101
|
Liu W, Wang X, Wang S, Ba X, Xu T, Wang X, Zeng X. RhoGDI2 positively regulates the Rho GTPases activation in response to the β2 outside-in signaling in T cells adhesion and migration on ICAM-1. J Leukoc Biol 2019; 106:431-446. [PMID: 31075185 DOI: 10.1002/jlb.2a0718-272rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
Cytoskeletal reorganization driven by Rho GTPases plays a crucial role in the migration of T cells, which are key regulators of immunity. The molecular mechanisms that control actin cytoskeleton remodeling during T cell movement have only partially been clarified as the function of many modulators has not been evaluated in these cells. Here, we report a new function of RhoGDI2 by showing that this protein positively regulates Rho GTPase activation during T cell adhesion and migration. RhoGDI2 knockdown significantly reduced T cell adhesion and migration. Furthermore, RhoGDI2 knockdown decreased the activation of Rac1 and Cdc42, 2 members of Rho GTPases, and the remodeling of the actin cytoskeleton. Upon P-selectin glycoprotein ligand-1 engagement, RhoGDI2 was phosphorylated at Y24 and Y153 by kinases related to β2 integrin outside-in signaling, Src, c-Abl, and Syk, resulting in the accumulation of RhoGDI2 at the cell membrane. Subsequent phosphorylation of S31 induced the opening of RhoGDI2 and the release of Rho GTPases, whereas phosphorylation of Y153 might promote the activation of Rho GTPases by recruiting Vav1. Moreover, the disruption of lipid rafts with methyl-β-cyclodextrin blocked the interaction between integrins and RhoGDI2, reducing the level of phosphorylated RhoGDI2 and the activation of downstream Rho GTPases. Based on these observations, RhoGDI2 is a target of intergrin outside-in signaling that activates Rho GTPases during T cell adhesion and migration, and RhoGDI2-mediated signal transduction is based on the lipid rafts integrity.
Collapse
Affiliation(s)
- Wenai Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xuehao Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Shan Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Tingshuang Xu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
102
|
Chen Y, Li Z, Ju LA. Tensile and compressive force regulation on cell mechanosensing. Biophys Rev 2019; 11:311-318. [PMID: 31073958 DOI: 10.1007/s12551-019-00536-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Receptor-mediated cell mechanosensing plays critical roles in cell spreading, migration, growth, and survival. Dynamic force spectroscopy (DFS) techniques have recently been advanced to visualize such processes, which allow the concurrent examination of molecular binding dynamics and cellular response to mechanical stimuli on single living cells. Notably, the live-cell DFS is able to manipulate the force "waveforms" such as tensile versus compressive, ramped versus clamped, static versus dynamic, and short versus long lasting forces, thereby deriving correlations of cellular responses with ligand binding kinetics and mechanical stimulation profiles. Here, by differentiating extracellular mechanical stimulations into two major categories, tensile force and compressive force, we review the latest findings on receptor-mediated mechanosensing mechanisms that are discovered by the state-of-the-art live-cell DFS technologies.
Collapse
Affiliation(s)
- Yunfeng Chen
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Zhiyong Li
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lining Arnold Ju
- Heart Research Institute, Sydney, Australia. .,School of Aerospace, Mechanical and Mechatronic Engineering, Darlington, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
103
|
Collenburg L, Schneider-Schaulies S, Avota E. The neutral sphingomyelinase 2 in T cell receptor signaling and polarity. Biol Chem 2019; 399:1147-1155. [PMID: 29337691 DOI: 10.1515/hsz-2017-0280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/31/2017] [Indexed: 01/13/2023]
Abstract
By hydrolyzing its substrate sphingomyelin at the cytosolic leaflet of cellular membranes, the neutral sphingomyelinase 2 (NSM2) generates microdomains which serve as docking sites for signaling proteins and thereby, functions to regulate signal relay. This has been particularly studied in cellular stress responses while the regulatory role of this enzyme in the immune cell compartment has only recently emerged. In T cells, phenotypic polarization by co-ordinated cytoskeletal remodeling is central to motility and interaction with endothelial or antigen-presenting cells during tissue recruitment or immune synapse formation, respectively. This review highlights studies adressing the role of NSM2 in T cell polarity in which the enzyme plays a major role in regulating cytoskeletal dynamics.
Collapse
Affiliation(s)
- Lena Collenburg
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Sibylle Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| |
Collapse
|
104
|
Plasmacytoid Dendritic Cells and Infected Cells Form an Interferogenic Synapse Required for Antiviral Responses. Cell Host Microbe 2019; 25:730-745.e6. [PMID: 31003939 DOI: 10.1016/j.chom.2019.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/03/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
Type I interferon (IFN-I) is critical for antiviral defense, and plasmacytoid dendritic cells (pDCs) are a predominant source of IFN-I during virus infection. pDC-mediated antiviral responses are stimulated upon physical contact with infected cells, during which immunostimulatory viral RNA is transferred to pDCs, leading to IFN production via the nucleic acid sensor TLR7. Using dengue, hepatitis C, and Zika viruses, we demonstrate that the contact site of pDCs with infected cells is a specialized platform we term the interferogenic synapse, which enables viral RNA transfer and antiviral responses. This synapse is formed via αLβ2 integrin-ICAM-1 adhesion complexes and the recruitment of the actin network and endocytic machinery. TLR7 signaling in pDCs promotes interferogenic synapse establishment and provides feed-forward regulation, sustaining pDC contacts with infected cells. This interferogenic synapse may allow pDCs to scan infected cells and locally secrete IFN-I, thereby confining a potentially deleterious response.
Collapse
|
105
|
Harrison DL, Fang Y, Huang J. T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. FRONTIERS IN PHYSICS 2019; 7:45. [PMID: 32601597 PMCID: PMC7323161 DOI: 10.3389/fphy.2019.00045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A T cell is a sensitive self-referential mechanical sensor. Mechanical forces influence the recognition, activation, differentiation, and function throughout the lifetime of a T cell. T cells constantly perceive and respond to physical stimuli through their surface receptors, cytoskeleton, and subcellular structures. Surface receptors receive physical cues in the form of forces generated through receptor-ligand binding events, which are dynamically regulated by contact tension, shear stress, and substrate rigidity. The resulting mechanotransduction not only influences T-cell recognition and signaling but also possibly modulates cell metabolism and gene expression. Moreover, forces also dynamically regulate the deformation, organization, and translocation of cytoskeleton and subcellular structures, leading to changes in T-cell mobility, migration, and infiltration. However, the roles and mechanisms of how mechanical forces modulate T-cell recognition, signaling, metabolism, and gene expression, are largely unknown and underappreciated. Here, we review recent technological and scientific advances in T-cell mechanobiology, discuss possible roles and mechanisms of T-cell mechanotransduction, and propose new research directions of this emerging field in health and disease.
Collapse
Affiliation(s)
- Devin L. Harrison
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Yun Fang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Jun Huang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
106
|
Abstract
Small, monomeric guanine triphosphate hydrolases (GTPases) are ubiquitous cellular integrators of signaling. A signal activates the GTPase, which then binds to an effector molecule to relay a signal inside the cell. The GTPase effector trap flow cytometry assay (G-Trap) utilizes bead-based protein immobilization and dual-color flow cytometry to rapidly and quantitatively measure GTPase activity status in cell or tissue lysates. Beginning with commercial cytoplex bead sets that are color-coded with graded fluorescence intensities of a red (700 nm) wavelength, the bead sets are derivatized to display glutathione on the surface through a detailed protocol described here. A different glutathione-S-transferase-effector protein (GST-effector protein) can then be attached to the surface of each set. For the assay, users can incubate bead sets individually or in a multiplex format with lysates for rapid, selective capture of active, GTP-bound GTPases from a single sample. After that, flow cytometry is used to identify the bead-borne GTPase based on red bead intensity, and the amount of active GTPase per bead is detected using monoclonal antibodies conjugated to a green fluorophore or via labeled secondary antibodies. Three examples are provided to illustrate the efficacy of the effector-functionalized beads for measuring the activation of at least five GTPases in a single lysate from fewer than 50,000 cells.
