101
|
Wu J, Lai X, Cui G, Chen Q, Liu J, Kang Y, Zhang Y, Feng X, Hu C, Shao L. Dual effects of JNK activation in blood-milk barrier damage induced by zinc oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122809. [PMID: 32937690 DOI: 10.1016/j.jhazmat.2020.122809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/10/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have been extensively applied in our daily life. Humans are at high risk of being exposed to ZnO-NPs, which induce potentially adverse health effects. Although a growing number of studies have investigated the toxic effects of ZnO-NPs, the available data concerning ZnO-NP interactions with the blood-milk barrier (BMB) remain highly limited. Herein, we systematically investigated the damage to BMB integrity induced by ZnO-NPs and the mechanisms involved. ZnO-NPs that were intravenously injected into lactating dams accumulated in the mammary gland and entered into the breast milk, inducing disruption to BMB integrity and changes in the tight junction (TJ) and adherens junction (AJ) components. Furthermore, using an in vitro BMB model composed of EpH4-Ev cells, we verified that ZnO-NP-triggered ROS generation and the activation of MKK4 and JNK are the main mechanism of cell-cell junction damage. More interestingly, JNK activation played different roles in inducing changes in the TJ and AJ complex, and these effects did not need to activate the downstream c-Jun. These data provide more information for understanding ZnO-NP interactions with the BMB and raise concern for the daily use and the intravenous use of ZnO-NPs by lactating mothers.
Collapse
Affiliation(s)
- Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangman Cui
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
102
|
Liu H, Lv X, Qian J, Li H, Qian Y, Wang X, Meng X, Lin W, Wang H. Graphitic Carbon Nitride Quantum Dots Embedded in Carbon Nanosheets for Near-Infrared Imaging-Guided Combined Photo-Chemotherapy. ACS NANO 2020; 14:13304-13315. [PMID: 33016066 DOI: 10.1021/acsnano.0c05143] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational design of metal-free multifunctional therapeutic reagents offers great opportunities for cancer treatment in the clinic. Here, graphitic carbon nitride (g-C3N4) quantum dots embedded in carbon nanosheets (CNQD-CN) are in situ prepared via a one-pot hydrothermal approach with formamide as carbon and nitrogen source. The CNQD-CN not only serves as an excellent near-infrared (NIR) fluorescent marker but also acts as a pH-responsive nanocarrier. Moreover, the CNQD-CN possesses both light-to-heat conversion and singlet oxygen generation capabilities under a single NIR excitation wavelength. Further investigations show that systemic delivery of doxorubicin (DOX) using the multifunctional CNQD-CN nanocarrier under NIR irradiation was highly effective to cause cancer cell apoptosis in vitro and inhibit tumor growth in vivo. CNQD-CN represents a multifunctional therapeutic platform for synchronous cancer imaging and treatment through the synergistic effect of phototherapy and chemotherapy.
Collapse
Affiliation(s)
- Hongji Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
| | - Xiaotong Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Junchao Qian
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hong Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Yong Qian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
| | - Xingyu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
| | - Xiangfu Meng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| |
Collapse
|
103
|
Hong L, Pliss AM, Zhan Y, Zheng W, Xia J, Liu L, Qu J, Prasad PN. Perfluoropolyether Nanoemulsion Encapsulating Chlorin e6 for Sonodynamic and Photodynamic Therapy of Hypoxic Tumor. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2058. [PMID: 33086490 PMCID: PMC7603101 DOI: 10.3390/nano10102058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as an important modality for cancer treatment. SDT utilizes ultrasound excitation, which overcomes the limitations of light penetration in deep tumors, as encountered by photodynamic therapy (PDT) which uses optical excitations. A comparative study of these modalities using the same sensitizer drug can provide an assessment of their effects. However, the efficiency of SDT and PDT is low in a hypoxic tumor environment, which limits their applications. In this study, we report a hierarchical nanoformulation which contains a Food and Drug Administration (FDA) approved sensitizer chlorin, e6, and a uniquely stable high loading capacity oxygen carrier, perfluoropolyether. This oxygen carrier possesses no measurable cytotoxicity. It delivers oxygen to overcome hypoxia, and at the same time, boosts the efficiency of both SDT and PDT. Moreover, we comparatively analyzed the efficiency of SDT and PDT for tumor treatment throughout the depth of the tissue. Our study demonstrates that the strengths of PDT and SDT could be combined into a single multifunctional nanoplatform, which works well in the hypoxia environment and overcomes the limitations of each modality. The combination of deep tissue penetration by ultrasound and high spatial activation by light for selective treatment of single cells will significantly enhance the scope for therapeutic applications.
