101
|
Wang Y, Li Q, Zhao J, Chen J, Wu D, Zheng Y, Wu J, Liu J, Lu J, Zhang J, Wu Z. Mechanically induced pyroptosis enhances cardiosphere oxidative stress resistance and metabolism for myocardial infarction therapy. Nat Commun 2023; 14:6148. [PMID: 37783697 PMCID: PMC10545739 DOI: 10.1038/s41467-023-41700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Current approaches in myocardial infarction treatment are limited by low cellular oxidative stress resistance, reducing the long-term survival of therapeutic cells. Here we develop a liquid-crystal substrate with unique surface properties and mechanical responsiveness to produce size-controllable cardiospheres that undergo pyroptosis to improve cellular bioactivities and resistance to oxidative stress. We perform RNA sequencing and study cell metabolism to reveal increased metabolic levels and improved mitochondrial function in the preconditioned cardiospheres. We test therapeutic outcomes in a rat model of myocardial infarction to show that cardiospheres improve long-term cardiac function, promote angiogenesis and reduce cardiac remodeling during the 3-month observation. Overall, this study presents a promising and effective system for preparing a large quantity of functional cardiospheres, showcasing potential for clinical application.
Collapse
Affiliation(s)
- Yingwei Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jupeng Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Dongxue Wu
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Youling Zheng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianlong Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianhua Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
102
|
Barbaste A, Schott S, Benassayag C, Suzanne M. Dissecting morphogenetic apoptosis through a genetic screen in Drosophila. Life Sci Alliance 2023; 6:e202301967. [PMID: 37495395 PMCID: PMC10372408 DOI: 10.26508/lsa.202301967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Apoptosis is an essential cellular process both in normal development and pathological contexts. Screens performed to date have focused on the cell autonomous aspect of the process, deciphering the apoptotic cascade leading to cell destruction through the activation of caspases. However, the nonautonomous aspect of the apoptotic pathway, including signals regulating the apoptotic pattern or those sent by the apoptotic cell to its surroundings, is still poorly understood. Here, we describe an unbiased RNAi-based genetic screen whose goal is to identify elements of the "morphogenetic apoptosis pathway" in an integrated model system, the Drosophila leg. We screened about 1,400 candidates, using adult joint morphology, morphogenetic fold formation, and apoptotic pattern as readouts for the identification of potential apoptosis-related genes. We identified 41 genes potentially involved in specific aspects of morphogenetic apoptosis: (1) regulation of the apoptotic process; (2) formation, extrusion, and elimination of apoptotic bodies; and (3) contribution to morphogenesis downstream of apoptosis.
Collapse
Affiliation(s)
- Audrey Barbaste
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sonia Schott
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Corinne Benassayag
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Magali Suzanne
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
103
|
de Freitas Nader GP, García-Arcos JM. Cell migration in dense microenvironments. C R Biol 2023; 346:89-93. [PMID: 37779383 DOI: 10.5802/crbiol.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
The nucleus has been viewed as a passenger during cell migration that functions merely to protect the genome. However, increasing evidence shows that the nucleus is an active organelle, constantly sensing the surrounding environment and translating extracellular mechanical inputs into intracellular signaling. The nuclear envelope has a large membrane reservoir which serves as a buffer for mechanical inputs as it unfolds without increasing its tension. In contrast, when cells cope with mechanical strain, such as migration through solid tumors or dense interstitial spaces, the nuclear envelope folds stretch, increasing nuclear envelope tension and sometimes causing rupture. Different degrees of nuclear envelope tension regulate cellular behaviors and functions, especially in cells that move and grow within dense matrices. The crosstalk between extracellular mechanical inputs and the cell nucleus is a critical component in the modulation of cell function of cells that navigate within packed microenvironments. Moreover, there is a link between regimes of nuclear envelope unfolding and different cellular behaviors, from orchestrated signaling cascades to cellular perturbations and damage.
Collapse
|
104
|
Eckert J, Ladoux B, Mège RM, Giomi L, Schmidt T. Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density. Nat Commun 2023; 14:5762. [PMID: 37717032 PMCID: PMC10505199 DOI: 10.1038/s41467-023-41449-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
Changes in tissue geometry during developmental processes are associated with collective migration of cells. Recent experimental and numerical results suggest that these changes could leverage on the coexistence of nematic and hexatic orientational order at different length scales. How this multiscale organization is affected by the material properties of the cells and their substrate is presently unknown. In this study, we address these questions in monolayers of Madin-Darby canine kidney cells having various cell densities and molecular repertoires. At small length scales, confluent monolayers are characterized by a prominent hexatic order, independent of the presence of E-cadherin, monolayer density, and underlying substrate stiffness. However, all three properties affect the meso-scale tissue organization. The length scale at which hexatic order transits to nematic order, the "hexanematic" crossover scale, strongly depends on cell-cell adhesions and correlates with monolayer density. Our study demonstrates how epithelial organization is affected by mechanical properties, and provides a robust description of tissue organization during developmental processes.
Collapse
Affiliation(s)
- Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, 2333 CC, Leiden, The Netherlands
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Benoît Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - René-Marc Mège
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Luca Giomi
- Instituut-Lorentz, Leiden Institute of Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
105
|
Vafa F, Mahadevan L. Statics and diffusive dynamics of surfaces driven by p-atic topological defects. SOFT MATTER 2023; 19:6652-6663. [PMID: 37641854 DOI: 10.1039/d3sm00257h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Inspired by epithelial morphogenesis, we consider a minimal model for the shaping of a surface driven by p-atic topological defects. We show that a positive (negative) defect can dynamically generate a (hyperbolic) cone whose shape evolves diffusively, and predict that a defect of charge + 1/p leads to a final semi-cone angle β which satisfies the inequality . By exploiting the fact that for axisymmetric surfaces, the extrinsic geometry is tightly coupled to the intrinsic geometry, we further show that the resulting stationary shape of a membrane with negligible bending modulus and embedded polar order is a deformed lemon with two defects at antipodal points. Finally, we close by pointing out that our results may be relevant beyond epithelial morphogenesis in such contexts as shape transitions in macroscopic closed spheroidal surfaces such as pollen grains.
Collapse
Affiliation(s)
- Farzan Vafa
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA.
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Departments of Physics, and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
106
|
Hadjifrangiskou I, Ruske LJ, Yeomans JM. Active nematics with deformable particles. SOFT MATTER 2023; 19:6664-6670. [PMID: 37609906 DOI: 10.1039/d3sm00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The hydrodynamic theory of active nematics has been often used to describe the spatio-temporal dynamics of cell flows and motile topological defects within soft confluent tissues. Those theories, however, often rely on the assumption that tissues consist of cells with a fixed, anisotropic shape and do not resolve dynamical cell shape changes due to flow gradients. In this paper we extend the continuum theory of active nematics to include cell shape deformability. We find that circular cells in tissues must generate sufficient active stress to overcome an elastic barrier to deforming their shape in order to drive tissue-scale flows. Above this threshold the systems enter a dynamical steady-state with regions of elongated cells and strong flows coexisting with quiescent regions of isotropic cells.
Collapse
Affiliation(s)
- Ioannis Hadjifrangiskou
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| | - Liam J Ruske
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| |
Collapse
|
107
|
Katayama K, Yoshimura T, Yamashita S, Teratani H, Murakami T, Suzuki H, Fukuda JI. Formation of topological defects at liquid/liquid crystal interfaces in micro-wells controlled by surfactants and light. SOFT MATTER 2023; 19:6578-6588. [PMID: 37603438 DOI: 10.1039/d3sm00838j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Topological defects, the fundamental entities arising from symmetry-breaking, have captivated the attention of physicists, mathematicians, and materials scientists for decades. Here we propose and demonstrate a novel method for robust control of topological defects in a liquid crystal (LC), an ideal testbed for the investigation of topological defects. A liquid layer is introduced on the LC in microwells in a microfluidic device. The liquid/LC interface facilitates the control of the LC alignment thereby introducing different molecules in the liquid/LC phase. A topological defect is robustly formed in a microwell when the liquid/LC interface and the microwell surface impose planar and homeotropic alignment, respectively. We also demonstrate the formation/disappearance of topological defects by light illumination, realized by dissolving photo-responsive molecules in the LC. Our platform that facilitates the control of LC topological defects by the introduction of different molecules and external stimuli could have potential for sensor applications.