Collapse
|
107
|
Meshik X, O’Neill PR, Gautam N. Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration. ACS Synth Biol 2019; 8:498-510. [PMID: 30764607 DOI: 10.1021/acssynbio.8b00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
Collapse
|
108
|
Persson H, Potrzebowski W, Potrzebowska K, Svensson LM. Spatial mapping of affinity changes for the integrin LFA-1 during cell migration using clusters identified based on local density. JOURNAL OF BIOPHOTONICS 2019; 12:e201800080. [PMID: 30267470 DOI: 10.1002/jbio.201800080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Localization microscopy methods like Stochastic Optical Reconstruction Microscopy (STORM) are very well suited for exploring clustering of proteins, as the data inherently provide a list of molecular coordinates. Here we use state-of-art cluster analysis algorithms (DBSCAN) to explore the clustering behaviour of different affinity forms of the integrin LFA-1. It has been suggested that LFA-1 may form clusters, in order to increase the avidity to ICAM-1. However, this hypothesis still seems to be controversial. In this study, we found, variations in clustering behaviour among the different affinity forms of LFA-1 in migrating T-cells. We found that panLFA-1 is located in clusters throughout the polarised cell on ICAM-1, with an increased density of molecules and clusters in the mid area and rear of the cell, whereas the intermediate and high affinity form of LFA-1 showed an increased number in the mid area of a migrating cell and the high affinity form of LFA-1 in the front and rear. Together, these data suggest that, in addition to LFA-1 conformation, protein clustering might play a role in controlling cell-substrate adhesion on ICAM-1.By applying the cluster analysis algorithm DBSCAN to localization microscopy data, integrin clusters could be identified and different cluster parameters could be quantified.
Collapse
Affiliation(s)
- Henrik Persson
- Section of Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Katarzyna Potrzebowska
- Section of Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lena M Svensson
- Section of Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- The School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
109
|
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol 2019; 10:254. [PMID: 30837997 PMCID: PMC6389632 DOI: 10.3389/fimmu.2019.00254] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological processes such as neutrophil phagocytosis and ROS production, and T cell activation. Intriguingly, however, they have also been found to negatively regulate cytokine responses, maturation, and migratory responses in myeloid cells such as macrophages and dendritic cells, revealing new, and unexpected roles of these molecules in immunity. Because of their essential role in leukocyte function, a lack of expression or function of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated. Interestingly, some LAD-related phenotypes such as periodontitis have recently been shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled infection, as was previously thought. This review will focus on the recent advances concerning the regulation and functions of beta2-integrins in leukocyte trafficking, immune suppression, and immune deficiency disease.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Liisa M Uotila
- Research Services, University of Helsinki, Helsinki, Finland
| |
Collapse
|
110
|
Jahed Z, Haydari Z, Rathish A, Mofrad MRK. Kindlin Is Mechanosensitive: Force-Induced Conformational Switch Mediates Cross-Talk among Integrins. Biophys J 2019; 116:1011-1024. [PMID: 30819565 DOI: 10.1016/j.bpj.2019.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Mechanical stresses directly regulate the function of several proteins of the integrin-mediated focal adhesion complex as they experience intra- and extracellular forces. Kindlin is a largely overlooked member of the focal adhesion complex whose roles in cellular mechanotransduction are only recently being identified. Recent crystallographic experiments have revealed that kindlins can form dimers that bind simultaneously to two integrins, providing a mechanistic explanation of how kindlins may promote integrin activation and clustering. In this study, using the newly identified molecular structure, we modeled the response of the kindlin2 dimer in complex with integrin β1 to mechanical cytoskeletal forces on integrins. Using molecular dynamics simulations, we show that forces on integrins are directly transmitted to the kindlin2 dimerization site, resulting in a shift in an R577-S550/E553 interaction network at this site. Under force, R577 on one protomer switches from interacting with S550 to forming new hydrogen bonds with E553 on the neighboring protomer, resulting in the strengthening of the kindlin2 dimer in complex with integrin β1. This force-induced strengthening is similar to the catch-bond mechanisms that have previously been observed in other adhesion molecules. Based on our results, we propose that the kindlin2 dimer is mechanosensitive and can strengthen integrin-mediated focal adhesions under force by shifting the interactions at its dimerization sites.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Zainab Haydari
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Akshay Rathish
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
111
|
Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. J Leukoc Biol 2019; 105:1261-1273. [DOI: 10.1002/jlb.mr0718-267r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Noah Joseph
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| |
Collapse
|
112
|
Semashko VV, Pudovkin MS, Cefalas AC, Zelenikhin PV, Gavriil VE, Nizamutdinov AS, Kollia Z, Ferraro A, Sarantopoulou E. Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions. NANOSCALE RESEARCH LETTERS 2018; 13:370. [PMID: 30465280 PMCID: PMC6249154 DOI: 10.1186/s11671-018-2775-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF3 and PrF3 nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles (< 10 nm). While tiny size nanoparticles may be well associated with the activation of EGFR, integrin interplay with nanoparticles remains a multifaceted issue. A theoretical motif shows that, within the requisite pN force scale, each ligand adhesion binding site can be activated by a tiny size dielectric nanoparticle via electrical dipole interaction. The size of the active nanoparticle stayed specified by the amount of the surface charges on the ligand adhesion binding site and the nanoparticle, and also by the separating distance between them. The polar component of the electrical dipole force remained inversely proportional to the second power of nanoparticle's size, evincing that only tiny size dielectric nanoparticles might stimulate cancer cell growth via electrical dipole interactions. The work contributes towards recognising different cytoskeletal stressing modes of cancer cells.
Collapse
Affiliation(s)
- Vadim V. Semashko
- Institute of Physics, Kazan Federal University, 18 Kremljovskaja str, Kazan, 420008 Russia
| | - Maksim S. Pudovkin
- Institute of Physics, Kazan Federal University, 18 Kremljovskaja str, Kazan, 420008 Russia
| | - Alkiviadis-Constantinos Cefalas
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Institute of Physics, Kazan Federal University, 18 Kremljovskaja str, Kazan, 420008 Russia
| | - Pavel V. Zelenikhin
- Department of Microbiology, Kazan Federal University, 18 Kremljovskaja str, Kazan, 420008 Russia
| | - Vassilios E. Gavriil
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Alexei S. Nizamutdinov
- Institute of Physics, Kazan Federal University, 18 Kremljovskaja str, Kazan, 420008 Russia
| | - Zoe Kollia
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Angelo Ferraro
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Institute of Physics, Kazan Federal University, 18 Kremljovskaja str, Kazan, 420008 Russia
| | - Evangelia Sarantopoulou
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Institute of Physics, Kazan Federal University, 18 Kremljovskaja str, Kazan, 420008 Russia
| |
Collapse
|
113
|
Autonomous conformational regulation of β 3 integrin and the conformation-dependent property of HPA-1a alloantibodies. Proc Natl Acad Sci U S A 2018; 115:E9105-E9114. [PMID: 30209215 DOI: 10.1073/pnas.1806205115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Integrin α/β heterodimer adopts a compact bent conformation in the resting state, and upon activation undergoes a large-scale conformational rearrangement. During the inside-out activation, signals impinging on the cytoplasmic tail of β subunit induce the α/β separation at the transmembrane and cytoplasmic domains, leading to the extended conformation of the ectodomain with the separated leg and the opening headpiece that is required for the high-affinity ligand binding. It remains enigmatic which integrin subunit drives the bent-to-extended conformational rearrangement in the inside-out activation. The β3 integrins, including αIIbβ3 and αVβ3, are the prototypes for understanding integrin structural regulation. The Leu33Pro polymorphism located at the β3 PSI domain defines the human platelet-specific alloantigen (HPA) 1a/b, which provokes the alloimmune response leading to clinically important bleeding disorders. Some, but not all, anti-HPA-1a alloantibodies can distinguish the αIIbβ3 from αVβ3 and affect their functions with unknown mechanisms. Here we designed a single-chain β3 subunit that mimics a separation of α/β heterodimer on inside-out activation. Our crystallographic and functional studies show that the single-chain β3 integrin folds into a bent conformation in solution but spontaneously extends on the cell surface. This demonstrates that the β3 subunit autonomously drives the membrane-dependent conformational rearrangement during integrin activation. Using the single-chain β3 integrin, we identified the conformation-dependent property of anti-HPA-1a alloantibodies, which enables them to differently recognize the β3 in the bent state vs. the extended state and in the complex with αIIb vs. αV This study provides deeper understandings of integrin conformational activation on the cell surface.
