y, Wu J, Dong E, Wang Z, Xiao H. Toll-like receptors in cardiac hypertrophy. Front Cardiovasc Med 2023; 10:1143583. [PMID: 37113698 PMCID: PMC10126280 DOI: 10.3389/fcvm.2023.1143583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that can identify pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLRs play an important role in the innate immune response, leading to acute and chronic inflammation. Cardiac hypertrophy, an important cardiac remodeling phenotype during cardiovascular disease, contributes to the development of heart failure. In previous decades, many studies have reported that TLR-mediated inflammation was involved in the induction of myocardium hypertrophic remodeling, suggesting that targeting TLR signaling might be an effective strategy against pathological cardiac hypertrophy. Thus, it is necessary to study the mechanisms underlying TLR functions in cardiac hypertrophy. In this review, we summarized key findings of TLR signaling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanan Zhang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Correspondence: Zhanli Wang Han Xiao
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Correspondence: Zhanli Wang Han Xiao
| |
Collapse
|
133
|
The Molecular Microscope Diagnostic System: Assessment of Rejection and Injury in Heart Transplant Biopsies. Transplantation 2023; 107:27-44. [PMID: 36508644 DOI: 10.1097/tp.0000000000004323] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes the development of the Molecular Microscope Diagnostic System (MMDx) for heart transplant endomyocardial biopsies (EMBs). MMDx-Heart uses microarrays to measure biopsy-based gene expression and ensembles of machine learning algorithms to interpret the results and compare each new biopsy to a large reference set of earlier biopsies. MMDx assesses T cell-mediated rejection (TCMR), antibody-mediated rejection (AMR), recent parenchymal injury, and atrophy-fibrosis, continually "learning" from new biopsies. Rejection-associated transcripts mapped in kidney transplants and experimental systems were used to identify TCMR, AMR, and recent injury-induced inflammation. Rejection and injury emerged as gradients of intensity, rather than binary classes. AMR was one-third donor-specific antibody (DSA)-negative, and many EMBs first considered to have no rejection displayed minor AMR-like changes, with increased probability of DSA positivity and subtle inflammation. Rejection-associated transcript-based algorithms now classify EMBs as "Normal," "Minor AMR changes," "AMR," "possible AMR," "TCMR," "possible TCMR," and "recent injury." Additionally, MMDx uses injury-associated transcript sets to assess the degree of parenchymal injury and atrophy-fibrosis in every biopsy and study the effect of rejection on the parenchyma. TCMR directly injures the parenchyma whereas AMR usually induces microcirculation stress but relatively little initial parenchymal damage, although slowly inducing parenchymal atrophy-fibrosis. Function (left ventricular ejection fraction) and short-term risk of failure are strongly determined by parenchymal injury. These discoveries can guide molecular diagnostic applications, either as a central MMDx system or adapted to other platforms. MMDx can also help calibrate noninvasive blood-based biomarkers to avoid unnecessary biopsies and monitor response to therapy.
Collapse
|
134
|
Wen J, Pan T, Li H, Fan H, Liu J, Cai Z, Zhao B. Role of mitophagy in the hallmarks of aging. J Biomed Res 2023; 37:1-14. [PMID: 36642914 PMCID: PMC9898045 DOI: 10.7555/jbr.36.20220045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aging, subjected to scientific scrutiny, is extensively defined as a time-dependent decline in functions that involves the majority of organisms. The time-dependent accretion of cellular lesions is generally a universal trigger of aging, while mitochondrial dysfunction is a sign of aging. Dysfunctional mitochondria are identified and removed by mitophagy, a selective form of macroautophagy. Increased mitochondrial damage resulting from reduced biogenesis and clearance may promote the aging process. The primary purpose of this paper is to illustrate in detail the effects of mitophagy on aging and emphasize the associations between mitophagy and other signs of aging, including dietary restriction, telomere shortening, epigenetic alterations, and protein imbalance. The evidence regarding the effects of these elements on aging is still limited. And although the understanding of relationship between mitophagy and aging has been long-awaited, to analyze details of such a relationship remains the main challenge in aging studies.
