101
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
102
|
Engineered antibodies: new possibilities for brain PET? Eur J Nucl Med Mol Imaging 2019; 46:2848-2858. [PMID: 31342134 PMCID: PMC6879437 DOI: 10.1007/s00259-019-04426-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Almost 50 million people worldwide are affected by Alzheimer’s disease (AD), the most common neurodegenerative disorder. Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET) biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET ligands have been based on small molecules that, with the right properties, can penetrate the blood–brain barrier (BBB) and visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited. Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand’s pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are difficult to target with traditional small molecule ligands.
Collapse
|
103
|
Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7420189. [PMID: 31396533 PMCID: PMC6668540 DOI: 10.1155/2019/7420189] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Toll-like receptors mediate important cellular immune responses upon activation via various pathogenic stimuli such as bacterial or viral components. The activation and subsequent secretion of cytokines and proinflammatory factors occurs in the whole body including the brain. The subsequent inflammatory response is crucial for the immune system to clear the pathogen(s) from the body via the innate and adaptive immune response. Within the brain, astrocytes, neurons, microglia, and oligodendrocytes all bear unique compositions of Toll-like receptors. Besides pathogens, cellular damage and abnormally folded protein aggregates, such as tau and Amyloid beta peptides, have been shown to activate Toll-like receptors in neurodegenerative diseases such as Alzheimer's disease. This review provides an overview of the different cell type-specific Toll-like receptors of the human brain, their activation mode, and subsequent cellular response, as well as their activation in Alzheimer's disease. Finally, we critically evaluate the therapeutic potential of targeting Toll-like receptors for treatment of Alzheimer's disease as well as discussing the limitation of mouse models in understanding Toll-like receptor function in general and in Alzheimer's disease.
Collapse
|
104
|
Gibbons GS, Banks RA, Kim B, Changolkar L, Riddle DM, Leight SN, Irwin DJ, Trojanowski JQ, Lee VMY. Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies. J Neuropathol Exp Neurol 2019; 77:216-228. [PMID: 29415231 DOI: 10.1093/jnen/nly010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aggregation of tau into fibrillar structures within the CNS is a pathological hallmark of a clinically heterogeneous set of neurodegenerative diseases termed tauopathies. Unique misfolded conformations of tau, referred to as strains, are hypothesized to underlie the distinct neuroanatomical and cellular distribution of pathological tau aggregates. Here, we report the identification of novel tau monoclonal antibodies (mAbs) that selectively bind to an Alzheimer disease (AD)-specific conformation of pathological tau. Immunohistochemical analysis of tissue from various AD and nonAD tauopathies demonstrate selective binding of mAbs GT-7 and GT-38 to AD tau pathologies and absence of immunoreactivity for tau aggregates that are diagnostic of corticobasal degenerations (CBD), progressive supranuclear palsy (PSP), and Pick's disease (PiD). In cases with co-occurring AD tauopathy, GT-7 and GT-38 distinguish comorbid AD tau from pathological tau in frontotemporal lobar degeneration characterized by tau inclusions (FTLD-Tau), as confirmed by the presence of both 3 versus 4 microtubule-binding repeat isoforms (3R and 4R tau isoforms, respectively), in AD neurofibrillary tangles but not in the tau aggregates of CBD, PSP, or PiD. These findings support the concept of an AD-specific tau strain. The mAbs described here enable the selective detection of AD tau pathology in nonAD tauopathies.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Rachel A Banks
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Bumjin Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Dawn M Riddle
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Susan N Leight
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Irwin
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
105
|
Guo B, Feng Z, Hu D, Xu S, Middha E, Pan Y, Liu C, Zheng H, Qian J, Sheng Z, Liu B. Precise Deciphering of Brain Vasculatures and Microscopic Tumors with Dual NIR-II Fluorescence and Photoacoustic Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902504. [PMID: 31169334 DOI: 10.1002/adma.201902504] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 05/14/2023]
Abstract
Diagnostics of cerebrovascular structures and microscopic tumors with intact blood-brain barrier (BBB) significantly contributes to timely treatment of patients bearing neurological diseases. Dual NIR-II fluorescence and photoacoustic imaging (PAI) is expected to offer powerful strength, including good spatiotemporal resolution, deep penetration, and large signal-to-background ratio (SBR) for precise brain diagnostics. Herein, biocompatible and photostable conjugated polymer nanoparticles (CP NPs) are reported for dual-modality brain imaging in the NIR-II window. Uniform CP NPs with a size of 50 nm are fabricated from microfluidics devices, which show an emission peak at 1156 nm with a large absorptivity of 35.2 L g-1 cm-1 at 1000 nm. The NIR-II fluorescence imaging resolves hemodynamics and cerebral vasculatures with a spatial resolution of 23 µm at a depth of 600 µm. The NIR-II PAI enables successful noninvasive mapping of deep microscopic brain tumors (<2 mm at a depth of 2.4 mm beneath dense skull and scalp) with an SBR of 7.2 after focused ultrasound-induced BBB opening. This study demonstrates that CP NPs are promising contrast agents for brain diagnostics.
Collapse
Affiliation(s)
- Bing Guo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of OpticalScience and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of OpticalScience and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
106
|
Vaikath NN, Hmila I, Gupta V, Erskine D, Ingelsson M, El-Agnaf OMA. Antibodies against alpha-synuclein: tools and therapies. J Neurochem 2019; 150:612-625. [PMID: 31055836 DOI: 10.1111/jnc.14713] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023]
Abstract
Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Issam Hmila
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Daniel Erskine
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
107
|
Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R, Hansson O, Nordberg A, Jacobs AH. A new perspective for advanced positron emission tomography-based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 2019; 15:1081-1103. [PMID: 31230910 DOI: 10.1016/j.jalz.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Recent studies in neurodegenerative conditions have increasingly highlighted that the same neuropathology can trigger different clinical phenotypes or, vice-versa, that similar phenotypes can be triggered by different neuropathologies. This evidence has called for the adoption of a pathology spectrum-based approach to study neurodegenerative proteinopathies. These conditions share brain deposition of abnormal protein aggregates, leading to aberrant biochemical, metabolic, functional, and structural changes. Positron emission tomography (PET) is a well-recognized and unique tool for the in vivo assessment of brain neuropathology, and novel PET techniques are emerging for the study of specific protein species. Today, key applications of PET range from early research and clinical diagnostic tools to their use in clinical trials for both participants screening and outcome evaluation. This position article critically reviews the role of distinct PET molecular tracers for different neurodegenerative proteinopathies, highlighting their strengths, weaknesses, and opportunities, with special emphasis on methodological challenges and future applications.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK; Neurology Imaging Unit, Imperial College London, London, UK
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.
| | | |
Collapse
|
108
|
Heterogeneous drug tissue binding in brain regions of rats, Alzheimer's patients and controls: impact on translational drug development. Sci Rep 2019; 9:5308. [PMID: 30926941 PMCID: PMC6440985 DOI: 10.1038/s41598-019-41828-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 03/18/2019] [Indexed: 01/08/2023] Open
Abstract
For preclinical and clinical assessment of therapeutically relevant unbound, free, brain concentrations, the pharmacokinetic parameter fraction of unbound drug in brain (fu,brain) is commonly used to compensate total drug concentrations for nonspecific brain tissue binding (BTB). As, homogenous BTB is assumed between species and in health and disease, rat BTB is routinely used. The impact of Alzheimer’s disease (AD) on drug BTB in brain regions of interest (ROI), i.e., fu,brain,ROI, is yet unclear. This study for the first time provides insight into regional drug BTB and the validity of employing rat fu,brain,ROI as a surrogate of human BTB, by investigating five marketed drugs in post-mortem tissue from AD patients (n = 6) and age-matched controls (n = 6). Heterogeneous drug BTB was observed in all within group comparisons independent of disease and species. The findings oppose the assumption of uniform BTB, highlighting the need of case-by-case evaluation of fu,brain,ROI in translational CNS research.
Collapse
|
109
|
Hartman RK, Hallam KA, Donnelly EM, Emelianov SY. Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: a tool for in vivo molecular neuroimaging. LASER PHYSICS LETTERS 2019; 16:025603. [PMID: 30800031 PMCID: PMC6380671 DOI: 10.1088/1612-202x/aaf89e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protective barriers of the CNS present challenges during the treatment and monitoring of diseases. In particular, the blood brain barrier is a major hindrance to the delivery of imaging contrast agents and therapeutics to the brain. In this work, we use gas microbubble-assisted focused ultrasound to transiently open the blood brain barrier and locally deliver silica coated gold nanorods across the barrier. This particular nanoagent possesses a strong optical absorption which enables in vivo and ex vivo visualization of the delivered particles using ultrasound-guided photoacoustic imaging. The results of these studies demonstrate the potential of ultrasound-guided photoacoustics to image contrast agents delivered via microbubble-assisted focused ultrasound for longitudinal diagnostic imaging and for therapeutic monitoring of neurological diseases.
