101
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
102
|
Bartsch T, Berg D, Heneka M, Leypoldt F. [Parkinson's and Alzheimer's disease as system-wide neurodegenerative disorders]. DER NERVENARZT 2023; 94:875-884. [PMID: 37672086 DOI: 10.1007/s00115-023-01542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Parkinson's and Alzheimer's disease (PD/AD) are characterized by cellular pathological changes that precede clinical manifestation and symptom onset by decades (prodromal period) as well as by a heterogeneity of clinical symptoms. Both diseases are recognized as system-wide diseases with organ-transgressing dysregulation and involvement of immunological and neuroinflammatory mechanisms facilitating pathological protein aggregation and neurodegeneration. OBJECTIVES Overview of natural course, phenotypes and classification of PD/AD with a focus on underlying (system-wide) immunological and neuroinflammatory mechanisms. METHODS Literature research and consideration of expert opinions. RESULTS The accumulation of misfolded proteins such as amyloid‑β and synuclein in the course of neurodegenerative processes forms the basis of the current biological classifications, understanding of course and subtypes. Protein aggregation in PD/AD induces an innate immune response by activating microglia and the release of inflammatory mediators such as cytokines and chemokines and leading to further spread of neurodegeneration and accumulation of intracellular neurofibrillary tangles (NFTs). There is also growing evidence that adaptive immune responses involving auto-antibodies or auto-antigen-specific T‑/B-cell reactions involving tau, amyloid‑β or synuclein might be involved in the disease progression or subtypes of PD/AD. CONCLUSIONS Both innate and adaptive immune responses seem to be substantially involved in the pathological cascade leading to neurodegeneration in PD/AD and may contribute to disease progression and clinical subtypes. Thus, future targeted interventions should not only focus on protein aggregation but also on neuroinflammatory and immunological mechanisms.
Collapse
Affiliation(s)
- Thorsten Bartsch
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland.
- Klinik für Neurologie, AG Gedächtnis und Plastizität, Gedächtnis- und Demenzsprechstunde, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland.
| | - Daniela Berg
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | - Michael Heneka
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Belvaux, Luxemburg
| | - Frank Leypoldt
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
- Institut für Klinische Chemie, Universitätsklinikum Schleswig-Holstein, Campus Kiel und Lübeck, Kiel, Deutschland
| |
Collapse
|
103
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
104
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
105
|
Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, Borges-Monroy R, Ehrlich A, Serrano GE, Feany MB, Beach TG, Scherzer CR. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. Nat Commun 2023; 14:5327. [PMID: 37723137 PMCID: PMC10507039 DOI: 10.1038/s41467-023-40348-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023] Open
Abstract
Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identify over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1526 and 3308 circRNAs are custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 29% of Parkinson's and 12% of Alzheimer's disease-associated genes produced validated circRNAs. circDNAJC6, which is transcribed from a juvenile-onset Parkinson's gene, is already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produce circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA-regulated synaptic specialization in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xianjun Dong
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Genomics and Bioinformatics Hub, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yunfei Bai
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- State Key Lab of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - David Gritsch
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Xiaoli Liu
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Neurology, Zhejiang Hospital, Zhejiang, China
| | - Tao Wang
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Rebeca Borges-Monroy
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Alyssa Ehrlich
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mel B Feany
- Departement of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA.
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
106
|
Amin J, Gee C, Stowell K, Coulthard D, Boche D. T Lymphocytes and Their Potential Role in Dementia with Lewy Bodies. Cells 2023; 12:2283. [PMID: 37759503 PMCID: PMC10528562 DOI: 10.3390/cells12182283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia. People with DLB have an inferior prognosis compared to Alzheimer's disease (AD), but the diseases overlap in their neuropathology and clinical syndrome. It is imperative that we enhance our understanding of the aetiology and pathogenesis of DLB. The impact of peripheral inflammation on the brain in dementia has been increasingly explored in recent years, with T lymphocyte recruitment into brain parenchyma identified in AD and Parkinson's disease. There is now a growing range of literature emerging on the potential role of innate and adaptive immune cells in DLB, including T lymphocytes. In this review, we examine the profile of T lymphocytes in DLB, focusing on studies of post-mortem brain tissue, cerebrospinal fluid, and the blood compartment. We present an integrated viewpoint on the results of these studies by proposing how changes to the T lymphocyte profile in the brain and periphery may relate to each other. Improving our understanding of T lymphocytes in DLB has the potential to guide the development of disease-modifying treatments.
Collapse
Affiliation(s)
- Jay Amin
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Claire Gee
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Kiran Stowell
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Daisy Coulthard
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
107
|
Le Guen Y, Luo G, Ambati A, Damotte V, Jansen I, Yu E, Nicolas A, de Rojas I, Peixoto Leal T, Miyashita A, Bellenguez C, Lian MM, Parveen K, Morizono T, Park H, Grenier-Boley B, Naito T, Küçükali F, Talyansky SD, Yogeshwar SM, Sempere V, Satake W, Alvarez V, Arosio B, Belloy ME, Benussi L, Boland A, Borroni B, Bullido MJ, Caffarra P, Clarimon J, Daniele A, Darling D, Debette S, Deleuze JF, Dichgans M, Dufouil C, During E, Düzel E, Galimberti D, Garcia-Ribas G, García-Alberca JM, García-González P, Giedraitis V, Goldhardt O, Graff C, Grünblatt E, Hanon O, Hausner L, Heilmann-Heimbach S, Holstege H, Hort J, Jung YJ, Jürgen D, Kern S, Kuulasmaa T, Lee KH, Lin L, Masullo C, Mecocci P, Mehrabian S, de Mendonça A, Boada M, Mir P, Moebus S, Moreno F, Nacmias B, Nicolas G, Niida S, Nordestgaard BG, Papenberg G, Papma J, Parnetti L, Pasquier F, Pastor P, Peters O, Pijnenburg YAL, Piñol-Ripoll G, Popp J, Porcel LM, Puerta R, Pérez-Tur J, Rainero I, Ramakers I, Real LM, Riedel-Heller S, Rodriguez-Rodriguez E, Ross OA, Luís Royo J, Rujescu D, Scarmeas N, Scheltens P, Scherbaum N, Schneider A, Seripa D, Skoog I, Solfrizzi V, Spalletta G, Squassina A, van Swieten J, Sánchez-Valle R, Tan EK, Tegos T, Teunissen C, Thomassen JQ, Tremolizzo L, Vyhnalek M, Verhey F, Waern M, Wiltfang J, Zhang J, Zetterberg H, Blennow K, He Z, Williams J, Amouyel P, Jessen F, Kehoe PG, Andreassen OA, Van Duin C, Tsolaki M, Sánchez-Juan P, Frikke-Schmidt R, Sleegers K, Toda T, Zettergren A, Ingelsson M, Okada Y, Rossi G, Hiltunen M, Gim J, Ozaki K, Sims R, Foo JN, van der Flier W, Ikeuchi T, Ramirez A, Mata I, Ruiz A, Gan-Or Z, Lambert JC, Greicius MD, Mignot E. Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes. Proc Natl Acad Sci U S A 2023; 120:e2302720120. [PMID: 37643212 PMCID: PMC10483635 DOI: 10.1073/pnas.2302720120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 08/31/2023] Open
Abstract
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.