Collapse
|
114
|
Zhou D, Thinn AMM, Zhao Y, Wang Z, Zhu J. Structure of an extended β 3 integrin. Blood 2018; 132:962-972. [PMID: 30018079 PMCID: PMC6117741 DOI: 10.1182/blood-2018-01-829572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
Cells use adhesion receptor integrins to communicate with their surroundings. Integrin activation and cellular signaling are coupled with change from bent to extended conformation. β3 integrins, including αIIbβ3, which is essential for the function of platelets in hemostasis and thrombosis, and αVβ3, which plays multiple roles in diverse cell types, have been prototypes in understanding integrin structure and function. Despite extensive structural studies, a high-resolution integrin structure in an extended conformation remains to be determined. The human β3 Leu33Pro polymorphism, located at the PSI domain, defines human platelet-specific alloantigens 1a and 1b (HPA-1a/b), immune response to which is a cause of posttransfusion purpura and fetal/neonatal alloimmune thrombocytopenia. Leu33Pro substitution has also been suggested to be a risk factor for thrombosis. Here we report the crystal structure of the β3 headpiece in either Leu33 or Pro33 form, both of which reveal intermediate and fully extended conformations coexisting in 1 crystal. These were used to build high-resolution structures of full-length β3 integrin in the intermediate and fully extended states, agreeing well with the corresponding conformations observed by electron microscopy. Our structures reveal how β3 integrin becomes extended at its β-knee region and how the flexibility of β-leg domains is determined. In addition, our structures reveal conformational changes of the PSI and I-EGF1 domains upon β3 extension, which may affect the binding of conformation-dependent anti-HPA-1a alloantibodies. Our structural and functional data show that Leu33Pro substitution does not directly alter the conformation or ligand binding of β3 integrin.
Collapse
Affiliation(s)
- Dongwen Zhou
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI; and
| | - Yan Zhao
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Physiology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI; and
| |
Collapse
|
115
|
Boyd MA, Kamat NP. Visualizing Tension and Growth in Model Membranes Using Optical Dyes. Biophys J 2018; 115:1307-1315. [PMID: 30219285 DOI: 10.1016/j.bpj.2018.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Cells dynamically regulate their membrane surface area during a variety of processes critical to their survival. Recent studies with model membranes have pointed to a general mechanism for surface area regulation under tension in which cell membranes unfold or take up lipid to accommodate membrane strain. Yet we lack robust methods to simultaneously measure membrane tension and surface area changes in real time. Using lipid vesicles that contain two dyes isolated to spatially distinct parts of the membrane, we introduce, to our knowledge, a new method to monitor the processes of membrane stretching and lipid uptake in model membranes. Laurdan, located within the bilayer membrane, and Förster resonance energy transfer dyes, localized to the membrane exterior, act in concert to report changes in membrane tension and lipid uptake during osmotic stress. We use these dyes to show that membranes under tension take up lipid more quickly and in greater amounts compared to their nontensed counterparts. Finally, we show that this technique is compatible with microscopy, enabling real-time analysis of membrane dynamics on a single vesicle level. Ultimately, the combinatorial use of these probes offers a more complete picture of changing membrane morphology. Our optical method allows us to remotely track changes in membrane tension and surface area with model membranes, offering new opportunities to track morphological changes in artificial and biological membranes and providing new opportunities in fields ranging from mechanobiology to drug delivery.
Collapse
Affiliation(s)
- Margrethe A Boyd
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Center for Synthetic Biology, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.
| |
Collapse
|
116
|
Li M, Wu X, Guo X, Bao P, Ding X, Chu M, Liang C, Yan P. Comparative iTRAQ proteomics revealed proteins associated with horn development in yak. Proteome Sci 2018; 16:14. [PMID: 30061793 PMCID: PMC6056918 DOI: 10.1186/s12953-018-0141-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023] Open
Abstract
Background The practice of dehorning yak raises animal safety concerns, which have been addressed by selective breeding to obtain genetically hornless yak. The POLLED locus in yak has been studied extensively; however, little is known regarding the proteins that regulate horn bud development. Methods A differential proteomic analysis was performed to compare the skin from the horn bud region of polled yak fetuses and the horn bud tissue of horned yak fetuses using isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with 2D LC-MS/MS. Results One hundred differentially abundant proteins (DAPs) were identified. Of these, 29 were up-regulated and 71 were down-regulated in skin from the horn bud region of polled fetuses when compared to the horn bud tissue of horned fetuses. Bioinformatics analyses showed that the up-regulated DAPs were mainly associated with metabolic activities, while the down-regulated DAPs were significantly enriched in cell adhesion and cell movement activities. Conclusions We concluded that some important proteins were associated with cell adhesion, cell motility, keratinocyte differentiation, cytoskeleton organization, osteoblast differentiation, and fatty acid metabolism during horn bud development. These results advance our understanding of the molecular mechanisms underlying horn development.
Collapse
Affiliation(s)
- Mingna Li
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xiaoyun Wu
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xian Guo
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Pengjia Bao
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xuezhi Ding
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Min Chu
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Chunnian Liang
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Ping Yan
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| |
Collapse
|
117
|
Hons M, Kopf A, Hauschild R, Leithner A, Gaertner F, Abe J, Renkawitz J, Stein JV, Sixt M. Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nat Immunol 2018; 19:606-616. [PMID: 29777221 DOI: 10.1038/s41590-018-0109-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 04/11/2018] [Indexed: 01/13/2023]
Abstract
Although much is known about the physiological framework of T cell motility, and numerous rate-limiting molecules have been identified through loss-of-function approaches, an integrated functional concept of T cell motility is lacking. Here, we used in vivo precision morphometry together with analysis of cytoskeletal dynamics in vitro to deconstruct the basic mechanisms of T cell migration within lymphatic organs. We show that the contributions of the integrin LFA-1 and the chemokine receptor CCR7 are complementary rather than positioned in a linear pathway, as they are during leukocyte extravasation from the blood vasculature. Our data demonstrate that CCR7 controls cortical actin flows, whereas integrins mediate substrate friction that is sufficient to drive locomotion in the absence of considerable surface adhesions and plasma membrane flux.
