101
|
Harms FL, Dingemans AJM, Hempel M, Pfundt R, Bierhals T, Casar C, Müller C, Niermeijer JMF, Fischer J, Jahn A, Hübner C, Majore S, Agolini E, Novelli A, van der Smagt J, Ernst R, van Binsbergen E, Mancini GMS, van Slegtenhorst M, Barakat TS, Wakeling EL, Kamath A, Downie L, Pais L, White SM, de Vries BBA, Kutsche K. De novo PHF5A variants are associated with craniofacial abnormalities, developmental delay, and hypospadias. Genet Med 2023; 25:100927. [PMID: 37422718 DOI: 10.1016/j.gim.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christoph Hübner
- Department of Neuropaediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert Ernst
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Arveen Kamath
- All Wales Medical Genomics Service/ Pennaeth Labordy Genomeg Cymru Gyfan, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Lilian Downie
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, VIC; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
102
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
103
|
Tu Y, Qin J, Zhang QM, Tang TS, Wang L, Yao J. Secretagogin regulates asynchronous and spontaneous glutamate release in hippocampal neurons through interaction with Doc2α. LIFE MEDICINE 2023; 2:lnad041. [PMID: 39872889 PMCID: PMC11749858 DOI: 10.1093/lifemedi/lnad041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2025]
Abstract
Synaptic vesicle (SV) exocytosis is orchestrated by protein machineries consisting of the SNARE complex, Ca2+ sensors, and their partners. Secretagogin (SCGN) is a Ca2+-binding protein involved in multiple forms of vesicle secretion. Although SCGN is implicated in multiple neurological disorders, its role in SV exocytosis in neurons remains unknown. Here, using knockout and knockdown techniques, we report that SCGN could regulate the asynchronous and spontaneous forms of excitatory but not inhibitory SV exocytosis in mouse hippocampal neurons. Furthermore, SCGN functioned in glutamate release via directly interacting with Doc2α, a high-affinity Ca2+ sensor specific for asynchronous and spontaneous SV exocytosis. Conversely, the interaction with SCGN is also required for Doc2α to execute its Ca2+ sensor function in SV release. Together, our study revealed that SCGN plays an important role in asynchronous and spontaneous glutamate release through its interaction with Doc2α.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiao Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiao-Ming Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing Institute for Stem Cell and Regenerative Medicine, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Wang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
104
|
Walton NA, Nguyen HH, Procknow SS, Johnson D, Anzelmi A, Jay PY. Repurposing Normal Chromosomal Microarray Data to Harbor Genetic Insights into Congenital Heart Disease. BIOLOGY 2023; 12:1290. [PMID: 37887000 PMCID: PMC10604103 DOI: 10.3390/biology12101290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
About 15% of congenital heart disease (CHD) patients have a known pathogenic copy number variant. The majority of their chromosomal microarray (CMA) tests are deemed normal. Diagnostic interpretation typically ignores microdeletions smaller than 100 kb. We hypothesized that unreported microdeletions are enriched for CHD genes. We analyzed "normal" CMAs of 1762 patients who were evaluated at a pediatric referral center, of which 319 (18%) had CHD. Using CMAs from monozygotic twins or replicates from the same individual, we established a size threshold based on probe count for the reproducible detection of small microdeletions. Genes in the microdeletions were sequentially filtered by their nominal association with a CHD diagnosis, the expression level in the fetal heart, and the deleteriousness of a loss-of-function mutation. The subsequent enrichment for CHD genes was assessed using the presence of known or potentially novel genes implicated by a large whole-exome sequencing study of CHD. The unreported microdeletions were modestly enriched for both known CHD genes and those of unknown significance identified using their de novo mutation in CHD patients. Our results show that readily available "normal" CMA data can be a fruitful resource for genetic discovery and that smaller deletions should receive more attention in clinical evaluation.
Collapse
Affiliation(s)
- Nephi A. Walton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hoang H. Nguyen
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara S. Procknow
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darren Johnson
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Alexander Anzelmi
- Department of Medicine, Thomas Jefferson University Hospitals, Philadelphia, PA 19107, USA
| | - Patrick Y. Jay
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
105
|
Araki Y, Gerber EE, Rajkovich KE, Hong I, Johnson RC, Lee HK, Kirkwood A, Huganir RL. Mouse models of SYNGAP1-related intellectual disability. Proc Natl Acad Sci U S A 2023; 120:e2308891120. [PMID: 37669379 PMCID: PMC10500186 DOI: 10.1073/pnas.2308891120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
SYNGAP1 is a Ras-GTPase-activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDDs). These mutations are highly penetrant and cause SYNGAP1-related intellectual disability (SRID), an NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances. Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning, and memory and have seizures. However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A. While reduction in Syngap1 mRNA varies from 30 to 50% depending on the specific mutation, both models show ~50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder.
Collapse
Affiliation(s)
- Yoichi Araki
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Elizabeth E. Gerber
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Kacey E. Rajkovich
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Ingie Hong
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Richard C. Johnson
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Hey-Kyoung Lee
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Alfredo Kirkwood
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Richard L. Huganir
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
106
|
Han CZ, Li RZ, Hansen E, Trescott S, Fixsen BR, Nguyen CT, Mora CM, Spann NJ, Bennett HR, Poirion O, Buchanan J, Warden AS, Xia B, Schlachetzki JCM, Pasillas MP, Preissl S, Wang A, O'Connor C, Shriram S, Kim R, Schafer D, Ramirez G, Challacombe J, Anavim SA, Johnson A, Gupta M, Glass IA, Levy ML, Haim SB, Gonda DD, Laurent L, Hughes JF, Page DC, Blurton-Jones M, Glass CK, Coufal NG. Human microglia maturation is underpinned by specific gene regulatory networks. Immunity 2023; 56:2152-2171.e13. [PMID: 37582369 PMCID: PMC10529991 DOI: 10.1016/j.immuni.2023.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.
Collapse
Affiliation(s)
- Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rick Z Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Samantha Trescott
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Bethany R Fixsen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina T Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Cristina M Mora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hunter R Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Olivier Poirion
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin Buchanan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Bing Xia
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martina P Pasillas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Preissl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Shreya Shriram
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Danielle Schafer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Gabriela Ramirez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jean Challacombe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samuel A Anavim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Mihir Gupta
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sharona Ben Haim
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - David D Gonda
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Louise Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92696, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
107
|
Cacheiro P, Smedley D. Essential genes: a cross-species perspective. Mamm Genome 2023; 34:357-363. [PMID: 36897351 PMCID: PMC10382395 DOI: 10.1007/s00335-023-09984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023]
Abstract
Protein coding genes exhibit different degrees of intolerance to loss-of-function variation. The most intolerant genes, whose function is essential for cell or/and organism survival, inform on fundamental biological processes related to cell proliferation and organism development and provide a window on the molecular mechanisms of human disease. Here we present a brief overview of the resources and knowledge gathered around gene essentiality, from cancer cell lines to model organisms to human development. We outline the implications of using different sources of evidence and definitions to determine which genes are essential and highlight how information on the essentiality status of a gene can inform novel disease gene discovery and therapeutic target identification.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
108
|
Alhajaj G, Lacroix C, Trakadis Y, Garfinkle J, Srour M. An in-frame deletion affecting the critical acid loop of PPP2R5D is associated with a neonatal lethal form of PPP2R5D-related neurodevelopmental disorder. Am J Med Genet A 2023; 191:2416-2421. [PMID: 37248744 DOI: 10.1002/ajmg.a.63307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
Heterozygous pathogenic variants in PPP2R5D gene are associated with PPP2R5D-related neurodevelopmental disorder, a rare autosomal dominant condition, characterized by neurodevelopmental impairment in childhood, macrocephaly/megalencephaly, hypotonia, epilepsy, and dysmorphic features. Up-to-date, only approximately 100 cases have been published in the literature and the full phenotypic and genotypic spectrum have not yet been fully described. PPP2R5D gene encodes the B56δ subunit of the PP2A enzyme complex. We describe a neonatal form of PPP2R5D-related disorder with early infantile death, caused by a novel in-frame deletion causing loss of 8 amino acids and insertion of serine at position 201 (p.Phe194_Pro201delinsSer) of the B56δ subunit. This deletion is predicted to disrupt a critical acidic loop of amino acids important for binding other subunits of the PP2A enzyme complex, and harbors many of the residues previously reported to cause a mild-moderate form of this condition. This report describes a neonatal lethal presentation of the PPP2R5D-related neurodevelopmental disorder and provides additional evidence that disruption of the acidic loop is an important pathomechanism underlying PPP2R5D-related disorder.
Collapse
Affiliation(s)
- Ghadd Alhajaj
- Department of Pediatrics, Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia
- Department of Pediatrics, Division of Pediatric Neurology, McGill University Health Center, Montreal, Quebec, Canada
| | - Caroline Lacroix
- Department of Diagnostic Radiology, McGill University Health Center, Montreal, Quebec, Canada
| | - Yannis Trakadis
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Quebec, Canada
| | - Jarred Garfinkle
- Department of Pediatrics, Division of Neonatology, McGill University Health Center, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University Health Center, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
109
|
Levy T, Pichardo T, Silver H, Lerman B, Zweifach J, Halpern D, Siper PM, Kolevzon A, Buxbaum JD. Prospective phenotyping of CHAMP1 disorder indicates that coding mutations may not act through haploinsufficiency. Hum Genet 2023; 142:1385-1394. [PMID: 37454340 PMCID: PMC10449971 DOI: 10.1007/s00439-023-02578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
CHAMP1 disorder is a genetic neurodevelopmental condition caused by mutations in the CHAMP1 gene that result in premature termination codons. The disorder is associated with intellectual disability, medical comorbidities, and dysmorphic features. Deletions of the CHAMP1 gene, as part of 13q34 deletion syndrome, have been briefly described with the suggestion of a milder clinical phenotype. To date, no studies have directly assessed differences between individuals with mutations in CHAMP1 to those with deletions of the gene. We completed prospective clinical evaluations of 16 individuals with mutations and eight with deletions in CHAMP1. Analyses revealed significantly lower adaptive functioning across all domains assessed (i.e., communication, daily living skills, socialization, and motor skills) in the mutation group. Developmental milestones and medical features further showed difference between groups. The phenotypes associated with mutations, as compared to deletions, indicate likely difference in pathogenesis between groups, where deletions are acting through CHAMP1 haploinsufficiency and mutations are acting through dominant negative or gain of function mechanisms, leading to a more severe clinical phenotype. Understanding this pathogenesis is important to the future of novel therapies for CHAMP1 disorder and illustrates that mechanistic understanding of mutations must be carefully considered prior to treatment development.