Collapse
Affiliation(s)
- Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
- Institut du Cerveau–Paris Brain Institute–ICM, Paris75013, France
| | - Guo Luo
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Aditya Ambati
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Vincent Damotte
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Iris Jansen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, 1081 HVAmsterdam, The Netherlands
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, QuebecH3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal, QuebecH3A 0G4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QuebecH3A 0G4, Canada
| | - Aude Nicolas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Itziar de Rojas
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
| | - Thiago Peixoto Leal
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland44196, OH
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata950-218, Japan
| | - Céline Bellenguez
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore308232, Singapore
- Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore138672, Singapore
| | - Kayenat Parveen
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne50937, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn53127, Germany
| | - Takashi Morizono
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu474-8511, Japan
| | - Hyeonseul Park
- Department of Biomedical Science, Chosun University, Gwangju61452, Korea
| | - Benjamin Grenier-Boley
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita565-0871, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo192-0982, Japan
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp2610, Belgium
- Laboratory of Neurogenetics, Institute Born–Bunge, Antwerp2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp2000, Belgium
| | - Seth D. Talyansky
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
| | - Selina Maria Yogeshwar
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
- Department of Neurology, Charité–Universitätsmedizin, Berlin10117, Germany
- Charité–Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin10117, Germany
| | - Vicente Sempere
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Wataru Satake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo192-0982, Japan
| | - Victoria Alvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo33011, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo33011, Spain
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan20122, Italy
| | - Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia25125, Italy
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry91057, France
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Centre for Neurodegenerative Disorders, Neurology Unit, University of Brescia, Brescia25123, Italy
| | - María J. Bullido
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid28049, Spain
- Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid48903, Spain
| | - Paolo Caffarra
- Unit of Neurology, University of Parma and AOU, Parma43121, Italy
| | - Jordi Clarimon
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Antonio Daniele
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome00168, Italy
| | - Daniel Darling
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Stéphanie Debette
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux33000, France
- Department of Neurology, Bordeaux University Hospital, Bordeaux33400, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry91057, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich37075, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Carole Dufouil
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Univ. Bordeaux, ISPED, CIC 1401-EC, Université de Bordeaux, Bordeaux33405, France
- CHU de Bordeaux, Pole santé publique, Bordeaux33400, France
| | - Emmanuel During
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg39106, Germany
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Milan20122, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan20122, Italy
| | | | - José María García-Alberca
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Alzheimer Research Center and Memory Clinic, Andalusian Institute for Neuroscience, Málaga29012, Spain
| | - Pablo García-González
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala751 22, Sweden
- Geriatrics, Uppsala University, Uppsala751 22, Sweden
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Klinikum recs der Isar, Munich80333, Germany
| | - Caroline Graff
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, Stockholm171 64, Swdeen
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich8032, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich8057, Switzerland
| | - Olivier Hanon
- Université de Paris, EA 4468, APHP, Hôpital Broca, Paris75013, France
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute for Mental Health Mannheim, Faculty Mannheim, University of Heidelberg, Heidelberg68159, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn53127, Germany
| | - Henne Holstege
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam1081 HV, The Netherlands
| | - Jakub Hort
- Department of Neurology, Memory Clinic, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague150 06, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno656 91, Czech Republic
| | - Yoo Jin Jung
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford94305, CA
| | - Deckert Jürgen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg97080, Germany
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg405 30, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg413 45, Sweden
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Joensuu, Kuopio, Eastern Finland80101, Finland
| | - Kun Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju61452, Republic of Korea
- Department of Integrative Biological Sciences, Chosun University, Gwangju61452, Republic of Korea
- Gwangju Alzheimer's and Related Dementias Cohort Research Center, Chosun University, Gwangju61452, Republic of Korea
- Korea Brain Research Institute, Daegu41062, Republic of Korea
- Neurozen Inc., Seoul06236, Republic of Korea
| | - Ling Lin
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, Rome20123, Italy
| | - Patrizia Mecocci
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Perugia06123, Italy
| | - Shima Mehrabian
- Clinic of Neurology, UH “Alexandrovska”, Medical University–Sofia, Sofia1431, Bulgaria
| | | | - Mercè Boada
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
| | - Pablo Mir
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville41013, Spain
| | - Susanne Moebus
- Institute for Urban Public Health, University Hospital of University Duisburg-Essen, Essen45147, Germany
| | - Fermin Moreno
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian20014, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian20014, Spain
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health University of Florence, Florence50121, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence20162, Italy
| | - Gael Nicolas
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, RouenF-76000, France
| | - Shumpei Niida
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu474-8511, Japan
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev Gentofte, Copenhagen2730, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen1172, Denmark
| | - Goran Papenberg
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm171 77, Sweden
| | - Janne Papma
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam3000, The Netherlands
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia06123, Italy
| | - Florence Pasquier
- Université de Lille, Inserm 1172, CHU Clinical and Research Memory Research Centre of Distalz, Lille59000, France
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona08221, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona08221, Spain
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin37075, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Berlin12203, Germany
| | - Yolande A. L. Pijnenburg
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida25198, Spain
- Institut de Recerca Biomedica de Lleida, Lleida25198, Spain
| | - Julius Popp
- Department of Psychiatry, Old Age Psychiatry, Lausanne University Hospital, Lausanne1005, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich8032, Switzerland
- Institute for Regenerative Medicine, University of Zürich, Zürich8952, Switzerland
| | - Laura Molina Porcel
- Neurological Tissue Bank–Biobanc- Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona08036, Spain
- Alzheimer’s disease and other cognitive disorders Unit, Neurology Department, Hospital Clinic, Barcelona08036, Spain
| | - Raquel Puerta
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
| | - Jordi Pérez-Tur
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-Consejo Superior de Investigaciones CientíficasValencia46010, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia46026, Spain
| | - Innocenzo Rainero
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino10126, Italy
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht University, Maastricht6229 GS, The Netherlands
| | - Luis M. Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla41014, Spain
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga29010, Spain
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig04109, Germany
| | - Eloy Rodriguez-Rodriguez
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander39011, Spain
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic-Florida, Jacksonville32224, FL
- Department of Clinical Genomics, Mayo Clinic-Florida, Jacksonville32224, FL
| | - Jose Luís Royo
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. Facultad de Medicina, Universidad de Málaga, Málaga29010, Spain
| | - Dan Rujescu
- Martin-Luther-University Halle-Wittenberg, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Halle (Saale)06120, Germany
| | - Nikolaos Scarmeas
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York10032, NY
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens106 79, Greece
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Hospital Essen, University of Duisburg-Essen, 45147Duisberg, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), 37075Göttingen, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn53127, Germany
| | - Davide Seripa
- Department of Hematology and Stem Cell Transplant, Laboratory for Advanced Hematological Diagnostics, Lecce73100, Italy
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg405 30, Sweden
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg405 30, Sweden
| | - Vincenzo Solfrizzi
- Interdisciry Department of Medicine, Geriatric Medicine and Memory Unit, University of Bari “A. Moro, Bari70121, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome00179, Italy
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston77030, TX
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari09124, Italy
| | - John van Swieten
- Department of Neurology, ErasmusMC, Rotterdam3000CA, Netherlands
| | - Raquel Sánchez-Valle
- Alzheimer's disease and other cognitive disorders unit, Service of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona08036, Spain
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore308433, Singapore
- Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Thomas Tegos
- 1st Department of Neurology, Medical school, Aristotle University of Thessaloniki, Thessaloniki541 24, Greece
| | - Charlotte Teunissen
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam1081 HV, Netherlands
| | - Jesper Qvist Thomassen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen2100, Denmark
| | - Lucio Tremolizzo
- Neurology, "San Gerardo" hospital, Monza and University of Milano-Bicocca, Monza20900, Italy
| | - Martin Vyhnalek
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam1081 HV, The Netherlands
- Department of Neurology, Memory Clinic, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague150 06, Czech Republic
| | - Frans Verhey
- Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht University, Maastricht6229 GS, Netherlands
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg431 41, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychosis Clinic, Gothenburg413 45, Sweden
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen37075, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), Goettingen37075, Germany
- Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine, University of Aveiro, Aveiro3810-193, Portugal
| | - Jing Zhang
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | | | | | | | | | | | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, MölndalSE-43180, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, LondonWC1E 6BT, United Kingdom
- UK Dementia Research Institute at UCL, LondonWC1E 6BT, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, MölndalSE-43180, Sweden
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
| | - Julie Williams
- UKDRI@Cardiff, School of Medicine, Cardiff University, WalesCF14 4YS, United Kingdom
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff WalesCF14 4XN, United Kingdom
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), 37075Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne50937, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne50931, Germany
| | - Patrick G. Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, BristolBS8 1QU, United Kingdom
| | - Ole A. Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo0450, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cornelia Van Duin
- Department of Epidemiology, ErasmusMC, Rotterdam3000 CA, The Netherlands
- Nuffield Department of Population Health Oxford University, OxfordOX3 7LF, United Kingdom
| | - Magda Tsolaki
- 1st Department of Neurology, Medical school, Aristotle University of Thessaloniki, Thessaloniki541 24, Greece
| | - Pascual Sánchez-Juan
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Alzheimer’s Centre Reina Sofia-CIEN Foundation, Madrid, Spain
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, University of Copenhagen, Copenhagen1172, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen2100, Denmark
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp2610, Belgium
- Laboratory of Neurogenetics, Institute Born–Bunge, Antwerp2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp2000, Belgium
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo192-0982, Japan
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg431 41, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala751 22, Sweden
- Geriatrics, Uppsala University, Uppsala751 22, Sweden
- Krembil Brain Institute, University Health Network, TorontoM5G 2C4, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, TorontoM5S 1A8, Canada
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita565-0871, Japan
| | - Giacomina Rossi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Joensuu, Kuopio, Eastern Finland80101, Finland
| | - Jungsoo Gim
- Department of Biomedical Science, Chosun University, Gwangju61452, Korea
- Department of Integrative Biological Sciences, Chosun University, Gwangju61452, Republic of Korea
- Gwangju Alzheimer's and Related Dementias Cohort Research Center, Chosun University, Gwangju61452, Republic of Korea
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu474-8511, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, WalesCF14 4YS, United Kingdom
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore308232, Singapore
- Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore138672, Singapore
| | - Wiesje van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata950-218, Japan
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne50937, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn53127, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), 37075Göttingen, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne50931, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio78229, TX
| | - Ignacio Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland44196, OH
| | - Agustín Ruiz
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, QuebecH3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal, QuebecH3A 0G4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QuebecH3A 0G4, Canada
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
| | - Emmanuel Mignot
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| |
Collapse
|
108
|
Xiao Y, Wei Q, Ou R, Yang T, Jiang Q, Hou Y, Zhang L, Liu K, Wang S, Lin J, Zhao B, Song W, Chen X, Wu Y, Li C, Shang H. Association between peripheral adaptive immune markers and disease progression in Parkinson's disease. J Neurol 2023; 270:4444-4450. [PMID: 37278914 PMCID: PMC10243250 DOI: 10.1007/s00415-023-11790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND The pathogenesis of PD has not been fully elucidated, but recent studies have shown that the adaptive immune system may play a role in the pathology of PD. However, there is a lack of longitudinal studies exploring the relationship between peripheral adaptive immune indicators and the rate of disease progression in PD. METHODS We included early PD patients with disease duration < 3 years and assessed the severity of clinical symptoms and peripheral adaptive immune system indicators (CD3+, CD4+, CD8+ T lymphocyte subsets, CD4+:CD8+ ratio, IgG, IgM, IgA, C3, C4) at baseline. Clinical symptoms were followed up every year. We used the Unified Parkinson's Disease Rating Scale (UPDRS) to assess the disease severity and the Montreal Cognitive Assessment (MoCA) to assess global cognitive function. RESULT A total of 152 PD patients were eventually included. The linear mixed model showed no significant association between baseline peripheral blood adaptive immune indicators and baseline MoCA scores or UPDRS part III scores. A higher baseline CD3+ lymphocyte percentage was associated with a slower rate of decline in MoCA scores. Baseline immune indicators were not associated with the rate of change of the UPDRS part III scores. CONCLUSION The subset of peripheral T lymphocytes was related to the rate of cognitive decline in early PD patients, suggesting that the peripheral adaptive immune system may be involved in the process of cognitive decline in early PD.