Collapse
Affiliation(s)
- Jie Wen
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
| | - Tingyu Pan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
| | - Hongyan Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China,Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haixia Fan
- Chongqing Medical University, Chongqing 400042, China
| | - Jinhua Liu
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China,Department of Neurology, Chongqing General Hospital, Chongqing 400013, China,Zhiyou Cai, Department of Neurology, Chongqing General Hospital, 312 Zhongshan First Road, Yuzhong District, Chongqing 400013, China. Tel/Fax: +86-23-63515796/+86-23-63515796, E-mail:
| | - Bin Zhao
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China,Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong 524001, China,Bin Zhao, Department and Institute of Neurology, Guangdong Medical University, Guangdong Key Laboratory of Aging-related Cardiac and Cerebral Diseases, 57 Renmin Road, Zhanjiang, Guangdong 524001, China. Tel/Fax: +86-759-2386949/+86-13902501596, E-mail: /
| |
Collapse
|
135
|
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:9. [PMID: 36742465 PMCID: PMC9894375 DOI: 10.20517/jca.2022.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a holistic perspective on the bi-directional relationship between cardiac mitochondrial dysfunction and myocardial structural remodeling in the context of metabolic heart disease, natural cardiac aging, and heart failure. First, a review of the physiologic and molecular drivers of cardiac mitochondrial dysfunction across a range of increasingly prevalent conditions such as metabolic syndrome and cardiac aging is presented, followed by a general review of the mechanisms of mitochondrial quality control (QC) in the heart. Several important mechanisms by which cardiac mitochondrial dysfunction triggers or contributes to structural remodeling of the heart are discussed: accumulated metabolic byproducts, oxidative damage, impaired mitochondrial QC, and mitochondrial-mediated cell death identified as substantial mechanistic contributors to cardiac structural remodeling such as hypertrophy and myocardial fibrosis. Subsequently, the less studied but nevertheless important reverse relationship is explored: the mechanisms by which cardiac structural remodeling feeds back to further alter mitochondrial bioenergetic function. We then provide a condensed pathogenesis of several increasingly important clinical conditions in which these relationships are central: diabetic cardiomyopathy, age-associated declines in cardiac function, and the progression to heart failure, with or without preserved ejection fraction. Finally, we identify promising therapeutic opportunities targeting mitochondrial function in these conditions.
Collapse
Affiliation(s)
- Benjamin Werbner
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
136
|
Chang X, Liu R, Li R, Peng Y, Zhu P, Zhou H. Molecular Mechanisms of Mitochondrial Quality Control in Ischemic Cardiomyopathy. Int J Biol Sci 2023; 19:426-448. [PMID: 36632466 PMCID: PMC9830521 DOI: 10.7150/ijbs.76223] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) is a special type of coronary heart disease or an advanced stage of the disease, which is related to the pathological mechanism of primary dilated cardiomyopathy. Ischemic cardiomyopathy mainly occurs in the long-term myocardial ischemia, resulting in diffuse myocardial fibrosis. This in turn affects the cardiac ejection function, resulting in a significant impact on myocardial systolic and diastolic function, resulting in a decrease in the cardiac ejection fraction. The pathogenesis of ICM is closely related to coronary heart disease. Mainly due to coronary atherosclerosis caused by coronary stenosis or vascular occlusion, causing vascular inflammatory lesions and thrombosis. As the disease progresses, it leads to long-term myocardial ischemia and eventually ICM. The pathological mechanism is mainly related to the mechanisms of inflammation, myocardial hypertrophy, fibrosis and vascular remodeling. Mitochondria are organelles with a double-membrane structure, so the composition of the mitochondrial outer compartment is basically similar to that of the cytoplasm. When ischemia-reperfusion induces a large influx of calcium into the cell, the concentration of calcium ions in the mitochondrial outer compartment also increases. The subsequent opening of the membrane permeability transition pore in the inner mitochondrial membrane and the resulting calcium overload induces the homeostasis of cardiomyocytes and activates the mitochondrial pathway of apoptosis. Mitochondrial Quality Control (MQC), as an important mechanism for regulating mitochondrial function in cardiomyocytes, affects the morphological structure/function and lifespan of mitochondria. In this review, we discuss the role of MQC (including mitophagy, mitochondrial dynamics, and mitochondrial biosynthesis) in the pathogenesis of ICM and provide important evidence for targeting MQC for ICM.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Youyou Peng
- Montverde Future Academy Shanghai, 88 Jianhao Road, Pudong New District, Shanghai, China
| | - Pingjun Zhu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| |
Collapse
|
137
|
Whitehall JC, Smith ALM, Greaves LC. Mitochondrial DNA Mutations and Ageing. Subcell Biochem 2023; 102:77-98. [PMID: 36600130 DOI: 10.1007/978-3-031-21410-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are subcellular organelles present in most eukaryotic cells which play a significant role in numerous aspects of cell biology. These include carbohydrate and fatty acid metabolism to generate cellular energy through oxidative phosphorylation, apoptosis, cell signalling, haem biosynthesis and reactive oxygen species production. Mitochondrial dysfunction is a feature of many human ageing tissues, and since the discovery that mitochondrial DNA mutations were a major underlying cause of changes in oxidative phosphorylation capacity, it has been proposed that they have a role in human ageing. However, there is still much debate on whether mitochondrial DNA mutations play a causal role in ageing or are simply a consequence of the ageing process. This chapter describes the structure of mammalian mitochondria, and the unique features of mitochondrial genetics, and reviews the current evidence surrounding the role of mitochondrial DNA mutations in the ageing process. It then focusses on more recent discoveries regarding the role of mitochondrial dysfunction in stem cell ageing and age-related inflammation.