Collapse
Affiliation(s)
- Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thariana Pichardo
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hailey Silver
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bonnie Lerman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Danielle Halpern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
110
|
Smolen KA, Papke CM, Swingle MR, Musiyenko A, Li C, Salter EA, Camp AD, Honkanen RE, Kettenbach AN. Quantitative proteomics and phosphoproteomics of PP2A-PPP2R5D variants reveal deregulation of RPS6 phosphorylation via converging signaling cascades. J Biol Chem 2023; 299:105154. [PMID: 37572851 PMCID: PMC10485637 DOI: 10.1016/j.jbc.2023.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023] Open
Abstract
Genetic germline variants of PPP2R5D (encoding: phosphoprotein phosphatase 2 regulatory protein 5D) result in PPP2R5D-related disorder (Jordan's Syndrome), which is characterized by intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder, and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. However, the generation of a heterozygous E198K variant cell line to study the molecular effects of the pathogenic mutation has been challenging. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in a single PPP2R5D allele in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of WT, E198K, and E420K cell lines and find unique and shared changes between variants and WT cells in kinase- and phosphatase-controlled signaling cascades. We observed ribosomal protein S6 (RPS6) hyperphosphorylation as a shared signaling alteration, indicative of increased ribosomal protein S6-kinase activity. Treatment with rapamycin or an RPS6-kinase inhibitor (LY2584702) suppressed RPS6 phosphorylation in both, suggesting upstream activation of mTORC1/p70S6K. Intriguingly, our data suggests ERK-dependent activation of mTORC1 in both E198K and E420K variant cells, with additional AKT-mediated mTORC1 activation in the E420K variant. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, inhibition of mTORC1 or RPS6 kinases warrants further investigation as potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Kali A Smolen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Chenchen Li
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - E Alan Salter
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Ashley D Camp
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
111
|
Chung CCY, Hue SPY, Ng NYT, Doong PHL, Chu ATW, Chung BHY. Meta-analysis of the diagnostic and clinical utility of exome and genome sequencing in pediatric and adult patients with rare diseases across diverse populations. Genet Med 2023; 25:100896. [PMID: 37191093 DOI: 10.1016/j.gim.2023.100896] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE This meta-analysis aims to compare the diagnostic and clinical utility of exome sequencing (ES) vs genome sequencing (GS) in pediatric and adult patients with rare diseases across diverse populations. METHODS A meta-analysis was conducted to identify studies from 2011 to 2021. RESULTS One hundred sixty-one studies across 31 countries/regions were eligible, featuring 50,417 probands of diverse populations. Diagnostic rates of ES (0.38, 95% CI 0.36-0.40) and GS (0.34, 95% CI 0.30-0.38) were similar (P = .1). Within-cohort comparison illustrated 1.2-times odds of diagnosis by GS over ES (95% CI 0.79-1.83, P = .38). GS studies discovered a higher range of novel genes than ES studies; yet, the rate of variant of unknown significance did not differ (P = .78). Among high-quality studies, clinical utility of GS (0.77, 95% CI 0.64-0.90) was higher than that of ES (0.44, 95% CI 0.30-0.58) (P < .01). CONCLUSION This meta-analysis provides an important update to demonstrate the similar diagnostic rates between ES and GS and the higher clinical utility of GS over ES. With the newly published recommendations for clinical interpretation of variants found in noncoding regions of the genome and the trend of decreasing variant of unknown significance and GS cost, it is expected that GS will be more widely used in clinical settings.
Collapse
Affiliation(s)
| | - Shirley P Y Hue
- Hong Kong Genome Institute, Hong Kong Special Administrative Region
| | - Nicole Y T Ng
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Phoenix H L Doong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Annie T W Chu
- Hong Kong Genome Institute, Hong Kong Special Administrative Region.
| | - Brian H Y Chung
- Hong Kong Genome Institute, Hong Kong Special Administrative Region; Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
112
|
Cuppens T, Shatto J, Mangnier L, Kumar AA, Ng ACH, Kaur M, Bui TA, Leclercq M, Droit A, Dunham I, Bolduc FV. Sex difference contributes to phenotypic diversity in individuals with neurodevelopmental disorders. Front Pediatr 2023; 11:1172154. [PMID: 37609366 PMCID: PMC10441218 DOI: 10.3389/fped.2023.1172154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Objective Gain a better understanding of sex-specific differences in individuals with global developmental delay (GDD), with a focus on phenotypes and genotypes. Methods Using the Deciphering Developmental Disorders (DDD) dataset, we extracted phenotypic information from 6,588 individuals with GDD and then identified statistically significant variations in phenotypes and genotypes based on sex. We compared genes with pathogenic variants between sex and then performed gene network and molecular function enrichment analysis and gene expression profiling between sex. Finally, we contrasted individuals with autism as an associated condition. Results We identified significantly differentially expressed phenotypes in males vs. females individuals with GDD. Autism and macrocephaly were significantly more common in males whereas microcephaly and stereotypies were more common in females. Importantly, 66% of GDD genes with pathogenic variants overlapped between both sexes. In the cohort, males presented with only slightly increased X-linked genes (9% vs. 8%, respectively). Individuals from both sexes harbored a similar number of pathogenic variants overall (3) but females presented with a significantly higher load for GDD genes with high intolerance to loss of function. Sex difference in gene expression correlated with genes identified in a sex specific manner. While we identified sex-specific GDD gene mutations, their pathways overlapped. Interestingly, individuals with GDD but also co-morbid autism phenotypes, we observed distinct mutation load, pathways and phenotypic presentation. Conclusion Our study shows for the first time that males and females with GDD present with significantly different phenotypes. Moreover, while most GDD genes overlapped, some genes were found uniquely in each sex. Surprisingly they shared similar molecular functions. Sorting genes by predicted tolerance to loss of function (pLI) led to identifying an increased mutation load in females with GDD, suggesting potentially a tolerance to GDD genes of higher pLI compared to overall GDD genes. Finally, we show that considering associated conditions (for instance autism) may influence the genomic underpinning found in individuals with GDD and highlight the importance of comprehensive phenotyping.
Collapse
Affiliation(s)
- Tania Cuppens
- Centre de Recherche du CHU de Québec-Université Laval, Département de Médecine Moléculaire de L'Université Laval, Québec, QC, Canada
| | - Julie Shatto
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Loïc Mangnier
- Centre de Recherche du CHU de Québec-Université Laval, Département de Médecine Moléculaire de L'Université Laval, Québec, QC, Canada
| | - Ajay A. Kumar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Andy Cheuk-Him Ng
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Manpreet Kaur
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Truong An Bui
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Mickael Leclercq
- Centre de Recherche du CHU de Québec-Université Laval, Département de Médecine Moléculaire de L'Université Laval, Québec, QC, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec-Université Laval, Département de Médecine Moléculaire de L'Université Laval, Québec, QC, Canada
| | - Ian Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Francois V. Bolduc
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
113
|
Zhao H, Du C, Yang G, Wang Y. Diagnosis, treatment, and research status of rare diseases related to birth defects. Intractable Rare Dis Res 2023; 12:148-160. [PMID: 37662624 PMCID: PMC10468410 DOI: 10.5582/irdr.2023.01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Rare diseases are diseases that occur at low prevalence, and most of them are chronic and serious diseases that are often life-threatening. Currently, there is no unified definition for rare diseases. The diagnosis, treatment, and research of rare diseases have become the focus of medicine and biopharmacology, as well as the breakthrough point of clinical and basic research. Birth defects are the hard-hit area of rare diseases and the frontiers of its research. Since most of these defects have a genetic basis, early screening and diagnosis have important scientific value and social significance for the prevention and control of such diseases. At present, there is no effective treatment for most rare diseases, but progress in prenatal diagnosis and screening can prevent the occurrence of diseases and help prevent and treat rare diseases. This article discusses the progress in genetic-related birth defects and rare diseases.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Gynecology and Obstetrics, Shandong Provincial Third Hospital, Shandong University, Ji'nan, China
| | - Chen Du
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| |
Collapse
|
114
|
Ha TT, Burgess R, Newman M, Moey C, Mandelstam SA, Gardner AE, Ivancevic AM, Pham D, Kumar R, Smith N, Patel C, Malone S, Ryan MM, Calvert S, van Eyk CL, Lardelli M, Berkovic SF, Leventer RJ, Richards LJ, Scheffer IE, Gecz J, Corbett MA. Aicardi Syndrome Is a Genetically Heterogeneous Disorder. Genes (Basel) 2023; 14:1565. [PMID: 37628618 PMCID: PMC10454071 DOI: 10.3390/genes14081565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.
Collapse
Affiliation(s)
- Thuong T. Ha
- School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Rosemary Burgess
- Epilepsy Research Centre, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia (S.F.B.); (I.E.S.)
| | - Morgan Newman
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA 5005, Australia (M.L.)
| | - Ching Moey
- The Queensland Brain Institute, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Simone A. Mandelstam
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Imaging, The Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Alison E. Gardner
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| | - Atma M. Ivancevic
- Department of Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Duyen Pham
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| | - Raman Kumar
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| | - Nicholas Smith
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
- Department of Neurology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4029, Australia
| | - Stephen Malone
- Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
| | - Monique M. Ryan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Sophie Calvert
- Department of Neurosciences, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia;
| | - Clare L. van Eyk
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| | - Michael Lardelli
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA 5005, Australia (M.L.)
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia (S.F.B.); (I.E.S.)
| | - Richard J. Leventer
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Linda J. Richards
- The Queensland Brain Institute, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
- Department of Neuroscience, School of Medicine, Washington University, St Louis, MO 63110, USA
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia (S.F.B.); (I.E.S.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Jozef Gecz
- School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark A. Corbett
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia (M.A.C.)
| |
Collapse
|
115
|
Abi Raad S, Yazbeck Karam V, Chouery E, Mehawej C, Megarbane A. CHAMP1-Related Disorder: Sharing 20 Years of thorough Clinical Follow-Up and Review of the Literature. Genes (Basel) 2023; 14:1546. [PMID: 37628598 PMCID: PMC10454041 DOI: 10.3390/genes14081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Intellectual disability (ID) is a prevalent neurodevelopmental disorder characterized by limitations in intellectual functioning and adaptive behavior. While the causes of ID are still largely unknown, it is believed to result from a combination of environmental exposures and genetic abnormalities. Recent advancements in genomic studies and clinical genetic testing have identified numerous genes associated with neurodevelopmental disorders (NDDs), including ID. One such gene is CHAMP1, which plays a role in chromosome alignment and has been linked to a specific type of NDD called CHAMP1 disease. This report presents the case of a 21-year-old Lebanese female patient with a de novo mutation in CHAMP1. In addition to ID and NDD, the patient exhibited various clinical features such as impaired language, dysmorphic features, macrocephaly, thoracic hyperkyphosis, decreased pain sensation, and metabolic syndrome. These findings expand the understanding of the clinical spectrum associated with CHAMP1 mutations and highlight the importance of comprehensive follow-up for improved prognosis. Overall, this case contributes to the knowledge of CHAMP1-related NDDs by describing additional clinical features associated with a CHAMP1 mutation. The findings underscore the need for accurate diagnosis, thorough follow-up, and personalized care for individuals with CHAMP1 mutations to optimize their prognosis.
Collapse
Affiliation(s)
- Sarah Abi Raad
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Vanda Yazbeck Karam
- Department of Anesthesiology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1102-2801, Lebanon;
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1102-2801, Lebanon; (E.C.); (C.M.)
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1102-2801, Lebanon; (E.C.); (C.M.)
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1102-2801, Lebanon; (E.C.); (C.M.)
- Institut Jérôme Lejeune, 75015 Paris, France
| |
Collapse
|
116
|
Kido J, Egami K, Misumi Y, Sugawara K, Tsuchida N, Matsumoto N, Ueda M, Nakamura K. X-linked intellectual disability related to a novel variant of KLHL15. Hum Genome Var 2023; 10:21. [PMID: 37452054 PMCID: PMC10349042 DOI: 10.1038/s41439-023-00248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 07/18/2023] Open
Abstract
Kelch-like (KLHL) 15, localized on chromosome Xp22.11, was recently identified as an X-linked intellectual disability gene. Herein, we report a case of a male patient with a novel nonsense variant, c.736 C > T p.(Arg246*), in KLHL15, who presented with impaired intelligence, short stature, frequent hypoglycemia, and periodic fever. Patients with nonsense variants in KLHL15 may develop intellectual disabilities, minor skeletal anomalies, and facial dysmorphisms.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan.