Collapse
Affiliation(s)
- Robin K. Hartman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kristina A. Hallam
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Eleanor M. Donnelly
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stanislav Y. Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
110
|
Bourassa P, Alata W, Tremblay C, Paris-Robidas S, Calon F. Transferrin Receptor-Mediated Uptake at the Blood-Brain Barrier Is Not Impaired by Alzheimer's Disease Neuropathology. Mol Pharm 2019; 16:583-594. [PMID: 30609376 DOI: 10.1021/acs.molpharmaceut.8b00870] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transferrin receptor (TfR) is highly expressed by brain capillary endothelial cells (BCECs) forming the blood-brain barrier (BBB) and is therefore considered as a potential target for brain drug delivery. Monoclonal antibodies binding to the TfR, such as clone Ri7, have been shown to internalize into BCECs in vivo. However, since Alzheimer's disease (AD) is accompanied by a BBB dysfunction, it raises concerns about whether TfR-mediated transport becomes inefficient during the progression of the disease. Measurements of TfR levels using Western blot analysis in whole homogenates from human post-mortem parietal cortex and hippocampus did not reveal any significant difference between individuals with or without a neuropathological diagnosis of AD (respectively, n = 19 and 22 for the parietal cortex and n = 12 and 14 for hippocampus). Similarly, TfR concentrations in isolated human brain microvessels from parietal cortex were similar between controls and AD cases. TfR levels in isolated murine brain microvessels were not significantly different between groups of 12- and 18-month-old NonTg and 3xTg-AD mice, the latter modeling Aβ and τ neuropathologies. In situ brain perfusion assays were then conducted to measure the brain uptake and internalization of fluorolabeled Ri7 in BCECs upon binding. Consistently, TfR-mediated uptake in BCECs was similar between 3xTg-AD mice and nontransgenic controls (∼0.3 μL·g-1·s-1) at 12, 18, and 22 months of age. Fluorescence microscopy analysis following intravenous administration of fluorolabeled Ri7 highlighted that the signal from the antibody was widely distributed throughout the cerebral vasculature but not in neurons or astrocytes. Overall, our data suggest that both TfR protein levels and TfR-dependent internalization mechanisms are preserved in the presence of Aβ and τ neuropathologies, supporting the potential of TfR as a vector target for drug delivery into BCECs in AD.
Collapse
Affiliation(s)
- Philippe Bourassa
- Faculté de Pharmacie , Université Laval , Québec , QC G1V 0A6 , Canada.,Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| | - Wael Alata
- Faculté de Pharmacie , Université Laval , Québec , QC G1V 0A6 , Canada.,Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| | - Cyntia Tremblay
- Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| | - Sarah Paris-Robidas
- Faculté de Pharmacie , Université Laval , Québec , QC G1V 0A6 , Canada.,Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| | - Frédéric Calon
- Faculté de Pharmacie , Université Laval , Québec , QC G1V 0A6 , Canada.,Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| |
Collapse
|
111
|
McConnell EM, Ventura K, Dwyer Z, Hunt V, Koudrina A, Holahan MR, DeRosa MC. In Vivo Use of a Multi-DNA Aptamer-Based Payload/Targeting System To Study Dopamine Dysregulation in the Central Nervous System. ACS Chem Neurosci 2019; 10:371-383. [PMID: 30160936 DOI: 10.1021/acschemneuro.8b00292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The delivery of therapeutics across the blood-brain barrier remains a considerable challenge in investigating central nervous system related processes. In this work, a liposome vehicle was surface-modified with an aptamer that binds to the transferrin receptor and was loaded with two different dopamine-binding aptamer payloads. This system was effectively used to promote the delivery of the aptamer cargo from the peripheral injection site into the brain. The effect of these delivered aptamers on behavior was investigated in vivo in a locomotor task. The first dopamine binding aptamer assessed was a DNA aptamer, the binding of which had been previously validated through the aptamer-based biosensor development reported by several independent research groups. The second aptamer investigated was the result of a novel in vitro selection experiment described herein. Our data suggest that systemic administration of the modified liposomes led to delivery of the dopamine aptamers into the brain. Fluorescence microscopy revealed differential distribution of fluorescence based on the presence or absence of the transferrin receptor aptamer on the surface of fluorescently modified liposomes. In a behavioral experiment using cocaine administration to induce elevated concentrations of neural dopamine, systemic pretreatment with the dopamine aptamer-loaded liposomes reduced cocaine-induced hyperlocomotion. Multiple controls including a transferrin-negative liposome control and transferrin-positive liposomes loaded with either a nonbinding, base-substituted dopamine aptamer or a random oligonucleotide were investigated. None of these controls altered cocaine-induced hyperlocomotion. Chronic systemic administration of the modified liposomes produced no deleterious neurobehavioral or neural degenerative effects. Importantly, this work is one example of an application for this versatile multiaptamer payload/targeting system. Its general application is limited only by the availability of aptamers for specific neural targets.
Collapse
Affiliation(s)
- Erin M. McConnell
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zach Dwyer
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Vernon Hunt
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Anna Koudrina
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maria C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
112
|
A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 190:98-102. [DOI: 10.1016/j.jphotobiol.2018.11.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
|
113
|
Abu Hamdeh S, Virhammar J, Sehlin D, Alafuzoff I, Cesarini KG, Marklund N. Brain tissue Aβ42 levels are linked to shunt response in idiopathic normal pressure hydrocephalus. J Neurosurg 2019; 130:121-129. [PMID: 29350601 DOI: 10.3171/2017.7.jns171005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/24/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors conducted a study to test if the cortical brain tissue levels of soluble amyloid beta (Aβ) reflect the propensity of cortical Aβ aggregate formation and may be an additional factor predicting surgical outcome following idiopathic normal pressure hydrocephalus (iNPH) treatment. METHODS Highly selective ELISAs (enzyme-linked immunosorbent assays) were used to quantify soluble Aβ40, Aβ42, and neurotoxic Aβ oligomers/protofibrils, associated with Aβ aggregation, in cortical biopsy samples obtained in patients with iNPH (n = 20), sampled during ventriculoperitoneal (VP) shunt surgery. Patients underwent pre- and postoperative (3-month) clinical assessment with a modified iNPH scale. The preoperative CSF biomarkers and the levels of soluble and insoluble Aβ species in cortical biopsy samples were analyzed for their association with a favorable outcome following the VP shunt procedure, defined as a ≥ 5-point increase in the iNPH scale. RESULTS The brain tissue levels of Aβ42 were negatively correlated with CSF Aβ42 (Spearman’s r = -0.53, p < 0.05). The Aβ40, Aβ42, and Aβ oligomer/protofibril levels in cortical biopsy samples were higher in patients with insoluble cortical Aβ aggregates (p < 0.05). The preoperative CSF Aβ42 levels were similar in patients responding (n = 11) and not responding (n = 9) to VP shunt treatment at 3 months postsurgery. In contrast, the presence of cortical Aβ aggregates and high brain tissue Aβ42 levels were associated with a poor outcome following VP shunt treatment (p < 0.05). CONCLUSIONS Brain tissue measurements of soluble Aβ species are feasible. Since high Aβ42 levels in cortical biopsy samples obtained in patients with iNPH indicated a poor surgical outcome, tissue levels of Aβ species may be associated with the clinical response to shunt treatment.
Collapse
Affiliation(s)
- Sami Abu Hamdeh
- 1Department of Neuroscience, Section of Neurosurgery, Uppsala University
| | - Johan Virhammar
- 2Department of Neuroscience, Neurology, Uppsala University Hospital, Uppsala University
| | - Dag Sehlin
- 3Department of Public Health and Caring Sciences/Geriatrics, Uppsala University; and
| | - Irina Alafuzoff
- 4Department of Pathology, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | | | - Niklas Marklund
- 1Department of Neuroscience, Section of Neurosurgery, Uppsala University
| |
Collapse
|
114
|
Kaffman A, White JD, Wei L, Johnson FK, Krystal JH. Enhancing the Utility of Preclinical Research in Neuropsychiatry Drug Development. Methods Mol Biol 2019; 2011:3-22. [PMID: 31273690 DOI: 10.1007/978-1-4939-9554-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most large pharmaceutical companies have downscaled or closed their clinical neuroscience research programs in response to the low clinical success rate for drugs that showed tremendous promise in animal experiments intended to model psychiatric pathophysiology. These failures have raised serious concerns about the role of preclinical research in the identification and evaluation of new pharmacotherapies for psychiatry. In the absence of a comprehensive understanding of the neurobiology of psychiatric disorders, the task of developing "animal models" seems elusive. The purpose of this review is to highlight emerging strategies to enhance the utility of preclinical research in the drug development process. We address this issue by reviewing how advances in neuroscience, coupled with new conceptual approaches, have recently revolutionized the way we can diagnose and treat common psychiatric conditions. We discuss the implications of these new tools for modeling psychiatric conditions in animals and advocate for the use of systematic reviews of preclinical work as a prerequisite for conducting psychiatric clinical trials. We believe that work in animals is essential for elucidating human psychopathology and that improving the predictive validity of animal models is necessary for developing more effective interventions for mental illness.