Collapse
Affiliation(s)
- Yi Xiao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Health Management Center, West China Hospital of Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shichan Wang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Song
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
109
|
Wang Q, Xue Q. Bioinformatics analysis of potential common pathogenic mechanism for carotid atherosclerosis and Parkinson's disease. Front Aging Neurosci 2023; 15:1202952. [PMID: 37649719 PMCID: PMC10464527 DOI: 10.3389/fnagi.2023.1202952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background Cerebrovascular disease (CVD) related to atherosclerosis and Parkinson's disease (PD) are two prevalent neurological disorders. They share common risk factors and frequently occur together. The aim of this study is to investigate the association between atherosclerosis and PD using genetic databases to gain a comprehensive understanding of underlying biological mechanisms. Methods The gene expression profiles of atherosclerosis (GSE28829 and GSE100927) and PD (GSE7621 and GSE49036) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) for these two disorders, we constructed protein-protein interaction (PPI) networks and functional modules, and further identified hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) regression. The diagnostic effectiveness of these hub genes was evaluated using Receiver Operator Characteristic Curve (ROC) analysis. Furthermore, we used single sample gene set enrichment analysis (ssGSEA) to analyze immune cell infiltration and explored the association of the identified hub genes with infiltrating immune cells through Spearman's rank correlation analysis in R software. Results A total of 50 shared DEGs, with 36 up-regulated and 14 down-regulated genes, were identified through the intersection of DEGs of atherosclerosis and PD. Using LASSO regression, we identified six hub genes, namely C1QB, CD53, LY96, P2RX7, C3, and TNFSF13B, in the lambda.min model, and CD14, C1QB, CD53, P2RX7, C3, and TNFSF13B in the lambda.1se model. ROC analysis confirmed that both models had good diagnostic efficiency for atherosclerosis datasets GSE28829 (lambda.min AUC = 0.99, lambda.1se AUC = 0.986) and GSE100927 (lambda.min AUC = 0.922, lambda.1se AUC = 0.933), as well as for PD datasets GSE7621 (lambda.min AUC = 0.924, lambda.1se AUC = 0.944) and GSE49036 (lambda.min AUC = 0.894, lambda.1se AUC = 0.881). Furthermore, we found that activated B cells, effector memory CD8 + T cells, and macrophages were the shared correlated types of immune cells in both atherosclerosis and PD. Conclusion This study provided new sights into shared molecular mechanisms between these two disorders. These common hub genes and infiltrating immune cells offer promising clues for further experimental studies to explore the common pathogenesis of these disorders.
Collapse
Affiliation(s)
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
110
|
Lamberty BG, Estrella LD, Mattingly JE, Emanuel K, Trease A, Totusek S, Sheldon L, George JW, Almikhlafi MA, Farmer T, Stauch KL. Parkinson's disease relevant pathological features are manifested in male Pink1/Parkin deficient rats. Brain Behav Immun Health 2023; 31:100656. [PMID: 37484197 PMCID: PMC10362548 DOI: 10.1016/j.bbih.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Animal disease models are important for neuroscience experimentation and in the study of neurodegenerative disorders. The major neurodegenerative disorder leading to motor impairments is Parkinson's disease (PD). The identification of hereditary forms of PD uncovered gene mutations and variants, such as loss-of-function mutations in PTEN-induced putative kinase 1 (Pink1) and the E3 ubiquitin ligase Parkin, two proteins involved in mitochondrial quality control, that could be harnessed to create animal models. However, to date, such models have not reproducibly recapitulated major aspects of the disease. Here, we describe the generation and phenotypic characterization of a combined Pink1/Parkin double knockout (dKO) rat, which reproducibly exhibits PD-relevant abnormalities, particularly in male animals. Motor dysfunction in Pink1/Parkin dKO rats was characterized by gait abnormalities and decreased rearing frequency, the latter of which was responsive to levodopa treatment. Pink1/Parkin dKO rats exhibited elevated plasma levels of neurofilament light chain and significant loss of tyrosine hydroxylase expression in the substantia nigra pars compacta (SNpc). Glial cell activation was also observed in the SNpc. Pink1/Parkin dKO rats showed elevated plasma and reduced cerebrospinal levels of alpha-synuclein as well as the presence of alpha-synuclein aggregates in the striatum. Further, the profile of circulating lymphocytes was altered, as elevated CD3+CD4+ T cells and reduced CD3+CD8+ T cells in Pink1/Parkin dKO rats were found. This coincided with mitochondrial dysfunction and infiltration of CD3+ T cells in the striatum. Altogether, the Pink1/Parkin dKO rats exhibited phenotypes similar to what is seen with PD patients, thus highlighting the suitability of this model for mechanistic studies of the role of Pink1 and Parkin in PD pathogenesis and as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kelly L. Stauch
- Corresponding author. Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
111
|
Justich MB, Rojas OL, Fasano A. The Role of Helicobacter pylori and Small Intestinal Bacterial Overgrowth in Parkinson's Disease. Semin Neurol 2023; 43:553-561. [PMID: 37562451 DOI: 10.1055/s-0043-1771468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder whose etiology remains largely unexplained. Several studies have aimed to describe a causative effect in the interactions between the gastrointestinal tract and the brain, for both PD pathogenesis and disease course. However, the results have been controversial. Helicobacter pylori and small intestinal bacterial overgrowth (SIBO) are theorized to be agents capable of triggering chronic proinflammatory changes with a possible neurotoxic effect, as well as a cause of erratic L-dopa response in PD patients. This review evaluates the individual and possibly synergistic influence of H. pylori and SIBO on PD, to provide an opportunity to consider prospective therapeutic approaches.
Collapse
Affiliation(s)
- Maria Belen Justich
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga L Rojas
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Parkinson's Disease and Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital - Gravedona ed Uniti, Como, Italy
| |
Collapse
|
112
|
Shen L, Wang X, Zhai C, Chen Y. Ferroptosis: A potential therapeutic target in autoimmune disease (Review). Exp Ther Med 2023; 26:368. [PMID: 37408857 PMCID: PMC10318600 DOI: 10.3892/etm.2023.12067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Ferroptosis is a distinct type of regulated cell death characterized by iron overload and lipid peroxidation. Ferroptosis is regulated by numerous factors and controlled by several mechanisms. This cell death type has a relationship with the immune system, which may be regulated by damage-associated molecular patterns. Ferroptosis participates in the progression of autoimmune diseases, including autoimmune hepatitis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, Parkinson's Disease, psoriasis and insulin-dependent diabetes mellitus. The present review summarizes the role of ferroptosis in autoimmune disorders and discusses ferroptosis as a potential therapeutic target for autoimmune disease.
Collapse
Affiliation(s)
- Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohan Wang
- Department of Gastroenterology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
113
|
Loveland PM, Yu JJ, Churilov L, Yassi N, Watson R. Investigation of Inflammation in Lewy Body Dementia: A Systematic Scoping Review. Int J Mol Sci 2023; 24:12116. [PMID: 37569491 PMCID: PMC10418754 DOI: 10.3390/ijms241512116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory mechanisms are increasingly recognized as important contributors to the pathogenesis of neurodegenerative diseases, including Lewy body dementia (LBD). Our objectives were to, firstly, review inflammation investigation methods in LBD (dementia with Lewy bodies and Parkinson's disease dementia) and, secondly, identify alterations in inflammatory signals in LBD compared to people without neurodegenerative disease and other neurodegenerative diseases. A systematic scoping review was performed by searching major electronic databases (MEDLINE, Embase, Web of Science, and PSYCHInfo) to identify relevant human studies. Of the 2509 results screened, 80 studies were included. Thirty-six studies analyzed postmortem brain tissue, and 44 investigated living subjects with cerebrospinal fluid, blood, and/or brain imaging assessments. Largely cross-sectional data were available, although two longitudinal clinical studies investigated prodromal Lewy body disease. Investigations were focused on inflammatory immune cell activity (microglia, astrocytes, and lymphocytes) and inflammatory molecules (cytokines, etc.). Results of the included studies identified innate and adaptive immune system contributions to inflammation associated with Lewy body pathology and clinical disease features. Different signals in early and late-stage disease, with possible late immune senescence and dystrophic glial cell populations, were identified. The strength of these associations is limited by the varying methodologies, small study sizes, and cross-sectional nature of the data. Longitudinal studies investigating associations with clinical and other biomarker outcomes are needed to improve understanding of inflammatory activity over the course of LBD. This could identify markers of disease activity and support therapeutic development.
Collapse
Affiliation(s)
- Paula M. Loveland
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Jenny J. Yu
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Leonid Churilov
- Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
- Melbourne Medical School, University of Melbourne, Parkville 3000, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
- Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| |
Collapse
|
114
|
Ramachandran S, Grozdanov V, Leins B, Kandler K, Witzel S, Mulaw M, Ludolph AC, Weishaupt JH, Danzer KM. Low T-cell reactivity to TDP-43 peptides in ALS. Front Immunol 2023; 14:1193507. [PMID: 37545536 PMCID: PMC10401033 DOI: 10.3389/fimmu.2023.1193507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Background Dysregulation of the immune system in amyotrophic lateral sclerosis (ALS) includes changes in T-cells composition and infiltration of T cells in the brain and spinal cord. Recent studies have shown that cytotoxic T cells can directly induce motor neuron death in a mouse model of ALS and that T cells from ALS patients are cytotoxic to iPSC-derived motor neurons from ALS patients. Furthermore, a clonal expansion to unknown epitope(s) was recently found in familial ALS and increased peripheral and intrathecal activation of cytotoxic CD8+ T cells in sporadic ALS. Results Here, we show an increased activation of peripheral T cells from patients with sporadic ALS by IL-2 treatment, suggesting an increase of antigen-experienced T cells in ALS blood. However, a putative antigen for T-cell activation in ALS has not yet been identified. Therefore, we investigated if peptides derived from TDP-43, a key protein in ALS pathogenesis, can act as epitopes for antigen-mediated activation of human T cells by ELISPOT and flow cytometry. We found that TDP-43 peptides induced only a weak MHCI or MHCII-restricted activation of both naïve and antigen-experienced T cells from healthy controls and ALS patients. Interestingly, we found less activation in T cells from ALS patients to TDP-43 and control stimuli. Furthermore, we found no change in the levels of naturally occurring auto-antibodies against full-length TDP-43 in ALS. Conclusion Our data suggests a general increase in antigen-experienced T cells in ALS blood, measured by in-vitro culture with IL-2 for 14 days. Furthermore, it suggests that TDP-43 is a weak autoantigen.