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | | | - Yohei Misumi
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
117
|
Gracia-Diaz C, Zhou Y, Yang Q, Maroofian R, Espana-Bonilla P, Lee CH, Zhang S, Padilla N, Fueyo R, Waxman EA, Lei S, Otrimski G, Li D, Sheppard SE, Mark P, Harr MH, Hakonarson H, Rodan L, Jackson A, Vasudevan P, Powel C, Mohammed S, Maddirevula S, Alzaidan H, Faqeih EA, Efthymiou S, Turchetti V, Rahman F, Maqbool S, Salpietro V, Ibrahim SH, di Rosa G, Houlden H, Alharbi MN, Al-Sannaa NA, Bauer P, Zifarelli G, Estaras C, Hurst ACE, Thompson ML, Chassevent A, Smith-Hicks CL, de la Cruz X, Holtz AM, Elloumi HZ, Hajianpour MJ, Rieubland C, Braun D, Banka S, French DL, Heller EA, Saade M, Song H, Ming GL, Alkuraya FS, Agrawal PB, Reinberg D, Bhoj EJ, Martínez-Balbás MA, Akizu N. Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders. Nat Commun 2023; 14:4109. [PMID: 37433783 PMCID: PMC10336078 DOI: 10.1038/s41467-023-39645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.
Collapse
Affiliation(s)
- Carolina Gracia-Diaz
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Paula Espana-Bonilla
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Chul-Hwan Lee
- Department of Biomedical Sciences and Pharmacology, Seoul National University, College of Medicine, Seoul, South Korea
| | - Shuo Zhang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Raquel Fueyo
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Elisa A Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sunyimeng Lei
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett Otrimski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Mark
- Department of Pediatrics, Division of Medical Genetics, Helen DeVos Children's Hospital, Corewell Health, Grand Rapids, MI, USA
| | - Margaret H Harr
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Pradeep Vasudevan
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | - Corrina Powel
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | | | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Fatima Rahman
- Developmental and Behavioral Pediatrics, University of Child Health Sciences & The Children's Hospital, Lahore, Pakistan
| | - Shazia Maqbool
- Developmental and Behavioral Pediatrics, University of Child Health Sciences & The Children's Hospital, Lahore, Pakistan
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Shahnaz H Ibrahim
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Gabriella di Rosa
- Child Neuropsychiatry Unit, Department of Pediatrics, University of Messina, Messina, 98100, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Maha Nasser Alharbi
- Maternity and Children Hospital Buraidah, Qassim Health Cluster, Buraydah, Saudi Arabia
| | | | | | | | - Conchi Estaras
- Center for Translational Medicine, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Anna C E Hurst
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Anna Chassevent
- Department of Neurogenetics, Neurology and Developmental Medicine Kennedy Krieger Institute, Baltimore, MD, USA
| | - Constance L Smith-Hicks
- Department of Neurogenetics, Neurology and Developmental Medicine Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alexander M Holtz
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - M J Hajianpour
- Division of Medical Genetics and Genomics, Department of Pediatrics, Albany Medical College, Albany, NY, USA
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Deborah L French
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Murielle Saade
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami School of Medicine and Holtz Children's Hospital, Jackson Heath System, Miami, FL, USA
| | | | - Elizabeth J Bhoj
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marian A Martínez-Balbás
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
118
|
Frasch MG, Yoon BJ, Helbing DL, Snir G, Antonelli MC, Bauer R. Autism Spectrum Disorder: A Neuro-Immunometabolic Hypothesis of the Developmental Origins. BIOLOGY 2023; 12:914. [PMID: 37508346 PMCID: PMC10375982 DOI: 10.3390/biology12070914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Fetal neuroinflammation and prenatal stress (PS) may contribute to lifelong neurological disabilities. Astrocytes and microglia, among the brain's non-neuronal "glia" cell populations, play a pivotal role in neurodevelopment and predisposition to and initiation of disease throughout lifespan. One of the most common neurodevelopmental disorders manifesting between 1-4 years of age is the autism spectrum disorder (ASD). A pathological glial-neuronal interplay is thought to increase the risk for clinical manifestation of ASD in at-risk children, but the mechanisms remain poorly understood, and integrative, multi-scale models are needed. We propose a model that integrates the data across the scales of physiological organization, from genome to phenotype, and provides a foundation to explain the disparate findings on the genomic level. We hypothesize that via gene-environment interactions, fetal neuroinflammation and PS may reprogram glial immunometabolic phenotypes that impact neurodevelopment and neurobehavior. Drawing on genomic data from the recently published series of ovine and rodent glial transcriptome analyses with fetuses exposed to neuroinflammation or PS, we conducted an analysis on the Simons Foundation Autism Research Initiative (SFARI) Gene database. We confirmed 21 gene hits. Using unsupervised statistical network analysis, we then identified six clusters of probable protein-protein interactions mapping onto the immunometabolic and stress response networks and epigenetic memory. These findings support our hypothesis. We discuss the implications for ASD etiology, early detection, and novel therapeutic approaches. We conclude with delineation of the next steps to verify our model on the individual gene level in an assumption-free manner. The proposed model is of interest for the multidisciplinary community of stakeholders engaged in ASD research, the development of novel pharmacological and non-pharmacological treatments, early prevention, and detection as well as for policy makers.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Byung-Jun Yoon
- Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dario Lucas Helbing
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Gal Snir
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748 Garching, Germany
| | - Reinhard Bauer
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
119
|
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang Y, Dietrich ASD, Fiziev PP, Kuderna LFK, Sundaram L, Wu Y, Adhikari A, Field Y, Chen C, Batzoglou S, Aguet F, Lemire G, Reimers R, Balick D, Janiak MC, Kuhlwilm M, Orkin JD, Manu S, Valenzuela A, Bergman J, Rousselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, do Amaral JV, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Bataillon T, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin A, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Lek M, Sunyaev S, O'Donnell-Luria A, Rehm HL, Xu J, Rogers J, Marques-Bonet T, Farh KKH. The landscape of tolerated genetic variation in humans and primates. Science 2023; 380:eabn8153. [PMID: 37262156 DOI: 10.1126/science.abn8197] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2023] [Indexed: 06/03/2023]
Abstract
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
Collapse
Affiliation(s)
- Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Tobias Hamp
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Jeffrey Ede
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Jeremy McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
| | - Yanshen Yang
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | | | - Petko P Fiziev
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Lukas F K Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Yibing Wu
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Aashish Adhikari
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Yair Field
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Chen Chen
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca Reimers
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | - Joseph D Orkin
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Département d'anthropologie, Université de Montréal, 3150 Jean-Brillant, Montréal, QC H3T 1N8, Canada
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Alejandro Valenzuela
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Estrada da Bexiga 2584, Tefé, Amazonas, CEP 69553-225, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
| | | | - Julie E Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City, UT 84102, USA
| | - Iracilda Sampaio
- Universidade Federal do Para, Guamá, Belém - PA, 66075-110, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - João Valsecchi do Amaral
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, 69553-225, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia - RedeFauna, Manaus, Amazonas, 69080-900, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica - ComFauna, Iquitos, Loreto, 16001, Peru
| | - Mariluce Messias
- Universidade Federal de Rondonia, Porto Velho, Rondônia, 78900-000, Brazil
- PPGREN - Programa de Pós-Graduação "Conservação e Uso dos Recursos Naturais and BIONORTE - Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal de Rondonia, Porto Velho, Rondônia, 78900-000, Brazil
| | - Maria N F da Silva
- Instituto Nacional de Pesquisas da Amazonia, Petrópolis, Manaus - AM, 69067-375, Brazil
| | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Rogerio Rossi
- Universidade Federal do Mato Grosso, Boa Esperança, Cuiabá - MT, 78060-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | | | | | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eduardo Fernandez-Duque
- Yale University, New Haven, CT 06520, USA
- Universidad Nacional de Formosa, Argentina Fundacion ECO, Formosa, Argentina
| | | | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, PoB 16316, Addis Ababa 1000, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou 310006, China
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office, P.O. Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald - Insei Riems, Germany
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 100000, Vietnam
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, 70191 Stuttgart, Germany
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005 Barcelona, Spain
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province 430000, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jessica Lee
- Mandai Nature, 80 Mandai Lake Road, Singapore 729826, Republic of Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 168582, Republic of Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 168582, Republic of Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore 168582, Republic of Singapore
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra, Pg. Luís Companys 23, 08010 Barcelona, Spain
| | - Amanda Melin
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | | | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jinbo Xu
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| |
Collapse
|
120
|
Price E, Fedida LM, Pugacheva EM, Ji YJ, Loukinov D, Lobanenkov VV. An updated catalog of CTCF variants associated with neurodevelopmental disorder phenotypes. Front Mol Neurosci 2023; 16:1185796. [PMID: 37324587 PMCID: PMC10264798 DOI: 10.3389/fnmol.2023.1185796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction CTCF-related disorder (CRD) is a neurodevelopmental disorder (NDD) caused by monoallelic pathogenic variants in CTCF. The first CTCF variants in CRD cases were documented in 2013. To date, 76 CTCF variants have been further described in the literature. In recent years, due to the increased application of next-generation sequencing (NGS), growing numbers of CTCF variants are being identified, and multiple genotype-phenotype databases cataloging such variants are emerging. Methods In this study, we aimed to expand the genotypic spectrum of CRD, by cataloging NDD phenotypes associated with reported CTCF variants. Here, we systematically reviewed all known CTCF variants reported in case studies and large-scale exome sequencing cohorts. We also conducted a meta-analysis using public variant data from genotype-phenotype databases to identify additional CTCF variants, which we then curated and annotated. Results From this combined approach, we report an additional 86 CTCF variants associated with NDD phenotypes that have not yet been described in the literature. Furthermore, we describe and explain inconsistencies in the quality of reported variants, which impairs the reuse of data for research of NDDs and other pathologies. Discussion From this integrated analysis, we provide a comprehensive and annotated catalog of all currently known CTCF mutations associated with NDD phenotypes, to aid diagnostic applications, as well as translational and basic research.
Collapse
|
121
|
Araki Y, Gerber EE, Rajkovich KE, Hong I, Johnson RC, Lee HK, Kirkwood A, Huganir RL. Mouse models of SYNGAP1 -related intellectual disability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542312. [PMID: 37293116 PMCID: PMC10245951 DOI: 10.1101/2023.05.25.542312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SYNGAP1 is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDD). These mutations are highly penetrant and cause SYNGAP1 -related intellectual disability (SRID), a NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances (1-5). Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function (6-11), and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning and memory, and have seizures (9, 12-14). However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A . While reduction in Syngap1 mRNA varies from 30-50% depending on the specific mutation, both models show ∼50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder. Significance Statement SYNGAP1 is a protein enriched at excitatory synapses in the brain that is an important regulator of synapse structure and function. SYNGAP1 mutations cause SYNGAP1 -related intellectual disability (SRID), a neurodevelopmental disorder with cognitive impairment, social deficits, seizures, and sleep disturbances. To explore how SYNGAP1 mutations found in humans lead to disease, we generated the first knock-in mouse models with causal SRID variants: one with a frameshift mutation and a second with an intronic mutation that creates a cryptic splice acceptor site. Both models show decreased Syngap1 mRNA and Syngap1 protein and recapitulate key features of SRID including hyperactivity and impaired working memory. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies. Highlights Two mouse models with SYNGAP1 -related intellectual disability (SRID) mutations found in humans were generated: one with a frameshift mutation that results in a premature stop codon and the other with an intronic mutation resulting in a cryptic splice acceptor site and premature stop codon. Both SRID mouse models show 35∼50% reduction in mRNA and ∼50% reduction in Syngap1 protein.Both SRID mouse models display deficits in synaptic plasticity and behavioral phenotypes found in people. RNA-seq confirmed cryptic splice acceptor activity in one SRID mouse model and revealed broad transcriptional changes also identified in Syngap1 +/- mice. Novel SRID mouse models generated here provide a resource and establish a framework for development of future therapeutic intervention.