Collapse
Affiliation(s)
- Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Jordon D White
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Frances K Johnson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
115
|
Gustafsson S, Gustavsson T, Roshanbin S, Hultqvist G, Hammarlund-Udenaes M, Sehlin D, Syvänen S. Blood-brain barrier integrity in a mouse model of Alzheimer's disease with or without acute 3D6 immunotherapy. Neuropharmacology 2018; 143:1-9. [DOI: 10.1016/j.neuropharm.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
116
|
Suh M, Lee DS. Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics. Nucl Med Mol Imaging 2018; 52:407-419. [PMID: 30538772 PMCID: PMC6261865 DOI: 10.1007/s13139-018-0550-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Brain disease is one of the greatest threats to public health. Brain theranostics is recently taking shape, indicating the treatments of stroke, inflammatory brain disorders, psychiatric diseases, neurodevelopmental disease, and neurodegenerative disease. However, several factors, such as lack of endophenotype classification, blood-brain barrier (BBB), target determination, ignorance of biodistribution after administration, and complex intercellular communication between brain cells, make brain theranostics application difficult, especially when it comes to clinical application. So, a more thorough understanding of each aspect is needed. In this review, we focus on recent studies regarding the role of exosomes in intercellular communication of brain cells, therapeutic effect of graphene quantum dots, transcriptomics/epitranscriptomics approach for target selection, and in vitro/in vivo considerations.
Collapse
Affiliation(s)
- Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080 Republic of Korea
| |
Collapse
|
117
|
Fang XT, Hultqvist G, Meier SR, Antoni G, Sehlin D, Syvänen S. High detection sensitivity with antibody-based PET radioligand for amyloid beta in brain. Neuroimage 2018; 184:881-888. [PMID: 30300753 DOI: 10.1016/j.neuroimage.2018.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022] Open
Abstract
PET imaging of amyloid-beta (Aβ) deposits in brain has become an important aid in Alzheimer's disease diagnosis, and an inclusion criterion for patient enrolment into clinical trials of new anti-Aβ treatments. Available PET radioligands visualizing Aβ bind to insoluble fibrils, i.e. Aβ plaques. Levels of prefibrillar Aβ forms, e.g. soluble oligomers and protofibrils, correlate better than plaques with disease severity and these soluble species are the neurotoxic form of Aβ leading to neurodegeneration. The goal was to create an antibody-based radioligand, recognizing not only fibrillary Aβ, but also smaller and still soluble aggregates. We designed and expressed a small recombinant bispecific antibody construct, di-scFv 3D6-8D3, targeting the Aβ N-terminus and the transferrin receptor (TfR). Natively expressed at the blood-brain barrier (BBB), TfR could thus be used as a brain-blood shuttle. Di-scFv 3D6-8D3 bound to Aβ1-40 with high affinity and to TfR with moderate affinity. Di-scFv [124I]3D6-8D3 was injected in two transgenic mouse models overexpressing human Aβ and wild-type control mice and PET scanned at 14, 24 or 72 h after injection. Di-scFv [124I]3D6-8D3 was retained in brain of transgenic animals while it was cleared from wild-type lacking Aβ. This difference was observed from 24 h onwards, and at 72 h, 18 months old transgenic animals, with high load of Aβ pathology, displayed SUVR of 2.2-3.5 in brain while wild-type showed ratios close to unity. A subset of the mice were also scanned with [11C]PIB. Again wt mice displayed ratios of unity while transgenes showed slightly, non-significantly, elevated SUVR of 1.2, indicating improved sensitivity with novel di-scFv [124I]3D6-8D3 compared with [11C]PIB. Brain concentrations of di-scFv [124I]3D6-8D3 correlated with soluble Aβ (p < 0.0001) but not with total Aβ, i.e. plaque load (p = 0.34). We have successfully created a small bispecific antibody-based radioligand capable of crossing the BBB, subsequently binding to and visualizing intrabrain Aβ in vivo. The radioligand displayed better sensitivity compared with [11C]PIB, and brain concentrations correlated with soluble neurotoxic Aβ aggregates.
Collapse
Affiliation(s)
- Xiaotian T Fang
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden.
| | - Greta Hultqvist
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden; Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Silvio R Meier
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden; PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
118
|
Uncaria rhynchophylla ameliorates amyloid beta deposition and amyloid beta-mediated pathology in 5XFAD mice. Neurochem Int 2018; 121:114-124. [PMID: 30291956 DOI: 10.1016/j.neuint.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 01/31/2023]
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the abnormal aggregation of amyloid beta (Aβ) peptides. Uncaria rhynchophylla (UR), one of the Uncaria species, has long been used to treat neurodegenerative disease. In particular, it has been reported that UR inhibits aggregation of Aβ in vitro. However, little is known about the histological effects of UR treatment on Aβ pathology in AD animal models. In the present study, we investigated the effect of UR on Aβ aggregation, Aβ-mediated pathologies and adult hippocampal neurogenesis in the brain of 5XFAD mice. First, using the thioflavin T assay and amyloid staining, we demonstrated that UR treatment effectively inhibited Aβ aggregation and accumulation in the cortex and subiculum. Second, immunofluorescence staining showed that administration of UR attenuated gliosis and neurodegeneration in the subiculum and cortex. Third, UR treatment ameliorated impaired adult hippocampal neurogenesis. The present results indicate that UR significantly alleviates Aβ deposition and Aβ-mediated neuropathology in the brain in 5XFAD mice, suggesting the potency of UR as a preventive and therapeutic agent for AD.
Collapse
|
119
|
Hsu PH, Lin YT, Chung YH, Lin KJ, Yang LY, Yen TC, Liu HL. Focused Ultrasound-Induced Blood-Brain Barrier Opening Enhances GSK-3 Inhibitor Delivery for Amyloid-Beta Plaque Reduction. Sci Rep 2018; 8:12882. [PMID: 30150769 PMCID: PMC6110796 DOI: 10.1038/s41598-018-31071-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 07/31/2018] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is the leading cause of age-related dementia. Currently, therapeutic agent delivery to the CNS is a valued approach for AD therapy. Unfortunately, the CNS penetration is greatly hampered by the blood-brain barrier (BBB). Focused-ultrasound (FUS) has been demonstrated to temporally open the BBB, thus promoting therapeutic agent delivery to the CNS. Recently, the BBB opening procedure was further reported to clear the deposited Aβ plaque due to microglia activation. In this study, we aimed to evaluate whether the use of FUS-induced BBB opening to enhance GSK-3 inhibitor delivery, which would bring additive effect of Aβ plaque clearance by FUS with the reduction of Aβ plaque synthesis by GSK-3 inhibitor in an AD mice model. FUS-induced BBB opening on APPswe/PSEN1-dE9 transgenic mice was performed unilaterally, with the contralateral hemisphere serving as a reference. GSK-3 level was confirmed by immunohistochemistry (IHC) and autoradiography (ARG) was also conducted to quantitatively confirm the Aβ plaque reduction. Results from IHC showed GSK-3 inhibitor effectively reduced GSK-3 activity up to 61.3% with the addition of FUS-BBB opening and confirming the proposed therapeutic route. ARG also showed significant Aβ-plaque reduction up to 31.5%. This study reveals the therapeutic potentials of ultrasound to AD treatment, and may provide a useful strategy for neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Po-Hung Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzu-Chen Yen
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
120
|
Li D, Wen S, Sun W, Zhang J, Jin D, Peng C, Shen M, Shi X. One-Step Loading of Gold and Gd2O3 Nanoparticles within PEGylated Polyethylenimine for Dual Mode Computed Tomography/Magnetic Resonance Imaging of Tumors. ACS APPLIED BIO MATERIALS 2018; 1:221-225. [DOI: 10.1021/acsabm.8b00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Du Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenjie Sun
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jiulong Zhang
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chen Peng
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
121
|
Tsartsalis S, Tournier BB, Habiby S, Ben Hamadi M, Barca C, Ginovart N, Millet P. Dual-radiotracer translational SPECT neuroimaging. Comparison of three methods for the simultaneous brain imaging of D2/3 and 5-HT2A receptors. Neuroimage 2018; 176:528-540. [DOI: 10.1016/j.neuroimage.2018.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/11/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
|
122
|
Ashton NJ, Schöll M, Heurling K, Gkanatsiou E, Portelius E, Höglund K, Brinkmalm G, Hye A, Blennow K, Zetterberg H. Update on biomarkers for amyloid pathology in Alzheimer's disease. Biomark Med 2018; 12:799-812. [DOI: 10.2217/bmm-2017-0433] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
At the center of Alzheimer's disease pathogenesis is the aberrant aggregation of amyloid-β (Aβ) into oligomers, fibrils and plaques. Effective monitoring of Aβ deposition directly in patients is essential to assist anti-Aβ therapeutics in target engagement and participant selection. In the advent of approved anti-Aβ therapeutics, biomarkers will become of fundamental importance in initiating treatments having disease modifying effects at the earliest stage. Two well-established Aβ biomarkers are widely utilized: Aβ-binding ligands for positron emission tomography and immunoassays to measure Aβ42 in cerebrospinal fluid. In this review, we will discuss the current clinical, diagnostic and research state of biomarkers for Aβ pathology. Furthermore, we will explore the current application of blood-based markers to assess Aβ pathology.