Collapse
Affiliation(s)
- Miroslav Hons
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Aglaja Kopf
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Florian Gaertner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jun Abe
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jörg Renkawitz
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
118
|
Bondu V, Bitting C, Poland VL, Hanson JA, Harkins MS, Lathrop S, Nolte KB, Lawrence DA, Buranda T. Upregulation of P2Y 2R, Active uPA, and PAI-1 Are Essential Components of Hantavirus Cardiopulmonary Syndrome. Front Cell Infect Microbiol 2018; 8:169. [PMID: 29930915 PMCID: PMC6001748 DOI: 10.3389/fcimb.2018.00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Sin Nombre virus (SNV) causes hantavirus cardiopulmonary pulmonary syndrome (HCPS) with the loss of pulmonary vascular endothelial integrity, and pulmonary edema without causing cytopathic effects on the vascular endothelium. HCPS is associated primarily with a dysregulated immune response. We previously found occult signs of hemostatic imbalance in the form of a sharp >30-100 fold increase in the expression of plasminogen activator inhibitor type 1 (PAI-1), in serial blood plasma draws of terminal stage-patients. However, the mechanism of the increase in PAI-1 remains unclear. PAI-1 is a primary inhibitor of fibrinolysis caused by tissue plasminogen activator (tPA) and urokinase plasminogen activator plasma (uPA). Here, we investigate factors that contribute to PAI-1 upregulation during HCPS. Using zymography, we found evidence of PAI-1-refractory uPA activity and no tPA activity in plasma samples drawn from HCPS patients. The sole prevalence of uPA activity suggested that severe inflammation drove PAI-1 activity. We have recently reported that the P2Y2 receptor (P2Y2R) mediates SNV infectivity by interacting in cis with β3 integrins, which activates the latter during infection. P2Y2R is a known effector for several biological processes relevant to HCPS pathogenesis, such as upregulation of tissue factor (TF), a primary initiator of the coagulation cascade, stimulating vascular permeability and leukocyte homing to sites of infection. As P2Y2R is prone to upregulation under conditions of inflammation, we compared the expression level of P2Y2R in formalin fixed tissues of HCPS decedents using a TaqMan assay and immunohistochemistry. Our TaqMan results show that the expression of P2Y2R is upregulated significantly in HCPS cases compared to non- HCPS controls (P < 0.001). Immunohistochemistry showed that lung macrophages were the primary reservoir of high and coincident localization of P2Y2R, uPA, PAI-1, and TF antigens. We also observed increased staining for SNV antigens in the same tissue segments where P2Y2R expression was upregulated. Conversely, sections of low P2Y2R expression showed weak manifestations of macrophages, SNV, PAI-1, and TF. Coincident localization of P2Y2R and PAI-1 on macrophage deposits suggests an inflammation-dependent mechanism of increasing pro-coagulant activity in HCPS in the absence of tissue injury.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Casey Bitting
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Valerie L Poland
- Office of the Medical Investigator, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Joshua A Hanson
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Michelle S Harkins
- Division of Infectious Disease, Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Sarah Lathrop
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Office of the Medical Investigator, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kurt B Nolte
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Office of the Medical Investigator, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
119
|
Walling BL, Kim M. LFA-1 in T Cell Migration and Differentiation. Front Immunol 2018; 9:952. [PMID: 29774029 PMCID: PMC5943560 DOI: 10.3389/fimmu.2018.00952] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/17/2018] [Indexed: 01/21/2023] Open
Abstract
Maintenance of homeostatic immune surveillance and development of effective adaptive immune responses require precise regulation of spatial and temporal lymphocyte trafficking throughout the body to ensure pathogen clearance and memory generation. Dysregulation of lymphocyte activation and migration can lead to impaired adaptive immunity, recurrent infections, and an array of autoimmune diseases and chronic inflammation. Central to the recruitment of T cells, integrins are cell surface receptors that regulate adhesion, signal transduction, and migration. With 24 integrin pairs having been discovered to date, integrins are defined not only by the composition of the heterodimeric pair but by cell-type specific expression and their ligands. Furthermore, integrins not only facilitate adhesion but also induce intracellular signaling and have recently been uncovered as mechanosensors providing additional complexity to the signaling pathways. Among several leukocyte-specific integrins, lymphocyte function-associated antigen-1 (LFA-1 or αLβ2; CD11a/CD18) is a key T cell integrin, which plays a major role in regulating T cell activation and migration. Adhesion to LFA-1's ligand, intracellular adhesion receptor 1 (ICAM-1) facilitates firm endothelium adhesion, prolonged contact with antigen-presenting cells, and binding to target cells for killing. While the downstream signaling pathways utilized by LFA-1 are vastly conserved they allow for highly disparate responses. Here, we summarize the roles of LFA-1 and ongoing studies to better understand its functions and regulation.
Collapse
Affiliation(s)
- Brandon L Walling
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
120
|
Ju L, McFadyen JD, Al-Daher S, Alwis I, Chen Y, Tønnesen LL, Maiocchi S, Coulter B, Calkin AC, Felner EI, Cohen N, Yuan Y, Schoenwaelder SM, Cooper ME, Zhu C, Jackson SP. Compression force sensing regulates integrin α IIbβ 3 adhesive function on diabetic platelets. Nat Commun 2018; 9:1087. [PMID: 29540687 PMCID: PMC5852038 DOI: 10.1038/s41467-018-03430-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/09/2018] [Indexed: 01/25/2023] Open
Abstract
Diabetes is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Biomechanical forces regulate platelet activation, although the impact of diabetes on this process remains ill-defined. Using a biomembrane force probe (BFP), we demonstrate that compressive force activates integrin αIIbβ3 on discoid diabetic platelets, increasing its association rate with immobilized fibrinogen. This compressive force-induced integrin activation is calcium and PI 3-kinase dependent, resulting in enhanced integrin affinity maturation and exaggerated shear-dependent platelet adhesion. Analysis of discoid platelet aggregation in the mesenteric circulation of mice confirmed that diabetes leads to a marked enhancement in the formation and stability of discoid platelet aggregates, via a mechanism that is not inhibited by therapeutic doses of aspirin and clopidogrel, but is eliminated by PI 3-kinase inhibition. These studies demonstrate the existence of a compression force sensing mechanism linked to αIIbβ3 adhesive function that leads to a distinct prothrombotic phenotype in diabetes.
Collapse
Affiliation(s)
- Lining Ju
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia
- Charles Perkins Centre, Level 3E Cardiovascular Division, The University of Sydney, New South Wales, 2006, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - James D McFadyen
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Saheb Al-Daher
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Imala Alwis
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia
- Charles Perkins Centre, Level 3E Cardiovascular Division, The University of Sydney, New South Wales, 2006, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Yunfeng Chen
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia
- Coulter Department of Biomedical Engineering; and Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, 92037, CA, USA
| | - Lotte L Tønnesen
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia
- Charles Perkins Centre, Level 3E Cardiovascular Division, The University of Sydney, New South Wales, 2006, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Sophie Maiocchi
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia
- Charles Perkins Centre, Level 3E Cardiovascular Division, The University of Sydney, New South Wales, 2006, Australia
| | - Brianna Coulter
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia
- Charles Perkins Centre, Level 3E Cardiovascular Division, The University of Sydney, New South Wales, 2006, Australia
| | - Anna C Calkin
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
- Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Eric I Felner
- Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Neale Cohen
- Clinical Diabetes, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Yuping Yuan
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia
- Charles Perkins Centre, Level 3E Cardiovascular Division, The University of Sydney, New South Wales, 2006, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Simone M Schoenwaelder
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia
- Charles Perkins Centre, Level 3E Cardiovascular Division, The University of Sydney, New South Wales, 2006, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Cheng Zhu
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia.
- Coulter Department of Biomedical Engineering; and Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Shaun P Jackson
- Heart Research Institute, Thrombosis Group, Newtown, New South Wales, 2042, Australia.
- Charles Perkins Centre, Level 3E Cardiovascular Division, The University of Sydney, New South Wales, 2006, Australia.