Collapse
Affiliation(s)
- Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | - Takuro Yoshimura
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | - Saki Yamashita
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | - Hiroto Teratani
- Department of Precision Mechanics, Chuo University, Tokyo 112-8551, Japan
| | - Tomoki Murakami
- Department of Precision Mechanics, Chuo University, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Chuo University, Tokyo 112-8551, Japan
| | - Jun-Ichi Fukuda
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
108
|
Tiribocchi A, Durve M, Lauricella M, Montessori A, Succi S. Spontaneous motion of a passive fluid droplet in an active microchannel. SOFT MATTER 2023; 19:6556-6568. [PMID: 37599649 PMCID: PMC10467333 DOI: 10.1039/d3sm00561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
We numerically study the dynamics of a passive fluid droplet confined within a microchannel whose walls are covered with a thin layer of active gel. The latter represents a fluid of extensile material modelling, for example, a suspension of cytoskeletal filaments and molecular motors. Our results show that the layer is capable of producing a spontaneous flow triggering a rectilinear motion of the passive droplet. For a hybrid design (a single wall covered by the active layer), at the steady state the droplet attains an elliptical shape, resulting from an asymmetric saw-toothed structure of the velocity field. In contrast, if the active gel covers both walls, the velocity field exhibits a fully symmetric pattern considerably mitigating morphological deformations. We further show that the structure of the spontaneous flow in the microchannel can be controlled by the anchoring conditions of the active gel at the wall. These findings are also confirmed by selected 3D simulations. Our results may stimulate further research addressed to design novel microfludic devices whose functioning relies on the collective properties of active gels.
Collapse
Affiliation(s)
- Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Mihir Durve
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| | - Marco Lauricella
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Andrea Montessori
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche (DICITA), Università degli studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
| | - Sauro Succi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
109
|
Roshal DS, Azzag K, Fedorenko KK, Rochal SB, Baghdiguian S. Topological properties and shape of proliferative and nonproliferative cell monolayers. Phys Rev E 2023; 108:024404. [PMID: 37723673 DOI: 10.1103/physreve.108.024404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
During embryonic development, structures with complex geometry can emerge from planar epithelial monolayers; studying these shape transitions is of key importance for revealing the biophysical laws involved in the morphogenesis of biological systems. Here, using the example of normal proliferative monkey kidney (COS) cell monolayers, we investigate global and local topological characteristics of this model system in dependence on its shape. The obtained distributions of cells by their valence demonstrate a difference between the spherical and planar monolayers. In addition, in both spherical and planar monolayers, the probability of observing a pair of neighboring cells with certain valences depends on the topological charge of the pair. The zero topological charge of the cell pair can increase the probability for the cells to be the nearest neighbors. We then test and confirm that analogous relationships take place in a more ordered spherical system with a larger fraction of 6-valent cells, namely, in the nonproliferative epithelium (follicular system) of ascidian species oocytes. However, unlike spherical COS cell monolayers, ascidian monolayers are prone to nonrandom agglomeration of 6-valent cells and have linear topological defects called scars and pleats. The reasons for this difference in morphology are discussed. The morphological peculiarities found are compared with predictions of the widely used vertex model of epithelium.
Collapse
Affiliation(s)
- Daria S Roshal
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, MN 55455, USA
| | - Kirill K Fedorenko
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Stephen Baghdiguian
- Institut des Sciences de l'Evolution-Montpellier, Université de Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34095 Montpellier, France
| |
Collapse
|
110
|
Oh Y, Baek Y. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine. Phys Rev E 2023; 108:024602. [PMID: 37723679 DOI: 10.1103/physreve.108.024602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/21/2023] [Indexed: 09/20/2023]
Abstract
We propose a thermodynamically consistent, analytically tractable model of steady-state active heat engines driven by both temperature difference and a constant chemical driving. While the engine follows the dynamics of the active Ornstein-Uhlenbeck particle, its self-propulsion stems from the mechanochemical coupling with the fuel consumption dynamics, allowing for both even- and odd-parity self-propulsion forces. Using the standard methods of stochastic thermodynamics, we show that the entropy production of the engine satisfies the conventional Clausius relation, based on which we define the efficiency of the model that is bounded from above by the second law of thermodynamics. Using this framework, we obtain exact expressions for the efficiency at maximum power. The results show that the engine performance has a nonmonotonic dependence on the magnitude of the chemical driving and that the even-parity (odd-parity) engines perform better when the size of the engine is smaller (larger) than the persistence length of the active particle. We also discuss the existence of a tighter upper bound on the efficiency of the odd-parity engines stemming from the detailed structure of the entropy production.
Collapse
Affiliation(s)
- Yongjae Oh
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongjoo Baek
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
111
|
Lee YL, Mathur J, Walter C, Zmuda H, Pathak A. Matrix obstructions cause multiscale disruption in collective epithelial migration by suppressing leader cell function. Mol Biol Cell 2023; 34:ar94. [PMID: 37379202 PMCID: PMC10398892 DOI: 10.1091/mbc.e22-06-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
During disease and development, physical changes in extracellular matrix cause jamming, unjamming, and scattering in epithelial migration. However, whether disruptions in matrix topology alter collective cell migration speed and cell-cell coordination remains unclear. We microfabricated substrates with stumps of defined geometry, density, and orientation, which create obstructions for migrating epithelial cells. Here, we show that cells lose their speed and directionality when moving through densely spaced obstructions. Although leader cells are stiffer than follower cells on flat substrates, dense obstructions cause overall cell softening. Through a lattice-based model, we identify cellular protrusions, cell-cell adhesions, and leader-follower communication as key mechanisms for obstruction-sensitive collective cell migration. Our modeling predictions and experimental validations show that cells' obstruction sensitivity requires an optimal balance of cell-cell adhesions and protrusions. Both MDCK (more cohesive) and α-catenin-depleted MCF10A cells were less obstruction sensitive than wild-type MCF10A cells. Together, microscale softening, mesoscale disorder, and macroscale multicellular communication enable epithelial cell populations to sense topological obstructions encountered in challenging environments. Thus, obstruction-sensitivity could define "mechanotype" of cells that collectively migrate yet maintain intercellular communication.
Collapse
Affiliation(s)
- Ye Lim Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Christopher Walter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Hannah Zmuda
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
112
|
Delanoë-Ayari H, Hiraiwa T, Marcq P, Rieu JP, Saw TB. 2.5D Traction Force Microscopy: Imaging three-dimensional cell forces at interfaces and biological applications. Int J Biochem Cell Biol 2023; 161:106432. [PMID: 37290687 DOI: 10.1016/j.biocel.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
The forces that cells, tissues, and organisms exert on the surface of a soft substrate can be measured using Traction Force Microscopy (TFM), an important and well-established technique in Mechanobiology. The usual TFM technique (two-dimensional, 2D TFM) treats only the in-plane component of the traction forces and omits the out-of-plane forces at the substrate interfaces (2.5D) that turn out to be important in many biological processes such as tissue migration and tumour invasion. Here, we review the imaging, material, and analytical tools to perform "2.5D TFM" and explain how they are different from 2D TFM. Challenges in 2.5D TFM arise primarily from the need to work with a lower imaging resolution in the z-direction, track fiducial markers in three-dimensions, and reliably and efficiently reconstruct mechanical stress from substrate deformation fields. We also discuss how 2.5D TFM can be used to image, map, and understand the complete force vectors in various important biological events of various length-scales happening at two-dimensional interfaces, including focal adhesions forces, cell diapedesis across tissue monolayers, the formation of three-dimensional tissue structures, and the locomotion of large multicellular organisms. We close with future perspectives including the use of new materials, imaging and machine learning techniques to continuously improve the 2.5D TFM in terms of imaging resolution, speed, and faithfulness of the force reconstruction procedure.