Collapse
Affiliation(s)
- Nicholas J Ashton
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Kerstin Heurling
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eleni Gkanatsiou
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kina Höglund
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
123
|
Li Y, Wu M, Zhang N, Tang C, Jiang P, Liu X, Yan F, Zheng H. Mechanisms of enhanced antiglioma efficacy of polysorbate 80-modified paclitaxel-loaded PLGA nanoparticles by focused ultrasound. J Cell Mol Med 2018; 22:4171-4182. [PMID: 29956460 PMCID: PMC6111803 DOI: 10.1111/jcmm.13695] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
The presence of blood-brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80-modified paclitaxel-loaded PLGA nanoparticles (PS-80-PTX-NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P-glycoprotein expression and ApoE-dependent PS-80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour-bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.
Collapse
Affiliation(s)
- Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manxiang Wu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nisi Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Biomedical Engineering Department, College of Engineering, Peking University, Beijing, China
| | - Caiyun Tang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Pharmaceutical Analysis Department, College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Peng Jiang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
124
|
De Vijlder T, Fissers J, Van Broeck B, Wyffels L, Mercken M, Pemberton DJ. Mass spectrometric characterization of intact desferal-conjugated monoclonal antibodies for immuno-PET imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1643-1650. [PMID: 29943865 DOI: 10.1002/rcm.8209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Immuno-PET imaging may prove to be a diagnostic and progression/intervention biomarker for Alzheimer's disease (AD) with improved sensitivity and specificity. Immuno-PET imaging is based on the coupling of an antibody with a chelator that captures a radioisotope thus serving as an in-vivo PET ligand. A robust and quality controlled process for linking the chelator to the-antibody is fundamental for the success of this approach. METHODS The structural integrities of two monoclonal antibodies (trastuzumab and JRF/AβN/25) and the quantity of desferal-based chelator attached following modification of the antibodies were assessed by online desalting and intact mass analysis. Enzymatic steps for the deglycosylation and removal of C-terminal lysine was performed sequentially and in a single tube to improve intact mass data. RESULTS Intact mass analysis demonstrated that inclusion of enzymatic processing was critical to correctly derive the quantity of chelator linked to the monoclonal antibodies. For trastuzumab, enzymatic cleaving of the glycans was sufficient, whilst additional removal of the C-terminal lysine was necessary for JRF/AβN/25 to ensure reproducible assessment of the relatively low amount of attached chelator. CONCLUSIONS An efficient intact mass analysis-based process was developed to reproducibly determine the integrity of monoclonal antibodies and the quantity of attached chelator. This technique could serve as an essential quality control approach for the development and production of immuno-PET tracers.
Collapse
Affiliation(s)
- Thomas De Vijlder
- Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jens Fissers
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Bianca Van Broeck
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Marc Mercken
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Darrel J Pemberton
- Neuroscience Experimental Medicine, Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
125
|
Meier SR, Syvänen S, Hultqvist G, Fang XT, Roshanbin S, Lannfelt L, Neumann U, Sehlin D. Antibody-Based In Vivo PET Imaging Detects Amyloid-β Reduction in Alzheimer Transgenic Mice After BACE-1 Inhibition. J Nucl Med 2018; 59:1885-1891. [PMID: 29853653 PMCID: PMC6278900 DOI: 10.2967/jnumed.118.213140] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 12/26/2022] Open
Abstract
Visualization of amyloid-β (Aβ) pathology with PET has become an important tool for making a specific clinical diagnosis of Alzheimer disease (AD). However, the available amyloid PET radioligands, such as 11C-Pittsburgh compound B, reflect levels of insoluble Aβ plaques but do not capture soluble and protofibrillar Aβ forms. Furthermore, the plaque load appears to be fairly static during clinical stages of AD and may not be affected by Aβ-reducing treatments. The aim of the present study was to investigate whether a novel PET radioligand based on an antibody directed toward soluble aggregates of Aβ can be used to detect changes in Aβ levels during disease progression and after treatment with a β-secretase (BACE-1) inhibitor. Methods: One set of transgenic mice (tg-ArcSwe, a model of Aβ pathology) aged between 7 and 16 mo underwent PET with the Aβ protofibril-selective radioligand 124I-RmAb158-scFv8D3 (where RmAb is recombinant mouse monoclonal antibody and scFv is single-chain variable fragment) to follow progression of Aβ pathology in the brain. A second set of tg-ArcSwe mice, aged 10 mo, were treated with the BACE-1 inhibitor NB-360 for 3 mo and compared with an untreated control group. A third set of tg-ArcSwe mice, also aged 10 mo, underwent PET as a baseline group. Brain tissue was isolated after PET to determine levels of Aβ by ELISA and immunohistochemistry. Results: The concentration of 124I-RmAb158-scFv8D3, as measured in vivo with PET, increased with age and corresponded well with the ex vivo autoradiography and Aβ immunohistochemistry results. Mice treated with NB-360 showed significantly lower in vivo PET signals than untreated animals and were similar to the baseline animals. The decreased 124I-RmAb158-scFv8D3 concentrations in NB-360-treated mice, as quantified with PET, corresponded well with the decreased Aβ levels measured in postmortem brain. Conclusion: Several treatments for AD are in phase 2 and 3 clinical trials, but the possibility of studying treatment effects in vivo on the important, nonfibrillar, forms of Aβ is limited. This study demonstrated the ability of the Aβ protofibril-selective radioligand 124I-RmAb158-scFv8D3 to follow disease progression and detect treatment effects with PET imaging in tg-ArcSwe mice.
Collapse
Affiliation(s)
- Silvio R Meier
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Xiaotian T Fang
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden.,BioArctic AB, Stockholm, Sweden; and
| | - Ulf Neumann
- Neuroscience Research, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
126
|
Syvänen S, Hultqvist G, Gustavsson T, Gumucio A, Laudon H, Söderberg L, Ingelsson M, Lannfelt L, Sehlin D. Efficient clearance of Aβ protofibrils in AβPP-transgenic mice treated with a brain-penetrating bifunctional antibody. ALZHEIMERS RESEARCH & THERAPY 2018; 10:49. [PMID: 29793530 PMCID: PMC5968497 DOI: 10.1186/s13195-018-0377-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/30/2018] [Indexed: 11/10/2022]
Abstract
Background Amyloid-β (Aβ) immunotherapy is one of the most promising disease-modifying strategies for Alzheimer’s disease (AD). Despite recent progress targeting aggregated forms of Aβ, low antibody brain penetrance remains a challenge. In the present study, we used transferrin receptor (TfR)-mediated transcytosis to facilitate brain uptake of our previously developed Aβ protofibril-selective mAb158, with the aim of increasing the efficacy of immunotherapy directed toward soluble Aβ protofibrils. Methods Aβ protein precursor (AβPP)-transgenic mice (tg-ArcSwe) were given a single dose of mAb158, modified for TfR-mediated transcytosis (RmAb158-scFv8D3), in comparison with an equimolar dose or a tenfold higher dose of unmodified recombinant mAb158 (RmAb158). Soluble Aβ protofibrils and total Aβ in the brain were measured by enzyme-linked immunosorbent assay (ELISA). Brain distribution of radiolabeled antibodies was visualized by positron emission tomography (PET) and ex vivo autoradiography. Results ELISA analysis of Tris-buffered saline brain extracts demonstrated a 40% reduction of soluble Aβ protofibrils in both RmAb158-scFv8D3- and high-dose RmAb158-treated mice, whereas there was no Aβ protofibril reduction in mice treated with a low dose of RmAb158. Further, ex vivo autoradiography and PET imaging revealed different brain distribution patterns of RmAb158-scFv8D3 and RmAb158, suggesting that these antibodies may affect Aβ levels by different mechanisms. Conclusions With a combination of biochemical and imaging analyses, this study demonstrates that antibodies engineered to be transported across the blood-brain barrier can be used to increase the efficacy of Aβ immunotherapy. This strategy may allow for decreased antibody doses and thereby reduced side effects and treatment costs.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmaceutical biosciences, Uppsala University, Uppsala, Sweden
| | - Tobias Gustavsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Astrid Gumucio
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | | | | | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden.,BioArctic AB, Stockholm, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden.
| |
Collapse
|
127
|
Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow ND. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A 2018; 115:4483-4488. [PMID: 29632177 PMCID: PMC5924922 DOI: 10.1073/pnas.1721694115] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The effects of acute sleep deprivation on β-amyloid (Aβ) clearance in the human brain have not been documented. Here we used PET and 18F-florbetaben to measure brain Aβ burden (ABB) in 20 healthy controls tested after a night of rested sleep (baseline) and after a night of sleep deprivation. We show that one night of sleep deprivation, relative to baseline, resulted in a significant increase in Aβ burden in the right hippocampus and thalamus. These increases were associated with mood worsening following sleep deprivation, but were not related to the genetic risk (APOE genotype) for Alzheimer's disease. Additionally, baseline ABB in a range of subcortical regions and the precuneus was inversely associated with reported night sleep hours. APOE genotyping was also linked to subcortical ABB, suggesting that different Alzheimer's disease risk factors might independently affect ABB in nearby brain regions. In summary, our findings show adverse effects of one-night sleep deprivation on brain ABB and expand on prior findings of higher Aβ accumulation with chronic less sleep.