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, 92037, CA, USA.
| |
Collapse
|
121
|
Sen M, Koksal AC, Yuki K, Wang J, Springer TA. Ligand- and cation-induced structural alterations of the leukocyte integrin LFA-1. J Biol Chem 2018; 293:6565-6577. [PMID: 29507098 DOI: 10.1074/jbc.ra117.000710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Indexed: 01/27/2023] Open
Abstract
In αI integrins, including leukocyte function-associated antigen 1 (LFA-1), ligand-binding function is delegated to the αI domain, requiring extra steps in the relay of signals that activate ligand binding and coordinate it with cytoplasmic signals. Crystal structures reveal great variation in orientation between the αI domain and the remainder of the integrin head. Here, we investigated the mechanisms involved in signal relay to the αI domain, including whether binding of the ligand intercellular adhesion molecule-1 (ICAM-1) to the αI domain is linked to headpiece opening and engenders a preferred αI domain orientation. Using small-angle X-ray scattering and negative-stain EM, we define structures of ICAM-1, LFA-1, and their complex, and the effect of activation by Mn2+ Headpiece opening was substantially stabilized by substitution of Mg2+ with Mn2+ and became complete upon ICAM-1 addition. These agents stabilized αI-headpiece orientation, resulting in a well-defined orientation of ICAM-1 such that its tandem Ig-like domains pointed in the opposite direction from the β-subunit leg of LFA-1. Mutations in the integrin βI domain α1/α1' helix stabilizing either the open or the closed βI-domain conformation indicated that α1/α1' helix movements are linked to ICAM-1 binding by the αI domain and to the extended-open conformation of the ectodomain. The LFA-1-ICAM-1 orientation described here with ICAM-1 pointing anti-parallel to the LFA-1 β-subunit leg is the same orientation that would be stabilized by tensile force transmitted between the ligand and the actin cytoskeleton and is consistent with the cytoskeletal force model of integrin activation.
Collapse
Affiliation(s)
- Mehmet Sen
- From the Program in Cellular and Molecular Medicine and .,the Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Adem C Koksal
- From the Program in Cellular and Molecular Medicine and
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jianchuan Wang
- From the Program in Cellular and Molecular Medicine and.,the Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Timothy A Springer
- From the Program in Cellular and Molecular Medicine and .,the Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
122
|
Seetharaman S, Etienne-Manneville S. Integrin diversity brings specificity in mechanotransduction. Biol Cell 2018; 110:49-64. [DOI: 10.1111/boc.201700060] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shailaja Seetharaman
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
- Université Paris Descartes, Sorbonne Paris Cité; Paris 75006 France
| | - Sandrine Etienne-Manneville
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
| |
Collapse
|
123
|
Bertoni A, Alabiso O, Galetto AS, Baldanzi G. Integrins in T Cell Physiology. Int J Mol Sci 2018; 19:E485. [PMID: 29415483 PMCID: PMC5855707 DOI: 10.3390/ijms19020485] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022] Open
Abstract
From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Oscar Alabiso
- Department of Translational Medicine, University of Eastern Piedmont, Novara-Italy and Oncology Division, University Hospital "Maggiore della Carità", 28100 Novara, Italy.
| | - Alessandra Silvia Galetto
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100-Italy and Palliative Care Division, A.S.L., 13100 Vercelli, Italy.
| | - Gianluca Baldanzi
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| |
Collapse
|
124
|
High integrin α Vβ 6 affinity reached by hybrid domain deletion slows ligand-binding on-rate. Proc Natl Acad Sci U S A 2018; 115:E1429-E1436. [PMID: 29378937 DOI: 10.1073/pnas.1718662115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of the hybrid domain in integrin affinity regulation is unknown, as is whether the kinetics of ligand binding is modulated by integrin affinity state. Here, we compare cell surface and soluble integrin αVβ6 truncation mutants for ligand-binding affinity, kinetics, and thermodynamics. Removal of the integrin transmembrane/cytoplasmic domains or lower legs has little effect on αVβ6 affinity, in contrast to β1 integrins. In integrin opening, rearrangement at the interface between the βI and hybrid domains is linked to remodeling at the ligand-binding site at the opposite end of the βI domain, which greatly increases in affinity in the open conformation. The larger size of the βI-hybrid interface in the closed state suggests that the hybrid domain stabilizes closing. In agreement, deletion of the hybrid domain raised affinity by 50-fold. Surface plasmon resonance and isothermal titration calorimetry gave similar results and the latter revealed tradeoffs between enthalpy and entropy not apparent from affinity. At extremely high affinity reached in Mn2+ with hybrid domain truncation, αVβ6 on-rate for both pro-TGF-β1 and fibronectin declined. The results suggest that the open conformation of αVβ6 has lower on-rate than the closed conformation, correlate with constriction of the ligand-binding pocket in open αVβ6 structures, and suggest that the extended-closed conformation is kinetically selected for ligand binding. Subsequent transition to the extended-open conformation is stabilized by its much higher affinity for ligand and would also be stabilized by force exerted across ligand-bound integrins by the actin cytoskeleton.
Collapse
|
125
|
The Wiskott-Aldrich Syndrome Protein Contributes to the Assembly of the LFA-1 Nanocluster Belt at the Lytic Synapse. Cell Rep 2018; 22:979-991. [DOI: 10.1016/j.celrep.2017.12.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/01/2017] [Accepted: 12/22/2017] [Indexed: 01/23/2023] Open
|
126
|
The opposing forces of shear flow and sphingosine-1-phosphate control marginal zone B cell shuttling. Nat Commun 2017; 8:2261. [PMID: 29273735 PMCID: PMC5741619 DOI: 10.1038/s41467-017-02482-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2017] [Indexed: 11/29/2022] Open
Abstract
Splenic marginal zone B cells (MZB) shuttle between the blood-filled marginal zone for antigen collection and the follicle for antigen delivery. However, it is unclear how MZBs migrate directionally from the marginal zone to the follicle. Here, we show that murine MZBs migrate up shear flow via the LFA-1 (αLβ2) integrin ligand ICAM-1, but adhere or migrate down the flow via the VLA-4 integrin (α4β1) ligand VCAM-1. MZBs lacking Arhgef6 (Pak-interacting exchange factor (αPIX)) or functional LFA-1 are impaired in shuttling due to mislocalization toward the VCAM-1-rich red pulp. Sphingosine-1-phosphate (S1P) signaling through the S1PR3 receptor inhibits MZB migration up the flow, and deletion of S1pr3 in Arhgef6−/− mice rescues mislocalized MZBs. These findings establish shear flow as a directional cue for MZB migration to the follicle, and define S1PR3 and VCAM-1 as counteracting forces that inhibit this migration. Marginal zone B (MZB) cells shuttle between the marginal zone and lymphoid follicle to capture and present peripheral blood antigens. Here the authors show that shear force, such as blood flow from the sinus around the follicle, is a directional cue that induces MZB migration on ICAM-1, and that S1P signaling inhibits this directional migration.
Collapse
|
127
|
Platelet integrins exhibit anisotropic mechanosensing and harness piconewton forces to mediate platelet aggregation. Proc Natl Acad Sci U S A 2017; 115:325-330. [PMID: 29269394 DOI: 10.1073/pnas.1710828115] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet aggregation at the site of vascular injury is essential in clotting. During this process, platelets are bridged by soluble fibrinogen that binds surface integrin receptors. One mystery in the mechanism of platelet aggregation pertains to how resting platelets ignore soluble fibrinogen, the third most abundant protein in the bloodstream, and yet avidly bind immobile fibrinogen on the surface of other platelets at the primary injury site. We speculate that platelet integrins are mechanosensors that test their ligands across the platelet-platelet synapse. To investigate this model, we interrogate human platelets using approaches that include the supported lipid bilayer platform as well as DNA tension sensor technologies. Experiments suggest that platelet integrins require lateral forces to mediate platelet-platelet interactions. Mechanically labile ligands dampen platelet activation, and the onset of piconewton integrin tension coincides with calcium flux. Activated platelets display immobilized fibrinogen on their surface, thus mediating further recruitment of resting platelets. The distribution of integrin tension was shown to be spatially regulated through two myosin-signaling pathways, myosin light chain kinase and Rho-associated kinase. Finally, we discovered that the termination of integrin tension is coupled with the exposure of phosphatidylserine. Our work reveals the highest spatial and temporal resolution maps of platelet integrin mechanics and its role in platelet aggregation, suggesting that platelets are physical substrates for one another that establish mechanical feedback loops of activation. The results are reminiscent of mechanical regulation of the T-cell receptor, E-cadherin, and Notch pathways, suggesting a common feature for signaling at cell junctions.