Collapse
Affiliation(s)
- Hélène Delanoë-Ayari
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore; Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université, CNRS UMR 7636, ESPCI, Université Paris Cité, Paris, France.
| | - Jean-Paul Rieu
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.
| | - Thuan Beng Saw
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
113
|
Han E, Fei C, Alert R, Copenhagen K, Koch MD, Wingreen NS, Shaevitz JW. Local polar order controls mechanical stress and triggers layer formation in developing Myxococcus xanthus colonies. ARXIV 2023:arXiv:2308.00368v1. [PMID: 37576128 PMCID: PMC10418523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood. By measuring cell orientation, velocity, polarity, and force with cell-scale resolution, we reveal a stochastic local polar order in addition to the more obvious nematic order. Average cell velocity and active force at topological defects agree with predictions from active nematic theory, but their fluctuations are anomalously large due to polar active forces generated by the self-propelled rod-shaped cells. We find that M. xanthus cells adjust their reversal frequency to tune the magnitude of this local polar order, which in turn controls the mechanical stresses and triggers layer formation in the colonies.
Collapse
Affiliation(s)
- Endao Han
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Katherine Copenhagen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Matthias D. Koch
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joshua W. Shaevitz
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
114
|
Kaiyrbekov K, Endresen K, Sullivan K, Zheng Z, Chen Y, Serra F, Camley BA. Migration and division in cell monolayers on substrates with topological defects. Proc Natl Acad Sci U S A 2023; 120:e2301197120. [PMID: 37463218 PMCID: PMC10372565 DOI: 10.1073/pnas.2301197120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/27/2023] [Indexed: 07/20/2023] Open
Abstract
Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and -1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay-Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration.
Collapse
Affiliation(s)
- Kurmanbek Kaiyrbekov
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Kirsten Endresen
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Kyle Sullivan
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Zhaofei Zheng
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Francesca Serra
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense5230, Denmark
| | - Brian A. Camley
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
115
|
Xu H, Nejad MR, Yeomans JM, Wu Y. Geometrical control of interface patterning underlies active matter invasion. Proc Natl Acad Sci U S A 2023; 120:e2219708120. [PMID: 37459530 PMCID: PMC10372614 DOI: 10.1073/pnas.2219708120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Interaction between active materials and the boundaries of geometrical confinement is key to many emergent phenomena in active systems. For living active matter consisting of animal cells or motile bacteria, the confinement boundary is often a deformable interface, and it has been unclear how activity-induced interface dynamics might lead to morphogenesis and pattern formation. Here, we studied the evolution of bacterial active matter confined by a deformable boundary. We found that an ordered morphological pattern emerged at the interface characterized by periodically spaced interfacial protrusions; behind the interfacial protrusions, bacterial swimmers self-organized into multicellular clusters displaying +1/2 nematic defects. Subsequently, a hierarchical sequence of transitions from interfacial protrusions to creeping branches allowed the bacterial active drop to rapidly invade surrounding space with a striking self-similar branch pattern. We found that this interface patterning is geometrically controlled by the local curvature of the interface, a phenomenon we denote as collective curvature sensing. Using a continuum active model, we revealed that the collective curvature sensing arises from enhanced active stresses near high-curvature regions, with the active length scale setting the characteristic distance between the interfacial protrusions. Our findings reveal a protrusion-to-branch transition as a unique mode of active matter invasion and suggest a strategy to engineer pattern formation of active materials.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Mehrana R. Nejad
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Julia M. Yeomans
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| |
Collapse
|
116
|
Marín-Llauradó A, Kale S, Ouzeri A, Golde T, Sunyer R, Torres-Sánchez A, Latorre E, Gómez-González M, Roca-Cusachs P, Arroyo M, Trepat X. Mapping mechanical stress in curved epithelia of designed size and shape. Nat Commun 2023; 14:4014. [PMID: 37419987 PMCID: PMC10329037 DOI: 10.1038/s41467-023-38879-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2023] [Indexed: 07/09/2023] Open
Abstract
The function of organs such as lungs, kidneys and mammary glands relies on the three-dimensional geometry of their epithelium. To adopt shapes such as spheres, tubes and ellipsoids, epithelia generate mechanical stresses that are generally unknown. Here we engineer curved epithelial monolayers of controlled size and shape and map their state of stress. We design pressurized epithelia with circular, rectangular and ellipsoidal footprints. We develop a computational method, called curved monolayer stress microscopy, to map the stress tensor in these epithelia. This method establishes a correspondence between epithelial shape and mechanical stress without assumptions of material properties. In epithelia with spherical geometry we show that stress weakly increases with areal strain in a size-independent manner. In epithelia with rectangular and ellipsoidal cross-section we find pronounced stress anisotropies that impact cell alignment. Our approach enables a systematic study of how geometry and stress influence epithelial fate and function in three-dimensions.
Collapse
Affiliation(s)
- Ariadna Marín-Llauradó
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Sohan Kale
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Adam Ouzeri
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Tom Golde
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Alejandro Torres-Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003, Barcelona, Spain
| | - Ernest Latorre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain.
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain.
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 08034, Barcelona, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain.
- Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
117
|
Luo Y, Gu M, Park M, Fang X, Kwon Y, Urueña JM, Read de Alaniz J, Helgeson ME, Marchetti CM, Valentine MT. Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers. J R Soc Interface 2023; 20:20230160. [PMID: 37403487 PMCID: PMC10320338 DOI: 10.1098/rsif.2023.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. While nematic order is common in biological tissues, it typically only extends to small regions of cells interacting via steric repulsion. On isotropic substrates, elongated cells can co-align due to steric effects, forming ordered but randomly oriented finite-size domains. However, we have discovered that flat substrates with nematic order can induce global nematic alignment of dense, spindle-like cells, thereby influencing cell organization and collective motion and driving alignment on the scale of the entire tissue. Remarkably, single cells are not sensitive to the substrate's anisotropy. Rather, the emergence of global nematic order is a collective phenomenon that requires both steric effects and molecular-scale anisotropy of the substrate. To quantify the rich set of behaviours afforded by this system, we analyse velocity, positional and orientational correlations for several thousand cells over days. The establishment of global order is facilitated by enhanced cell division along the substrate's nematic axis, and associated extensile stresses that restructure the cells' actomyosin networks. Our work provides a new understanding of the dynamics of cellular remodelling and organization among weakly interacting cells.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mengyang Gu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Minwook Park
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Xinyi Fang
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Younghoon Kwon
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Juan Manuel Urueña
- BioPACIFIC MIP, California NanoSystems Institute, Santa Barbara, CA 93106, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cristina M. Marchetti
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
118
|
Bhattacharyya S, Yeomans JM. Phase Separation Driven by Active Flows. PHYSICAL REVIEW LETTERS 2023; 130:238201. [PMID: 37354397 DOI: 10.1103/physrevlett.130.238201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 06/26/2023]
Abstract
We extend the continuum theories of active nematohydrodynamics to model a two-fluid mixture with separate velocity fields for each fluid component, coupled through a viscous drag. The model is used to study an active nematic fluid mixed with an isotropic fluid. We find microphase separation, and argue that this results from an interplay between active anchoring and active flows driven by concentration gradients. The results may be relevant to cell sorting and the formation of lipid rafts in cell membranes.