Collapse
Affiliation(s)
- Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892;
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892;
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Sukru B Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Min Guo
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Elsa Lindgren
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Veronica Ramirez
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Amna Zehra
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Clara Freeman
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Gregg Miller
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Tansha Srivastava
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | | | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
128
|
Non-invasive imaging modalities to study neurodegenerative diseases of aging brain. J Chem Neuroanat 2018; 95:54-69. [PMID: 29474853 DOI: 10.1016/j.jchemneu.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022]
Abstract
The aim of this article is to highlight current approaches for imaging elderly brain, indispensable for cognitive neuroscience research with emphasis on the basic physical principles of various non-invasive neuroimaging techniques. The first part of this article presents a quick overview of the primary non-invasive neuroimaging modalities used by cognitive neuroscientists such as transcranial magnetic stimulation (TMS), transcranial electrical stimulation (tES), electroencephalography (EEG), magnetoencephalography (MEG), single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance spectroscopic imaging (MRSI), Profusion imaging, functional magnetic resonance imaging (fMRI), near infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI) along with tractography and connectomics. The second part provides a comprehensive overview of different multimodality imaging techniques for various cognitive neuroscience studies of aging brain.
Collapse
|
129
|
Condello C, Lemmin T, Stöhr J, Nick M, Wu Y, Maxwell AM, Watts JC, Caro CD, Oehler A, Keene CD, Bird TD, van Duinen SG, Lannfelt L, Ingelsson M, Graff C, Giles K, DeGrado WF, Prusiner SB. Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer's disease. Proc Natl Acad Sci U S A 2018; 115:E782-E791. [PMID: 29311311 PMCID: PMC5789926 DOI: 10.1073/pnas.1714966115] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Point mutations in the amyloid-β (Aβ) coding region produce a combination of mutant and WT Aβ isoforms that yield unique clinicopathologies in familial Alzheimer's disease (fAD) and cerebral amyloid angiopathy (fCAA) patients. Here, we report a method to investigate the structural variability of amyloid deposits found in fAD, fCAA, and sporadic AD (sAD). Using this approach, we demonstrate that mutant Aβ determines WT Aβ conformation through prion template-directed misfolding. Using principal component analysis of multiple structure-sensitive fluorescent amyloid-binding dyes, we assessed the conformational variability of Aβ deposits in fAD, fCAA, and sAD patients. Comparing many deposits from a given patient with the overall population, we found that intrapatient variability is much lower than interpatient variability for both disease types. In a given brain, we observed one or two structurally distinct forms. When two forms coexist, they segregate between the parenchyma and cerebrovasculature, particularly in fAD patients. Compared with sAD samples, deposits from fAD patients show less intersubject variability, and little overlap exists between fAD and sAD deposits. Finally, we examined whether E22G (Arctic) or E22Q (Dutch) mutants direct the misfolding of WT Aβ, leading to fAD-like plaques in vivo. Intracerebrally injecting mutant Aβ40 fibrils into transgenic mice expressing only WT Aβ induced the deposition of plaques with many biochemical hallmarks of fAD. Thus, mutant Aβ40 prions induce a conformation of WT Aβ similar to that found in fAD deposits. These findings indicate that diverse AD phenotypes likely arise from one or more initial Aβ prion conformations, which kinetically dominate the spread of prions in the brain.
Collapse
Affiliation(s)
- Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Jan Stöhr
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Mimi Nick
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Alison M Maxwell
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Joel C Watts
- Department of Biochemistry, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON MST 258, Canada
| | - Christoffer D Caro
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98195
| | - Thomas D Bird
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
- Department of Neurology, University of Washington, Seattle, WA 98195
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lars Lannfelt
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Martin Ingelsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - William F DeGrado
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158;
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158;
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| |
Collapse
|
130
|
Astroglial Responses to Amyloid-Beta Progression in a Mouse Model of Alzheimer’s Disease. Mol Imaging Biol 2018; 20:605-614. [DOI: 10.1007/s11307-017-1153-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
131
|
Gustafsson S, Lindström V, Ingelsson M, Hammarlund-Udenaes M, Syvänen S. Intact blood-brain barrier transport of small molecular drugs in animal models of amyloid beta and alpha-synuclein pathology. Neuropharmacology 2018; 128:482-491. [DOI: 10.1016/j.neuropharm.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 01/19/2023]
|
132
|
Sehlin D, Fang XT, Meier SR, Jansson M, Syvänen S. Pharmacokinetics, biodistribution and brain retention of a bispecific antibody-based PET radioligand for imaging of amyloid-β. Sci Rep 2017; 7:17254. [PMID: 29222502 PMCID: PMC5722892 DOI: 10.1038/s41598-017-17358-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies (mAbs) have not been used as positron emission tomography (PET) ligands for in vivo imaging of the brain because of their limited passage across the blood-brain barrier (BBB). However, due to their high affinity and specificity, mAbs may be an attractive option for brain PET if their brain distribution can be facilitated. In the present study, a F(ab’)2 fragment of the amyloid-beta (Aβ) protofibril selective mAb158 was chemically conjugated to the transferrin receptor (TfR) antibody 8D3 to enable TfR mediated transcytosis across the BBB. The generated bispecific protein, 8D3-F(ab’)2-h158, was subsequently radiolabeled and used for microPET imaging of Aβ pathology in two mouse models of AD. [124I]8D3-F(ab’)2-h158 was distributed across the BBB several fold more than unmodified mAbs in general and its accumulation in the brain reflected disease progression, while its concentration in blood and other organs remained stable across all age groups studied. Cerebellum was largely devoid of 8D3-F(ab’)2-h158 in young and middle aged mice, while mice older than 18 months also showed some accumulation in cerebellum. In a longer perspective, the use of bispecific antibodies as PET ligands may enable in vivo ‘immunohistochemistry’ also of other proteins in the brain for which PET radioligands are lacking.
Collapse
Affiliation(s)
- Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden
| | - Xiaotian T Fang
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden
| | - Silvio R Meier
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden
| | - Malin Jansson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden.
| |
Collapse
|
133
|
Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury. Front Neurol 2017; 8:599. [PMID: 29209266 PMCID: PMC5702013 DOI: 10.3389/fneur.2017.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI) is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key risk factor for neurodegeneration and dementias at long-term following TBI, the secondary injury processes may require prolonged monitoring. The aim of the present review is to summarize the clinical short- and long-term monitoring possibilities of axonal injury in TBI. Increased knowledge of the underlying pathophysiology achieved by advanced clinical monitoring raises hope for the development of novel treatment strategies for axonal injury in TBI.
Collapse
Affiliation(s)
- Parmenion P Tsitsopoulos
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Sami Abu Hamdeh
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
134
|
Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab’)2 fragment. Biochem Biophys Res Commun 2017; 493:120-125. [DOI: 10.1016/j.bbrc.2017.09.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022]
|
135
|
Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 2017; 8:1214. [PMID: 29089479 PMCID: PMC5663717 DOI: 10.1038/s41467-017-01150-x] [Citation(s) in RCA: 568] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
It is not known exactly where amyloid-β (Aβ) fibrils begin to accumulate in individuals with Alzheimer’s disease (AD). Recently, we showed that abnormal levels of Aβ42 in cerebrospinal fluid (CSF) can be detected before abnormal amyloid can be detected using PET in individuals with preclinical AD. Using these approaches, here we identify the earliest preclinical AD stage in subjects from the ADNI and BioFINDER cohorts. We show that Aβ accumulation preferentially starts in the precuneus, medial orbitofrontal, and posterior cingulate cortices, i.e., several of the core regions of the default mode network (DMN). This early pattern of Aβ accumulation is already evident in individuals with normal Aβ42 in the CSF and normal amyloid PET who subsequently convert to having abnormal CSF Aβ42. The earliest Aβ accumulation is further associated with hypoconnectivity within the DMN and between the DMN and the frontoparietal network, but not with brain atrophy or glucose hypometabolism. Our results suggest that Aβ fibrils start to accumulate predominantly within certain parts of the DMN in preclinical AD and already then affect brain connectivity. Abnormal levels of Aβ42 in the cerebrospinal fluid occur prior to a positive amyloid PET scan in the brain of individuals with Alzheimer’s disease and here the authors use this temporal pattern to identify individuals with very early stage AD. They show that Aβ fibrils start to accumulate in some of the regions of the default mode network and affect brain connectivity before neurodegeneration occurs.