Collapse
Affiliation(s)
- Yoichi Araki
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Elizabeth E Gerber
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Kacey E Rajkovich
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Ingie Hong
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Richard C Johnson
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Hey-Kyoung Lee
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Alfredo Kirkwood
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Richard L Huganir
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| |
Collapse
|
122
|
Gehin C, Lone MA, Lee W, Capolupo L, Ho S, Adeyemi AM, Gerkes EH, Stegmann AP, López-Martín E, Bermejo-Sánchez E, Martínez-Delgado B, Zweier C, Kraus C, Popp B, Strehlow V, Gräfe D, Knerr I, Jones ER, Zamuner S, Abriata LA, Kunnathully V, Moeller BE, Vocat A, Rommelaere S, Bocquete JP, Ruchti E, Limoni G, Van Campenhoudt M, Bourgeat S, Henklein P, Gilissen C, van Bon BW, Pfundt R, Willemsen MH, Schieving JH, Leonardi E, Soli F, Murgia A, Guo H, Zhang Q, Xia K, Fagerberg CR, Beier CP, Larsen MJ, Valenzuela I, Fernández-Álvarez P, Xiong S, Śmigiel R, López-González V, Armengol L, Morleo M, Selicorni A, Torella A, Blyth M, Cooper NS, Wilson V, Oegema R, Herenger Y, Garde A, Bruel AL, Tran Mau-Them F, Maddocks AB, Bain JM, Bhat MA, Costain G, Kannu P, Marwaha A, Champaigne NL, Friez MJ, Richardson EB, Gowda VK, Srinivasan VM, Gupta Y, Lim TY, Sanna-Cherchi S, Lemaitre B, Yamaji T, Hanada K, Burke JE, Jakšić AM, McCabe BD, De Los Rios P, Hornemann T, D’Angelo G, Gennarino VA. CERT1 mutations perturb human development by disrupting sphingolipid homeostasis. J Clin Invest 2023; 133:e165019. [PMID: 36976648 PMCID: PMC10178846 DOI: 10.1172/jci165019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.
Collapse
Affiliation(s)
- Charlotte Gehin
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Winston Lee
- Department of Genetics and Development and
- Department Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Laura Capolupo
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvia Ho
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adekemi M. Adeyemi
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Erica H. Gerkes
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Alexander P.A. Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Estrella López-Martín
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Bermejo-Sánchez
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Daniel Gräfe
- Department of Pediatric Radiology, University Hospital Leipzig, Leipzig, Leipzig, Germany
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland (CHI) at Temple Street, Dublin, Ireland
- UCD School of Medicine, Dublin, Ireland
| | - Eppie R. Jones
- Genuity Science, Cherrywood Business Park, Dublin, Ireland
| | - Stefano Zamuner
- Institute of Physics, School of Basic Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luciano A. Abriata
- Laboratory for Biomolecular Modeling and Protein Purification and Structure Facility, EPFL and Swiss Institute of Bioinformatics, Lausanne Switzerland
| | - Vidya Kunnathully
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Brandon E. Moeller
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Vocat
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | - Evelyne Ruchti
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Samuel Bourgeat
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Gilissen
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Bregje W. van Bon
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
| | - Rolph Pfundt
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | | | - Jolanda H. Schieving
- Radboud University Medical Center, Department of Pediatric Neurology, Amalia Children’s Hospital and Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
| | - Emanuela Leonardi
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Fiorenza Soli
- Medical Genetics Department, APSS Trento, Trento, Italy
| | - Alessandra Murgia
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Christina R. Fagerberg
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P. Beier
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin J. Larsen
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d′Hebron, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Paula Fernández-Álvarez
- Department of Clinical and Molecular Genetics, University Hospital Vall d′Hebron, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Shiyi Xiong
- Fetal Medicine Unit and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Robert Śmigiel
- Department of Family and Pediatric Nursing, Medical University, Wroclaw, Poland
| | - Vanesa López-González
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBERER-ISCIII, Murcia, Spain
| | - Lluís Armengol
- Quantitative Genomic Medicine Laboratories, S.L., CSO & CEO, Esplugues del Llobregat, Barcelona, Catalunya, Spain
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Angelo Selicorni
- Department of Pediatrics, ASST Lariana Sant’ Anna Hospital, San Fermo Della Battaglia, Como, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, United Kingdom
| | - Nicola S. Cooper
- W Midlands Clinical Genetics Service, Birmingham Women’s Hospital, Edgbaston Birmingham, United Kingdom
| | - Valerie Wilson
- Northern Regional Genetics Laboratory, Newcastle upon Tyne, United Kingdom
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Yvan Herenger
- Genetica AG, Humangenetisches Labor und Beratungsstelle, Zürich, Switzerland
| | - Aurore Garde
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d’Enfants, CHU Dijon, Dijon, France
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran Mau-Them
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Alexis B.R. Maddocks
- Department of Radiology at Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer M. Bain
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York, USA
| | - Musadiq A. Bhat
- Institute of Pharmacology and Toxicology University of Zürich, Zürich, Switzerland
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Kannu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Ashish Marwaha
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Neena L. Champaigne
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Michael J. Friez
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Ellen B. Richardson
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | | | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana Marjia Jakšić
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Brian D. McCabe
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Paolo De Los Rios
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics, School of Basic Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni D’Angelo
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
- Global Health Institute, School of Life Sciences and
| | - Vincenzo A. Gennarino
- Department of Genetics and Development and
- Department of Pediatrics
- Department of Neurology
- Columbia Stem Cell Initiative, and
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
123
|
Baine-Savanhu F, Macaulay S, Louw N, Bollweg A, Flynn K, Molatoli M, Nevondwe P, Seymour H, Carstens N, Krause A, Lombard Z. Identifying the genetic causes of developmental disorders and intellectual disability in Africa: a systematic literature review. Front Genet 2023; 14:1137922. [PMID: 37234869 PMCID: PMC10208355 DOI: 10.3389/fgene.2023.1137922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Objective: Genetic variants cause a significant portion of developmental disorders and intellectual disabilities (DD/ID), but clinical and genetic heterogeneity makes identification challenging. Compounding the issue is a lack of ethnic diversity in studies into the genetic aetiology of DD/ID, with a dearth of data from Africa. This systematic review aimed to comprehensively describe the current knowledge from the African continent on this topic. Method: Applicable literature published up until July 2021 was retrieved from PubMed, Scopus and Web of Science databases, following PRISMA guidelines, focusing on original research reports on DD/ID where African patients were the focus of the study. The quality of the dataset was assessed using appraisal tools from the Joanna Briggs Institute, whereafter metadata was extracted for analysis. Results: A total of 3,803 publications were extracted and screened. After duplicate removal, title, abstract and full paper screening, 287 publications were deemed appropriate for inclusion. Of the papers analysed, a large disparity was seen between work emanating from North Africa compared to sub-Saharan Africa, with North Africa dominating the publications. Representation of African scientists on publications was poorly balanced, with most research being led by international researchers. There are very few systematic cohort studies, particularly using newer technologies, such as chromosomal microarray and next-generation sequencing. Most of the reports on new technology data were generated outside Africa. Conclusion: This review highlights how the molecular epidemiology of DD/ID in Africa is hampered by significant knowledge gaps. Efforts are needed to produce systematically obtained high quality data that can be used to inform appropriate strategies to implement genomic medicine for DD/ID on the African continent, and to successfully bridge healthcare inequalities.
Collapse
Affiliation(s)
- Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shelley Macaulay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadja Louw
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alanna Bollweg
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kaitlyn Flynn
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mhlekazi Molatoli
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patracia Nevondwe
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Seymour
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
124
|
Cai M, Lin N, Guo N, Su L, Wu X, Xie X, Li Y, He S, Fu X, Xu L, Huang H. Using single nucleotide polymorphism array for prenatal diagnosis in a large multicenter study in Southern China. Sci Rep 2023; 13:7242. [PMID: 37142625 PMCID: PMC10160013 DOI: 10.1038/s41598-023-33668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Numerous studies have evaluated the use of single nucleotide polymorphism array (SNP-array) in prenatal diagnostics, but very few have evaluated its application under different risk conditions. Here, SNP-array was used for the retrospective analysis of 8386 pregnancies and the cases were categorized into seven groups. Pathogenic copy number variations (pCNVs) were found in 699 (8.3%, 699/8386) cases. Among the seven different risk factor groups, the non-invasive prenatal testing-positive group had the highest pCNVs rate (35.3%), followed by the abnormal ultrasound structure group (12.8%), and then the chromosomal abnormalities in the couples group (9.5%). Notably the adverse pregnancy history group presented with the lowest pCNVs rate (2.8%). Further evaluation of the 1495 cases with ultrasound abnormalities revealed that the highest pCNV rates were recorded in those cases with multiple system structure abnormalities (22.6%), followed by the groups with skeletal system (11.6%) and urinary system abnormalities (11.2%). A total of 3424 fetuses with ultrasonic soft markers were classified as having one, two, or three ultrasonic soft markers. The different pCNV rates in the three groups were statistically significant. There was little correlation between pCNVs and a previous history of adverse pregnancy outcomes, suggesting that genetic screening under these conditions should be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Nan Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Linjuan Su
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaorui Xie
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Ying Li
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Shuqiong He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xianguo Fu
- Department of Prenatal Diagnosis, Ningde Municipal Hospital, Ningde Normal University, Ningde, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| |
Collapse
|
125
|
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang Y, Dietrich A, Fiziev P, Kuderna L, Sundaram L, Wu Y, Adhikari A, Field Y, Chen C, Batzoglou S, Aguet F, Lemire G, Reimers R, Balick D, Janiak MC, Kuhlwilm M, Orkin JD, Manu S, Valenzuela A, Bergman J, Rouselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath J, Hvilsom C, Juan D, Frandsen P, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, do Amaral JV, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Batallion T, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin A, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Lek M, Sunyaev S, O’Donnell A, Rehm H, Xu J, Rogers J, Marques-Bonet T, Kai-How Farh K. The landscape of tolerated genetic variation in humans and primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538953. [PMID: 37205491 PMCID: PMC10187174 DOI: 10.1101/2023.05.01.538953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human. We show that these variants can be inferred to have non-deleterious effects in human based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases. One Sentence Summary Deep learning classifier trained on 4.3 million common primate missense variants predicts variant pathogenicity in humans.