Collapse
Affiliation(s)
- Liang Hong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Artem M. Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA;
| | - Ye Zhan
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Wenhan Zheng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA; (Y.Z.); (W.Z.); (J.X.)
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York, NY 14260, USA;
| |
Collapse
|
104
|
Zhang M, Wang Y, Zhang Y, Song J, Si Y, Yan J, Ma C, Liu Y, Yu J, Ding B. Conductive and Elastic TiO
2
Nanofibrous Aerogels: A New Concept toward Self‐Supported Electrocatalysts with Superior Activity and Durability. Angew Chem Int Ed Engl 2020; 59:23252-23260. [DOI: 10.1002/anie.202010110] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Zhang
- Key Laboratory of High Performance Fibers & Products (Ministry of Education) College of Textiles Donghua University Shanghai 201620 China
| | - Yan Wang
- College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Yuanyuan Zhang
- Key Laboratory of High Performance Fibers & Products (Ministry of Education) College of Textiles Donghua University Shanghai 201620 China
| | - Jun Song
- College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Yang Si
- Innovation Center for Textile Science and Technology Donghua University Shanghai 200051 China
| | - Jianhua Yan
- Key Laboratory of High Performance Fibers & Products (Ministry of Education) College of Textiles Donghua University Shanghai 201620 China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology, Suzhou University of Science and Technology Suzhou 215009 China
| | - Yi‐Tao Liu
- Key Laboratory of High Performance Fibers & Products (Ministry of Education) College of Textiles Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 200051 China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology Donghua University Shanghai 200051 China
| | - Bin Ding
- Key Laboratory of High Performance Fibers & Products (Ministry of Education) College of Textiles Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 200051 China
| |
Collapse
|
105
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
106
|
Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L481-L496. [PMID: 32640839 PMCID: PMC7518063 DOI: 10.1152/ajplung.00104.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.
Collapse
Affiliation(s)
- Carrie C Smallcombe
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Terri J Harford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Centre for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio
| |
Collapse
|
107
|
Setyawati MI, Zhao Z, Ng KW. Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001246. [PMID: 32495486 DOI: 10.1002/smll.202001246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ingestion of engineered nanomaterials (ENMs) is inevitable due to their widespread utilization in the agrifood industry. Safety evaluation has become pivotal to identify the consequences on human health of exposure to these ingested ENMs. Much of the current understanding of nanotoxicology in the gastrointestinal tract (GIT) is derived from studies utilizing pristine ENMs. In reality, agrifood ENMs interact with their microenvironment, and undergo multiple physicochemical transformations, such as aggregation/agglomeration, dissolution, speciation change, and surface characteristics alteration, across their life cycle from synthesis to consumption. This work sieves out the implications of ENM transformations on their behavior, stability, and reactivity in food and product matrices and through the GIT, in relation to measured toxicological profiles. In particular, a strong emphasis is given to understand the mechanisms through which these transformations can affect ENM induced gut nanotoxicity.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
108
|
Giráldez-Pérez RM, Grueso E, Lhamyani S, Perez-Tejeda P, Gentile AM, Kuliszewska E, Roman-Perez J, El Bekay R. miR-21/Gemini surfactant-capped gold nanoparticles as potential therapeutic complexes: Synthesis, characterization and in vivo nanotoxicity probes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
109
|
Nanoengineering in Cardiac Regeneration: Looking Back and Going Forward. NANOMATERIALS 2020; 10:nano10081587. [PMID: 32806691 PMCID: PMC7466652 DOI: 10.3390/nano10081587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
To deliver on the promise of cardiac regeneration, an integration process between an emerging field, nanomedicine, and a more consolidated one, tissue engineering, has begun. Our work aims at summarizing some of the most relevant prevailing cases of nanotechnological approaches applied to tissue engineering with a specific interest in cardiac regenerative medicine, as well as delineating some of the most compelling forthcoming orientations. Specifically, this review starts with a brief statement on the relevant clinical need, and then debates how nanotechnology can be combined with tissue engineering in the scope of mimicking a complex tissue like the myocardium and its natural extracellular matrix (ECM). The interaction of relevant stem, precursor, and differentiated cardiac cells with nanoengineered scaffolds is thoroughly presented. Another correspondingly relevant area of experimental study enclosing both nanotechnology and cardiac regeneration, e.g., nanoparticle applications in cardiac tissue engineering, is also discussed.