Collapse
|
136
|
Gillet R, Roux A, Brandel J, Huclier-Markai S, Camerel F, Jeannin O, Nonat AM, Charbonnière LJ. A Bispidol Chelator with a Phosphonate Pendant Arm: Synthesis, Cu(II) Complexation, and 64Cu Labeling. Inorg Chem 2017; 56:11738-11752. [DOI: 10.1021/acs.inorgchem.7b01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raphaël Gillet
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Amandine Roux
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Jérémy Brandel
- Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sandrine Huclier-Markai
- GIP Arronax, 1 rue Aronnax, CS 10112, F-44817 Saint-Herblain, France
- Subatech Laboratory, UMR 6457, Ecole des Mines de Nantes, IN2P3/CNRS, Université de Nantes, 4 rue Alfred Kastler, F-44307 Nantes, France
| | - Franck Camerel
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Olivier Jeannin
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Aline M. Nonat
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Loïc J. Charbonnière
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
137
|
Chen K, Cui M. Recent progress in the development of metal complexes as β-amyloid imaging probes in the brain. MEDCHEMCOMM 2017; 8:1393-1407. [PMID: 30108850 PMCID: PMC6072098 DOI: 10.1039/c7md00064b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/11/2017] [Indexed: 01/28/2023]
Abstract
In this review, we have focused on the recent progress in metal complexes that are able to bind to β-amyloid (Aβ) species. We have discussed various radioactive complexes of 99mTc, 68Ga, 64Cu, 89Zr, and 111In, which were designed as Aβ imaging agents for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, non-radioactive Re and Ru complexes as Aβ sensors using luminescence methods, and Gd3+ complexes as contrast agents for magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Kaihua Chen
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China . ; ; Tel: +86 10 58808891
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China . ; ; Tel: +86 10 58808891
| |
Collapse
|
138
|
Young LM, Tu LH, Raleigh DP, Ashcroft AE, Radford SE. Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers. Chem Sci 2017; 8:5030-5040. [PMID: 28970890 PMCID: PMC5613229 DOI: 10.1039/c7sc00620a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form.
Collapse
Affiliation(s)
- Lydia M Young
- Astbury Centre for Structural Molecular Biology , School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , UK .
| | - Ling-Hsien Tu
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , USA
- Genomics Research Center , Academia Sinica , 128 Academia , Taipei 11529 , Taiwan
| | - Daniel P Raleigh
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , USA
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology , School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , UK .
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology , School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , UK .
| |
Collapse
|
139
|
Abu Hamdeh S, Waara ER, Möller C, Söderberg L, Basun H, Alafuzoff I, Hillered L, Lannfelt L, Ingelsson M, Marklund N. Rapid amyloid-β oligomer and protofibril accumulation in traumatic brain injury. Brain Pathol 2017; 28:451-462. [PMID: 28557010 DOI: 10.1111/bpa.12532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022] Open
Abstract
Deposition of amyloid-β (Aβ) is central to Alzheimer's disease (AD) pathogenesis and associated with progressive neurodegeneration in traumatic brain injury (TBI). We analyzed predisposing factors for Aβ deposition including monomeric Aβ40, Aβ42 and Aβ oligomers/protofibrils, Aβ species with pronounced neurotoxic properties, following human TBI. Highly selective ELISAs were used to analyze N-terminally intact and truncated Aβ40 and Aβ42, as well as Aβ oligomers/protofibrils, in human brain tissue, surgically resected from severe TBI patients (n = 12; mean age 49.5 ± 19 years) due to life-threatening brain swelling/hemorrhage within one week post-injury. The TBI tissues were compared to post-mortem AD brains (n = 5), to post-mortem tissue of neurologically intact (NI) subjects (n = 4) and to cortical biopsies obtained at surgery for idiopathic normal pressure hydrocephalus patients (iNPH; n = 4). The levels of Aβ40 and Aβ42 were not elevated by TBI. The levels of Aβ oligomers/protofibrils in TBI were similar to those in the significantly older AD patients and increased compared to NI and iNPH controls (P < 0.05). Moreover, TBI patients carrying the AD risk genotype Apolipoprotein E epsilon3/4 (APOE ε3/4; n = 4) had increased levels of Aβ oligomers/protofibrils (P < 0.05) and of both N-terminally intact and truncated Aβ42 (P < 0.05) compared to APOE ε3/4-negative TBI patients (n = 8). Neuropathological analysis showed insoluble Aβ aggregates (commonly referred to as Aβ plaques) in three TBI patients, all of whom were APOE ε3/4 carriers. We conclude that soluble intermediary Aβ aggregates form rapidly after TBI, especially among APOE ε3/4 carriers. Further research is needed to determine whether these aggregates aggravate the clinical short- and long-term outcome in TBI.
Collapse
Affiliation(s)
- Sami Abu Hamdeh
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | | | | | - Hans Basun
- BioArctic Neuroscience AB, Stockholm, Sweden.,Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Clinical and experimental pathology, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- BioArctic Neuroscience AB, Stockholm, Sweden.,Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
140
|
Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 2017; 16:400-423. [PMID: 28154410 PMCID: PMC5455971 DOI: 10.1038/nrd.2016.248] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron fulfils a central role in many essential biochemical processes in human physiology; thus, proper processing of iron is crucial. Although iron metabolism is subject to relatively strict physiological control, numerous disorders, such as cancer and neurodegenerative diseases, have recently been linked to deregulated iron homeostasis. Consequently, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments for these diseases. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents are likely to have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are currently available.
Collapse
Affiliation(s)
- Bart J. Crielaard
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, Groningen, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Stefano Rivella
- Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA, United States of America
| |
Collapse
|
141
|
Condello C, Stöehr J. Aβ propagation and strains: Implications for the phenotypic diversity in Alzheimer's disease. Neurobiol Dis 2017; 109:191-200. [PMID: 28359847 DOI: 10.1016/j.nbd.2017.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/09/2017] [Accepted: 03/26/2017] [Indexed: 12/13/2022] Open
Abstract
The progressive nature of Alzheimer's disease (AD) is thought to occur, at least in part, by the self-replication and spreading of Aβ and Tau aggregates through a prion mechanism. Evidence now exists that structural variants of Aβ prions can propagate their distinct conformations through template-directed folding of naïve Aβ peptides. This notion implicates that the first self-propagating Aβ assembly to emerge in the brain dictates the conformation, anatomical spread and pace of subsequently formed deposits. It is hypothesized that a prion mechanism defines the molecular basis underlying the diverse clinicopathologic phenotypes observed across the spectrum of AD patients. Thus, distinct AD strains might require further sub-classification based on biochemical and structural characterization of aggregated Aβ. Here, we review the evidence for distinct, self-propagating Aβ strains, and discuss potential cellular mechanisms that might contribute to their manifestation. From this perspective, we also explore the implications of Aβ strains for current FDA-approved medical imaging probes and therapies for amyloid. Ultimately, the discovery of new molecular tools to differentiate Aβ strains and dissect the heterogeneity of AD may lead to the development of more informative diagnostics and strain-specific therapeutics.
Collapse
Affiliation(s)
- Carlo Condello
- Institute for Neurodegenerative Diseases, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Jan Stöehr
- Institute for Neurodegenerative Diseases, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States.