Collapse
Affiliation(s)
- Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna L M Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
138
|
Bao F, Zhou L, Xiao J, Liu X. Mitolysosome exocytosis: a novel mitochondrial quality control pathway linked with parkinsonism-like symptoms. Biochem Soc Trans 2022; 50:1773-1783. [PMID: 36484629 DOI: 10.1042/bst20220726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Quality control of mitochondria is essential for their homeostasis and function. Light chain 3 (LC3) associated autophagosomes-mediated mitophagy represents a canonical mitochondrial quality control pathway. Alternative quality control processes, such as mitochondrial-derived vesicles (MDVs), have been discovered, but the intact mitochondrial quality control remains unknown. We recently discovered a novel mitolysosome exocytosis mechanism for mitochondrial quality control in flunarizine (FNZ)-induced mitochondria clearance, where autophagosomes are not required, but rather mitochondria are engulfed directly by lysosomes, mediating mitochondrial secretion. As FNZ results in parkinsonism, we propose that excessive mitolysosome exocytosis is the cause.
Collapse
Affiliation(s)
- Feixiang Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lingyan Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiahui Xiao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
139
|
Fu C, Cao N, Liu W, Zhang Z, Yang Z, Zhu W, Fan S. Crosstalk between mitophagy and innate immunity in viral infection. Front Microbiol 2022; 13:1064045. [PMID: 36590405 PMCID: PMC9800879 DOI: 10.3389/fmicb.2022.1064045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are important organelles involved in cell metabolism and programmed cell death in eukaryotic cells and are closely related to the innate immunity of host cells against viruses. Mitophagy is a process in which phagosomes selectively phagocytize damaged or dysfunctional mitochondria to form autophagosomes and is degraded by lysosomes, which control mitochondrial mass and maintain mitochondrial dynamics and cellular homeostasis. Innate immunity is an important part of the immune system and plays a vital role in eliminating viruses. Viral infection causes many physiological and pathological alterations in host cells, including mitophagy and innate immune pathways. Accumulating evidence suggests that some virus promote self-replication through regulating mitophagy-mediated innate immunity. Clarifying the regulatory relationships among mitochondria, mitophagy, innate immunity, and viral infection will shed new insight for pathogenic mechanisms and antiviral strategies. This review systemically summarizes the activation pathways of mitophagy and the relationship between mitochondria and innate immune signaling pathways, and then discusses the mechanisms of viruses on mitophagy and innate immunity and how viruses promote self-replication by regulating mitophagy-mediated innate immunity.