Collapse
|
128
|
Nordenfelt P, Moore TI, Mehta SB, Kalappurakkal JM, Swaminathan V, Koga N, Lambert TJ, Baker D, Waters JC, Oldenbourg R, Tani T, Mayor S, Waterman CM, Springer TA. Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. Nat Commun 2017; 8:2047. [PMID: 29229906 PMCID: PMC5725580 DOI: 10.1038/s41467-017-01848-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/20/2017] [Indexed: 12/31/2022] Open
Abstract
Integrin αβ heterodimer cell surface receptors mediate adhesive interactions that provide traction for cell migration. Here, we test whether the integrin, when engaged to an extracellular ligand and the cytoskeleton, adopts a specific orientation dictated by the direction of actin flow on the surface of migrating cells. We insert GFP into the rigid, ligand-binding head of the integrin, model with Rosetta the orientation of GFP and its transition dipole relative to the integrin head, and measure orientation with fluorescence polarization microscopy. Cytoskeleton and ligand-bound integrins orient in the same direction as retrograde actin flow with their cytoskeleton-binding β-subunits tilted by applied force. The measurements demonstrate that intracellular forces can orient cell surface integrins and support a molecular model of integrin activation by cytoskeletal force. Our results place atomic, Å-scale structures of cell surface receptors in the context of functional and cellular, μm-scale measurements.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Program in Cellular and Molecular Medicine, Children's Hospital, and Department of Biological Chemistry and Molecular Pharmacology and Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, 221 84, Sweden
| | - Travis I Moore
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Program in Cellular and Molecular Medicine, Children's Hospital, and Department of Biological Chemistry and Molecular Pharmacology and Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shalin B Mehta
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Joseph Mathew Kalappurakkal
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- National Center for Biological Sciences, Bangalore, 560065, India
| | - Vinay Swaminathan
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20824, USA
| | - Nobuyasu Koga
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Talley J Lambert
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Baker
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Jennifer C Waters
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rudolf Oldenbourg
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Tomomi Tani
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Satyajit Mayor
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- National Center for Biological Sciences, Bangalore, 560065, India
| | - Clare M Waterman
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20824, USA
| | - Timothy A Springer
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Program in Cellular and Molecular Medicine, Children's Hospital, and Department of Biological Chemistry and Molecular Pharmacology and Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
129
|
Li J, Springer TA. Energy landscape differences among integrins establish the framework for understanding activation. J Cell Biol 2017; 217:397-412. [PMID: 29122968 PMCID: PMC5748972 DOI: 10.1083/jcb.201701169] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
Li and Springer demonstrate differences between integrins α4β1 and α5β1 in intrinsic affinities and relative free energies of three conformational states. Integrin conformational equilibria are both subunit and cell type specific. The energy landscapes of intact receptors on the cell surface provide a framework for understanding regulation of integrin adhesiveness. Why do integrins differ in basal activity, and how does affinity for soluble ligand correlate with cellular adhesiveness? We show that basal conformational equilibrium set points for integrin α4β1 are cell type specific and differ from integrin α5β1 when the two integrins are coexpressed on the same cell. Although α4β1 is easier to activate, its high-affinity state binds vascular cell adhesion molecule and fibronectin 100- to 1,000-fold more weakly than α5β1 binds fibronectin. Furthermore, the difference in affinity between the high- and low-affinity states is more compressed in α4β1 (600- to 800-fold) than in α5β1 (4,000- to 6,000-fold). α4β1 basal conformational equilibria differ among three cell types, define affinity for soluble ligand and readiness for priming, and may reflect differences in interactions with intracellular adaptors but do not predict cellular adhesiveness for immobilized ligand. The measurements here provide a necessary framework for understanding integrin activation in intact cells, including activation of integrin adhesiveness by application of tensile force by the cytoskeleton, across ligand–integrin–adaptor complexes.
Collapse
Affiliation(s)
- Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
130
|
Wang Z, Thinn AMM, Zhu J. A pivotal role for a conserved bulky residue at the α1-helix of the αI integrin domain in ligand binding. J Biol Chem 2017; 292:20756-20768. [PMID: 29079572 DOI: 10.1074/jbc.m117.790519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 10/12/2017] [Indexed: 11/06/2022] Open
Abstract
The ligand-binding βI and αI domains of integrin are the best-studied von Willebrand factor A domains undergoing significant conformational changes for affinity regulation. In both βI and αI domains, the α1- and α7-helixes work in concert to shift the metal-ion-dependent adhesion site between the resting and active states. An absolutely conserved Gly in the middle of the α1-helix of βI helps maintain the resting βI conformation, whereas the homologous position in the αI α1-helix contains a conserved Phe. A functional role of this Phe is structurally unpredictable. Using αLβ2 integrin as a model, we found that the residue volume at the Phe position in the α1-helix is critical for αLβ2 activation because trimming the Phe by small amino acid substitutions abolished αLβ2 binding with soluble and immobilized intercellular cell adhesion molecule 1. Similar results were obtained for αMβ2 integrin. Our experimental and molecular dynamics simulation data suggested that the bulky Phe acts as a pawl that stabilizes the downward ratchet-like movement of β6-α7 loop and α7-helix, required for high-affinity ligand binding. This mechanism may apply to other von Willebrand factor A domains undergoing large conformational changes. We further demonstrated that the conformational cross-talk between αL αI and β2 βI could be uncoupled because the β2 extension and headpiece opening could occur independently of the αI activation. Reciprocally, the αI activation does not inevitably lead to the conformational changes of the β2 subunit. Such loose linkage between the αI and βI is attributed to the αI flexibility and could accommodate the αLβ2-mediated rolling adhesion of leukocytes.