| |
Collapse
|
142
|
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 2017; 6:6. [PMID: 28293421 PMCID: PMC5348787 DOI: 10.1186/s40035-017-0077-5] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Patrick Sweeney
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
- Royal Veterinary College, University of London, London, UK
| | - Hyunsun Park
- Health & Life Science Consulting, Los Angeles, CA USA
| | - Marc Baumann
- Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - John Dunlop
- Neuroscience Innovation Medicines, Astra Zeneca, Cambridge, MA USA
| | | | | | | | | | | | - Antti Nurmi
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| | - Robert Hodgson
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| |
Collapse
|
143
|
Almdahl IS, Lauridsen C, Selnes P, Kalheim LF, Coello C, Gajdzik B, Møller I, Wettergreen M, Grambaite R, Bjørnerud A, Bråthen G, Sando SB, White LR, Fladby T. Cerebrospinal Fluid Levels of Amyloid Beta 1-43 Mirror 1-42 in Relation to Imaging Biomarkers of Alzheimer's Disease. Front Aging Neurosci 2017; 9:9. [PMID: 28223932 PMCID: PMC5293760 DOI: 10.3389/fnagi.2017.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/12/2017] [Indexed: 11/24/2022] Open
Abstract
Introduction: Amyloid beta 1-43 (Aβ43), with its additional C-terminal threonine residue, is hypothesized to play a role in early Alzheimer’s disease pathology possibly different from that of amyloid beta 1-42 (Aβ42). Cerebrospinal fluid (CSF) Aβ43 has been suggested as a potential novel biomarker for predicting conversion from mild cognitive impairment (MCI) to dementia in Alzheimer’s disease. However, the relationship between CSF Aβ43 and established imaging biomarkers of Alzheimer’s disease has never been assessed. Materials and Methods: In this observational study, CSF Aβ43 was measured with ELISA in 89 subjects; 34 with subjective cognitive decline (SCD), 51 with MCI, and four with resolution of previous cognitive complaints. All subjects underwent structural MRI; 40 subjects on a 3T and 50 on a 1.5T scanner. Forty subjects, including 24 with SCD and 12 with MCI, underwent 18F-Flutemetamol PET. Seventy-eight subjects were assessed with 18F-fluorodeoxyglucose PET (21 SCD/7 MCI and 11 SCD/39 MCI on two different scanners). Ten subjects with SCD and 39 with MCI also underwent diffusion tensor imaging. Results: Cerebrospinal fluid Aβ43 was both alone and together with p-tau a significant predictor of the distinction between SCD and MCI. There was a marked difference in CSF Aβ43 between subjects with 18F-Flutemetamol PET scans visually interpreted as negative (37 pg/ml, n = 27) and positive (15 pg/ml, n = 9), p < 0.001. Both CSF Aβ43 and Aβ42 were negatively correlated with standardized uptake value ratios for all analyzed regions; CSF Aβ43 average rho -0.73, Aβ42 -0.74. Both CSF Aβ peptides correlated significantly with hippocampal volume, inferior parietal and frontal cortical thickness and axial diffusivity in the corticospinal tract. There was a trend toward CSF Aβ42 being better correlated with cortical glucose metabolism. None of the studied correlations between CSF Aβ43/42 and imaging biomarkers were significantly different for the two Aβ peptides when controlling for multiple testing. Conclusion: Cerebrospinal fluid Aβ43 appears to be strongly correlated with cerebral amyloid deposits in the same way as Aβ42, even in non-demented patients with only subjective cognitive complaints. Regarding imaging biomarkers, there is no evidence from the present study that CSF Aβ43 performs better than the classical CSF biomarker Aβ42 for distinguishing SCD and MCI.
Collapse
Affiliation(s)
- Ina S Almdahl
- Division of Medicine and Laboratory Sciences, Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo, Norway; Department of Neurology, Akershus University HospitalLørenskog, Norway
| | - Camilla Lauridsen
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology Trondheim, Norway
| | - Per Selnes
- Division of Medicine and Laboratory Sciences, Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo, Norway; Department of Neurology, Akershus University HospitalLørenskog, Norway
| | - Lisa F Kalheim
- Division of Medicine and Laboratory Sciences, Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo, Norway; Department of Neurology, Akershus University HospitalLørenskog, Norway
| | - Christopher Coello
- Preclinical PET/CT, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | - Ina Møller
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim Trondheim, Norway
| | - Marianne Wettergreen
- Department of Neurology, Akershus University HospitalLørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Institute of Clinical Medicine, University of Oslo - Akershus University HospitalLørenskog, Norway
| | - Ramune Grambaite
- Department of Neurology, Akershus University Hospital Lørenskog, Norway
| | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital Oslo, Norway
| | - Geir Bråthen
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of TrondheimTrondheim, Norway
| | - Sigrid B Sando
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of TrondheimTrondheim, Norway
| | - Linda R White
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of TrondheimTrondheim, Norway
| | - Tormod Fladby
- Division of Medicine and Laboratory Sciences, Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo, Norway; Department of Neurology, Akershus University HospitalLørenskog, Norway
| |
Collapse
|
144
|
Syvänen S, Fang XT, Hultqvist G, Meier SR, Lannfelt L, Sehlin D. A bispecific Tribody PET radioligand for visualization of amyloid-beta protofibrils - a new concept for neuroimaging. Neuroimage 2017; 148:55-63. [PMID: 28069541 DOI: 10.1016/j.neuroimage.2017.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022] Open
Abstract
Antibodies are highly specific for their target molecules, but their poor brain penetrance has restricted their use as PET ligands for imaging of targets within the CNS. The aim of this study was to develop an antibody-based radioligand, using the TribodyTM format, for PET imaging of soluble amyloid-beta (Aβ) protofibrils, which are suggested to cause neurodegeneration in Alzheimer's disease. Antibodies, even when expressed in smaller engineered formats, are large molecules that do not enter the brain in sufficient amounts for imaging purposes. Hence, their transport across the blood-brain barrier (BBB) needs to be facilitated, for example through interaction with the transferrin receptor (TfR). Thus, a Fab fragment of the TfR antibody 8D3 was fused with two single chain variable fragments (scFv) of the Aβ protofibril selective antibody mAb158. Five TribodyTM proteins (A1-A5) were generated with different linkers between the Fab-8D3 and scFv-158. All proteins bound to TfR and Aβ protofibrils in vitro. Three of the proteins (A1-A3) were radiolabeled with iodine-125 and studied ex vivo in wild-type (wt) and transgenic mice overexpressing human Aβ. The systemic pharmacokinetics were similar with half-lives in blood of around 9h for all three ligands. Brain concentrations at 2h were around 1% of the injected dose per gram brain tissue, which is similar to what is observed for small molecular radioligands and at least 10-fold higher than antibodies in general. At 72h, transgenic mice showed higher concentrations of radioactivity in the brain than wt mice (12, 15- and 16-fold for A1, A2 and A3 respectively), except in the cerebellum, an area largely devoid of Aβ pathology. A3 was then labelled with iodine-124 for in vivo positron emission tomography (PET) imaging. Brain concentrations were quantified in six different regions showing a clear distinction both quantitatively and visually between wt and transgenic mice and a good correlation with Aβ pathology. We have thus produced a recombinant, bispecific protein, actively transported into the brain, for PET imaging within the CNS. In a longer perspective, this technique may enable imaging of other proteins involved in neurodegenerative diseases for which imaging agents are completely lacking today.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Xiaotian T Fang
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Greta Hultqvist
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Silvio R Meier
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| | - Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| |
Collapse
|
145
|
Hultqvist G, Syvänen S, Fang XT, Lannfelt L, Sehlin D. Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics 2017; 7:308-318. [PMID: 28042336 PMCID: PMC5197066 DOI: 10.7150/thno.17155] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/19/2016] [Indexed: 02/04/2023] Open
Abstract
The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to Aβ protofibrils, which are involved in the pathogenesis of Alzheimer's disease (AD). Despite the two TfR binders, a monovalent interaction with TfR was achieved due to the short linkers that sterically hinder bivalent binding to the TfR dimer. The design enabled efficient receptor-mediated brain uptake of the fusion protein. Two hours after administration, brain concentrations were 2-3% of the injected dose per gram brain, comparable to small molecular drugs and 80-fold higher than unmodified mAb158. After three days, fusion protein concentrations in AD transgenic mouse brains were 9-fold higher than in wild type mice, demonstrating high in vivo specificity. Thus, our innovative recombinant design markedly increases mAb158 brain uptake, which makes it a strong candidate for improved Aβ immunotherapy and as a PET radioligand for early diagnosis and evaluation of treatment effect in AD. Moreover, this approach could be applied to any target within the brain.
Collapse
|
146
|
Merlini M, Shi Y, Keller S, Savarese G, Akhmedov A, Derungs R, Spescha RD, Kulic L, Nitsch RM, Lüscher TF, Camici GG. Reduced nitric oxide bioavailability mediates cerebroarterial dysfunction independent of cerebral amyloid angiopathy in a mouse model of Alzheimer's disease. Am J Physiol Heart Circ Physiol 2016; 312:H232-H238. [PMID: 27836896 DOI: 10.1152/ajpheart.00607.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD), cerebral arteries, in contrast to cerebral microvessels, show both cerebral amyloid angiopathy (CAA) -dependent and -independent vessel wall pathology. However, it remains unclear whether CAA-independent vessel wall pathology affects arterial function, thereby chronically reducing cerebral perfusion, and, if so, which mechanisms mediate this effect. To this end, we assessed the ex vivo vascular function of the basilar artery and a similar-sized peripheral artery (femoral artery) in the Swedish-Arctic (SweArc) transgenic AD mouse model at different disease stages. Furthermore, we used quantitative immunohistochemistry to analyze CAA, endothelial morphology, and molecular pathways pertinent to vascular relaxation. We found that endothelium-dependent, but not smooth muscle-dependent, vasorelaxation was significantly impaired in basilar and femoral arteries of 15-mo-old SweArc mice compared with that of age-matched wild-type and 6-mo-old SweArc mice. This impairment was accompanied by significantly reduced levels of cyclic GMP, indicating a reduced nitric oxide (NO) bioavailability. However, no age- and genotype-related differences in oxidative stress as measured by lipid peroxidation were observed. Although parenchymal capillaries, arterioles, and arteries showed abundant CAA in the 15-mo-old SweArc mice, no CAA or changes in endothelial morphology were detected histologically in the basilar and femoral artery. Thus our results suggest that, in this AD mouse model, dysfunction of large intracranial, extracerebral arteries important for brain perfusion is mediated by reduced NO bioavailability rather than by CAA. This finding supports the growing body of evidence highlighting the therapeutic importance of targeting the cerebrovasculature in AD. NEW & NOTEWORTHY We show that vasorelaxation of the basilar artery, a large intracranial, extracerebral artery important for cerebral perfusion, is impaired independent of cerebral amyloid angiopathy in a transgenic mouse model of Alzheimer's disease. Interestingly, this dysfunction is specifically endothelium related and is mediated by impaired nitric oxide-cyclic GMP bioavailability.