Collapse
Affiliation(s)
| | | | - Bianca Leins
- Neurology, University Clinic, University of Ulm, Ulm, Germany
| | | | - Simon Witzel
- Neurology, University Clinic, University of Ulm, Ulm, Germany
| | - Medhanie Mulaw
- Institute of Experimental Cancer Research, Medical Faculty, University of Ulm, Ulm, Germany
| | - Albert C. Ludolph
- Neurology, University Clinic, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jochen H. Weishaupt
- Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Karin M. Danzer
- Neurology, University Clinic, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| |
Collapse
|
115
|
Russo T, Kolisnyk B, Aswathy BS, Wan Kim T, Martin J, Plessis-Belair J, Ni J, Pearson JA, Park EJ, Sher RB, Studer L, Riessland M. The SATB1-MIR22-GBA axis mediates glucocerebroside accumulation inducing a cellular senescence-like phenotype in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549710. [PMID: 37503189 PMCID: PMC10370136 DOI: 10.1101/2023.07.19.549710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Idiopathic Parkinson's Disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, which is associated with neuroinflammation and reactive gliosis. The underlying cause of PD and the concurrent neuroinflammation are not well understood. In this study, we utilized human and murine neuronal lines, stem cell-derived dopaminergic neurons, and mice to demonstrate that three previously identified genetic risk factors for PD, namely SATB1, MIR22HG, and GBA, are components of a single gene regulatory pathway. Our findings indicate that dysregulation of this pathway leads to the upregulation of glucocerebrosides (GluCer), which triggers a cellular senescence-like phenotype in dopaminergic neurons. Specifically, we discovered that downregulation of the transcriptional repressor SATB1 results in the derepression of the microRNA miR-22-3p, leading to decreased GBA expression and subsequent accumulation of GluCer. Furthermore, our results demonstrate that an increase in GluCer alone is sufficient to impair lysosomal and mitochondrial function, thereby inducing cellular senescence dependent on S100A9 and stress factors. Dysregulation of the SATB1-MIR22-GBA pathway, observed in both PD patients and normal aging, leads to lysosomal and mitochondrial dysfunction due to the GluCer accumulation, ultimately resulting in a cellular senescence-like phenotype in dopaminergic neurons. Therefore, our study highlights a novel pathway involving three genetic risk factors for PD and provides a potential mechanism for the senescence-induced neuroinflammation and reactive gliosis observed in both PD and normal aging.
Collapse
Affiliation(s)
- Taylor Russo
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - BS Aswathy
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Tae Wan Kim
- Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Jacqueline Martin
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan Plessis-Belair
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason Ni
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Jordan A. Pearson
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Emily J. Park
- Stem Cells and Regenerative Medicine, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Roger B. Sher
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
116
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 278] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
117
|
Gonzalez-Fierro C, Fonte C, Dufourd E, Cazaentre V, Aydin S, Engelhardt B, Caspi RR, Xu B, Martin-Blondel G, Spicer JA, Trapani JA, Bauer J, Liblau RS, Bost C. Effects of a Small-Molecule Perforin Inhibitor in a Mouse Model of CD8 T Cell-Mediated Neuroinflammation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200117. [PMID: 37080596 PMCID: PMC10119812 DOI: 10.1212/nxi.0000000000200117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Alteration of the blood-brain barrier (BBB) at the interface between blood and CNS parenchyma is prominent in most neuroinflammatory diseases. In several neurologic diseases, including cerebral malaria and Susac syndrome, a CD8 T cell-mediated targeting of endothelial cells of the BBB (BBB-ECs) has been implicated in pathogenesis. METHODS In this study, we used an experimental mouse model to evaluate the ability of a small-molecule perforin inhibitor to prevent neuroinflammation resulting from cytotoxic CD8 T cell-mediated damage of BBB-ECs. RESULTS Using an in vitro coculture system, we first identified perforin as an essential molecule for killing of BBB-ECs by CD8 T cells. We then found that short-term pharmacologic inhibition of perforin commencing after disease onset restored motor function and inhibited the neuropathology. Perforin inhibition resulted in preserved BBB-EC viability, maintenance of the BBB, and reduced CD8 T-cell accumulation in the brain and retina. DISCUSSION Therefore, perforin-dependent cytotoxicity plays a key role in the death of BBB-ECs inflicted by autoreactive CD8 T cells in a preclinical model and potentially represents a therapeutic target for CD8 T cell-mediated neuroinflammatory diseases, such as cerebral malaria and Susac syndrome.
Collapse
Affiliation(s)
- Carmen Gonzalez-Fierro
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Coralie Fonte
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Eloïse Dufourd
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Vincent Cazaentre
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Sidar Aydin
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Britta Engelhardt
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Rachel R Caspi
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Biying Xu
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Guillaume Martin-Blondel
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Julie A Spicer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Joseph A Trapani
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Jan Bauer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Roland S Liblau
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France.
| | - Chloé Bost
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| |
Collapse
|
118
|
Hobson BD, Stanley AT, De Los Santos MB, Culbertson B, Mosharov EV, Sims PA, Sulzer D. Conserved and cell type-specific transcriptional responses to IFN-γ in the ventral midbrain. Brain Behav Immun 2023; 111:277-291. [PMID: 37100211 PMCID: PMC10460506 DOI: 10.1016/j.bbi.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
Dysregulated inflammation within the central nervous system (CNS) contributes to neuropathology in infectious, autoimmune, and neurodegenerative disease. With the exception of microglia, major histocompatibility complex (MHC) proteins are virtually undetectable in the mature, healthy central nervous system (CNS). Neurons have generally been considered incapable of antigen presentation, and although interferon gamma (IFN-γ) can elicit neuronal MHC class I (MHC-I) expression and antigen presentation in vitro, it has been unclear whether similar responses occur in vivo. Here we directly injected IFN-γ into the ventral midbrain of mature mice and analyzed gene expression profiles of specific CNS cell types. We found that IFN-γ upregulated MHC-I and associated mRNAs in ventral midbrain microglia, astrocytes, oligodendrocytes, and GABAergic, glutamatergic, and dopaminergic neurons. The core set of IFN-γ-induced genes and their response kinetics were similar in neurons and glia, but with a lower amplitude of expression in neurons. A diverse repertoire of genes was upregulated in glia, particularly microglia, which were the only cells to undergo cellular proliferation and express MHC classII (MHC-II) and associated genes. To determine if neurons respond directly via cell-autonomous IFN-γ receptor (IFNGR) signaling, we produced mutant mice with a deletion of the IFN-γ-binding domain of IFNGR1 in dopaminergic neurons, which resulted in a complete loss of dopaminergic neuronal responses to IFN-γ. Our results demonstrate that IFN-γ induces neuronal IFNGR signaling and upregulation of MHC-I and related genes in vivo, although the expression level is low compared to oligodendrocytes, astrocytes, and microglia.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Adrien T Stanley
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Mark B De Los Santos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Bruce Culbertson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, United States; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| |
Collapse
|
119
|
Jiang N, Malone M, Chizari S. Antigen-specific and cross-reactive T cells in protection and disease. Immunol Rev 2023; 316:120-135. [PMID: 37209375 PMCID: PMC10524458 DOI: 10.1111/imr.13217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Human T cells have a diverse T-cell receptor (TCR) repertoire that endows them with the ability to identify and defend against a broad spectrum of antigens. The universe of possible antigens that T cells may encounter, however, is even larger. To effectively surveil such a vast universe, the T-cell repertoire must adopt a high degree of cross-reactivity. Likewise, antigen-specific and cross-reactive T-cell responses play pivotal roles in both protective and pathological immune responses in numerous diseases. In this review, we explore the implications of these antigen-driven T-cell responses, with a particular focus on CD8+ T cells, using infection, neurodegeneration, and cancer as examples. We also summarize recent technological advances that facilitate high-throughput profiling of antigen-specific and cross-reactive T-cell responses experimentally, as well as computational biology approaches that predict these interactions.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael Malone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
120
|
Schonhoff AM, Figge DA, Williams GP, Jurkuvenaite A, Gallups NJ, Childers GM, Webster JM, Standaert DG, Goldman JE, Harms AS. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat Commun 2023; 14:3754. [PMID: 37365181 PMCID: PMC10293214 DOI: 10.1038/s41467-023-39060-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Dopaminergic cell loss due to the accumulation of α-syn is a core feature of the pathogenesis of Parkinson disease. Neuroinflammation specifically induced by α-synuclein has been shown to exacerbate neurodegeneration, yet the role of central nervous system (CNS) resident macrophages in this process remains unclear. We found that a specific subset of CNS resident macrophages, border-associated macrophages (BAMs), play an essential role in mediating α-synuclein related neuroinflammation due to their unique role as the antigen presenting cells necessary to initiate a CD4 T cell response whereas the loss of MHCII antigen presentation on microglia had no effect on neuroinflammation. Furthermore, α-synuclein expression led to an expansion in border-associated macrophage numbers and a unique damage-associated activation state. Through a combinatorial approach of single-cell RNA sequencing and depletion experiments, we found that border-associated macrophages played an essential role in immune cell recruitment, infiltration, and antigen presentation. Furthermore, border-associated macrophages were identified in post-mortem PD brain in close proximity to T cells. These results point to a role for border-associated macrophages in mediating the pathogenesis of Parkinson disease through their role in the orchestration of the α-synuclein-mediated neuroinflammatory response.