Collapse
Affiliation(s)
- Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zihui Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Wenhui Zhu,
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,Shuangqi Fan,
| |
Collapse
|
140
|
PINK1/Parkin-Mediated Mitophagy Partially Protects against Inorganic Arsenic-Induced Hepatic Macrophage Polarization in Acute Arsenic-Exposed Mice. Molecules 2022; 27:molecules27248862. [PMID: 36557995 PMCID: PMC9780783 DOI: 10.3390/molecules27248862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Inorganic arsenic is a well-known environmental toxicant and carcinogen, and there is overwhelming evidence for an association between this metalloid poisoning and hepatic diseases. However, the biological mechanism involved is not well characterized. In the present study, we probed how inorganic arsenic modulates the hepatic polarization of macrophages, as well as roles of PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy participates in regulating the metalloid-mediated macrophage polarization. Our results indicate that acute arsenic exposure induced macrophage polarization with up-regulated gene expression of inducible nitric oxide synthase (Inos) and arginase-1 (Arg1), monocyte chemotactic protein-1 (Mcp-1) and macrophage inflammatory protein-2 (Mip-2), tumor necrosis factor (Tnf)-α, interleukin (Il)-1β and Il-6, as well as anti-inflammatory factors Il-4 and Il-10. In parallel, we demonstrated the disrupted hepatic redox balance typically characterized by the up-regulation of hydrogen peroxide (H2O2) and glutathione (GSH), and activation of PINK1/Parkin-mediated mitophagy in the livers of acute arsenic-exposed mice. In addition, our results demonstrate that it might be the PINK1/Parkin-mediated mitophagy that renders hepatic macrophage refractory to arsenic-induced up-regulation of the genes Inos, Mcp-1, Mip-2, Tnf-α, Il-1β, Il-6 and Il-4. In this regard, this is the first time the protective effects of PINK1/Parkin-mediated mitophagy in inorganic arsenic-induced hepatic macrophage polarization in vivo have been reported. These findings add novel insights into the arsenical immunotoxicity and provide a basis for the preve.ntive and therapeutic potential of PINK1/Parkin-mediated mitophagy in arsenic poisoning.
Collapse
|
141
|
Kobara M, Toba H, Nakata T. Roles of autophagy in angiotensin II-induced cardiomyocyte apoptosis. Clin Exp Pharmacol Physiol 2022; 49:1342-1351. [PMID: 36059129 DOI: 10.1111/1440-1681.13719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
Autophagy is a self-degradation process of cytoplasmic components and occurs in the failing heart. Angiotensin II plays a critical role in the progression of heart failure and induces autophagy. We investigated the mechanism underlying angiotensin II-enhanced autophagy and examined the role of autophagy in angiotensin II-induced cardiomyocyte injury. Neonatal rat cardiomyocytes were treated with angiotensin II (1-100 nmol/L). Angiotensin II dose-dependently increased autophagy indicators of microtubule-associated protein 1 light chain (LC) 3-II and monodansylcadaverine-labelled vesicles. It also enhanced the intracellular production of reactive oxygen species (ROS), assessed by H2DCFDA, an intracellular ROS indicator. NADPH oxidase- and mitochondria-derived ROS production was increased by angiotensin II, while angiotensin II-induced LC3-II expression was suppressed by inhibitors of these sources of ROS. Confocal microscopy revealed that superoxide-producing mitochondria colocalized with lysosomes after the angiotensin II stimulation. Myocyte apoptosis was assessed by nuclear staining with DAPI and caspase-3 activity. A 6-h stimulation with angiotensin II did not affect myocyte apoptosis, while a co-treatment with 3-methyl-adenine (3MA), an autophagy inhibitor, augmented apoptosis. These results indicate that autophagy suppressed apoptosis because it removed damaged mitochondria in the early stages of the angiotensin II stimulation. A longer angiotensin II stimulation for 24 h induced apoptosis and propidium iodide-positive lethal myocytes, while the co-treatment with 3MA did not lead to further increases. In conclusion, angiotensin II-induced autophagy removes ROS-producing mitochondria. Autophagy is a beneficial phenomenon against myocyte apoptosis in the early phase, but its benefit was limited in the late phase of angiotensin II stimulation.