Collapse
Affiliation(s)
- Mario Merlini
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland.,Neuroscience Center Zurich, Schlieren, Switzerland
| | - Yi Shi
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Stephan Keller
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland
| | - Gianluigi Savarese
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden; and
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland
| | - Rebecca Derungs
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Remo D Spescha
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland
| | - Luka Kulic
- Neuroscience Center Zurich, Schlieren, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Roger M Nitsch
- Neuroscience Center Zurich, Schlieren, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland; .,Neuroscience Center Zurich, Schlieren, Switzerland
| |
Collapse
|
147
|
Brain mGluR5 in mice with amyloid beta pathology studied with in vivo [ 11C]ABP688 PET imaging and ex vivo immunoblotting. Neuropharmacology 2016; 113:293-300. [PMID: 27743932 DOI: 10.1016/j.neuropharm.2016.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is characterized by aggregation of amyloid beta (Aβ) into insoluble plaques. Intermediates, Aβ oligomers (Aβo), appear to be the mechanistic cause of disease. The de facto PET AD ligand, [11C]PIB, binds and visualizes Aβ plaque load, which does not correlate well with disease severity. Therefore, finding a dynamic target that changes with pathology progression in AD is of great interest. Aβo alter synaptic plasticity, inhibit long-term potentiation, and facilitate long-term depression; key mechanisms involved in memory and learning. In order to convey these neurotoxic effects, Aβo requires interaction with the metabotropic glutamate 5 receptor (mGluR5). The aim was to investigate in vivo mGluR5 changes in an Aβ pathology model using PET. Wild type C57/BL6 (wt) and AβPP transgenic mice (tg-ArcSwe), 4, 8, and 16 months old, were PET scanned with [11C]ABP688, which is highly specific to mGluR5, to investigate changes in mGluR5. Mouse brains were extracted postscan and mGluR5 and Aβ protofibril levels were assessed with immunoblotting and ELISA respectively. Receptor-dense brain regions (hippocampus, thalamus, and striatum) displayed higher [11C]ABP688 concentrations corresponding to mGluR5 expression pattern. Mice had similar uptake levels of [11C]ABP688 regardless of genotype or age. Immunoblotting revealed general decline in mGluR5 expression and elevated levels of mGluR5 in 16 months old tg-ArcSwe compared with wt mice. [11C]ABP688 could visualize mGluR5 in the mouse brain. In conclusion, mGluR5 levels were found to decrease with age and tended to be higher in tg-ArcSwe compared with wt mice, however these changes could not be quantified with PET.
Collapse
|
148
|
Li T, Vandesquille M, Koukouli F, Dudeffant C, Youssef I, Lenormand P, Ganneau C, Maskos U, Czech C, Grueninger F, Duyckaerts C, Dhenain M, Bay S, Delatour B, Lafaye P. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release 2016; 243:1-10. [PMID: 27671875 DOI: 10.1016/j.jconrel.2016.09.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/09/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
Detection of intracerebral targets with imaging probes is challenging due to the non-permissive nature of blood-brain barrier (BBB). The present work describes two novel single-domain antibodies (VHHs or nanobodies) that specifically recognize extracellular amyloid deposits and intracellular tau neurofibrillary tangles, the two core lesions of Alzheimer's disease (AD). Following intravenous administration in transgenic mouse models of AD, in vivo real-time two-photon microscopy showed gradual extravasation of the VHHs across the BBB, diffusion in the parenchyma and labeling of amyloid deposits and neurofibrillary tangles. Our results demonstrate that VHHs can be used as specific BBB-permeable probes for both extracellular and intracellular brain targets and suggest new avenues for therapeutic and diagnostic applications in neurology.
Collapse
Affiliation(s)
- Tengfei Li
- Institut Pasteur, CITECH, Plateforme d'Ingénierie des Anticorps, 75724 Paris Cedex 15, France; Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, F-75013 Paris, France; Inserm U 1127, Paris, France; CNRS UMR 7225, Paris, France; ICM, Paris, France; Université Paris Descartes, Paris 5, France
| | - Matthias Vandesquille
- Institut Pasteur, Unité de Chimie des Biomolécules, 75724 Paris Cedex 15, France; CNRS UMR 3523, 75724 Paris Cedex 15, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Fani Koukouli
- Institut Pasteur, Neurobiologie intégrative des systèmes cholinergiques, CNRS UMR 3571, Paris, France
| | - Clémence Dudeffant
- Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, F-75013 Paris, France; Inserm U 1127, Paris, France; CNRS UMR 7225, Paris, France; ICM, Paris, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Ihsen Youssef
- Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, F-75013 Paris, France; Inserm U 1127, Paris, France; CNRS UMR 7225, Paris, France; ICM, Paris, France
| | - Pascal Lenormand
- Institut Pasteur, CITECH, Plateforme d'Ingénierie des Anticorps, 75724 Paris Cedex 15, France
| | - Christelle Ganneau
- Institut Pasteur, Unité de Chimie des Biomolécules, 75724 Paris Cedex 15, France; CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie intégrative des systèmes cholinergiques, CNRS UMR 3571, Paris, France
| | - Christian Czech
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development, NORD DTA, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Fiona Grueninger
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development, NORD DTA, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Charles Duyckaerts
- Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, F-75013 Paris, France; Inserm U 1127, Paris, France; CNRS UMR 7225, Paris, France; ICM, Paris, France
| | - Marc Dhenain
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Sylvie Bay
- Institut Pasteur, Unité de Chimie des Biomolécules, 75724 Paris Cedex 15, France; CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Benoît Delatour
- Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, F-75013 Paris, France; Inserm U 1127, Paris, France; CNRS UMR 7225, Paris, France; ICM, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, CITECH, Plateforme d'Ingénierie des Anticorps, 75724 Paris Cedex 15, France.
| |
Collapse
|
149
|
Ma Z, Zhang M, Jia X, Bai J, Ruan Y, Wang C, Sun X, Jiang X. Fe III -Doped Two-Dimensional C 3 N 4 Nanofusiform: A New O 2 -Evolving and Mitochondria-Targeting Photodynamic Agent for MRI and Enhanced Antitumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5477-5487. [PMID: 27569525 DOI: 10.1002/smll.201601681] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/02/2016] [Indexed: 06/06/2023]
Abstract
Local hypoxia in tumors, as well as the short lifetime and limited action region of 1 O2 , are undesirable impediments for photodynamic therapy (PDT), leading to a greatly reduced effectiveness. To overcome these adversities, a mitochondria-targeting, H2 O2 -activatable, and O2 -evolving PDT nanoplatform is developed based on FeIII -doped two-dimensional C3 N4 nanofusiform for highly selective and efficient cancer treatment. The ultrahigh surface area of 2D nanosheets enhances the photosensitizer (PS) loading capacity and the doping of FeIII leads to peroxidase mimetics with excellent catalytic performance towards H2 O2 in cancer cells to generate O2 . As such tumor hypoxia can be overcome and the PDT efficacy is improved, whilst at the same time endowing the PDT theranostic agent with an effective T 1 -weighted in vivo magnetic resonance imaging (MRI) ability. Conjugation with a mitochondria-targeting agent could further increase the sensitivity of cancer cells to 1 O2 by enhanced mitochondria dysfunction. In vitro and in vivo anticancer studies demonstrate an outstanding therapeutic effectiveness of the developed PDT agent, leading to almost complete destruction of mouse cervical tumor. This development offers an attractive theranostic agent for in vivo MRI and synergistic photodynamic therapy toward clinical applications.
Collapse
Affiliation(s)
- Zhifang Ma
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130022, Jilin, P. R. China
| | - Xiaodan Jia
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
| | - Jing Bai
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
| | - Yudi Ruan
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Chao Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Xuping Sun
- Department of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, P. R. China
| | - Xiue Jiang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.
| |
Collapse
|
150
|
Pardridge WM. Re-engineering therapeutic antibodies for Alzheimer’s disease as blood-brain barrier penetrating bi-specific antibodies. Expert Opin Biol Ther 2016; 16:1455-1468. [DOI: 10.1080/14712598.2016.1230195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|