Collapse
Affiliation(s)
- A M Schonhoff
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D A Figge
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G P Williams
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Jurkuvenaite
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - N J Gallups
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - G M Childers
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J M Webster
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D G Standaert
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J E Goldman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - A S Harms
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
121
|
Chatterjee D, Krainc D. Mechanisms of Glucocerebrosidase Dysfunction in Parkinson's Disease. J Mol Biol 2023; 435:168023. [PMID: 36828270 PMCID: PMC10247409 DOI: 10.1016/j.jmb.2023.168023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. https://twitter.com/NeilChatterBox
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
122
|
Wüllner U, Borghammer P, Choe CU, Csoti I, Falkenburger B, Gasser T, Lingor P, Riederer P. The heterogeneity of Parkinson's disease. J Neural Transm (Vienna) 2023; 130:827-838. [PMID: 37169935 PMCID: PMC10174621 DOI: 10.1007/s00702-023-02635-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
The heterogeneity of Parkinson's disease (PD), i.e. the various clinical phenotypes, pathological findings, genetic predispositions and probably also the various implicated pathophysiological pathways pose a major challenge for future research projects and therapeutic trail design. We outline several pathophysiological concepts, pathways and mechanisms, including the presumed roles of α-synuclein misfolding and aggregation, Lewy bodies, oxidative stress, iron and melanin, deficient autophagy processes, insulin and incretin signaling, T-cell autoimmunity, the gut-brain axis and the evidence that microbial (viral) agents may induce molecular hallmarks of neurodegeneration. The hypothesis is discussed, whether PD might indeed be triggered by exogenous (infectious) agents in susceptible individuals upon entry via the olfactory bulb (brain first) or the gut (body-first), which would support the idea that disease mechanisms may change over time. The unresolved heterogeneity of PD may have contributed to the failure of past clinical trials, which attempted to slow the course of PD. We thus conclude that PD patients need personalized therapeutic approaches tailored to specific phenomenological and etiologic subtypes of disease.
Collapse
Affiliation(s)
- Ullrich Wüllner
- Department of Neurology, University Clinic Bonn and German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Chi-un Choe
- Department of Neurology, Klinikum Itzehoe, Robert-Koch-Straße 2, 25524 Itzehoe, Germany
| | - Ilona Csoti
- Fachklinik Für Parkinson, Gertrudis Klinik Biskirchen, Karl-Ferdinand-Broll-Straße 2-4, 35638 Leun-Biskirchen, Germany
| | - Björn Falkenburger
- Department of Neurology, University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Gasser
- Department of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology and German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Peter Riederer
- University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark
| |
Collapse
|
123
|
Wannemacher R, Reiß A, Rohn K, Lühder F, Flügel A, Baumgärtner W, Hülskötter K. Ovalbumin-specific CD4 + and CD8 + T cells contribute to different susceptibility for Theiler's murine encephalomyelitis virus persistence. Front Immunol 2023; 14:1194842. [PMID: 37292191 PMCID: PMC10244668 DOI: 10.3389/fimmu.2023.1194842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is the causative agent of TMEV-induced demyelinating disease (TMEV-IDD); a well-established animal model for the chronic progressive form of human multiple sclerosis (MS). In susceptible mice with an inadequate immune response, TMEV-IDD is triggered by virus persistence and maintained by a T cell mediated immunopathology. OT-mice are bred on a TMEV-resistant C57BL/6 background and own predominantly chicken ovalbumin (OVA)-specific populations of CD8+ T cells (OT-I) or CD4+ T cells (OT-II), respectively. It is hypothesized that the lack of antigen specific T cell populations increases susceptibility for a TMEV-infection in OT-mice on a TMEV-resistant C57BL/6 background. OT-I, OT-II, and C57BL/6 control mice were infected intracerebrally with the TMEV-BeAn strain. Mice were scored weekly for clinical disease and after necropsy, histological and immunohistochemical evaluation was performed. OT-I mice started to develop progressive motor dysfunction between 7 and 21 days post infection (dpi), leading up to hind limb paresis and critical weight loss, which resulted in euthanasia for humane reasons between 14 and 35 dpi. OT-I mice displayed a high cerebral virus load, an almost complete absence of CD8+ T cells from the central nervous system (CNS) and a significantly diminished CD4+ T cell response. Contrarily, only 60% (12 of 20) of infected OT-II mice developed clinical disease characterized by mild ataxia. 25% of clinically affected OT-II mice (3 of 12) made a full recovery. 5 of 12 OT-II mice with clinical disease developed severe motor dysfunction similar to OT-I mice and were euthanized for humane reasons between 13 and 37 dpi. OT-II mice displayed only low virus-immunoreactivity, but clinical disease correlated well with severely reduced infiltration of CD8+ T cells and the increased presence of CD4+ T cells in the brains of OT-II mice. Though further studies are needed to reveal the underlying pathomechanisms following TMEV infection in OT mice, findings indicate an immunopathological process as a main contributor to clinical disease in OT-II mice, while a direct virus-associated pathology may be the main contributor to clinical disease in TMEV-infected OT-I mice.
Collapse
Affiliation(s)
- Rouven Wannemacher
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Anna Reiß
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Data Processing, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Fred Lühder
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
124
|
Bourque M, Morissette M, Soulet D, Di Paolo T. Impact of Sex on Neuroimmune contributions to Parkinson's disease. Brain Res Bull 2023:110668. [PMID: 37196734 DOI: 10.1016/j.brainresbull.2023.110668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Inflammation has been observed in both the idiopathic and familial forms of PD. Importantly, PD is reported more often in men than in women, men having at least 1.5- fold higher risk to develop PD than women. This review summarizes the impact of biological sex and sex hormones on the neuroimmune contributions to PD and its investigation in animal models of PD. Innate and peripheral immune systems participate in the brain neuroinflammation of PD patients and is reproduced in neurotoxin, genetic and alpha-synuclein based models of PD. Microglia and astrocytes are the main cells of the innate immune system in the central nervous system and are the first to react to restore homeostasis in the brain. Analysis of serum immunoprofiles in female and male control and PD patients show that a great proportion of these markers differ between male and female. The relationship between CSF inflammatory markers and PD clinical characteristics or PD biomarkers shows sex differences. Conversely, in animal models of PD, sex differences in inflammation are well documented and the beneficial effects of endogenous and exogenous estrogenic modulation in inflammation have been reported. Targeting neuroinflammation in PD is an emerging therapeutic option but gonadal drugs have not yet been investigated in this respect, thus offering new opportunities for sex specific treatments.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| |
Collapse
|
125
|
Cui H, Elford JD, Alitalo O, Perez-Pardo P, Tampio J, Huttunen KM, Kraneveld A, Forsberg MM, Myöhänen TT, Jalkanen AJ. Nigrostriatal 6-hydroxydopamine lesions increase alpha-synuclein levels and permeability in rat colon. Neurobiol Aging 2023; 129:62-71. [PMID: 37271045 DOI: 10.1016/j.neurobiolaging.2023.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023]
Abstract
Increasing evidence suggests that the gut-brain axis plays a crucial role in Parkinson's disease (PD). The abnormal accumulation of aggregated alpha-synuclein (aSyn) in the brain is a key pathological feature of PD. Intracerebral 6-hydroxydopamine (6-OHDA) is a widely used dopaminergic lesion model of PD. It exerts no aSyn pathology in the brain, but changes in the gut have not been assessed. Here, 6-OHDA was administered unilaterally either to the rat medial forebrain bundle (MFB) or striatum. Increased levels of glial fibrillary acidic protein in the ileum and colon were detected at 5 weeks postlesion. 6-OHDA decreased the Zonula occludens protein 1 barrier integrity score, suggesting increased colonic permeability. The total aSyn and Ser129 phosphorylated aSyn levels were elevated in the colon after the MFB lesion. Both lesions generally increased the total aSyn, pS129 aSyn, and ionized calcium-binding adapter molecule 1 (Iba1) levels in the lesioned striatum. In conclusion, 6-OHDA-induced nigrostriatal dopaminergic damage leads to increased aSyn levels and glial cell activation particularly in the colon, suggesting that the gut-brain axis interactions in PD are bidirectional and the detrimental process may start in the brain.
Collapse
Affiliation(s)
- Hengjing Cui
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Joshua D Elford
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Helsinki, the Netherlands
| | - Okko Alitalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Paula Perez-Pardo
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Helsinki, the Netherlands
| | - Janne Tampio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Aletta Kraneveld
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Helsinki, the Netherlands
| | | | - Timo T Myöhänen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Aaro J Jalkanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
126
|
Abstract
Autoimmune diseases display a high degree of comorbidity within individuals and families, suggesting shared risk factors. Over the past 15 years, genome-wide association studies have established the polygenic basis of these common conditions and revealed widespread sharing of genetic effects, indicative of a shared immunopathology. Despite ongoing challenges in determining the precise genes and molecular consequences of these risk variants, functional experiments and integration with multimodal genomic data are providing valuable insights into key immune cells and pathways driving these diseases, with potential therapeutic implications. Moreover, genetic studies of ancient populations are shedding light on the contribution of pathogen-driven selection pressures to the increased prevalence of autoimmune disease. This Review summarizes the current understanding of autoimmune disease genetics, including shared effects, mechanisms, and evolutionary origins.