Collapse
Affiliation(s)
- Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Tobias Hamp
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Jeffrey Ede
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Joshua G. Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Jeremy McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
| | - Yanshen Yang
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Anastasia Dietrich
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Petko Fiziev
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Lukas Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Yibing Wu
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Aashish Adhikari
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Yair Field
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Chen Chen
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Rebecca Reimers
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Daniel Balick
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Mareike C. Janiak
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna; Djerassiplatz 1, 1030, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna; 1030, Vienna, Austria
| | - Joseph D. Orkin
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Département d’anthropologie, Université de Montréal; 3150 Jean-Brillant, Montréal, QC, H3T 1N8, Canada
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad, 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Alejandro Valenzuela
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University; Aarhus, 8000, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University; Aarhus, 8000, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development; Estrada da Bexiga 2584, Tefé, Amazonas, CEP 69553-225, Brazil
- Faculty of Sciences, Department of Organismal Biology, Unit of Evolutionary Biology and Ecology, Université Libre de Bruxelles (ULB); Avenue Franklin D. Roosevelt 50, 1050, Brussels, Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University; SE-75236, Uppsala, Sweden
| | | | - Julie Horvath
- North Carolina Museum of Natural Sciences; Raleigh, North Carolina, 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University; Durham, North Carolina , 27707, USA
- Department of Biological Sciences, North Carolina State University; Raleigh, North Carolina , 27695, USA
- Department of Evolutionary Anthropology, Duke University; Durham, North Carolina , 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Fabricio Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah; Salt Lake City, Utah, 84102, USA
| | - Iracilda Sampaio
- Universidade Federal do Para; Guamá, Belém - PA, 66075-110, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
| | - João Valsecchi do Amaral
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development; Tefé, Amazonas, 69553-225, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia – RedeFauna; Manaus, Amazonas, 69080-900, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica – ComFauna; Iquitos, Loreto, 16001, Peru
| | - Mariluce Messias
- Universidade Federal de Rondonia; Porto Velho, Rondônia, 78900-000, Brazil
- PPGREN - Programa de Pós-Graduação “Conservação e Uso dos Recursos Naturais and BIONORTE - Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal de Rondonia; Porto Velho, Rondônia, 78900-000, Brazil
| | - Maria N. F. da Silva
- Instituto Nacional de Pesquisas da Amazonia; Petrópolis, Manaus - AM, 69067-375, Brazil
| | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Rogerio Rossi
- Universidade Federal do Mato Grosso; Boa Esperança, Cuiabá - MT, 78060-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University; San Antonio, Texas, 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | - Clément J. Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | | | | | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center; Houston, Texas, 77030, USA
| | | | - Joe H. Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center; Houston, Texas, 77030, USA
| | - Eduardo Fernandez-Duque
- Yale University; New Haven, Connecticut, 06520, USA
- Universidad Nacional de Formosa, Argentina Fundacion ECO, Formosa, Argentina
| | | | | | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming, Yunnan, 650223, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming, Yunnan, 650223, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen; Copenhagen, DK-2100, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center; 1369 West Wenyi Road, Hangzhou, 311121, China
- Women’s Hospital, School of Medicine, Zhejiang University; 1 Xueshi Road, Shangcheng District, Hangzhou, 310006, China
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office; P.O.Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald - Isle of Riems, Germany
| | - Minh D. Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University; Hanoi, 100000, Vietnam
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart; 70191 Stuttgart, Germany
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Av. Doctor Aiguader, N88, Barcelona, 08003, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation; C. Wellington 30, Barcelona, 08005, Spain
| | - Thomas Batallion
- Bioinformatics Research Centre, Aarhus University; Aarhus, 8000, Denmark
| | - Tilo Nadler
- Cuc Phuong Commune; Nho Quan District, Ninh Binh Province, 430000, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jessica Lee
- Mandai Nature; 80 Mandai Lake Road, Singapore 729826, Republic of Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM); Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Singapore 168582, Republic of Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM); Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Singapore 168582, Republic of Singapore
- SingHealth Duke-NUS Genomic Medicine Centre; Singapore 168582, Republic of Singapore
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland; Chambers Street, Edinburgh, EH1 1JF, UK
- School of Geosciences, University of Edinburgh; Drummond Street, Edinburgh, EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research; 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen; 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
| | - Amanda Melin
- Leibniz Science Campus Primate Cognition; 37077 Göttingen, Germany
- Department of Anthropology & Archaeology and Department of Medical Genetics
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University; SE-75236, Uppsala, Sweden
- Alberta Children’s Hospital Research Institute; University of Calgary; 2500 University Dr NW T2N 1N4, Calgary, Alberta, Canada
| | | | - Robin M. D. Beck
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad, 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Christian Roos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH8 9XP, UK
| | - Jean P. Boubli
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Monkol Lek
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research; Kellnerweg 4, 37077 Göttingen, Germany
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
- Department of Genetics, Yale School of Medicine; New Haven, Connecticut, 06520, USA
| | - Anne O’Donnell
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Heidi Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Jinbo Xu
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
- Toyota Technological Institute at Chicago; Chicago, Illinois, 60637, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| |
Collapse
|
126
|
Maurer JJ, Choi A, An I, Sathi N, Chung S. Sleep disturbances in autism spectrum disorder: Animal models, neural mechanisms, and therapeutics. Neurobiol Sleep Circadian Rhythms 2023; 14:100095. [PMID: 37188242 PMCID: PMC10176270 DOI: 10.1016/j.nbscr.2023.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Sleep is crucial for brain development. Sleep disturbances are prevalent in children with autism spectrum disorder (ASD). Strikingly, these sleep problems are positively correlated with the severity of ASD core symptoms such as deficits in social skills and stereotypic behavior, indicating that sleep problems and the behavioral characteristics of ASD may be related. In this review, we will discuss sleep disturbances in children with ASD and highlight mouse models to study sleep disturbances and behavioral phenotypes in ASD. In addition, we will review neuromodulators controlling sleep and wakefulness and how these neuromodulatory systems are disrupted in animal models and patients with ASD. Lastly, we will address how the therapeutic interventions for patients with ASD improve various aspects of sleep. Together, gaining mechanistic insights into the neural mechanisms underlying sleep disturbances in children with ASD will help us to develop better therapeutic interventions.
Collapse
|
127
|
Wright CF, Campbell P, Eberhardt RY, Aitken S, Perrett D, Brent S, Danecek P, Gardner EJ, Chundru VK, Lindsay SJ, Andrews K, Hampstead J, Kaplanis J, Samocha KE, Middleton A, Foreman J, Hobson RJ, Parker MJ, Martin HC, FitzPatrick DR, Hurles ME, Firth HV. Genomic Diagnosis of Rare Pediatric Disease in the United Kingdom and Ireland. N Engl J Med 2023; 388:1559-1571. [PMID: 37043637 PMCID: PMC7614484 DOI: 10.1056/nejmoa2209046] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Pediatric disorders include a range of highly penetrant, genetically heterogeneous conditions amenable to genomewide diagnostic approaches. Finding a molecular diagnosis is challenging but can have profound lifelong benefits. METHODS We conducted a large-scale sequencing study involving more than 13,500 families with probands with severe, probably monogenic, difficult-to-diagnose developmental disorders from 24 regional genetics services in the United Kingdom and Ireland. Standardized phenotypic data were collected, and exome sequencing and microarray analyses were performed to investigate novel genetic causes. We developed an iterative variant analysis pipeline and reported candidate variants to clinical teams for validation and diagnostic interpretation to inform communication with families. Multiple regression analyses were performed to evaluate factors affecting the probability of diagnosis. RESULTS A total of 13,449 probands were included in the analyses. On average, we reported 1.0 candidate variant per parent-offspring trio and 2.5 variants per singleton proband. Using clinical and computational approaches to variant classification, we made a diagnosis in approximately 41% of probands (5502 of 13,449). Of 3599 probands in trios who received a diagnosis by clinical assertion, approximately 76% had a pathogenic de novo variant. Another 22% of probands (2997 of 13,449) had variants of uncertain significance in genes that were strongly linked to monogenic developmental disorders. Recruitment in a parent-offspring trio had the largest effect on the probability of diagnosis (odds ratio, 4.70; 95% confidence interval [CI], 4.16 to 5.31). Probands were less likely to receive a diagnosis if they were born extremely prematurely (i.e., 22 to 27 weeks' gestation; odds ratio, 0.39; 95% CI, 0.22 to 0.68), had in utero exposure to antiepileptic medications (odds ratio, 0.44; 95% CI, 0.29 to 0.67), had mothers with diabetes (odds ratio, 0.52; 95% CI, 0.41 to 0.67), or were of African ancestry (odds ratio, 0.51; 95% CI, 0.31 to 0.78). CONCLUSIONS Among probands with severe, probably monogenic, difficult-to-diagnose developmental disorders, multimodal analysis of genomewide data had good diagnostic power, even after previous attempts at diagnosis. (Funded by the Health Innovation Challenge Fund and Wellcome Sanger Institute.).
Collapse
Affiliation(s)
- Caroline F. Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter UK, EX2 5DW
| | - Patrick Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- Cambridge University Hospitals Foundation Trust, Addenbrooke’s Hospital, Cambridge UK, CB2 0QQ
| | - Ruth Y. Eberhardt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetic and Cancer, University of Edinburgh, Edinburgh UK, EH4 2XU
| | - Daniel Perrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Simon Brent
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Eugene J. Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - V. Kartik Chundru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Sarah J. Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Katrina Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Juliet Hampstead
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Joanna Kaplanis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Kaitlin E. Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Anna Middleton
- Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, Cambridge, UK, CB10 1SA
| | - Julia Foreman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Rachel J. Hobson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Michael J. Parker
- Wellcome Centre for Ethics and Humanities/Ethox Centre, Oxford Population Health, University of Oxford, Big Data Institute, Old Road Campus, Oxford, UK, OX3 7LF
| | - Hilary C. Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - David R. FitzPatrick
- MRC Human Genetics Unit, Institute of Genetic and Cancer, University of Edinburgh, Edinburgh UK, EH4 2XU
| | - Matthew E. Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Helen V. Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- Cambridge University Hospitals Foundation Trust, Addenbrooke’s Hospital, Cambridge UK, CB2 0QQ
| |
Collapse
|
128
|
Zarate YA, Bosanko K, Kannan A, Thomason A, Nutt B, Kumar N, Simmons K, Hiegert A, Hartzell L, Johnson A, Prater T, Pérez-Palma E, Brünger T, Stefanski A, Lal D, Caffrey AR. Quantitative Phenotype Morbidity Description of SATB2-Associated Syndrome. Hum Mutat 2023; 2023:8200176. [PMID: 40225157 PMCID: PMC11918880 DOI: 10.1155/2023/8200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2025]
Abstract
Characterized by developmental delay with severe speech delay, dental anomalies, cleft palate, skeletal abnormalities, and behavioral difficulties, SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2. The SAS phenotype range of severity has been documented previously in large series. Using data from the SAS registry, we present the SAS severity score, a comprehensive scoring rubric that encompasses 15 different individual neurodevelopmental and systemic features. Higher (more severe) systemic and total (sum of neurodevelopmental and systemic scores) scores were seen for null variants located after amino acid 350 (the start of the CUT1 domain), the recurrent missense Arg389Cys variant (n = 10), intragenic deletions, and larger chromosomal deletions. The Arg389Cys variant had the highest cognitive, verbal, and sialorrhea severity scores, while large chromosomal deletions had the highest expressive, ambulation, palate, feeding and growth, neurodevelopmental, and total scores. Missense variants not located in the CUT1 or CUT2 domain scored lower in several subcategories. We conclude that the SAS severity score allows quantitative phenotype morbidity description that can be used in routine clinical counseling. Further refinement and validation of the SAS severity score are expected over time. All data from this project can be interactively explored in a new portal.
Collapse
Affiliation(s)
- Yuri A. Zarate
- Division of Genetics and Metabolism, University of Kentucky, Lexington, KY, USA
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Katherine Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amrit Kannan
- University of Arkansas for Medical Sciences School of Medicine, Little Rock, AR, USA
| | - Ashlen Thomason
- Audiology/Speech Pathology Department, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Beth Nutt
- Audiology/Speech Pathology Department, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Nihit Kumar
- Division of Child and Adolescent Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kirt Simmons
- Department of Pediatric and Special Needs Dentistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aaron Hiegert
- Department of Pediatric and Special Needs Dentistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Larry Hartzell
- Department of Otolaryngology, Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Adam Johnson
- Department of Otolaryngology, Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tabitha Prater
- Department of Clinical Nutrition, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, Cologne, NRW, Germany
| | - Arthur Stefanski
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, USA
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, Cologne, NRW, Germany
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Aisling R. Caffrey
- Health Outcomes, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
129
|
Fevga C, Tesson C, Carreras Mascaro A, Courtin T, van Coller R, Sakka S, Ferraro F, Farhat N, Bardien S, Damak M, Carr J, Ferrien M, Boumeester V, Hundscheid J, Grillenzoni N, Kessissoglou IA, Kuipers DJS, Quadri M, Corvol JC, Mhiri C, Hassan BA, Breedveld GJ, Lesage S, Mandemakers W, Brice A, Bonifati V. PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability. Brain 2023; 146:1496-1510. [PMID: 36073231 PMCID: PMC10115167 DOI: 10.1093/brain/awac326] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.