Collapse
Affiliation(s)
- Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuo Nakata
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
142
|
Evans S, Ma X, Wang X, Chen Y, Zhao C, Weinheimer CJ, Kovacs A, Finck B, Diwan A, Mann DL. Targeting the Autophagy-Lysosome Pathway in a Pathophysiologically Relevant Murine Model of Reversible Heart Failure. JACC Basic Transl Sci 2022; 7:1214-1228. [PMID: 36644282 PMCID: PMC9831862 DOI: 10.1016/j.jacbts.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/07/2022]
Abstract
The key biological "drivers" that are responsible for reverse left ventricle (LV) remodeling are not well understood. To gain an understanding of the role of the autophagy-lysosome pathway in reverse LV remodeling, we used a pathophysiologically relevant murine model of reversible heart failure, wherein pressure overload by transaortic constriction superimposed on acute coronary artery (myocardial infarction) ligation leads to a heart failure phenotype that is reversible by hemodynamic unloading. Here we show transaortic constriction + myocardial infarction leads to decreased flux through the autophagy-lysosome pathway with the accumulation of damaged proteins and organelles in cardiac myocytes, whereas hemodynamic unloading is associated with restoration of autophagic flux to normal levels with incomplete removal of damaged proteins and organelles in myocytes and reverse LV remodeling, suggesting that restoration of flux is insufficient to completely restore myocardial proteostasis. Enhancing autophagic flux with adeno-associated virus 9-transcription factor EB resulted in more favorable reverse LV remodeling in mice that had undergone hemodynamic unloading, whereas overexpressing transcription factor EB in mice that have not undergone hemodynamic unloading leads to increased mortality, suggesting that the therapeutic outcomes of enhancing autophagic flux will depend on the conditions in which flux is being studied.
Collapse
Key Words
- AAV9, adeno-associated virus 9
- CMV, cytomegalovirus
- CQ, chloroquine
- GFP, green red fluorescent protein
- HF, heart failure
- HF-DB, TAC + MI mice that have undergone debanding
- LFEF, left ventricular ejection fraction
- LV, left ventricle
- MI, myocardial infarction
- RFP, red fluorescent protein
- TAC, transaortic constriction
- TEM, transmission electron microscopic
- TFEB, transcription factor EB
- autophagy
- dsDNA, double stranded DNA
- eGFP, enhanced green fluorescent protein
- mTOR, mammalian target of rapamycin
- reverse left ventricle remodeling
Collapse
Affiliation(s)
- Sarah Evans
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiucui Ma
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiqiang Wang
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yana Chen
- Division of Geriatrics & Nutritional Science, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chen Zhao
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carla J. Weinheimer
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian Finck
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Geriatrics & Nutritional Science, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abhinav Diwan
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
143
|
Ling S, You Z, Li Y, Zhang J, Zhao S, He Y, Chen X. The role of γδ T17 cells in cardiovascular disease. J Leukoc Biol 2022; 112:1649-1661. [PMID: 36073777 DOI: 10.1002/jlb.3mr0822-761rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023] Open
Abstract
Due to the ability of γδ T cells to bridge adaptive and innate immunity, γδ T cells can respond to a variety of molecular cues and acquire the ability to induce a variety of cytokines such as IL-17 family, IFN-γ, IL-4, and IL-10. IL-17+ γδ T cells (γδ T17 cells) populations have recently received considerable interest as they are the major early source of IL-17A in many immune response models. However, the exact mechanism of γδ T17 cells is still poorly understood, especially in the context of cardiovascular disease (CVD). CVD is the leading cause of death in the world, and it tends to be younger. Here, we offer a review of the cardiovascular inflammatory and immune functions of γδ T17 cells in order to understand their role in CVD, which may be the key to developing new clinical applications.
Collapse
Affiliation(s)
- Shaoxue Ling
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zonghao You
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Shuwu Zhao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| |
Collapse
|
144
|
Sui H, Chen Q, Yang J, Srirattanapirom S, Imamichi T. Manganese enhances DNA- or RNA-mediated innate immune response by inducing phosphorylation of TANK-binding kinase 1. iScience 2022; 25:105352. [PMID: 36325059 PMCID: PMC9619380 DOI: 10.1016/j.isci.2022.105352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