Collapse
Affiliation(s)
- Adil Harroud
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- The Neuro (Montreal Neurological Institute and Hospital), McGill University, Montréal, Quebec, Canada
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| |
Collapse
|
127
|
Yan S, Si Y, Zhou W, Cheng R, Wang P, Wang D, Ding W, Shi W, Jiang Q, Yang F, Yao L. Single-cell transcriptomics reveals the interaction between peripheral CD4+ CTLs and mesencephalic endothelial cells mediated by IFNG in Parkinson's disease. Comput Biol Med 2023; 158:106801. [PMID: 36989741 DOI: 10.1016/j.compbiomed.2023.106801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurons degeneration in the substantia nigra pars compacta. Increasing evidence indicates that peripheral CD4+ T cells, a vital pathological component of PD, have been implicated in systemic inflammation activation, blood-brain barrier (BBB) dysfunction, central nervous system infiltration, and consequent neurons degeneration. However, there is no consensus on CD4+ T cell types' exact phenotypic characteristics in systemic inflammation and the mechanism of CD4+ T cells traffic into the BBB in patients with PD. In this study, we employed single-cell RNA sequencing (scRNA-seq) to elucidate the potential mechanism of T cells on the breakdown of BBB. The PD-associated Cytotoxic CD4+ T cells (CD4+ CTLs) were characterized by a significant increase in proportion as well as enhancement of interferon-gamma (IFNG) response and cell adhesion. Meanwhile, TBX21, IRF1 and NFATC2, identified as the key transcription factors in effector CD4+ T cells differentiation, induced overexpression of target genes-IFNG in CD4+ CTLs. Interestingly, endothelial cells (ECs) in PD patients were discovered to be more responsive to IFNG than other cell types of midbrain. Furthermore, the cell-cell communication analysis between CD4+ T cells and midbrain cells identified IFNG/IFNGR1 and SPP1/ITGB1 as the ligand-receptor pairs to mediate CD4+ CTLs' infiltration into the central nervous system (CNS) through the weakened ECs' tight junction. Together, these results suggested that PD-specific peripheral CD4+ CTLs might influence BBB function by migrating to mesencephalic endothelial cells (ECs) and activating the IFNG response in ECs.
Collapse
|
128
|
Yacoubian TA, Fang YHD, Gerstenecker A, Amara A, Stover N, Ruffrage L, Collette C, Kennedy R, Zhang Y, Hong H, Qin H, McConathy J, Benveniste EN, Standaert DG. Brain and Systemic Inflammation in De Novo Parkinson's Disease. Mov Disord 2023; 38:743-754. [PMID: 36853618 PMCID: PMC11403348 DOI: 10.1002/mds.29363] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
OBJECTIVE To assess the presence of brain and systemic inflammation in subjects newly diagnosed with Parkinson's disease (PD). BACKGROUND Evidence for a pathophysiologic role of inflammation in PD is growing. However, several key gaps remain as to the role of inflammation in PD, including the extent of immune activation at early stages, potential effects of PD treatments on inflammation and whether pro-inflammatory signals are associated with clinical features and/or predict more rapid progression. METHODS We enrolled subjects with de novo PD (n = 58) and age-matched controls (n = 62). Subjects underwent clinical assessments, including the Movement Disorder Society-United Parkinson's Disease rating scale (MDS-UPDRS). Comprehensive cognitive assessment meeting MDS Level II criteria for mild cognitive impairment testing was performed. Blood was obtained for flow cytometry and cytokine/chemokine analyses. Subjects underwent imaging with 18 F-DPA-714, a translocator protein 18kd ligand, and lumbar puncture if eligible and consented. RESULTS Baseline demographics and medical history were comparable between groups. PD subjects showed significant differences in University of Pennsylvania Smell Identification Test, Schwab and England Activities of Daily Living, Scales for Outcomes in PD autonomic dysfunction, and MDS-UPDRS scores. Cognitive testing demonstrated significant differences in cognitive composite, executive function, and visuospatial domain scores at baseline. Positron emission tomography imaging showed increased 18 F-DPA-714 signal in PD subjects. 18 F-DPA-714 signal correlated with several cognitive measures and some chemokines. CONCLUSIONS 18 F-DPA-714 imaging demonstrated increased central inflammation in de novo PD subjects compared to controls. Longitudinal follow-up will be important to determine whether the presence of inflammation predicts cognitive decline. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Talene A Yacoubian
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yu-Hua Dean Fang
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adam Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amy Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natividad Stover
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lauren Ruffrage
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Collette
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard Kennedy
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yue Zhang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Huixian Hong
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hongwei Qin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Etty N Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
129
|
Zhuo Y, Li X, He Z, Lu M. Pathological mechanisms of neuroimmune response and multitarget disease-modifying therapies of mesenchymal stem cells in Parkinson's disease. Stem Cell Res Ther 2023; 14:80. [PMID: 37041580 PMCID: PMC10091615 DOI: 10.1186/s13287-023-03280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN); the etiology and pathological mechanism of the disease are still unclear. Recent studies have shown that the activation of a neuroimmune response plays a key role in the development of PD. Alpha-synuclein (α-Syn), the primary pathological marker of PD, can gather in the SN and trigger a neuroinflammatory response by activating microglia which can further activate the dopaminergic neuron's neuroimmune response mediated by reactive T cells through antigen presentation. It has been shown that adaptive immunity and antigen presentation processes are involved in the process of PD and further research on the neuroimmune response mechanism may open new methods for its prevention and therapy. While current therapeutic regimens are still focused on controlling clinical symptoms, applications such as immunoregulatory strategies can delay the symptoms and the process of neurodegeneration. In this review, we summarized the progression of the neuroimmune response in PD based on recent studies and focused on the use of mesenchymal stem cell (MSC) therapy and challenges as a strategy of disease-modifying therapy with multiple targets.
Collapse
Affiliation(s)
- Yi Zhuo
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Xuan Li
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
| | - Zhengwen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China.
| | - Ming Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China.
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, 410003, Hunan, China.
| |
Collapse
|
130
|
Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science 2023; 380:eabo7649. [PMID: 37023203 DOI: 10.1126/science.abo7649] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Contemporary studies have completely changed the view of brain immunity from envisioning the brain as isolated and inaccessible to peripheral immune cells to an organ in close physical and functional communication with the immune system for its maintenance, function, and repair. Circulating immune cells reside in special niches in the brain's borders, the choroid plexus, meninges, and perivascular spaces, from which they patrol and sense the brain in a remote manner. These niches, together with the meningeal lymphatic system and skull microchannels, provide multiple routes of interaction between the brain and the immune system, in addition to the blood vasculature. In this Review, we describe current ideas about brain immunity and their implications for brain aging, diseases, and immune-based therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Castellani
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
131
|
Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, Borges-Monroy R, Ehrlich A, Serano GE, Feany MB, Beach TG, Scherzer CR. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535194. [PMID: 37066229 PMCID: PMC10103951 DOI: 10.1101/2023.04.01.535194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identified over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1,526 and 3,308 circRNAs were custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 88% of Parkinson's and 80% of Alzheimer's disease-associated genes produced circRNAs. circDNAJC6, produced from a juvenile-onset Parkinson's gene, was already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produced circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA- regulated synaptic specialization in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xianjun Dong
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Genomics and Bioinformatics Hub, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Yunfei Bai
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - David Gritsch
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - Xiaoli Liu
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Department of Neurology, Zhejiang Hospital, Zhejiang, China
| | - Tao Wang
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Rebeca Borges-Monroy
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - Alyssa Ehrlich
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mel B. Feany
- Departement of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Clemens R. Scherzer
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
132
|
Samim Khan S, Janrao S, Srivastava S, Bala Singh S, Vora L, Kumar Khatri D. GSK-3β: An exuberating neuroinflammatory mediator in Parkinson's disease. Biochem Pharmacol 2023; 210:115496. [PMID: 36907495 DOI: 10.1016/j.bcp.2023.115496] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Neuroinflammation is a critical degradative condition affecting neurons in the brain. Progressive neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease (PD) have been strongly linked to neuroinflammation. The trigger point for inflammatory conditions in the cells and body is the physiological immune system. The immune response mediated by glial cells and astrocytes can rectify the physiological alterations occurring in the cell for the time being but prolonged activation leads to pathological progression. The proteins mediating such an inflammatory response, as per the available literature, are undoubtedly GSK-3β, NLRP3, TNF, PPARγ, and NF-κB, along with a few other mediatory proteins. NLRP3 inflammasome is undeniably a principal instigator of the neuroinflammatory response, but the regulatory pathways controlling its activation are still unclear, besides less clarity for the interplay between different inflammatory proteins. Recent reports have suggested the involvement of GSK-3β in regulating NLRP3 activation, but the exact mechanistic pathway remains vague. In the current review, we attempt to provide an elaborate description of crosstalk between inflammatory markers and GSK-3β mediated neuroinflammation progression, linking it to regulatory transcription factors and posttranslational modification of proteins. The recent clinical therapeutic advances targeting these proteins are also discussed in parallel to provide a comprehensive view of the progress made in PD management and lacunas still existing in the field.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Sushmita Janrao
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| |
Collapse
|
133
|
Kamath T, Macosko EZ. Insights into Neurodegeneration in Parkinson's Disease from Single-Cell and Spatial Genomics. Mov Disord 2023; 38:518-525. [PMID: 36881930 PMCID: PMC11056908 DOI: 10.1002/mds.29374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Parkinson's disease (PD) is pathologically defined by the death of dopaminergic (DA) neurons within the pars compacta of the substantia nigra. To date, the cause of this multifaceted disease remains largely unclear, which may contribute in part to a current lack of disease-modifying therapies. Recent advances in single-cell and spatial genomic profiling tools have provided powerful new ways to measure cellular state changes in brain diseases. Here, we describe how these tools have offered insight into these complex disorders and highlight a recently performed comprehensive study of DA neuron susceptibility in PD. The data generated by this recent work provide evidence for the role of specific pathways and common genetic variants resulting in the loss of a critical DA subtype in PD. We conclude by outlining a set of basic and translational opportunities that arise from those data and insights gathered from this work. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tushar Kamath
- Stanley Center for Psychiatric Research, Broad Institute, 75 Ames Street Cambridge, MA 02139
- Harvard Medical School and Harvard/MIT MD-PhD Program, Harvard University, Cambridge, MA 02139 USA
| | - Evan Z. Macosko
- Stanley Center for Psychiatric Research, Broad Institute, 75 Ames Street Cambridge, MA 02139
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA USA
| |
Collapse
|
134
|
Bianco A, Antonacci Y, Liguori M. Sex and Gender Differences in Neurodegenerative Diseases: Challenges for Therapeutic Opportunities. Int J Mol Sci 2023; 24:6354. [PMID: 37047320 PMCID: PMC10093984 DOI: 10.3390/ijms24076354] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The term "neurodegenerative diseases" (NDs) identifies a group of heterogeneous diseases characterized by progressive loss of selectively vulnerable populations of neurons, which progressively deteriorates over time, leading to neuronal dysfunction. Protein aggregation and neuronal loss have been considered the most characteristic hallmarks of NDs, but growing evidence confirms that significant dysregulation of innate immune pathways plays a crucial role as well. NDs vary from multiple sclerosis, in which the autoimmune inflammatory component is predominant, to more "classical" NDs, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. Of interest, many of the clinical differences reported in NDs seem to be closely linked to sex, which may be justified by the significant changes in immune mechanisms between affected females and males. In this review, we examined some of the most studied NDs by looking at their pathogenic and phenotypical features to highlight sex-related discrepancies, if any, with particular interest in the individuals' responses to treatment. We believe that pointing out these differences in clinical practice may help achieve more successful precision and personalized care.