Collapse
Affiliation(s)
- Christina Fevga
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Christelle Tesson
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Thomas Courtin
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Riaan van Coller
- Department of Neurology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Salma Sakka
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nouha Farhat
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Mariem Damak
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mélanie Ferrien
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jasmijn Hundscheid
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nicola Grillenzoni
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Irini A Kessissoglou
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jean-Christophe Corvol
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Centre d'Investigation Clinique Neurosciences, DMU Neuroscience, Paris, France
| | - Chokri Mhiri
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Bassem A Hassan
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Suzanne Lesage
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Alexis Brice
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
130
|
Duan J, Ye Y, Liao J, Chen L, Zhao X, Liu C, Wen J. White-Sutton syndrome and congenital heart disease: case report and literature review. BMC Pediatr 2023; 23:158. [PMID: 37016333 PMCID: PMC10071667 DOI: 10.1186/s12887-023-03972-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND White-Sutton syndrome is an autosomal dominant neurodevelopmental disorder caused by heterozygous mutation in POGZ (Pogo Transposable Element Derived with ZNF Domain). This syndrome is characterized by delayed psychomotor development apparent in infancy and abnormal facial features. To date, 80 cases have been reported in the literature; however, the phenotypic characterizations remain incomplete. CASE PRESENTATION We herein describe a 2-year-old girl harboring a novel frameshift de novo POGZ variant: c.2746del (p.Thr916ProfsTer12). This patient presented with multisystem abnormalities affecting the digestive tract and neurological functioning, as well as congenital heart disease, which involved an atrial septal defect (18 × 23 × 22 mm) with pulmonary arterial hypertension (42 mmHg). The relationship between congenital heart disease and White-Sutton syndrome as described in both the GeneReview and OMIM databases (#616,364) remains unclear. A review of the current literature revealed 18 cases of White-Sutton syndrome with POGZ variants and congenital heart disease, and we summarize their clinical features in this study. CONCLUSIONS Our findings based on the present case and those in the literature indicate a relationship between POGZ mutation and congenital heart disease.
Collapse
Affiliation(s)
- Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Yuanzhen Ye
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Chao Liu
- Department of Bioinformatics, Berry Genomics Co. Ltd, Beijing, China
| | - Jialun Wen
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China.
| |
Collapse
|
131
|
LeBreton L, Allain EP, Parscan RC, Crapoulet N, Almaghraby A, Ben Amor M. A novel CHD3 variant in a patient with central precocious puberty: Expanded phenotype of Snijders Blok-Campeau syndrome? Am J Med Genet A 2023; 191:1065-1069. [PMID: 36565043 DOI: 10.1002/ajmg.a.63096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Snijders Blok-Campeau syndrome is an autosomal dominant genetic disorder first described in 2018, mostly associated with de novo variants in the CHD3 gene that affects chromatin remodeling. This syndrome is characterized by developmental delay, speech delay, and intellectual disability, but only about 60 affected individuals have been reported to date. We report a de novo likely pathogenic CHD3 variant (c.5609G > A; p. (Arg1870Gln)) in a young female presenting with features of Snijders Blok-Campeau syndrome including speech delay, autism spectrum disorder, learning difficulties, characteristic facial dysmorphisms, and a feature not previously described in this syndrome, idiopathic central precocious puberty. Her puberty was controlled with monthly injections of a GnRH analogue. Targeted exome sequencing was negative for genes known to be responsible for central precocious puberty. Our case raises the possibility that variants in CHD3 gene may also result in central precocious puberty. Strengthening this association could expand the phenotypic spectrum of the Snijders Blok-Campeau syndrome and should be included in multigene panels for precocious puberty.
Collapse
Affiliation(s)
- Laure LeBreton
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, New Brunswick, Canada
| | - Eric P Allain
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Department of Medical Genetics, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, New Brunswick, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, New Brunswick Center for Precision Medicine, Moncton, New Brunswick, Canada
| | - Radu Christian Parscan
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, New Brunswick, Canada
| | - Nicolas Crapoulet
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, Moncton, New Brunswick, Canada
| | - Abdullah Almaghraby
- Department of Pediatric Endocrinology, IWK Health Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mouna Ben Amor
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Department of Medical Genetics, Moncton, New Brunswick, Canada
| |
Collapse
|
132
|
Reid KM, Steel D, Nair S, Bhate S, Biassoni L, Sudhakar S, Heys M, Burke E, Kamsteeg EJ, Hameed B, Zech M, Mencacci NE, Barwick K, Topf M, Kurian MA, Genomics England Research Consortium. Loss-of-Function Variants in DRD1 in Infantile Parkinsonism-Dystonia. Cells 2023; 12:cells12071046. [PMID: 37048120 PMCID: PMC10093404 DOI: 10.3390/cells12071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The human dopaminergic system is vital for a broad range of neurological processes, including the control of voluntary movement. Here we report a proband presenting with clinical features of dopamine deficiency: severe infantile parkinsonism-dystonia, characterised by frequent oculogyric crises, dysautonomia and global neurodevelopmental impairment. CSF neurotransmitter analysis was unexpectedly normal. Triome whole-genome sequencing revealed a homozygous variant (c.110C>A, (p.T37K)) in DRD1, encoding the most abundant dopamine receptor (D1) in the central nervous system, most highly expressed in the striatum. This variant was absent from gnomAD, with a CADD score of 27.5. Using an in vitro heterologous expression system, we determined that DRD1-T37K results in loss of protein function. Structure-function modelling studies predicted reduced substrate binding, which was confirmed in vitro. Exposure of mutant protein to the selective D1 agonist Chloro APB resulted in significantly reduced cyclic AMP levels. Numerous D1 agonists failed to rescue the cellular defect, reflected clinically in the patient, who had no benefit from dopaminergic therapy. Our study identifies DRD1 as a new disease-associated gene, suggesting a crucial role for the D1 receptor in motor control.
Collapse
|
133
|
KA S, CM P, Swingle MR, A M, C L, AD C, RE H, AN K. Quantitative proteomics and phosphoproteomics of PPP2R5D variants reveal deregulation of RPS6 phosphorylation through converging signaling cascades. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534397. [PMID: 37034727 PMCID: PMC10081281 DOI: 10.1101/2023.03.27.534397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Variants in the phosphoprotein phosphatase-2 regulatory protein-5D gene ( PPP2R5D ) cause the clinical phenotype of Jordan's Syndrome (PPP2R5D-related disorder), which includes intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in the PPP2R5D allele in a heterozygous manner in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of wild-type, E198K, and E420K cell lines and find unique and shared changes between variants and wild-type cells in kinase- and phosphatase-controlled signaling cascades. As shared signaling alterations, we observed ribosomal protein S6 (RPS6) hyperphosphorylation, indicative of increased ribosomal protein S6-kinase activity. Rapamycin treatment suppressed RPS6 phosphorylation in both, suggesting activation of mTORC1. Intriguingly, our data suggest AKT-dependent (E420K) and -independent (E198K) activation of mTORC1. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, treatment with rapamycin or a p70S6K inhibitor warrants further investigation as potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Smolen KA
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Papke CM
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - MR Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Musiyenko A
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Li C
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Camp AD
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Honkanen RE
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Kettenbach AN
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
134
|
Alexander-Howden B, Zhang L, van der Sloot AM, Tollis S, St-Cyr DJ, Sicheri F, Bird AP, Tyers M, Lyst MJ. A screen for MeCP2-TBL1 interaction inhibitors using a luminescence-based assay. Sci Rep 2023; 13:3868. [PMID: 36890145 PMCID: PMC9995496 DOI: 10.1038/s41598-023-29915-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Understanding the molecular pathology of neurodevelopmental disorders should aid the development of therapies for these conditions. In MeCP2 duplication syndrome (MDS)-a severe autism spectrum disorder-neuronal dysfunction is caused by increased levels of MeCP2. MeCP2 is a nuclear protein that binds to methylated DNA and recruits the nuclear co-repressor (NCoR) complex to chromatin via an interaction with the WD repeat-containing proteins TBL1 and TBLR1. The peptide motif in MeCP2 that binds to TBL1/TBLR1 is essential for the toxicity of excess MeCP2 in animal models of MDS, suggesting that small molecules capable of disrupting this interaction might be useful therapeutically. To facilitate the search for such compounds, we devised a simple and scalable NanoLuc luciferase complementation assay for measuring the interaction of MeCP2 with TBL1/TBLR1. The assay allowed excellent separation between positive and negative controls, and had low signal variance (Z-factor = 0.85). We interrogated compound libraries using this assay in combination with a counter-screen based on luciferase complementation by the two subunits of protein kinase A (PKA). Using this dual screening approach, we identified candidate inhibitors of the interaction between MeCP2 and TBL1/TBLR1. This work demonstrates the feasibility of future screens of large compound collections, which we anticipate will enable the development of small molecule therapeutics to ameliorate MDS.
Collapse
Affiliation(s)
- Beatrice Alexander-Howden
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Li Zhang
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Almer M van der Sloot
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Mila - Quebec Artificial Intelligence Institute, 6666 Rue Saint-Urbain, Montréal, QC, H2S 3H1, Canada
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Daniel J St-Cyr
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- X-Chem Inc, 7171 Frederick-Banting, Montréal, QC, H4S 1Z9, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Adrian P Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
- The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Matthew J Lyst
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
135
|
Poole RL, Badonyi M, Cozens A, Foulds N, Marsh JA, Rahman S, Ross A, Schooley J, Straub V, Quigley AJ, FitzPatrick D, Lampe A. Expanding the neurodevelopmental phenotype associated with HK1 de novo heterozygous missense variants. Eur J Med Genet 2023; 66:104696. [PMID: 36639056 DOI: 10.1016/j.ejmg.2023.104696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/30/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Neurodevelopmental disorder with visual defects and brain anomalies (NEDVIBA) is a recently described genetic condition caused by de novo missense HK1 variants. Phenotypic data is currently limited; only seven patients have been published to date. This descriptive case series of a further four patients with de novo missense HK1 variants, alongside integration of phenotypic data with the reported cases, aims to improve our understanding of the associated phenotype. We provide further evidence that de novo HK1 variants located within the regulatory-terminal domain and alpha helix are associated with neurological problems and visual problems. We highlight for the first time an association with a raised cerebrospinal fluid lactate and specific abnormalities to the basal ganglia on brain magnetic resonance imaging, as well as associated respiratory issues and swallowing/feeding difficulties. We propose that this distinctive neurodevelopmental phenotype could arise through disruption of the regulatory glucose-6-phosphate binding site and subsequent gain of function of HK1 within the brain.