Trace metals are essential for various physiological processes, but their roles in innate immunity have not been fully explored. Here, we found that manganese (Mn) significantly enhanced DNA-mediated IFN-α, IFN-β, and IFN-λ1 production. Microarray analysis demonstrated Mn highly upregulated 351 genes, which were involved in multiple biological functions related to innate immune response. Moreover, we found that Mn2+ alone activates phosphorylation of TANK-binding kinase 1 (TBK1). Inhibiting ataxia telangiectasia mutated (ATM) kinase using ATM inhibitor or siRNA suppressed Mn-enhanced DNA-mediated immune response with decreasing phosphorylation of TBK-1, suggesting that ATM involves in Mn-dependent phosphorylation of TBK1. Given that TBK1 is an essential mediator in DNA- or RNA-mediated signaling pathways, we further demonstrated that Mn2+ suppressed infection of HSV-1 (DNA virus) or Sendai virus (RNA virus) into human macrophages by enhancing antiviral immunity. Our finding highlights a beneficial role of Mn in nucleic-acid-based preventive or therapeutic reagents against infectious diseases.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Selena Srirattanapirom
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
145
|
Mitrofanova A, Fontanella AM, Burke GW, Merscher S, Fornoni A. Mitochondrial Contribution to Inflammation in Diabetic Kidney Disease. Cells 2022; 11:3635. [PMID: 36429063 PMCID: PMC9688941 DOI: 10.3390/cells11223635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is the leading cause of chronic kidney disease worldwide. Despite the burden, the factors contributing to the development and progression of diabetic kidney disease (DKD) remain to be fully elucidated. In recent years, increasing evidence suggests that mitochondrial dysfunction is a pathological mediator in DKD as the kidney is a highly metabolic organ rich in mitochondria. Furthermore, low grade chronic inflammation also contributes to the progression of DKD, and several inflammatory biomarkers have been reported as prognostic markers to risk-stratify patients for disease progression and all-cause mortality. Interestingly, the term "sterile inflammation" appears to be used in the context of DKD describing the development of intracellular inflammation in the absence of bacterial or viral pathogens. Therefore, a link between mitochondrial dysfunction and inflammation in DKD exists and is a hot topic in both basic research and clinical investigations. This review summarizes how mitochondria contribute to sterile inflammation in renal cells in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio M. Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
146
|
Sundquist K, Sundquist J, Wang X, Palmer K, Memon AA. Baseline mitochondrial DNA copy number and heart failure incidence and its role in overall and heart failure mortality in middle-aged women. Front Cardiovasc Med 2022; 9:1012403. [PMID: 36440036 PMCID: PMC9685522 DOI: 10.3389/fcvm.2022.1012403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2024] Open
Abstract
Heart failure (HF) is a leading cause of death in both men and women. However, risk factors seem to differ for men and women and significant gaps in sex-specific knowledge exist. Mitochondria are critical for cardiomyocytes and in this study, we investigated the role of baseline mitochondrial DNA copy number (mtDNA-CN) in HF incidence in middle-aged women and its possible role in the association between myocardial infarction (MI) and HF. Finally, we also investigated whether baseline mtDNA-CN was associated with overall and HF mortality. Baseline levels of mtDNA-CN were quantified by droplet digital PCR in a population-based follow-up study of middle-aged (50-59 years) Swedish women (n = 2,508). The median follow-up period was 17 years. Levels of mtDNA-CN were associated with age, BMI, alcohol, smoking, education, physical activity and lipid biomarkers. Multivariable Cox regression analysis adjusted for potential confounders showed that each standard deviation decrease of baseline mtDNA-CN was associated with higher incidence of HF (HR = 1.34; 95% CI=1.11-1.63). Similar results were obtained when mtDNA-CN levels were categorized into quartiles with lowest vs. highest quartile showing the highest risk of HF incidence (HR = 2.04 95% CI=1.14; 3.63). We could not detect any role of mtDNA-CN in the association between MI and HF incidence. Lower baseline mtDNA-CN levels were associated with both overall (HR = 1.27; 95% CI=1.10-1.46) and HF mortality (HR = 1.93; 95% CI=1.04-3.60); however, in multivariable analysis adjusted for potential confounders, the higher risks of HF mortality were no longer significant (HR=1.57; 95% CI=0.85-2.90). In conclusion, low baseline mtDNA-CN is an easily quantifiable molecular risk factor for HF incidence and may be a risk factor for overall and HF-related mortality.