Collapse
Affiliation(s)
- Saraswat Bhattacharyya
- Rudolf Peierls Centre For Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre For Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
119
|
Lou Y. Appetizer on soft matter physics concepts in mechanobiology. Dev Growth Differ 2023; 65:234-244. [PMID: 37126437 PMCID: PMC11520965 DOI: 10.1111/dgd.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Mechanosensing, the active responses of cells to the mechanics on multiple scales, plays an indispensable role in regulating cell behaviors and determining the fate of biological entities such as tissues and organs. Here, I aim to give a pedagogical illustration of the fundamental concepts of soft matter physics that aid in understanding biomechanical phenomena from the scale of tissues to proteins. Examples of up-to-date research are introduced to elaborate these concepts. Challenges in applying physics models to biology have also been discussed for biologists and physicists to meet in the field of mechanobiology.
Collapse
Affiliation(s)
- Yuting Lou
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
120
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
121
|
Hallatschek O, Datta SS, Drescher K, Dunkel J, Elgeti J, Waclaw B, Wingreen NS. Proliferating active matter. NATURE REVIEWS. PHYSICS 2023; 5:1-13. [PMID: 37360681 PMCID: PMC10230499 DOI: 10.1038/s42254-023-00593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
The fascinating patterns of collective motion created by autonomously driven particles have fuelled active-matter research for over two decades. So far, theoretical active-matter research has often focused on systems with a fixed number of particles. This constraint imposes strict limitations on what behaviours can and cannot emerge. However, a hallmark of life is the breaking of local cell number conservation by replication and death. Birth and death processes must be taken into account, for example, to predict the growth and evolution of a microbial biofilm, the expansion of a tumour, or the development from a fertilized egg into an embryo and beyond. In this Perspective, we argue that unique features emerge in these systems because proliferation represents a distinct form of activity: not only do the proliferating entities consume and dissipate energy, they also inject biomass and degrees of freedom capable of further self-proliferation, leading to myriad dynamic scenarios. Despite this complexity, a growing number of studies document common collective phenomena in various proliferating soft-matter systems. This generality leads us to propose proliferation as another direction of active-matter physics, worthy of a dedicated search for new dynamical universality classes. Conceptual challenges abound, from identifying control parameters and understanding large fluctuations and nonlinear feedback mechanisms to exploring the dynamics and limits of information flow in self-replicating systems. We believe that, by extending the rich conceptual framework developed for conventional active matter to proliferating active matter, researchers can have a profound impact on quantitative biology and reveal fascinating emergent physics along the way.
Collapse
Affiliation(s)
- Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA US
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| | | | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Bartek Waclaw
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry PAN, Warsaw, Poland
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| |
Collapse
|
122
|
Langeslay B, Juarez G. Microdomains and stress distributions in bacterial monolayers on curved interfaces. SOFT MATTER 2023; 19:3605-3613. [PMID: 37161525 DOI: 10.1039/d2sm01498j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Monolayers of growing non-motile rod-shaped bacteria act as active nematic materials composed of hard particles rather than the flexible components of other commonly studied active nematics. The organization of these granular monolayers has been studied on flat surfaces but not on curved surfaces, which are known to change the behavior of other active nematics. We use molecular dynamics simulations to track alignment and stress in growing monolayers fixed to curved surfaces, and investigate how these vary with changing surface curvature and cell aspect ratio. We find that the length scale of alignment (measured by average microdomain size) increases with cell aspect ratio and decreases with curvature. Additionally, we find that alignment controls the distribution of extensile stresses in the monolayer by concentrating stress in negative-order regions. These results connect active nematic physics to bacterial monolayers and can be applied to model bacteria growing on droplets, such as oil-degrading marine bacteria.
Collapse
Affiliation(s)
- Blake Langeslay
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gabriel Juarez
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
123
|
Hoffmann LA, Carenza LN, Giomi L. Tuneable defect-curvature coupling and topological transitions in active shells. SOFT MATTER 2023; 19:3423-3435. [PMID: 37129899 DOI: 10.1039/d2sm01370c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent experimental observations have suggested that topological defects can facilitate the creation of sharp features in developing embryos. Whereas these observations echo established knowledge about the interplay between geometry and topology in two-dimensional passive liquid crystals, the role of activity has mostly remained unexplored. In this article we focus on deformable shells consisting of either polar or nematic active liquid crystals and demonstrate that activity renders the mechanical coupling between defects and curvature much more involved and versatile than previously thought. Using a combination of linear stability analysis and three-dimensional computational fluid dynamics, we demonstrate that such a coupling can in fact be tuned, depending on the type of liquid crystal order, the specific structure of the defect (i.e. asters or vortices) and the nature of the active forces. In polar systems, this can drive a spectacular transition from spherical to toroidal topology, in the presence of large extensile activity. Our analysis strengthens the idea that defects could serve as topological morphogens and provides a number of predictions that could be tested in in vitro studies, for instance in the context of organoids.
Collapse
Affiliation(s)
- Ludwig A Hoffmann
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
124
|
Puggioni L, Boffetta G, Musacchio S. Flocking turbulence of microswimmers in confined domains. Phys Rev E 2023; 107:055107. [PMID: 37329031 DOI: 10.1103/physreve.107.055107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
We extensively study the Toner-Tu-Swift-Hohenberg model of motile active matter by means of direct numerical simulations in a two-dimensional confined domain. By exploring the space of parameters of the model we investigate the emergence of a new state of active turbulence which occurs when the aligning interactions and the self-propulsion of the swimmers are strong. This regime of flocking turbulence is characterized by a population of few strong vortices, each surrounded by an island of coherent flocking motion. The energy spectrum of flocking turbulence displays a power-law scaling with an exponent which depends weakly on the model parameters. By increasing the confinement we observe that the system, after a long transient characterized by power-law-distributed transition times, switches to the ordered state of a single giant vortex.
Collapse
Affiliation(s)
- L Puggioni
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
| | - G Boffetta
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - S Musacchio
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
| |
Collapse
|
125
|
Monfared S, Ravichandran G, Andrade J, Doostmohammadi A. Mechanical basis and topological routes to cell elimination. eLife 2023; 12:82435. [PMID: 37070647 PMCID: PMC10112887 DOI: 10.7554/elife.82435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
Cell layers eliminate unwanted cells through the extrusion process, which underlines healthy versus flawed tissue behaviors. Although several biochemical pathways have been identified, the underlying mechanical basis including the forces involved in cellular extrusion remains largely unexplored. Utilizing a phase-field model of a three-dimensional cell layer, we study the interplay of cell extrusion with cell-cell and cell-substrate interactions in a flat monolayer. Independent tuning of cell-cell versus cell-substrate adhesion forces reveals that extrusion events can be distinctly linked to defects in nematic and hexatic orders associated with cellular arrangements. Specifically, we show that by increasing relative cell-cell adhesion forces the cell monolayer can switch between the collective tendency towards fivefold, hexatic, disclinations relative to half-integer, nematic, defects for extruding a cell. We unify our findings by accessing three-dimensional mechanical stress fields to show that an extrusion event acts as a mechanism to relieve localized stress concentration.
Collapse
Affiliation(s)
- Siavash Monfared
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - José Andrade
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | | |
Collapse
|
126
|
Brandstätter T, Brückner DB, Han YL, Alert R, Guo M, Broedersz CP. Curvature induces active velocity waves in rotating spherical tissues. Nat Commun 2023; 14:1643. [PMID: 36964141 PMCID: PMC10039078 DOI: 10.1038/s41467-023-37054-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/26/2023] [Indexed: 03/26/2023] Open
Abstract
The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues.