Collapse
Affiliation(s)
- Rebecca L Poole
- South East of Scotland Clinical Genetics Service, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
| | - Mihaly Badonyi
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alison Cozens
- Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh Bio Quarter, Edinburgh, EH16 4TJ, UK
| | - Nicola Foulds
- Wessex Clinical Genetics Services, University of Southampton NHS Foundation Trust, Southampton, UK
| | - Joseph A Marsh
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Shamima Rahman
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Alison Ross
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZA, UK
| | - Joanna Schooley
- Wessex Clinical Genetics Services, University of Southampton NHS Foundation Trust, Southampton, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Alan J Quigley
- Paediatric Imaging Department, Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh Bio Quarter, Edinburgh, EH16 4TJ, UK
| | - David FitzPatrick
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Anne Lampe
- South East of Scotland Clinical Genetics Service, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| |
Collapse
|
136
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
137
|
Wu Z, Rajput RV. Novel pathogenic ADA2 mutations: alert to diagnosis challenge of ADA2 deficiency. Transl Pediatr 2023; 12:110-112. [PMID: 36891360 PMCID: PMC9986784 DOI: 10.21037/tp-23-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Affiliation(s)
- Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roma V Rajput
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Pediatric Hematology and Oncology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
138
|
Molitor L, Klostermann M, Bacher S, Merl-Pham J, Spranger N, Burczyk S, Ketteler C, Rusha E, Tews D, Pertek A, Proske M, Busch A, Reschke S, Feederle R, Hauck S, Blum H, Drukker M, Fischer-Posovszky P, König J, Zarnack K, Niessing D. Depletion of the RNA-binding protein PURA triggers changes in posttranscriptional gene regulation and loss of P-bodies. Nucleic Acids Res 2023; 51:1297-1316. [PMID: 36651277 PMCID: PMC9943675 DOI: 10.1093/nar/gkac1237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
The RNA-binding protein PURA has been implicated in the rare, monogenetic, neurodevelopmental disorder PURA Syndrome. PURA binds both DNA and RNA and has been associated with various cellular functions. Only little is known about its main cellular roles and the molecular pathways affected upon PURA depletion. Here, we show that PURA is predominantly located in the cytoplasm, where it binds to thousands of mRNAs. Many of these transcripts change abundance in response to PURA depletion. The encoded proteins suggest a role for PURA in immune responses, mitochondrial function, autophagy and processing (P)-body activity. Intriguingly, reduced PURA levels decrease the expression of the integral P-body components LSM14A and DDX6 and strongly affect P-body formation in human cells. Furthermore, PURA knockdown results in stabilization of P-body-enriched transcripts, whereas other mRNAs are not affected. Hence, reduced PURA levels, as reported in patients with PURA Syndrome, influence the formation and composition of this phase-separated RNA processing machinery. Our study proposes PURA Syndrome as a new model to study the tight connection between P-body-associated RNA regulation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nadine Spranger
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Carolin Ketteler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Daniel Tews
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89070 Ulm, Germany
| | - Anna Pertek
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Marcel Proske
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89070 Ulm, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
139
|
Lu C, Zaucha J, Gam R, Fang H, Ben Smithers, Oates ME, Bernabe-Rubio M, Williams J, Zelenka N, Pandurangan AP, Tandon H, Shihab H, Kalaivani R, Sung M, Sardar AJ, Tzovoras BG, Danovi D, Gough J. Hypothesis-free phenotype prediction within a genetics-first framework. Nat Commun 2023; 14:919. [PMID: 36808136 PMCID: PMC9938118 DOI: 10.1038/s41467-023-36634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Cohort-wide sequencing studies have revealed that the largest category of variants is those deemed 'rare', even for the subset located in coding regions (99% of known coding variants are seen in less than 1% of the population. Associative methods give some understanding how rare genetic variants influence disease and organism-level phenotypes. But here we show that additional discoveries can be made through a knowledge-based approach using protein domains and ontologies (function and phenotype) that considers all coding variants regardless of allele frequency. We describe an ab initio, genetics-first method making molecular knowledge-based interpretations for exome-wide non-synonymous variants for phenotypes at the organism and cellular level. By using this reverse approach, we identify plausible genetic causes for developmental disorders that have eluded other established methods and present molecular hypotheses for the causal genetics of 40 phenotypes generated from a direct-to-consumer genotype cohort. This system offers a chance to extract further discovery from genetic data after standard tools have been applied.
Collapse
Affiliation(s)
- Chang Lu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jan Zaucha
- Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
| | - Rihab Gam
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Hai Fang
- Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ben Smithers
- Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
| | - Matt E Oates
- Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
| | - Miguel Bernabe-Rubio
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - James Williams
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Natalie Zelenka
- Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
| | - Arun Prasad Pandurangan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Himani Tandon
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Hashem Shihab
- Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
| | - Raju Kalaivani
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Minkyung Sung
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Adam J Sardar
- Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
| | | | - Davide Danovi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Julian Gough
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK.
| |
Collapse
|
140
|
Qi H, Luo L, Lu C, Chen R, Zhou X, Zhang X, Jia Y. TCF7L2 acts as a molecular switch in midbrain to control mammal vocalization through its DNA binding domain but not transcription activation domain. Mol Psychiatry 2023; 28:1703-1717. [PMID: 36782064 DOI: 10.1038/s41380-023-01993-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Vocalization is an essential medium for social signaling in birds and mammals. Periaqueductal gray (PAG) a conserved midbrain structure is believed to be responsible for innate vocalizations, but its molecular regulation remains largely unknown. Here, through a mouse forward genetic screening we identified one of the key Wnt/β-catenin effectors TCF7L2/TCF4 controls ultrasonic vocalization (USV) production and syllable complexity during maternal deprivation and sexual encounter. Early developmental expression of TCF7L2 in PAG excitatory neurons is necessary for the complex trait, while TCF7L2 loss reduces neuronal gene expressions and synaptic transmission in PAG. TCF7L2-mediated vocal control is independent of its β-catenin-binding domain but dependent of its DNA binding ability. Patient mutations associated with developmental disorders, including autism spectrum disorders, disrupt the transcriptional repression effect of TCF7L2, while mice carrying those mutations display severe USV impairments. Therefore, we conclude that TCF7L2 orchestrates gene expression in midbrain to control vocal production through its DNA binding but not transcription activation domain.
Collapse
Affiliation(s)
- Huihui Qi
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,School of Medicine, Tsinghua University, Beijing, 100084, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Li Luo
- Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, 100084, China
| | - Caijing Lu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runze Chen
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Xianyao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Science, Beijing Normal University, Beijing, 100875, China
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,School of Medicine, Tsinghua University, Beijing, 100084, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
141
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
142
|
Leonardi E, Aspromonte MC, Drongitis D, Bettella E, Verrillo L, Polli R, McEntagart M, Licchetta L, Dilena R, D'Arrigo S, Ciaccio C, Esposito S, Leuzzi V, Torella A, Baldo D, Lonardo F, Bonato G, Pellegrin S, Stanzial F, Posmyk R, Kaczorowska E, Carecchio M, Gos M, Rzońca-Niewczas S, Miano MG, Murgia A. Expanding the genetics and phenotypic spectrum of Lysine-specific demethylase 5C (KDM5C): a report of 13 novel variants. Eur J Hum Genet 2023; 31:202-215. [PMID: 36434256 PMCID: PMC9905063 DOI: 10.1038/s41431-022-01233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Lysine-specific demethylase 5C (KDM5C) has been identified as an important chromatin remodeling gene, contributing to X-linked neurodevelopmental disorders (NDDs). The KDM5C gene, located in the Xp22 chromosomal region, encodes the H3K4me3-me2 eraser involved in neuronal plasticity and dendritic growth. Here we report 30 individuals carrying 13 novel and one previously identified KDM5C variants. Our cohort includes the first reported case of somatic mosaicism in a male carrying a KDM5C nucleotide substitution, and a dual molecular finding in a female carrying a homozygous truncating FUCA1 alteration together with a de novo KDM5C variant. With the use of next generation sequencing strategies, we detected 1 frameshift, 1 stop codon, 2 splice-site and 10 missense variants, which pathogenic role was carefully investigated by a thorough bioinformatic analysis. The pattern of X-chromosome inactivation was found to have an impact on KDM5C phenotypic expression in females of our cohort. The affected individuals of our case series manifested a neurodevelopmental condition characterized by psychomotor delay, intellectual disability with speech disorders, and behavioral features with particular disturbed sleep pattern; other observed clinical manifestations were short stature, obesity and hypertrichosis. Collectively, these findings expand the current knowledge about the pathogenic mechanisms leading to dysfunction of this important chromatin remodeling gene and contribute to a refinement of the KDM5C phenotypic spectrum.
Collapse
Affiliation(s)
- Emanuela Leonardi
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Cristina Aspromonte
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Denise Drongitis
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Elisa Bettella
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, Italy
| | - Roberta Polli
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Meriel McEntagart
- Medical Genetics Unit, St. George's University Hospitals, London, UK
| | - Laura Licchetta
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Robertino Dilena
- Neurophysiopathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Esposito
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Annalaura Torella
- University of Campania "Luigi Vanvitelli", Caserta, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Demetrio Baldo
- Unit of medical genetics, ULSS 2 Treviso Hospital, Treviso, Italy
| | | | - Giulia Bonato
- Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Serena Pellegrin
- Child Neurology and Neurorehabilitation Unit, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Ewa Kaczorowska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Miryam Carecchio
- Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Monika Gos
- Development Genetics Laboratory, Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Sylwia Rzońca-Niewczas
- Development Genetics Laboratory, Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Alessandra Murgia
- Department of Women's and Children's Health, University of Padova, Padova, Italy.
- Pediatric Research Institute, Città della Speranza, Padova, Italy.
| |
Collapse
|
143
|
Hocking LJ, Andrews C, Armstrong C, Ansari M, Baty D, Berg J, Bradley T, Clark C, Diamond A, Doherty J, Lampe A, McGowan R, Moore DJ, O'Sullivan D, Purvis A, Santoyo-Lopez J, Westwood P, Abbott M, Williams N, Aitman TJ, Miedzybrodzka Z, Humphrey WI, Martin S, Meynert A, Murphy F, Nourse C, Semple CA, Williams N, Dean J, Foley P, Robertson L, Ross A, Williamson K, Berg J, Goudie D, McWilliam C, Fitzpatrick D, Fletcher E, Jackson A, Lam W, Porteous M, Barr K, Bradshaw N, Davidson R, Gardiner C, Gorrie J, Hague R, Hamilton M, Joss S, Kinning E, Longman C, Martin N, McGowan R, Paterson J, Pilz D, Snadden L, Tobias E, Wedderburn S, Whiteford M, Aitman TJ, Miedzybrodzka Z, Scottish Genomes Partnership. Genome sequencing with gene panel-based analysis for rare inherited conditions in a publicly funded healthcare system: implications for future testing. Eur J Hum Genet 2023; 31:231-238. [PMID: 36474026 PMCID: PMC9905562 DOI: 10.1038/s41431-022-01226-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
NHS genetics centres in Scotland sought to investigate the Genomics England 100,000 Genomes Project diagnostic utility to evaluate genome sequencing for in rare, inherited conditions. Four regional services recruited 999 individuals from 394 families in 200 rare phenotype categories, with negative historic genetic testing. Genome sequencing was performed at Edinburgh Genomics, and phenotype and sequence data were transferred to Genomics England for variant calling, gene-based filtering and variant prioritisation. NHS Scotland genetics laboratories performed interpretation, validation and reporting. New diagnoses were made in 23% cases - 19% in genes implicated in disease at the time of variant prioritisation, and 4% from later review of additional genes. Diagnostic yield varied considerably between phenotype categories and was minimal in cases with prior exome testing. Genome sequencing with gene panel filtering and reporting achieved improved diagnostic yield over previous historic testing but not over now routine trio-exome sequence tests. Re-interpretation of genomic data with updated gene panels modestly improved diagnostic yield at minimal cost. However, to justify the additional costs of genome vs exome sequencing, efficient methods for analysis of structural variation will be required and / or cost of genome analysis and storage will need to decrease.