Collapse
Affiliation(s)
| | | | | | | | - Ashfaque A. Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
147
|
Berbamine hydrochloride inhibits bovine viral diarrhea virus replication via interfering in late-stage autophagy. Virus Res 2022; 321:198905. [PMID: 36064041 DOI: 10.1016/j.virusres.2022.198905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a harmful pathogen that easily causes large-scale infections and huge economic losses to the cattle industry. Berbamine hydrochloride (BBH) is a natural product extracted from berberis and has a wide range of pharmacological effects. However, the antiviral effect of BBH against BVDV needs to be further elucidated. This study aimed to evaluate the antiviral activities of BBH against BVDV infection. We mainly used RT-qPCR, Western blotting, immunofluorescence, and TEM assays to assess the inhibitory activity of BBH against BVDV. The results showed that BBH had an inhibitory effect on BVDV and higher inhibitory activity in the viral attachment and release in MDBK cells. This study found that BVDV could induce and use autophagy to replicate itself. Further results showed that BBH inhibited BVDV infection by inhibiting autophagy integrity in BVDV-infected cells, which was proven by the detection of autophagy-related proteins. Our data show that in BBH-treated BVDV-infected cells, the expression of p62 and LC3 increased over time. After the addition of an autophagy inhibitor, chloroquine (CQ), and an autophagy promoter, rapamycin (Rapa), we found that promoting autophagy was beneficial to the replication of BVDV, while inhibiting autophagy could reduce the number of infections by BVDV, which was evidenced by the expression of the BVDV E2 protein. Furthermore, BBH blocked the normal binding of LC3 and LAMP1 in BVDV-infected cells. In conclusion, BBH inhibited BVDV infection by inhibiting BVDV-induced autophagy in cells, and its inhibitory effect was obvious in the viral attachment and release stages. Therefore, our study provides a new idea for exploring novel anti-BVDV drugs.
Collapse
|
148
|
Tjahjono E, Kirienko DR, Kirienko NV. The emergent role of mitochondrial surveillance in cellular health. Aging Cell 2022; 21:e13710. [PMID: 36088658 PMCID: PMC9649602 DOI: 10.1111/acel.13710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial dysfunction is one of the primary causatives for many pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and aging. Decline in mitochondrial functions leads to the loss of proteostasis, accumulation of ROS, and mitochondrial DNA damage, which further exacerbates mitochondrial deterioration in a vicious cycle. Surveillance mechanisms, in which mitochondrial functions are closely monitored for any sign of perturbations, exist to anticipate possible havoc within these multifunctional organelles with primitive origin. Various indicators of unhealthy mitochondria, including halted protein import, dissipated membrane potential, and increased loads of oxidative damage, are on the top of the lists for close monitoring. Recent research also indicates a possibility of reductive stress being monitored as part of a mitochondrial surveillance program. Upon detection of mitochondrial stress, multiple mitochondrial stress-responsive pathways are activated to promote the transcription of numerous nuclear genes to ameliorate mitochondrial damage and restore compromised cellular functions. Co-expression occurs through functionalization of transcription factors, allowing their binding to promoter elements to initiate transcription of target genes. This review provides a comprehensive summary of the intricacy of mitochondrial surveillance programs and highlights their roles in our cellular life. Ultimately, a better understanding of these surveillance mechanisms is expected to improve healthspan.
Collapse
|
149
|
Ketenci M, Zablocki D, Sadoshima J. Mitochondrial Quality Control Mechanisms during Diabetic Cardiomyopathy. JMA J 2022; 5:407-415. [PMID: 36407069 PMCID: PMC9646286 DOI: 10.31662/jmaj.2022-0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
One of the major complications of diabetes mellitus is diabetic cardiomyopathy. One of the mechanisms that initiates the irreversible deterioration of cardiac function in diabetic cardiomyopathy is mitochondrial dysfunction. Functionally impaired mitochondria result in greater levels of oxidative stress and lipotoxicity, both of which exacerbate mitochondrial damage. Mitochondrial health is constantly monitored by mitochondrial quality control mechanisms. Mitophagy selectively degrades damaged mitochondria, thereby maintaining the healthy pool of mitochondria and preserving myocardial function. Mitophagy in diabetic cardiomyopathy is mediated by multiple mechanisms in a time-dependent manner. Potential targets for the treatment of diabetic cardiomyopathy include increased oxidative stress, mitochondrial dynamics, and mitochondrial clearance. Thus, stimulation of mitophagy represents a promising strategy for the alleviation of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Melis Ketenci
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, USA
| | - Daniela Zablocki
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, USA
| | - Junichi Sadoshima
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, USA
| |
Collapse
|
150
|
Hu H, Guo L, Overholser J, Wang X. Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells 2022; 11:cells11193174. [PMID: 36231136 PMCID: PMC9562648 DOI: 10.3390/cells11193174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body’s defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role in inflammation require further exploration. We comprehensively and systematically summarized the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
Collapse
Affiliation(s)
- Hang Hu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (L.G.); (X.W.)
| | - Jay Overholser
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (L.G.); (X.W.)
| |
Collapse
|