Collapse
Affiliation(s)
- Zhengli Wang
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Aye Myat Myat Thinn
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and.,the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jieqing Zhu
- From the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226 and .,the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
131
|
Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017; 28:3134-3155. [PMID: 28954860 PMCID: PMC5687017 DOI: 10.1091/mbc.e17-04-0228] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mechanosensing depicts the ability of a cell to sense mechanical cues, which under some circumstances is mediated by the surface receptors. In this review, a four-step model is described for receptor-mediated mechanosensing. Platelet GPIb, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Lining Ju
- Charles Perkins Centre and Heart Research Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Muaz Rushdi
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chenghao Ge
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
132
|
Bondu V, Wu C, Cao W, Simons PC, Gillette J, Zhu J, Erb L, Zhang XF, Buranda T. Low-affinity binding in cis to P2Y 2R mediates force-dependent integrin activation during hantavirus infection. Mol Biol Cell 2017; 28:2887-2903. [PMID: 28835374 PMCID: PMC5638590 DOI: 10.1091/mbc.e17-01-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy is used to establish that low-affinity integrins bind in cis to P2Y2R. Integrin activation is initiated by a membrane-normal switchblade motion triggered by integrin priming after the virus binds to the integrin PSI domain. Tensile force between the P2Y2R and unbending integrin stimulates outside-in signaling. Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chenyu Wu
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Wenpeng Cao
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Peter C Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jennifer Gillette
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jieqing Zhu
- Blood Research Institute, Bloodcenter of Wisconsin, Milwaukee, WI 53226
| | - Laurie Erb
- Department of Biochemistry, 540F Bond Life Sciences Center, Columbia, MO 65211
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 .,Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
133
|
Collenburg L, Beyersdorf N, Wiese T, Arenz C, Saied EM, Becker-Flegler KA, Schneider-Schaulies S, Avota E. The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration. Front Immunol 2017; 8:1007. [PMID: 28871263 PMCID: PMC5566967 DOI: 10.3389/fimmu.2017.01007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023] Open
Abstract
Breakdown of sphingomyelin as catalyzed by the activity of sphingomyelinases profoundly affects biophysical properties of cellular membranes which is particularly important with regard to compartmentalization of surface receptors and their signaling relay. As it is activated both upon TCR ligation and co-stimulation in a spatiotemporally controlled manner, the neutral sphingomyelinase (NSM) has proven to be important in T cell activation, where it appears to play a particularly important role in cytoskeletal reorganization and cell polarization. Because these are important parameters in directional T cell migration and motility in tissues, we analyzed the role of the NSM in these processes. Pharmacological inhibition of NSM interfered with early lymph node homing of T cells in vivo indicating that the enzyme impacts on endothelial adhesion, transendothelial migration, sensing of chemokine gradients or, at a cellular level, acquisition of a polarized phenotype. NSM inhibition reduced adhesion of T cells to TNF-α/IFN-γ activated, but not resting endothelial cells, most likely via inhibiting high-affinity LFA-1 clustering. NSM activity proved to be highly important in directional T cell motility in response to SDF1-α, indicating that their ability to sense and translate chemokine gradients might be NSM dependent. In fact, pharmacological or genetic NSM ablation interfered with T cell polarization both at an overall morphological level and redistribution of CXCR4 and pERM proteins on endothelial cells or fibronectin, as well as with F-actin polymerization in response to SDF1-α stimulation, indicating that efficient directional perception and signaling relay depend on NSM activity. Altogether, these data support a central role of the NSM in T cell recruitment and migration both under homeostatic and inflamed conditions by regulating polarized redistribution of receptors and their coupling to the cytoskeleton.
Collapse
Affiliation(s)
- Lena Collenburg
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| | - Teresa Wiese
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| | - Christoph Arenz
- Institute for Organic and Bioorganic Chemistry, Humboldt University of Berlin, Berlin, Germany
| | - Essa M Saied
- Institute for Organic and Bioorganic Chemistry, Humboldt University of Berlin, Berlin, Germany.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | | | | | - Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| |
Collapse
|
134
|
Pomeroy JE, Nguyen HX, Hoffman BD, Bursac N. Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics 2017; 7:3539-3558. [PMID: 28912894 PMCID: PMC5596442 DOI: 10.7150/thno.20593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
Collapse
Affiliation(s)
- Jordan E. Pomeroy
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
- Division of Cardiology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Hung X. Nguyen
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| |
Collapse
|
135
|
Duchi S, Piccinini F, Pierini M, Bevilacqua A, Torre ML, Lucarelli E, Santi S. A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy. PLoS One 2017; 12:e0183336. [PMID: 28817694 PMCID: PMC5560673 DOI: 10.1371/journal.pone.0183336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cell interaction with biomaterials is one of the keystones to developing medical devices for tissue engineering applications. Biomaterials are the scaffolds that give three-dimensional support to the cells, and are vectors that deliver the cells to the injured tissue requiring repair. Features of biomaterials can influence the behaviour of the cells and consequently the efficacy of the tissue-engineered product. The adhesion, distribution and motility of the seeded cells onto the scaffold represent key aspects, and must be evaluated in vitro during the product development, especially when the efficacy of a specific tissue-engineered product depends on viable and functional cell loading. In this work, we propose a non-invasive and non-destructive imaging analysis for investigating motility, viability and distribution of Mesenchymal Stem Cells (MSCs) on silk fibroin-based alginate microcarriers, to test the adhesion capacity of the fibroin coating onto alginate which is known to be unsuitable for cell adhesion. However, in depth characterization of the biomaterial is beyond the scope of this paper. Scaffold-loaded MSCs were stained with Calcein-AM and Ethidium homodimer-1 to detect live and dead cells, respectively, and counterstained with Hoechst to label cell nuclei. Time-lapse Light Sheet Fluorescent Microscopy (LSFM) was then used to produce three-dimensional images of the entire cells-loaded fibroin/alginate microcarriers. In order to quantitatively track the cell motility over time, we also developed an open source user friendly software tool called Fluorescent Cell Tracker in Three-Dimensions (F-Tracker3D). Combining LSFM with F-Tracker3D we were able for the first time to assess the distribution and motility of stem cells in a non-invasive, non-destructive, quantitative, and three-dimensional analysis of the entire surface of the cell-loaded scaffold. We therefore propose this imaging technique as an innovative holistic tool for monitoring cell-biomaterial interactions, and as a tool for the design, fabrication and functionalization of a scaffold as a medical device.
Collapse
Affiliation(s)
- Serena Duchi
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Filippo Piccinini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Meldola (FC), Italy
| | - Michela Pierini
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Bevilacqua
- Advanced Research Center on Electronic Systems “Ercole De Castro” (ARCES), Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Computer Science and Engineering (DISI), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Luisa Torre
- Cell Delivery System Lab, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Enrico Lucarelli
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Spartaco Santi
- Institute of Molecular Genetics (CNR), Bologna, Italy
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
136
|
Abstract
Leukocytes can completely reorganize their cytoskeletal architecture within minutes. This structural plasticity, which facilitates their migration and communicative function, also enables them to exert a substantial amount of mechanical force against the extracellular matrix and the surfaces of interacting cells. In recent years, it has become increasingly clear that these forces have crucial roles in immune cell activation and subsequent effector responses. Here, I review our current understanding of how mechanical force regulates cell-surface receptor activation, cell migration, intracellular signalling and intercellular communication, highlighting the biological ramifications of these effects in various immune cell types.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
137
|
Nanoscale mechanobiology of cell adhesions. Semin Cell Dev Biol 2017; 71:53-67. [PMID: 28754443 DOI: 10.1016/j.semcdb.2017.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
Abstract
Proper physiological functions of cells and tissues depend upon their abilities to sense, transduce, integrate, and generate mechanical and biochemical signals. Although such mechanobiological phenomena are widely observed, the molecular mechanisms driving these outcomes are still not fully understood. Cell adhesions formed by integrins and cadherins receptors are key structures that process diverse sources of signals to elicit complex mechanobiological responses. Since the nanoscale is the length scale at which molecules interact to relay force and information, the understanding of cell adhesions at the nanoscale level is important for grasping the inner logics of cellular decision making. Until recently, the study of the biological nanoscale has been restricted by available molecular and imaging tools. Fortunately, rapid technological advances have increasingly opened up the nanoscale realm to systematic investigations. In this review, we discuss current insights and key open questions regarding the nanoscale structure and function relationship of cell adhesions, focusing on recent progresses in characterizing their composition, spatial organization, and cytomechanical operation.
Collapse
|
138
|
Abstract
Talin has emerged as the key cytoplasmic protein that mediates integrin adhesion to the extracellular matrix. In this Review, we draw on experiments performed in mammalian cells in culture and Drosophila to present evidence that talin is the most important component of integrin adhesion complexes. We describe how the properties of this adaptor protein enable it to orchestrate integrin adhesions. Talin forms the core of integrin adhesion complexes by linking integrins directly to actin, increasing the affinity of integrin for ligands (integrin activation) and recruiting numerous proteins. It regulates the strength of integrin adhesion, senses matrix rigidity, increases focal adhesion size in response to force and serves as a platform for the building of the adhesion structure. Finally, the mechano-sensitive structure of talin provides a paradigm for how proteins transduce mechanical signals to chemical signals.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
139
|
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017; 28:1833-1846. [PMID: 28684609 PMCID: PMC5541834 DOI: 10.1091/mbc.e17-03-0134] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell-ECM and cell-cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration.