Collapse
Affiliation(s)
- Tom Brandstätter
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - David B Brückner
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
127
|
Chen ZQ, Sun YW, Zhang XJ, Zhu YL, Li ZW, Sun ZY. External field induced defect transformation in circular confined Gay-Berne liquid crystals. J Chem Phys 2023; 158:104902. [PMID: 36922133 DOI: 10.1063/5.0135483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Normally, defects in two-dimensional, circular, confined liquid crystals can be classified into four types based on the position of singularities formed by liquid crystal molecules, i.e., the singularities located inside the circle, at the boundary, outside the circle, and outside the circle at infinity. However, it is considered difficult for small aspect ratio liquid crystals to generate all these four types of defects. In this study, we use molecular dynamics simulation to investigate the defect formed in Gay-Berne, ellipsoidal liquid crystals, with small aspect ratios confined in a circular cavity. As expected, we only find two types of defects (inside the circle and at the boundary) in circular, confined, Gay-Berne ellipsoids under static conditions at various densities, aspect ratios, and interactions between the wall and liquid crystals. However, when introducing an external field to the system, four types of defects can be observed. With increasing the strength of the external field, the singularities in the circular, confined system change from the inside to the boundary and the outside, and the farthest position that the singularities can reach depends on the strength of the external field. We further introduce an alternating, triangular wave, external field to the system to check if we can observe the transformation of different defects within an oscillating period. We find that the position of the singularities greatly depends on the oscillating intensity and oscillating period. By changing the oscillating intensity and oscillating period of the external field, the defect types can be adjusted, and the transformation between different defects can be easily observed. This provides a feasible way to modulate liquid crystal defects and investigate the transformation between different defects.
Collapse
Affiliation(s)
- Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Jie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - You-Liang Zhu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhan-Wei Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
128
|
Mitchell SJ, Pardo-Pastor C, Zangle TA, Rosenblatt J. Voltage-dependent volume regulation controls epithelial cell extrusion and morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532421. [PMID: 36993671 PMCID: PMC10054995 DOI: 10.1101/2023.03.13.532421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Epithelial cells work collectively to provide a protective barrier, yet also turn over rapidly by cell death and division. If the number of dying cells does not match those dividing, the barrier would vanish, or tumors can form. Mechanical forces and the stretch-activated ion channel (SAC) Piezo1 link both processes; stretch promotes cell division and crowding triggers cell death by initiating live cell extrusion1,2. However, it was not clear how particular cells within a crowded region are selected for extrusion. Here, we show that individual cells transiently shrink via water loss before they extrude. Artificially inducing cell shrinkage by increasing extracellular osmolarity is sufficient to induce cell extrusion. Pre-extrusion cell shrinkage requires the voltage-gated potassium channels Kv1.1 and Kv1.2 and the chloride channel SWELL1, upstream of Piezo1. Activation of these voltage-gated channels requires the mechano-sensitive Epithelial Sodium Channel, ENaC, acting as the earliest crowd-sensing step. Imaging with a voltage dye indicated that epithelial cells lose membrane potential as they become crowded and smaller, yet those selected for extrusion are markedly more depolarized than their neighbours. Loss of any of these channels in crowded conditions causes epithelial buckling, highlighting an important role for voltage and water regulation in controlling epithelial shape as well as extrusion. Thus, ENaC causes cells with similar membrane potentials to slowly shrink with compression but those with reduced membrane potentials to be eliminated by extrusion, suggesting a chief driver of cell death stems from insufficient energy to maintain cell membrane potential.
Collapse
Affiliation(s)
- Saranne J Mitchell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Carlos Pardo-Pastor
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
129
|
Krommydas D, Carenza LN, Giomi L. Hydrodynamic Enhancement of p-atic Defect Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:098101. [PMID: 36930922 DOI: 10.1103/physrevlett.130.098101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
We investigate numerically and analytically the effects of hydrodynamics on the dynamics of topological defects in p-atic liquid crystals, i.e., two-dimensional liquid crystals with p-fold rotational symmetry. Importantly, we find that hydrodynamics fuels a generic passive self-propulsion mechanism for defects of winding number s=(p-1)/p and arbitrary p. Strikingly, we discover that hydrodynamics always accelerates the annihilation dynamics of pairs of ±1/p defects and that, contrary to expectations, this effect increases with p. Our Letter paves the way toward understanding cell intercalation and other remodeling events in epithelial layers.
Collapse
Affiliation(s)
- Dimitrios Krommydas
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
130
|
Wu P, Asada H, Hakamada M, Mabuchi M. Bioengineering of High Cell Density Tissues with Hierarchical Vascular Networks for Ex Vivo Whole Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209149. [PMID: 36545785 DOI: 10.1002/adma.202209149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The development of tissue-like structures such as cell sheets, spheroids, and organoids has contributed to progress in regenerative medicine. Simultaneous achievement of scale up and high cell density of these tissues is challenging because sufficient oxygen cannot be supplied to the inside of large, high cell density tissues. Here, in vitro fabrication of vessels to supply oxygen to the inside of millimeter-sized scaffold-free tissues whose cell density is ≈200 million cells mL-1 , corresponding to those of native tissues, is shown. Hierarchical vascular networks by anastomosis of capillaries and a large vessel are essential for oxygen supply, whereas a large vessel or capillary networks alone make negligible contributions to the supply. The hierarchical vascular networks are formed by a top-down approach, which offers a new option for ex vivo whole organs without decellularization and 3D-bioprinting.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Hiroki Asada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
131
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
132
|
Sarkar T, Yashunsky V, Brézin L, Blanch Mercader C, Aryaksama T, Lacroix M, Risler T, Joanny JF, Silberzan P. Crisscross multilayering of cell sheets. PNAS NEXUS 2023; 2:pgad034. [PMID: 36938501 PMCID: PMC10019763 DOI: 10.1093/pnasnexus/pgad034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023]
Abstract
Hydrostatic skeletons such as the Hydra's consist of two stacked layers of muscle cells perpendicularly oriented. In vivo, these bilayers first assemble, and then the muscle fibers of both layers develop and organize with this crisscross orientation. In the present work, we identify an alternative mechanism of crisscross bilayering of myoblasts in vitro, which results from the prior local organization of these active cells in the initial monolayer. The myoblast sheet can be described as a contractile active nematic in which, as expected, most of the +1/2 topological defects associated with this nematic order self-propel. However, as a result of the production of extracellular matrix (ECM) by the cells, a subpopulation of these comet-like defects does not show any self-propulsion. Perpendicular bilayering occurs at these stationary defects. Cells located at the head of these defects converge toward their core where they accumulate until they start migrating on top of the tail of the first layer, while the tail cells migrate in the opposite direction under the head. Since the cells keep their initial orientations, the two stacked layers end up perpendicularly oriented. This concerted process leading to a crisscross bilayering is mediated by the secretion of ECM.
Collapse
Affiliation(s)
- Trinish Sarkar
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 11 Rue Pierre et Marie Curie, 75248 Paris, France
| | - Victor Yashunsky
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 11 Rue Pierre et Marie Curie, 75248 Paris, France
- Department of Solar Energy and Environmental Physics, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Negev, 84990, Israel
| | - Louis Brézin
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 11 Rue Pierre et Marie Curie, 75248 Paris, France
- Collège de France, Paris Sciences et Lettres, 11 place Marcelin Berthelot, 75231 Paris, France
| | - Carles Blanch Mercader
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 11 Rue Pierre et Marie Curie, 75248 Paris, France
| | - Thibault Aryaksama
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 11 Rue Pierre et Marie Curie, 75248 Paris, France
| | - Mathilde Lacroix
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 11 Rue Pierre et Marie Curie, 75248 Paris, France
| | - Thomas Risler
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 11 Rue Pierre et Marie Curie, 75248 Paris, France
| | - Jean-François Joanny
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 11 Rue Pierre et Marie Curie, 75248 Paris, France
- Collège de France, Paris Sciences et Lettres, 11 place Marcelin Berthelot, 75231 Paris, France
| | | |
Collapse
|
133
|
Luo S, Furuya K, Matsuda K, Tsukasa Y, Usui T, Uemura T. E-cadherin-dependent coordinated epithelial rotation on a two-dimensional discoidal pattern. Genes Cells 2023; 28:175-187. [PMID: 36562594 DOI: 10.1111/gtc.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
In vivo, cells collectively migrate in a variety of developmental and pathological contexts. Coordinated epithelial rotation represents a unique type of collective cell migrations, which has been modeled in vitro under spatially confined conditions. Although it is known that the coordinated rotation depends on intercellular interactions, the contribution of E-cadherin, a major cell-cell adhesion molecule, has not been directly addressed on two-dimensional (2D) confined substrates. Here, using well-controlled fibronectin-coated surfaces, we tracked and compared the migratory behaviors of MDCK cells expressing or lacking E-cadherin. We observed that wild-type MDCK II cells exhibited persistent and coordinated rotations on discoidal patterns, while E-cadherin knockout cells migrated in a less coordinated manner without large-scale rotation. Our comparison of the collective dynamics between these two cell types revealed a series of changes in migratory behavior caused by the loss of E-cadherin, including a decreased global migration speed, less regularity in quantified coordination, and increased average density of topological defects. Taken together, these data demonstrate that spontaneous initiation of collective epithelial rotations depends on E-cadherin under 2D discoidal confinements.