Collapse
Affiliation(s)
- Lynne J Hocking
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Claire Andrews
- East of Scotland Regional Genetics Service, NHS Tayside, Ninewells Hospital, Dundee, Scotland, UK
| | - Christine Armstrong
- North of Scotland Medical Genetic Service, NHS Grampian, Polwarth Building, Foresterhill, Aberdeen, Scotland, UK
| | - Morad Ansari
- South East Scotland Genetic Service, NHS Lothian, Western General Hospital, Edinburgh, Scotland, UK
| | - David Baty
- East of Scotland Regional Genetics Service, NHS Tayside, Ninewells Hospital, Dundee, Scotland, UK
| | - Jonathan Berg
- East of Scotland Regional Genetics Service, NHS Tayside, Ninewells Hospital, Dundee, Scotland, UK.,School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Therese Bradley
- West of Scotland Centre for Genomic Medicine, NHS Greater Glasgow & Clyde, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Caroline Clark
- North of Scotland Medical Genetic Service, NHS Grampian, Polwarth Building, Foresterhill, Aberdeen, Scotland, UK
| | - Austin Diamond
- South East Scotland Genetic Service, NHS Lothian, Western General Hospital, Edinburgh, Scotland, UK
| | - Jill Doherty
- West of Scotland Centre for Genomic Medicine, NHS Greater Glasgow & Clyde, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Anne Lampe
- South East Scotland Genetic Service, NHS Lothian, Western General Hospital, Edinburgh, Scotland, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, NHS Greater Glasgow & Clyde, Queen Elizabeth University Hospital, Glasgow, Scotland, UK.,School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, Scotland, UK
| | - David J Moore
- South East Scotland Genetic Service, NHS Lothian, Western General Hospital, Edinburgh, Scotland, UK
| | - Dawn O'Sullivan
- North of Scotland Medical Genetic Service, NHS Grampian, Polwarth Building, Foresterhill, Aberdeen, Scotland, UK
| | - Andrew Purvis
- West of Scotland Centre for Genomic Medicine, NHS Greater Glasgow & Clyde, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | | | - Paul Westwood
- West of Scotland Centre for Genomic Medicine, NHS Greater Glasgow & Clyde, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Michael Abbott
- Health Economics Research Unit, University of Aberdeen, Aberdeen, Scotland, UK
| | - Nicola Williams
- West of Scotland Centre for Genomic Medicine, NHS Greater Glasgow & Clyde, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | | | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Zosia Miedzybrodzka
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK. .,North of Scotland Medical Genetic Service, NHS Grampian, Polwarth Building, Foresterhill, Aberdeen, Scotland, UK. .,North of Scotland Regional Genetic Service, NHS Grampian, Ashgrove House, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Gupta N. Deciphering Intellectual Disability. Indian J Pediatr 2023; 90:160-167. [PMID: 36441387 DOI: 10.1007/s12098-022-04345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) is a common cause of referral to the pediatricians, geneticists, and pediatric neurologists. A thorough clinical evaluation and a stepwise investigative approach using a combination of traditional genetic techniques and appropriate latest genomic technologies can help in arriving at a diagnosis. In the current "omics" era, adopting a multiomics approach would further assist in solving the undiagnosed cases with intellectual disability.
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, Old OT Block, New Delhi, 110029, India.
| |
Collapse
|
145
|
Brock S, Laquerriere A, Marguet F, Myers SJ, Hongjie Y, Baralle D, Vanderhasselt T, Stouffs K, Keymolen K, Kim S, Allen J, Shaulsky G, Chelly J, Marcorelle P, Aziza J, Villard L, Sacaze E, de Wit MCY, Wilke M, Mancini GMS, Hehr U, Lim D, Mansour S, Traynelis SF, Beneteau C, Denis-Musquer M, Jansen AC, Fry AE, Bahi-Buisson N. Overlapping cortical malformations in patients with pathogenic variants in GRIN1 and GRIN2B. J Med Genet 2023; 60:183-192. [PMID: 35393335 PMCID: PMC10642159 DOI: 10.1136/jmedgenet-2021-107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/16/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annie Laquerriere
- Normandy Centre for Genomic and Personalized Medicine, INSERM U1245, Rouen, France
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Florent Marguet
- Normandy Centre for Genomic and Personalized Medicine, INSERM U1245, Rouen, France
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Yuan Hongjie
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Diana Baralle
- Human Development and Health, University of Southampton, Southampton, UK
| | - Tim Vanderhasselt
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Katrien Stouffs
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Reproduction and Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kathelijn Keymolen
- Center for Reproduction and Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - James Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Gil Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U1258, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Pascale Marcorelle
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire de Brest; Laboratoire Neurosciences de Brest, Université de Brest, Brest, France
| | - Jacqueline Aziza
- Department of Pathology, University Institute for Cancer, Toulouse, France
| | - Laurent Villard
- Inserm, Marseille Medical Genetics Center, Aix-Marseille University, Marseille, France
- Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
| | - Elise Sacaze
- Department of Pediatrics, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Marie C Y de Wit
- Department of Pediatric Neurology, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Ute Hehr
- Center for Human Genetics, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Derek Lim
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, University of Southampton, Southampton, UK
| | - Sahar Mansour
- SW Thames Regional Genetics Service, University of London St George's Molecular and Clinical Sciences Research Institute, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Claire Beneteau
- Département de Génétique, Hôpital Universitaire de Nantes, Nantes, France
- UF de Fœtopathologie et Génétique, CHU Nantes, Nantes, France
| | - Marie Denis-Musquer
- UF de Fœtopathologie et Génétique, CHU Nantes, Nantes, France
- Department of Pathology, CHU Nantes, Nantes, France
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Antwerpen, Antwerp, Belgium
| | - Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades Hospital, Université de Paris, Paris, France
- Embryology and Genetics of Congenital Malformations, Institut Imagine (INSERM UMR-1163), Paris, France
| |
Collapse
|
146
|
Patt E, Singhania A, Roberts AE, Morton SU. The Genetics of Neurodevelopment in Congenital Heart Disease. Can J Cardiol 2023; 39:97-114. [PMID: 36183910 DOI: 10.1016/j.cjca.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variants are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that affect multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that affect neurodevelopmental resiliency, such as APOE. Increased use of genome-sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately, such knowledge can lead to improved and more timely intervention of learning support for affected children.
Collapse
Affiliation(s)
- Eli Patt
- Harvard Medical School, Boston, Massachusetts, USA
| | - Asmita Singhania
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
147
|
The Genetics of Intellectual Disability. Brain Sci 2023; 13:brainsci13020231. [PMID: 36831774 PMCID: PMC9953898 DOI: 10.3390/brainsci13020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Intellectual disability (ID) has a prevalence of ~2-3% in the general population, having a large societal impact. The underlying cause of ID is largely of genetic origin; however, identifying this genetic cause has in the past often led to long diagnostic Odysseys. Over the past decades, improvements in genetic diagnostic technologies and strategies have led to these causes being more and more detectable: from cytogenetic analysis in 1959, we moved in the first decade of the 21st century from genomic microarrays with a diagnostic yield of ~20% to next-generation sequencing platforms with a yield of up to 60%. In this review, we discuss these various developments, as well as their associated challenges and implications for the field of ID, which highlight the revolutionizing shift in clinical practice from a phenotype-first into genotype-first approach.
Collapse
|
148
|
Ford TJL, Jeon BT, Lee H, Kim WY. Dendritic spine and synapse pathology in chromatin modifier-associated autism spectrum disorders and intellectual disability. Front Mol Neurosci 2023; 15:1048713. [PMID: 36743289 PMCID: PMC9892461 DOI: 10.3389/fnmol.2022.1048713] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Formation of dendritic spine and synapse is an essential final step of brain wiring to establish functional communication in the developing brain. Recent findings have displayed altered dendritic spine and synapse morphogenesis, plasticity, and related molecular mechanisms in animal models and post-mortem human brains of autism spectrum disorders (ASD) and intellectual disability (ID). Many genes and proteins are shown to be associated with spines and synapse development, and therefore neurodevelopmental disorders. In this review, however, particular attention will be given to chromatin modifiers such as AT-Rich Interactive Domain 1B (ARID1B), KAT8 regulatory non-specific lethal (NSL) complex subunit 1 (KANSL1), and WD Repeat Domain 5 (WDR5) which are among strong susceptibility factors for ASD and ID. Emerging evidence highlights the critical status of these chromatin remodeling molecules in dendritic spine morphogenesis and synaptic functions. Molecular and cellular insights of ARID1B, KANSL1, and WDR5 will integrate into our current knowledge in understanding and interpreting the pathogenesis of ASD and ID. Modulation of their activities or levels may be an option for potential therapeutic treatment strategies for these neurodevelopmental conditions.
Collapse
|
149
|
Li S, Li H, Liu D, Xing Q, Chen X, Zhang H, Wen J, Zhu H, Liang D, Li Z, Wu L. Identification of novel mendelian disorders of the epigenetic machinery (MDEMs) associated functional mutations and neurodevelopmental disorders. QJM 2023; 116:355-364. [PMID: 36625521 DOI: 10.1093/qjmed/hcad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mendelian disorders of the epigenetic machinery (MDEMs) are a newly identified group of neurodevelopmental disorders (NDDs) and multiple congenital anoMalies caused by mutations in genes encoding components of the epigenetic machinery. Many studies have shown that MDEM-associated mutations may disrupt the balance between chromatin states and trigger dysplasia. AIM To help eight Chinese families with neurodevelopmental disorders acquire a definitive diagnosis. METHODS In this study, we used whole-exome sequencing (WES) to diagnose eight unrelated Chinese families with NDDs. We also verified the potential pathogenic variants by Sanger sequencing and analyzed the changes in gene expression along with histone methylation modifications. RESULTS Eight variants of six epigenetic machinery genes were identified, six of which were novel. Six variants were pathogenic (P) or likely pathogenic (LP), while two novel missense variants (c.5113T>C in CHD1 and c.10444C>T in KMT2D) were classified to be variants of uncertain significance (VUS). Further functional studies verified that c.5113T>C in CHD1 results in decreased protein levels and increased chromatin modifications (H3K27me3). In addition, c.10444C>T in KMT2D led to a significant decrease in mRNA transcription and chromatin modifications (H3K4me1). Based on experimental evidence, these two VUS variants could be classified as LP. CONCLUSION This study provided a definitive diagnosis of eight families with NDDs and expanded the mutation spectrum of MDEMs, enriching the pathogenesis study of variants in epigenetic machinery genes.
Collapse
Affiliation(s)
- Shun Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Huijuan Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Dihua Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Qin Xing
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Xin Chen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Hongyun Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Juan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Huimin Zhu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410078, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410078, China
| |
Collapse
|
150
|
Burgess HA, Burton EA. A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. OXFORD OPEN NEUROSCIENCE 2023; 2:kvac018. [PMID: 37649777 PMCID: PMC10464506 DOI: 10.1093/oons/kvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Indexed: 09/01/2023]
Abstract
The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders. The underlying premise for many disease models is the high degree of homology between human and zebrafish genes, coupled with the conserved vertebrate Bauplan and repertoire of neurochemical signaling molecules. Yet, we caution that important evolutionary divergences often limit the extent to which human symptoms can be modeled meaningfully in zebrafish. We outline advances in genetic technologies that allow human mutations to be reproduced faithfully in zebrafish. Together with methods that visualize the development and function of neuronal pathways at the single cell level, there is now an unprecedented opportunity to understand how disease-associated genetic changes disrupt neural circuits, a level of analysis that is ideally suited to uncovering pathogenic changes in human brain disorders.
Collapse
Affiliation(s)
- Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA,15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA
| |
Collapse
|