Collapse
Affiliation(s)
| | | | - Maria Liguori
- National Research Council (CNR), Institute of Biomedical Technologies, Bari Unit, 70125 Bari, Italy
| |
Collapse
|
135
|
Rege SV, Teichert A, Masumi J, Dhande OS, Harish R, Higgins BW, Lopez Y, Akrapongpisak L, Hackbart H, Caryotakis S, Leone DP, Szoke B, Hannestad J, Nikolich K, Braithwaite SP, Minami SS. CCR3 plays a role in murine age-related cognitive changes and T-cell infiltration into the brain. Commun Biol 2023; 6:292. [PMID: 36934154 PMCID: PMC10024715 DOI: 10.1038/s42003-023-04665-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023] Open
Abstract
Targeting immune-mediated, age-related, biology has the potential to be a transformative therapeutic strategy. However, the redundant nature of the multiple cytokines that change with aging requires identification of a master downstream regulator to successfully exert therapeutic efficacy. Here, we discovered CCR3 as a prime candidate, and inhibition of CCR3 has pro-cognitive benefits in mice, but these benefits are not driven by an obvious direct action on central nervous system (CNS)-resident cells. Instead, CCR3-expressing T cells in the periphery that are modulated in aging inhibit infiltration of these T cells across the blood-brain barrier and reduce neuroinflammation. The axis of CCR3-expressing T cells influencing crosstalk from periphery to brain provides a therapeutically tractable link. These findings indicate the broad therapeutic potential of CCR3 inhibition in a spectrum of neuroinflammatory diseases of aging.
Collapse
|
136
|
Heiden DL, Monogue B, Ali MDH, Beckham JD. A functional role for alpha-synuclein in neuroimmune responses. J Neuroimmunol 2023; 376:578047. [PMID: 36791583 PMCID: PMC10022478 DOI: 10.1016/j.jneuroim.2023.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Alpha-synuclein is a neuronal protein with unclear function but is associated with the pathogenesis of Parkinson's disease and other synucleinopathies. In this review, we discuss the emerging functional role of alpha-synuclein in support of the unique immune responses in the nervous system. Recent data now show that alpha-synuclein functions to support interferon signaling within neurons and is released from neurons to support chemoattraction and activation of local glial cells and infiltrating immune cells. Inflammatory activation and interferon signaling also induce post-translational modifications of alpha-synuclein that are commonly associated with Parkinson's disease pathogenesis. Taken together, emerging data implicate complex interactions between alpha-synuclein and host immune responses that may contribute to the pathogenesis of Parkinson's disease. Additional study of the function of alpha-synuclein in the brain's immune response may provide disease-modifying therapeutic targets for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Dustin L Heiden
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan Monogue
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M D Haider Ali
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J David Beckham
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
137
|
Inflammatory CSF profiles and longitudinal development of cognitive decline in sporadic and GBA-associated PD. NPJ Parkinsons Dis 2023; 9:38. [PMID: 36906614 PMCID: PMC10008539 DOI: 10.1038/s41531-023-00476-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 03/13/2023] Open
Abstract
Inflammation modifies the incidence and progression of Parkinson's disease (PD). By using 30 inflammatory markers in CSF in 498 people with PD and 67 people with dementia with Lewy bodies (DLB) we show that: (1) levels of ICAM-1, Interleukin-8, MCP-1, MIP-1 beta, SCF and VEGF were associated with clinical scores and neurodegenerative CSF biomarkers (Aβ1-42, t-Tau, p181-Tau, NFL and α-synuclein). (2) PD patients with GBA mutations show similar levels of inflammatory markers compared to PD patients without GBA mutations, even when stratified by mutation severity. (3) PD patients who longitudinally developed cognitive impairment during the study had higher levels of TNF-alpha at baseline compared to patients without the development of cognitive impairment. (4) Higher levels of VEGF and MIP-1 beta were associated with a longer duration until the development of cognitive impairment. We conclude that the majority of inflammatory markers is limited in robustly predicting longitudinal trajectories of developing cognitive impairment.
Collapse
|
138
|
Scott KM, Chong YT, Park S, Wijeyekoon RS, Hayat S, Mathews RJ, Fitzpatrick Z, Tyers P, Wright G, Whitby J, Barker RA, Hu MT, Williams-Gray CH, Clatworthy MR. B lymphocyte responses in Parkinson's disease and their possible significance in disease progression. Brain Commun 2023; 5:fcad060. [PMID: 36993946 PMCID: PMC10042276 DOI: 10.1093/braincomms/fcad060] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/27/2022] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Inflammation contributes to Parkinson's disease pathogenesis. We hypothesized that B lymphocytes are involved in Parkinson's disease progression. We measured antibodies to alpha-synuclein and tau in serum from patients with rapid eye movement sleep behaviour disorder (n = 79), early Parkinson's disease (n = 50) and matched controls (n = 50). Rapid eye movement sleep behaviour disorder cases were stratified by risk of progression to Parkinson's disease (low risk = 30, high risk = 49). We also measured B-cell activating factor of the tumour necrosis factor receptor family, C-reactive protein and total immunoglobulin G. We found elevated levels of antibodies to alpha-synuclein fibrils in rapid eye movement sleep behaviour disorder patients at high risk of Parkinson's disease conversion (ANOVA, P < 0.001) and lower S129D peptide-specific antibodies in those at low risk (ANOVA, P < 0.001). An early humoral response to alpha-synuclein is therefore detectable prior to the development of Parkinson's disease. Peripheral B lymphocyte phenotyping using flow cytometry in early Parkinson's disease patients and matched controls (n = 41 per group) revealed reduced B cells in Parkinson's disease, particularly in those at higher risk of developing an early dementia [t(3) = 2.87, P = 0.01]. Patients with a greater proportion of regulatory B cells had better motor scores [F(4,24) = 3.612, P = 0.019], suggesting they have a protective role in Parkinson's disease. In contrast, B cells isolated from Parkinson's disease patients at higher risk of dementia had greater cytokine (interleukin 6 and interleukin 10) responses following in vitro stimulation. We assessed peripheral blood lymphocytes in alpha-synuclein transgenic mouse models of Parkinson's disease: they also had reduced B cells, suggesting this is related to alpha-synuclein pathology. In a toxin-based mouse model of Parkinson's disease, B-cell deficiency or depletion resulted in worse pathological and behavioural outcomes, supporting the conclusion that B cells play an early protective role in dopaminergic cell loss. In conclusion, we found changes in the B-cell compartment associated with risk of disease progression in rapid eye movement sleep behaviour disorder (higher alpha-synuclein antibodies) and early Parkinson's disease (lower levels of B lymphocytes that were more reactive to stimulation). Regulatory B cells play a protective role in a mouse model, potentially by attenuating inflammation and dopaminergic cell loss. B cells are therefore likely to be involved in the pathogenesis of Parkinson's disease, albeit in a complex way, and thus warrant consideration as a therapeutic target.
Collapse
Affiliation(s)
- Kirsten M Scott
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Yen Ting Chong
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Seoyoung Park
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Ruwani S Wijeyekoon
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Shaista Hayat
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Rebeccah J Mathews
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Zachary Fitzpatrick
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Pam Tyers
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Georgia Wright
- University of Cambridge Clinical School of Medicine, Cambridge CB2 OQQ, UK
| | - Jennifer Whitby
- University of Cambridge Clinical School of Medicine, Cambridge CB2 OQQ, UK
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Michele T Hu
- Division of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
- Cellular Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
139
|
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 2023; 14:176. [PMID: 36859484 PMCID: PMC9977911 DOI: 10.1038/s41419-023-05672-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Although the discovery of the critical role of α-synuclein (α-syn) in the pathogenesis of Parkinson's disease (PD) is now twenty-five years old, it still represents a milestone in PD research. Abnormal forms of α-syn trigger selective and progressive neuronal death through mitochondrial impairment, lysosomal dysfunction, and alteration of calcium homeostasis not only in PD but also in other α-syn-related neurodegenerative disorders such as dementia with Lewy bodies, multiple system atrophy, pure autonomic failure, and REM sleep behavior disorder. Furthermore, α-syn-dependent early synaptic and plastic alterations and the underlying mechanisms preceding overt neurodegeneration have attracted great interest. In particular, the presence of early inflammation in experimental models and PD patients, occurring before deposition and spreading of α-syn, suggests a mechanistic link between inflammation and synaptic dysfunction. The knowledge of these early mechanisms is of seminal importance to support the research on reliable biomarkers to precociously identify the disease and possible disease-modifying therapies targeting α-syn. In this review, we will discuss these critical issues, providing a state of the art of the role of this protein in early PD and other synucleinopathies.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy. .,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.