Collapse
Affiliation(s)
- Shuangyu Luo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kanji Furuya
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kimiya Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Kyoto University, Kyoto, Japan
| | - Yuma Tsukasa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Kyoto University, Kyoto, Japan
| |
Collapse
|
134
|
Kawaue T, Yow I, Pan Y, Le AP, Lou Y, Loberas M, Shagirov M, Teng X, Prost J, Hiraiwa T, Ladoux B, Toyama Y. Inhomogeneous mechanotransduction defines the spatial pattern of apoptosis-induced compensatory proliferation. Dev Cell 2023; 58:267-277.e5. [PMID: 36800994 DOI: 10.1016/j.devcel.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 07/09/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
The number of cells in tissues is controlled by cell division and cell death, and its misregulation could lead to pathological conditions such as cancer. To maintain the cell numbers, a cell-elimination process called apoptosis also stimulates the proliferation of neighboring cells. This mechanism, apoptosis-induced compensatory proliferation, was originally described more than 40 years ago. Although only a limited number of the neighboring cells need to divide to compensate for the apoptotic cell loss, the mechanisms that select cells to divide have remained elusive. Here, we found that spatial inhomogeneity in Yes-associated protein (YAP)-mediated mechanotransduction in neighboring tissues determines the inhomogeneity of compensatory proliferation in Madin-Darby canine kidney (MDCK) cells. Such inhomogeneity arises from the non-uniform distribution of nuclear size and the non-uniform pattern of mechanical force applied to neighboring cells. Our findings from a mechanical perspective provide additional insight into how tissues precisely maintain homeostasis.
Collapse
Affiliation(s)
- Takumi Kawaue
- Mechanobiology Institute, National University of Singapore, Singapore; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Ivan Yow
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yuping Pan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Anh Phuong Le
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yuting Lou
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Mavis Loberas
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Murat Shagirov
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Jacques Prost
- Physico Chimie Curie, Institut Curie, CNRS, UMR 168, 75005 Paris, France
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
135
|
The crucial role of adhesion in the transmigration of active droplets through interstitial orifices. Nat Commun 2023; 14:1096. [PMID: 36841803 PMCID: PMC9968312 DOI: 10.1038/s41467-023-36656-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Active fluid droplets are a class of soft materials exhibiting autonomous motion sustained by an energy supply. Such systems have been shown to capture motility regimes typical of biological cells and are ideal candidates as building-block for the fabrication of soft biomimetic materials of interest in pharmacology, tissue engineering and lab on chip devices. While their behavior is well established in unconstrained environments, much less is known about their dynamics under strong confinement. Here, we numerically study the physics of a droplet of active polar fluid migrating within a microchannel hosting a constriction with adhesive properties, and report evidence of a striking variety of dynamic regimes and morphological features, whose properties crucially depend upon droplet speed and elasticity, degree of confinement within the constriction and adhesiveness to the pore. Our results suggest that non-uniform adhesion forces are instrumental in enabling the crossing through narrow orifices, in contrast to larger gaps where a careful balance between speed and elasticity is sufficient to guarantee the transition. These observations may be useful for improving the design of artificial micro-swimmers, of interest in material science and pharmaceutics, and potentially for cell sorting in microfluidic devices.
Collapse
|
136
|
Combe L, Durande M, Delanoë-Ayari H, Cochet-Escartin O. Small hand-designed convolutional neural networks outperform transfer learning in automated cell shape detection in confluent tissues. PLoS One 2023; 18:e0281931. [PMID: 36795738 PMCID: PMC9934364 DOI: 10.1371/journal.pone.0281931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Mechanical cues such as stresses and strains are now recognized as essential regulators in many biological processes like cell division, gene expression or morphogenesis. Studying the interplay between these mechanical cues and biological responses requires experimental tools to measure these cues. In the context of large scale tissues, this can be achieved by segmenting individual cells to extract their shapes and deformations which in turn inform on their mechanical environment. Historically, this has been done by segmentation methods which are well known to be time consuming and error prone. In this context however, one doesn't necessarily require a cell-level description and a coarse-grained approach can be more efficient while using tools different from segmentation. The advent of machine learning and deep neural networks has revolutionized the field of image analysis in recent years, including in biomedical research. With the democratization of these techniques, more and more researchers are trying to apply them to their own biological systems. In this paper, we tackle a problem of cell shape measurement thanks to a large annotated dataset. We develop simple Convolutional Neural Networks (CNNs) which we thoroughly optimize in terms of architecture and complexity to question construction rules usually applied. We find that increasing the complexity of the networks rapidly no longer yields improvements in performance and that the number of kernels in each convolutional layer is the most important parameter to achieve good results. In addition, we compare our step-by-step approach with transfer learning and find that our simple, optimized CNNs give better predictions, are faster in training and analysis and don't require more technical knowledge to be implemented. Overall, we offer a roadmap to develop optimized models and argue that we should limit the complexity of such models. We conclude by illustrating this strategy on a similar problem and dataset.
Collapse
Affiliation(s)
- Louis Combe
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France
| | - Mélina Durande
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France
- Laboratoire Matière et Systèmes Complexes, UMR7057, Université Paris Cité-CNRS, Paris, France
| | - Hélène Delanoë-Ayari
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France
| | - Olivier Cochet-Escartin
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France
| |
Collapse
|
137
|
Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. Nat Commun 2023; 14:776. [PMID: 36774346 PMCID: PMC9922260 DOI: 10.1038/s41467-023-35918-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/06/2023] [Indexed: 02/13/2023] Open
Abstract
Deviations from mirror symmetry in the development of bilateral organisms are common but the mechanisms of initial symmetry breaking are insufficiently understood. The actin cytoskeleton of individual cells self-organises in a chiral manner, but the molecular players involved remain essentially unidentified and the relationship between chirality of an individual cell and cell collectives is unclear. Here, we analysed self-organisation of the chiral actin cytoskeleton in individual cells on circular or elliptical patterns, and collective cell alignment in confined microcultures. Screening based on deep-learning analysis of actin patterns identified actin polymerisation regulators, depletion of which suppresses chirality (mDia1) or reverses chirality direction (profilin1 and CapZβ). The reversed chirality is mDia1-independent but requires the function of actin-crosslinker α-actinin1. A robust correlation between the effects of a variety of actin assembly regulators on chirality of individual cells and cell collectives is revealed. Thus, actin-driven cell chirality may underlie tissue and organ asymmetry.