Collapse
Affiliation(s)
- Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
- UPMC Université Paris 06, IFD, Sorbonne Universités, 75252 Paris Cedex 05, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
| |
Collapse
|
140
|
Saitakis M, Dogniaux S, Goudot C, Bufi N, Asnacios S, Maurin M, Randriamampita C, Asnacios A, Hivroz C. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 2017; 6. [PMID: 28594327 PMCID: PMC5464771 DOI: 10.7554/elife.23190] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/07/2017] [Indexed: 12/26/2022] Open
Abstract
T cells are mechanosensitive but the effect of stiffness on their functions is still debated. We characterize herein how human primary CD4+ T cell functions are affected by stiffness within the physiological Young’s modulus range of 0.5 kPa to 100 kPa. Stiffness modulates T lymphocyte migration and morphological changes induced by TCR/CD3 triggering. Stiffness also increases TCR-induced immune system, metabolism and cell-cycle-related genes. Yet, upon TCR/CD3 stimulation, while cytokine production increases within a wide range of stiffness, from hundreds of Pa to hundreds of kPa, T cell metabolic properties and cell cycle progression are only increased by the highest stiffness tested (100 kPa). Finally, mechanical properties of adherent antigen-presenting cells modulate cytokine production by T cells. Together, these results reveal that T cells discriminate between the wide range of stiffness values found in the body and adapt their responses accordingly. DOI:http://dx.doi.org/10.7554/eLife.23190.001 Our immune system contains many cells that play various roles in defending the body against infection, cancer and other threats. For example, T cells constantly patrol the body ready to detect and respond to dangers. They do so by gathering cues from their surroundings, which can be specific chemical signals or physical properties such as the stiffness of tissues. Once the T cells are active they respond in several different ways including releasing hormones and dividing to produce more T cells. Tissue stiffness varies considerably between different organs. Furthermore, disease can lead to changes in tissue stiffness. For example, tissues become more rigid when they are inflamed. The stiffness and other physical properties of the surfaces that T cells interact with affect how the cells respond when they detect a threat, but few details are known about exactly how these cues tune T cell responses. Saitakis et al. studied how human T cells respond to artificial surfaces of varying stiffness that mimic the range found in the body. The experiments show that T cells that interact with stiff surfaces become more active than T cells that interact with softer surfaces. However, some responses are more sensitive to the stiffness of the surface than others. For example, the ability of the T cells to release hormones was affected by the whole range of stiffnesses tested in the experiments, whereas only very stiff surfaces stimulated the T cells to divide. These findings show that T cells can detect the stiffness of surfaces in the body and use this to adapt how they respond to threats. Future challenges will be to find out how T cells sense the physical properties of their surroundings and investigate whether cell and tissue stiffness affects immune responses in the body. This will help us to understand how T cells fight infections and other threats, and could be used to develop new ways of boosting these cells to fight cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.23190.002
Collapse
Affiliation(s)
- Michael Saitakis
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| | - Stéphanie Dogniaux
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| | - Christel Goudot
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| | - Nathalie Bufi
- Laboratoire Matières et systèmes complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Sophie Asnacios
- Laboratoire Matières et systèmes complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France.,Department of Physics, Sorbonne Universités, UPMC Université Paris, Paris, France
| | - Mathieu Maurin
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| | - Clotilde Randriamampita
- INSERM, U1016, Institut Cochin & UMR8104, CNRS & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Atef Asnacios
- Laboratoire Matières et systèmes complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Claire Hivroz
- Institut Curie Section Recherche, INSERM U932 & PSL Research University, Paris, France
| |
Collapse
|
141
|
Abstract
Integrins αVβ6 and αVβ8 are specialized for recognizing pro-TGF-β and activating its growth factor by releasing it from the latency imposed by its surrounding prodomain. The integrin αVβ8 is atypical among integrins in lacking sites in its cytoplasmic domain for binding to actin cytoskeleton adaptors. Here, we examine αVβ8 for atypical binding to pro-TGF-β1. In contrast to αVβ6, αVβ8 has a constitutive extended-closed conformation, and binding to pro-TGF-β1 does not stabilize the open conformation of its headpiece. Although Mn2+ potently activates other integrins and increases affinity of αVβ6 for pro-TGF-β1 25- to 55-fold, it increases αVβ8 affinity only 2- to 3-fold. This minimal effect correlates with the inability of Mn2+ and pro-TGF-β1 to stabilize the open conformation of the αVβ8 headpiece. Moreover, αVβ8 was inhibited by high concentrations of Mn2+ and was stimulated and inhibited at markedly different Ca2+ concentrations than αVβ6 These unusual characteristics are likely to be important in the still incompletely understood physiologic mechanisms that regulate αVβ8 binding to and activation of pro-TGF-β.
Collapse
|
142
|
Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc Natl Acad Sci U S A 2017; 114:4685-4690. [PMID: 28416675 DOI: 10.1073/pnas.1704171114] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integrins undergo large-scale conformational changes upon activation. Signaling events driving integrin activation have previously been discussed conceptually, but not quantitatively. Here, recent measurements of the intrinsic ligand-binding affinity and free energy of each integrin conformational state on the cell surface, together with the length scales of conformational change, are used to quantitatively compare models of activation. We examine whether binding of cytoskeletal adaptors to integrin cytoplasmic domains is sufficient for activation or whether exertion of tensile force by the actin cytoskeleton across the integrin-ligand complex is also required. We find that only the combination of adaptor binding and cytoskeletal force provides ultrasensitive regulation. Moreover, switch-like activation by force depends on the large, >130 Å length-scale change in integrin extension, which is well tailored to match the free-energy difference between the inactive (bent-closed) and active (extended-open) conformations. The length scale and energy cost in integrin extension enable activation by force in the low pN range and appear to be the key specializations that enable cell adhesion through integrins to be coordinated with cytoskeletal dynamics.
Collapse
|
143
|
Force interacts with macromolecular structure in activation of TGF-β. Nature 2017; 542:55-59. [PMID: 28117447 DOI: 10.1038/nature21035] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023]
Abstract
Integrins are adhesion receptors that transmit force across the plasma membrane between extracellular ligands and the actin cytoskeleton. In activation of the transforming growth factor-β1 precursor (pro-TGF-β1), integrins bind to the prodomain, apply force, and release the TGF-β growth factor. However, we know little about how integrins bind macromolecular ligands in the extracellular matrix or transmit force to them. Here we show how integrin αVβ6 binds pro-TGF-β1 in an orientation biologically relevant for force-dependent release of TGF-β from latency. The conformation of the prodomain integrin-binding motif differs in the presence and absence of integrin binding; differences extend well outside the interface and illustrate how integrins can remodel extracellular matrix. Remodelled residues outside the interface stabilize the integrin-bound conformation, adopt a conformation similar to earlier-evolving family members, and show how macromolecular components outside the binding motif contribute to integrin recognition. Regions in and outside the highly interdigitated interface stabilize a specific integrin/pro-TGF-β orientation that defines the pathway through these macromolecules which actin-cytoskeleton-generated tensile force takes when applied through the integrin β-subunit. Simulations of force-dependent activation of TGF-β demonstrate evolutionary specializations for force application through the TGF-β prodomain and through the β- and not α-subunit of the integrin.
Collapse
|