| | - Alessandro Mechelli
- Dipartimento di Scienze Mediche e Chirurgiche, Istituto di Neurologia, Università "Magna Graecia", Catanzaro, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.,Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
140
|
|
141
|
Lv QK, Tao KX, Wang XB, Yao XY, Pang MZ, Liu JY, Wang F, Liu CF. Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflamm Res 2023; 72:443-462. [PMID: 36598534 DOI: 10.1007/s00011-022-01676-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES Further studies are needed to determine how α-syn works in microglia. METHODS A keyword-based search was performed using the PubMed database for published articles. CONCLUSION In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
142
|
Mamais A, Wallings R, Rocha EM. Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:33-51. [PMID: 36803821 DOI: 10.1016/b978-0-323-85555-6.00009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Rebecca Wallings
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
143
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
144
|
Identification of Parkinson's disease-associated chromatin regulators. Sci Rep 2023; 13:3084. [PMID: 36813848 PMCID: PMC9947017 DOI: 10.1038/s41598-023-30236-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is a common neurological disorder that causes quiescent tremors, motor delays, depression, and sleep disturbances. Existing treatments can only improve symptoms, not stop progression or cure the disease, but effective treatments can significantly improve patients' quality of life. There is growing evidence that chromatin regulatory proteins (CRs) are involved in a variety of biological processes, including inflammation, apoptosis, autophagy, and proliferation. But the relationship of chromatin regulators in Parkinson's disease has not been studied. Therefore, we aim to investigate the role of CRs in the pathogenesis of Parkinson's disease. We collected 870 chromatin regulatory factors from previous studies and downloaded data on patients with PD from the GEO database. 64 differentially expressed genes were screened, the interaction network was constructed and the key genes with the top 20 scores were calculated. Then we discussed its correlation with the immune function of PD. Finally, we screened potential drugs and miRNAs. Five genes related to the immune function of PD, BANF1, PCGF5, WDR5, RYBP and BRD2, were obtained by using the absolute value of correlation greater than 0.4. And the disease prediction model showed good predictive efficiency. We also screened 10 related drugs and 12 related miRNAs, which provided a reference for the treatment of PD. BANF1, PCGF5, WDR5, RYBP and BRD2 are related to the immune process of Parkinson's disease and can predict the occurrence of Parkinson's disease, which is expected to become a new target for the diagnosis and treatment of Parkinson's disease.
Collapse
|
145
|
Standaert DG, Harms AS, Childers GM, Webster JM. Disease mechanisms as subtypes: Inflammation in Parkinson disease and related disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:95-106. [PMID: 36803825 DOI: 10.1016/b978-0-323-85555-6.00011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Neuroinflammation is a core feature of Parkinson disease (PD) and related disorders. Inflammation is detectable early in PD and persists throughout the disease state. Both the innate and the adaptive arms of the immune system are engaged in both human PD as well as in animal models of the disease. The upstream causes of PD are likely multiple and complex, which makes targeting of disease-modifying therapies based on etiological factors difficult. Inflammation is a broadly shared common mechanism and likely makes an important contribution to progression in most patients with manifest symptoms. Development of treatments targeting neuroinflammation in PD will require an understanding of the specific immune mechanisms which are active, their relative effects on both injury and neurorestoration, as well as the role of key variables likely to modulate the immune response: age, sex, the nature of the proteinopathies present, and the presence of copathologies. Studies characterizing the specific state of immune response in individuals and groups of people affected by PD will be essential to the development of targeted disease-modifying immunotherapies.
Collapse
Affiliation(s)
- David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gabrielle M Childers
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jhodi M Webster
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
146
|
Xu Y, Li Y, Wang C, Han T, Liu H, Sun L, Hong J, Hashimoto M, Wei J. The reciprocal interactions between microglia and T cells in Parkinson's disease: a double-edged sword. J Neuroinflammation 2023; 20:33. [PMID: 36774485 PMCID: PMC9922470 DOI: 10.1186/s12974-023-02723-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
In Parkinson's disease (PD), neurotoxic microglia, Th1 cells, and Th17 cells are overactivated. Overactivation of these immune cells exacerbates the disease process and leads to the pathological development of pro-inflammatory cytokines, chemokines, and contact-killing compounds, causing the loss of dopaminergic neurons. So far, we have mainly focused on the role of the specific class of immune cells in PD while neglecting the impact of interactions among immune cells on the disease. Therefore, this review demonstrates the reciprocal interplays between microglia and T cells and the associated subpopulations through cytokine and chemokine production that impair and/or protect the pathological process of PD. Furthermore, potential targets and models of PD neuroinflammation are highlighted to provide the new ideas/directions for future research.
Collapse
Affiliation(s)
- Yuxiang Xu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004 China
| | - Yongjie Li
- grid.414360.40000 0004 0605 7104Department of Rehabilitation Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Changqing Wang
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Tingting Han
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Haixuan Liu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lin Sun
- grid.256922.80000 0000 9139 560XHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004 Henan China
| | - Jun Hong
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Makoto Hashimoto
- grid.272456.00000 0000 9343 3630Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506 Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China. .,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
147
|
Ozono T, Kimura Y, Suenaga T, Beck G, Jinno J, Aguirre C, Ikenaka K, Krainc D, Mochizuki H, Arase H. Extracellular transportation of α-synuclein by HLA class II molecules. Biochem Biophys Res Commun 2023; 644:25-33. [PMID: 36621149 DOI: 10.1016/j.bbrc.2022.12.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive accumulation of α-synuclein aggregates in form of Lewy bodies. Genome-wide association studies have revealed that human leukocyte antigen (HLA) class II is a PD-associated gene, although the mechanisms linking HLA class II and PD remain elusive. Here, we identified a novel function of HLA class II in the transport of intracellular α-synuclein to the outside of cells. HLA class II molecules and α-synuclein formed complexes and moved to the cell surface at various degrees among HLA-DR alleles. HLA-DR with a DRB5∗01:01 allele, a putative PD-risk allele, substantially translocated normal and conformationally abnormal α-synuclein to the cell surface and extracellular vesicles. α-Synuclein/HLA class II complexes were found in A2058 melanoma cells, which express intrinsic α-synuclein and HLA-DR with DRB5∗01:01. Our findings will expand our knowledge of unconventional HLA class II function from autoimmune diseases to neurodegenerative disorders, shedding light on the association between the GWAS-prioritized PD-risk gene HLA-DR and α-synuclein.
Collapse
Affiliation(s)
- Tatsuhiko Ozono
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadahiro Suenaga
- Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Goichi Beck
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jyunki Jinno
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - César Aguirre
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hisashi Arase
- Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
148
|
Review of Technological Challenges in Personalised Medicine and Early Diagnosis of Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24043321. [PMID: 36834733 PMCID: PMC9968142 DOI: 10.3390/ijms24043321] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodegenerative disorders are characterised by progressive neuron loss in specific brain areas. The most common are Alzheimer's disease and Parkinson's disease; in both cases, diagnosis is based on clinical tests with limited capability to discriminate between similar neurodegenerative disorders and detect the early stages of the disease. It is common that by the time a patient is diagnosed with the disease, the level of neurodegeneration is already severe. Thus, it is critical to find new diagnostic methods that allow earlier and more accurate disease detection. This study reviews the methods available for the clinical diagnosis of neurodegenerative diseases and potentially interesting new technologies. Neuroimaging techniques are the most widely used in clinical practice, and new techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have significantly improved the diagnosis quality. Identifying biomarkers in peripheral samples such as blood or cerebrospinal fluid is a major focus of the current research on neurodegenerative diseases. The discovery of good markers could allow preventive screening to identify early or asymptomatic stages of the neurodegenerative process. These methods, in combination with artificial intelligence, could contribute to the generation of predictive models that will help clinicians in the early diagnosis, stratification, and prognostic assessment of patients, leading to improvements in patient treatment and quality of life.
Collapse
|
149
|
Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int J Mol Sci 2023; 24:ijms24043125. [PMID: 36834537 PMCID: PMC9964491 DOI: 10.3390/ijms24043125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis (Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated with Lennox-Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-inflammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infection. In this work, we review available evidence concerning CBD's effects on the modulation of innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine production and tissue infiltration, and acting on a variety of other inflammation-related functions in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other autoimmune diseases, cancer, asthma, and cardiovascular diseases.
Collapse
|
150
|
Li J, Zhao J, Chen L, Gao H, Zhang J, Wang D, Zou Y, Qin Q, Qu Y, Li J, Xiong Y, Min Z, Yan M, Mao Z, Xue Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson's disease. Brain Behav Immun 2023; 108:32-44. [PMID: 36343753 DOI: 10.1016/j.bbi.2022.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons (DA) and the accumulation of Lewy body deposits composed of alpha-Synuclein (α-Syn), which act as antigenic epitopes to drive cytotoxic T-cell responses in PD. Increased T helper 17 (Th17) cells and dysfunctional regulatory T cells (Tregs) have been reported to be associated with the loss of DA in PD. However, the mechanism underlying the Th17/Treg imbalance remains unknown. METHODS Here, we examined the percentage of Th17 cells, the percentage of Tregs and the α-Syn level and analysed their correlations in the peripheral blood of PD patients and in the substantia nigra pars compacta (SNpc) and spleen of MPTP-treated mice and A53 transgenic mice. We assessed the effect of α-Syn on the stability and function of Tregs and the differentiation of Th17 cells and evaluated the role of retinoid-related orphan nuclear receptor (RORγt) upregulation in α-Syn stimulation in vivo and in vitro. RESULTS We found that the α-Syn level and severity of motor symptoms were positively correlated with the increase in Th17 cells and decrease in Tregs in PD patients. Moreover, α-Syn stimulation led to the loss of Forkhead box protein P3 (FOXP3) expression in Tregs, accompanied by the acquisition of IL-17A expression. Increased Th17 differentiation was detected upon α-Syn stimulation when naïve CD4+ T cells were cultured under Th17-polarizing conditions. Mechanistically, α-Syn promotes the transcription of RORC, encoding RORγt, in Tregs and Th17 cells, leading to increased Th17 differentiation and loss of Treg function. Intriguingly, the increase in Th17 cells, decrease in Tregs and apoptosis of DA were suppressed by a RORγt inhibitor (GSK805) in MPTP-treated mice. CONCLUSION Together, our data suggest that α-Syn promotes the transcription of RORC in circulating CD4+ T cells, including Tregs and Th17 cells, to impair the stability of Tregs and promote the differentiation of Th17 cells in PD. Inhibition of RORγt attenuated the apoptosis of DA and alleviated the increase in Th17 cells and decrease in Tregs in PD.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuan Zou
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Manli Yan
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|