Collapse
|
138
|
Lin SZ, Merkel M, Rupprecht JF. Structure and Rheology in Vertex Models under Cell-Shape-Dependent Active Stresses. PHYSICAL REVIEW LETTERS 2023; 130:058202. [PMID: 36800465 DOI: 10.1103/physrevlett.130.058202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Biological cells can actively tune their intracellular architecture according to their overall shape. Here we explore the rheological implication of such coupling in a minimal model of a dense cellular material where each cell exerts an active mechanical stress along its axis of elongation. Increasing the active stress amplitude leads to several transitions. An initially hexagonal crystal motif is first destabilized into a solid with anisotropic cells whose shear modulus eventually vanishes at a first critical activity. Increasing activity beyond this first critical value, we find a re-entrant transition to a regime with finite hexatic order and finite shear modulus, in which cells arrange according to a rhombile pattern with periodically arranged rosette structures. The shear modulus vanishes again at a third threshold beyond which spontaneous tissue flows and topological defects of the nematic cell shape field arise. Flow and stress fields around the defects agree with active nematic theory, with either contractile or extensile signs, as also observed in several epithelial tissue experiments.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| | - Matthias Merkel
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| | - Jean-François Rupprecht
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
139
|
Matejčić M, Trepat X. Mechanobiological approaches to synthetic morphogenesis: learning by building. Trends Cell Biol 2023; 33:95-111. [PMID: 35879149 DOI: 10.1016/j.tcb.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Tissue morphogenesis occurs in a complex physicochemical microenvironment with limited experimental accessibility. This often prevents a clear identification of the processes that govern the formation of a given functional shape. By applying state-of-the-art methods to minimal tissue systems, synthetic morphogenesis aims to engineer the discrete events that are necessary and sufficient to build specific tissue shapes. Here, we review recent advances in synthetic morphogenesis, highlighting how a combination of microfabrication and mechanobiology is fostering our understanding of how tissues are built.
Collapse
Affiliation(s)
- Marija Matejčić
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
140
|
Ruske LJ, Yeomans JM. Activity-driven tissue alignment in proliferating spheroids. SOFT MATTER 2023; 19:921-931. [PMID: 36625444 DOI: 10.1039/d2sm01239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We extend the continuum theory of active nematic fluids to study cell flows and tissue dynamics inside multicellular spheroids, spherical, self-assembled aggregates of cells that are widely used as model systems to study tumour dynamics. Cells near the surface of spheroids have better access to nutrients and therefore proliferate more rapidly than those in the resource-depleted core. Using both analytical arguments and three-dimensional simulations, we find that the proliferation gradients result in flows and in gradients of activity both of which can align the orientation axis of cells inside the aggregates. Depending on environmental conditions and the intrinsic tissue properties, we identify three distinct alignment regimes: spheroids in which all the cells align either radially or tangentially to the surface throughout the aggregate and spheroids with angular cell orientation close to the surface and radial alignment in the core. The continuum description of tissue dynamics inside spheroids not only allows us to infer dynamic cell parameters from experimentally measured cell alignment profiles, but more generally motivates novel mechanisms for controlling the alignment of cells within aggregates which has been shown to influence the mechanical properties and invasive capabilities of tumors.
Collapse
Affiliation(s)
- Liam J Ruske
- Rudolf Peierls Centre For Theoretical Physics, University of Oxford, UK.
| | - Julia M Yeomans
- Rudolf Peierls Centre For Theoretical Physics, University of Oxford, UK.
| |
Collapse
|
141
|
Ascione F, Caserta S, Esposito S, Villella VR, Maiuri L, Nejad MR, Doostmohammadi A, Yeomans JM, Guido S. Collective rotational motion of freely expanding T84 epithelial cell colonies. J R Soc Interface 2023; 20:20220719. [PMID: 36872917 PMCID: PMC9943890 DOI: 10.1098/rsif.2022.0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
Coordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation. Here, we study the growth of epithelial cell colonies freely expanding (i.e. with no physical constraints) on the surface of cell culture plates and focus on collective cell rotation in such conditions, a case which has received scarce attention in the literature. One of the main findings of our work is that coordinated cell rotation spontaneously occurs in cell clusters in the free growth regime, thus implying that cell confinement is not necessary to elicit collective rotation as previously suggested. The extent of collective rotation was size and shape dependent: a highly coordinated disc-like rotation was found in small cell clusters with a round shape, while collective rotation was suppressed in large irregular cell clusters generated by merging of different clusters in the course of their growth. The angular motion was persistent in the same direction, although clockwise and anticlockwise rotations were equally likely to occur among different cell clusters. Radial cell velocity was quite low as compared to the angular velocity, in agreement with the free expansion regime where cluster growth is essentially governed by cell proliferation. A clear difference in morphology was observed between cells at the periphery and the ones in the core of the clusters, the former being more elongated and spread out as compared to the latter. Overall, our results, to our knowledge, provide the first quantitative and systematic evidence that coordinated cell rotation does not require a spatial confinement and occurs spontaneously in freely expanding epithelial cell colonies, possibly as a mechanism for the system.
Collapse
Affiliation(s)
- Flora Ascione
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Speranza Esposito
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Rachela Villella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Mehrana R. Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | - Julia M. Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
142
|
Ai BQ, Ma J, Zeng CH, He YF. Emergence of macroscopic directional motion of deformable active cells in confined structures. Phys Rev E 2023; 107:024406. [PMID: 36932507 DOI: 10.1103/physreve.107.024406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
There is now growing evidence of collective turbulentlike motion of cells in dense tissues. However, how to control and harness this collective motion is an open question. We investigate the transport of deformable active cells in a periodically asymmetric channel by using a phase-field model. We demonstrate that collective turbulent-like motion of cells can power and steer the macroscopic directional motion through the ratchet channel. The active intercellular forces proportional to the deformation of cells can break thermodynamical equilibrium and induce the directional motion. This directional motion is caused by the ratchet effect rather than the spontaneous symmetry breaking. The motion direction is determined by the asymmetry of the channel. Remarkably, there exits an optimal nonequilibrium driving (depending on the active strength, the elasticity, and the packing fraction) at which the average velocity reaches the maximum. In addition, the optimized packing fraction and the optimized minimum width of the channel can facilitate the directional motion of cells. Our findings are relevant to understanding how macroscopic directional motion relates to the local force transmission mediated by cell-cell contacts in cellular monolayers.
Collapse
Affiliation(s)
- Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Jian Ma
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Chun-Hua Zeng
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Ya-Feng He
- College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
143
|
Zhang YH, Yao Z. Alignment rule and geometric confinement lead to stability of a vortex in active flow. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:4. [PMID: 36682015 DOI: 10.1140/epje/s10189-023-00260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Vortices are hallmarks of a wide range of nonequilibrium phenomena in fluids at multiple length scales. In this work, we numerically study the whirling motion of self-propelled soft point particles confined in circular domain, and aim at addressing the stability issue of the coherent vortex structure. By the combination of dynamical and statistical analysis at the individual particle level, we reveal the persistence of the whirling motion resulting from the subtle competition of activity and geometric confinement. In the stable whirling motion, the scenario of the coexistence of the irregular microscopic motions of individual particles and the regular global whirling motion is fundamentally different from the motion of a vortex in passive fluid. Possible orientational order coexisting with the whirling are further explored. This work shows the stability mechanism of vortical dynamics in active media under the alignment rule in confined space and may have implications in creating and harnessing macroscale coherent dynamical states by tuning the confining geometry.
Collapse
Affiliation(s)
- Yi-Heng Zhang
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhenwei Yao
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
144
|
Zhang G, Yeomans JM. Active Forces in Confluent Cell Monolayers. PHYSICAL REVIEW LETTERS 2023; 130:038202. [PMID: 36763395 DOI: 10.1103/physrevlett.130.038202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
We use a computational phase-field model together with analytical analysis to study how intercellular active forces can mediate individual cell morphology and collective motion in a confluent cell monolayer. We explore the regime where intercellular forces dominate the tissue dynamics, and polar forces are negligible. Contractile intercellular interactions lead to cell elongation, nematic ordering, and active turbulence characterized by motile topological defects. Extensile interactions result in frustration, and perpendicular cell orientations become more prevalent. Furthermore, we show that contractile behavior can change to extensile behavior if anisotropic fluctuations in cell shape are considered.
Collapse
Affiliation(s)
- Guanming Zhang
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
145
|
Khoromskaia D, Salbreux G. Active morphogenesis of patterned epithelial shells. eLife 2023; 12:75878. [PMID: 36649186 PMCID: PMC9844985 DOI: 10.7554/elife.75878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/18/2022] [Indexed: 01/11/2023] Open
Abstract
Shape transformations of epithelial tissues in three dimensions, which are crucial for embryonic development or in vitro organoid growth, can result from active forces generated within the cytoskeleton of the epithelial cells. How the interplay of local differential tensions with tissue geometry and with external forces results in tissue-scale morphogenesis remains an open question. Here, we describe epithelial sheets as active viscoelastic surfaces and study their deformation under patterned internal tensions and bending moments. In addition to isotropic effects, we take into account nematic alignment in the plane of the tissue, which gives rise to shape-dependent, anisotropic active tensions and bending moments. We present phase diagrams of the mechanical equilibrium shapes of pre-patterned closed shells and explore their dynamical deformations. Our results show that a combination of nematic alignment and gradients in internal tensions and bending moments is sufficient to reproduce basic building blocks of epithelial morphogenesis, including fold formation, budding, neck formation, flattening, and tubulation.
Collapse
Affiliation(s)
| | - Guillaume Salbreux
- The Francis Crick InstituteLondonUnited Kingdom
- University of GenevaGenevaSwitzerland
| |
Collapse
|
146
|
Sonam S, Balasubramaniam L, Lin SZ, Ivan YMY, Jaumà IP, Jebane C, Karnat M, Toyama Y, Marcq P, Prost J, Mège RM, Rupprecht JF, Ladoux B. Mechanical stress driven by rigidity sensing governs epithelial stability. NATURE PHYSICS 2023; 19:132-141. [PMID: 36686215 PMCID: PMC7614076 DOI: 10.1038/s41567-022-01826-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Epithelia act as a barrier against environmental stress and abrasion and in vivo they are continuously exposed to environments of various mechanical properties. The impact of this environment on epithelial integrity remains elusive. By culturing epithelial cells on 2D hydrogels, we observe a loss of epithelial monolayer integrity through spontaneous hole formation when grown on soft substrates. Substrate stiffness triggers an unanticipated mechanical switch of epithelial monolayers from tensile on soft to compressive on stiff substrates. Through active nematic modelling, we find that spontaneous half-integer defect formation underpinning large isotropic stress fluctuations initiate hole opening events. Our data show that monolayer rupture due to high tensile stress is promoted by the weakening of cell-cell junctions that could be induced by cell division events or local cellular stretching. Our results show that substrate stiffness provides feedback on monolayer mechanical state and that topological defects can trigger stochastic mechanical failure, with potential application towards a mechanistic understanding of compromised epithelial integrity during immune response and morphogenesis.
Collapse
Affiliation(s)
- Surabhi Sonam
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | | | - Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| | | | - Irina Pi Jaumà
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Cecile Jebane
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Marc Karnat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, 75005, Paris, France
| | - Jacques Prost
- Mechanobiology Institute, National University of Singapore, Singapore
- Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Paris, France
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
- Corresponding authors Dr. Benoit Ladoux, , Dr. Jean-François Rupprecht,
| | - Benoît Ladoux
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
- Corresponding authors Dr. Benoit Ladoux, , Dr. Jean-François Rupprecht,
| |
Collapse
|
147
|
Olenik M, Turley J, Cross S, Weavers H, Martin P, Chenchiah IV, Liverpool TB. Fluctuations of cell geometry and their nonequilibrium thermodynamics in living epithelial tissue. Phys Rev E 2023; 107:014403. [PMID: 36797912 DOI: 10.1103/physreve.107.014403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/18/2022] [Indexed: 01/15/2023]
Abstract
We measure different contributions to entropy production in a living functional epithelial tissue. We do this by extracting the functional dynamics of development while at the same time quantifying fluctuations. Using the translucent Drosophila melanogaster pupal epithelium as an ideal tissue for high-resolution live imaging, we measure the entropy associated with the stochastic geometry of cells in the epithelium. This is done using a detailed analysis of the dynamics of the shape and orientation of individual cells which enables separation of local and global aspects of the tissue behavior. Intriguingly, we find that we can observe irreversible dynamics in the cell geometries but without a change in the entropy associated with those degrees of freedom, showing that there is a flow of energy into those degrees of freedom. Hence, the living system is controlling how the entropy is being produced and partitioned into its different parts.
Collapse
Affiliation(s)
- M Olenik
- School of Mathematics, University of Bristol - Bristol BS8 1UG, United Kingdom
| | - J Turley
- School of Mathematics, University of Bristol - Bristol BS8 1UG, United Kingdom
- School of Biochemistry, University of Bristol - Bristol BS8 1TW, United Kingdom
| | - S Cross
- School of Biochemistry, University of Bristol - Bristol BS8 1TW, United Kingdom
| | - H Weavers
- School of Biochemistry, University of Bristol - Bristol BS8 1TW, United Kingdom
| | - P Martin
- School of Biochemistry, University of Bristol - Bristol BS8 1TW, United Kingdom
| | - I V Chenchiah
- School of Mathematics, University of Bristol - Bristol BS8 1UG, United Kingdom
| | - T B Liverpool
- School of Mathematics, University of Bristol - Bristol BS8 1UG, United Kingdom
| |
Collapse
|
148
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
149
|
Shimaya T, Takeuchi KA. Tilt-induced polar order and topological defects in growing bacterial populations. PNAS NEXUS 2022; 1:pgac269. [PMID: 36712383 PMCID: PMC9802490 DOI: 10.1093/pnasnexus/pgac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Rod-shaped bacteria, such as Escherichia coli, commonly live forming mounded colonies. They initially grow two-dimensionally on a surface and finally achieve three-dimensional growth. While it was recently reported that three-dimensional growth is promoted by topological defects of winding number +1/2 in populations of motile bacteria, how cellular alignment plays a role in nonmotile cases is largely unknown. Here, we investigate the relevance of topological defects in colony formation processes of nonmotile E. coli populations, and found that both ±1/2 topological defects contribute to the three-dimensional growth. Analyzing the cell flow in the bottom layer of the colony, we observe that +1/2 defects attract cells and -1/2 defects repel cells, in agreement with previous studies on motile cells, in the initial stage of the colony growth. However, later, cells gradually flow toward -1/2 defects as well, exhibiting a sharp contrast to the existing knowledge. By investigating three-dimensional cell orientations by confocal microscopy, we find that vertical tilting of cells is promoted near the defects. Crucially, this leads to the emergence of a polar order in the otherwise nematic two-dimensional cell orientation. We extend the theory of active nematics by incorporating this polar order and the vertical tilting, which successfully explains the influx toward -1/2 defects in terms of a polarity-induced force. Our work reveals that three-dimensional cell orientations may result in qualitative changes in properties of active nematics, especially those of topological defects, which may be generically relevant in active matter systems driven by cellular growth instead of self-propulsion.
Collapse
Affiliation(s)
- Takuro Shimaya
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | | |
Collapse
|
150
|
Topological defect-mediated morphodynamics of active-active interfaces. Proc Natl Acad Sci U S A 2022; 119:e2122494119. [PMID: 36469777 PMCID: PMC9897450 DOI: 10.1073/pnas.2122494119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Physical interfaces widely exist in nature and engineering. Although the formation of passive interfaces is well elucidated, the physical principles governing active interfaces remain largely unknown. Here, we combine simulation, theory, and cell-based experiment to investigate the evolution of an active-active interface. We adopt a biphasic framework of active nematic liquid crystals. We find that long-lived topological defects mechanically energized by activity display unanticipated dynamics nearby the interface, where defects perform "U-turns" to keep away from the interface, push the interface to develop local fingers, or penetrate the interface to enter the opposite phase, driving interfacial morphogenesis and cross-interface defect transport. We identify that the emergent interfacial morphodynamics stems from the instability of the interface and is further driven by the activity-dependent defect-interface interactions. Experiments of interacting multicellular monolayers with extensile and contractile differences in cell activity have confirmed our predictions. These findings reveal a crucial role of topological defects in active-active interfaces during, for example, boundary formation and tissue competition that underlie organogenesis and clinically relevant disorders.
Collapse
|