Collapse
|
110
|
Jeon M, Lin G, Stephen ZR, Vechey JE, Singh M, Revia R, Newman AH, Martinez D, Zhang M. Cocaine analogue conjugated magnetic nanoparticles for labeling and imaging dopaminergic neurons. Biomater Sci 2020; 8:4166-4175. [PMID: 32515443 DOI: 10.1039/d0bm00546k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular imaging of the dopamine transporter (DAT) with Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) has been widely used in studies of neurological and psychiatric disorders. Nevertheless, there is a great interest in expanding molecular imaging to include magnetic resonance technology, because of the superior spatial resolution this technology may provide. Here we present a magnetic nanoparticle (NP) that specifically targets dopaminergic neurons and allows DAT imaging with magnetic resonance imaging (MRI). The nanoparticle (namely, NP-DN) is composed of an iron oxide core and a polyethylene glycol (PEG) coating to which a DAT specific dopaminergic neurolabeler (DN) is conjugated. NP-DN displayed long-term stability with favorable hydrodynamic size and surface charge suitable for in vivo application. In vitro studies showed NP-DN was non-toxic, displayed specificity towards DAT-expressing neurons, and demonstrated a 3-fold increase in DAT labeling over non-targeted NP. Our study shows NP-DN provides excellent contrast enhancement for MRI and demonstrates great potential for neuroimaging.
Collapse
Affiliation(s)
- Mike Jeon
- Department of Material Sciences and Engineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers. Sci Rep 2020; 10:13320. [PMID: 32770112 PMCID: PMC7414109 DOI: 10.1038/s41598-020-70148-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
This study explored the impact of gold nanoparticles on the metabolic activity and morphology of human pulmonary endothelial cell monolayers. We developed a gold nanoparticle library of three different sizes and two surface chemistries that include anionic citrate and the cationic polyelectrolyte poly(allylamine hydrochloride). The nanoparticles were characterized in cell culture medium to assess how their physical properties are altered after exposure to biological fluids. A bovine serum albumin pretreatment protocol was developed to stabilize the nanoparticles in cell culture medium. Results of this study show that an 18 h exposure of human pulmonary artery endothelial cells to the different nanoparticles modestly affects cellular metabolic activity. However, nanoparticle exposure perturbs the cortical actin networks and induces the formation of intercellular gaps. In particular, exposure to the poly(allylamine hydrochloride)-coated particles reduces the area of cell-cell junctions-a change that correlates with increased leakiness of endothelial barriers. The presence of excess polyelectrolyte capping agents in the supernatant of poly(allylamine hydrochloride)-coated nanoparticles significantly impacts endothelial morphology. Pretreatment of the particle supernatant with bovine serum albumin mitigates the negative effects of free or bound polyelectrolytes on endothelial cell monolayers.
Collapse
|
112
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Jonathan P. Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapur
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
113
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew Chem Int Ed Engl 2020; 59:15424-15446. [PMID: 32170796 DOI: 10.1002/anie.202000802] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/04/2023]
Abstract
Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir-Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jonathan P Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
114
|
Tovani C, Ferreira CR, Simão AMS, Bolean M, Coppeta L, Rosato N, Bottini M, Ciancaglini P, Ramos AP. Characterization of the in Vitro Osteogenic Response to Submicron TiO 2 Particles of Varying Structure and Crystallinity. ACS OMEGA 2020; 5:16491-16501. [PMID: 32685813 PMCID: PMC7364638 DOI: 10.1021/acsomega.0c00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Titanium oxide (TiO2) nano-/microparticles have been widely used in orthopedic and dental sciences because of their excellent mechanical properties, chemical stability, and ability to promote the osseointegration of implants. However, how the structure and crystallinity of TiO2 particles may affect their osteogenic activity remains elusive. Herein, we evaluated the osteogenic response to submicron amorphous, anatase, and rutile TiO2 particles with controlled size and morphology. First, the ability of TiO2 particles to precipitate apatite was assessed in an acellular medium by using a simulated body fluid (SBF). Three days after the addition to SBF, anatase and rutile TiO2 particles induced the precipitation of aggregates of nanoparticles with a platelike morphology, typical for biomimetic apatite. Conversely, amorphous TiO2 particles induced the precipitation of particles with poor Ca/P atomic ratio only after 14 days of exposure to SBF. Next, the osteogenic response to TiO2 particles was assessed in vitro by incubating MC3T3-E1 preosteoblasts with the particles. The viability and mineralization efficiency of osteoblastic cells were maintained in the presence of all the tested TiO2 particles despite the differences in the induction of apatite precipitation in SBF by TiO2 particles with different structures. Analysis of the particles' surface charge and of the proteins adsorbed onto the particles from the culture media suggested that all the tested TiO2 particles acquired a similar biological identity in the culture media. We posited that this phenomenon attenuated potential differences in osteoblast response to amorphous, anatase, and rutile particles. Our study provides an important insight into the complex relationship between the physicochemical properties and function of TiO2 particles and sheds light on their safe use in medicine.
Collapse
Affiliation(s)
- Camila
B. Tovani
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Claudio R. Ferreira
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Ana Maria S. Simão
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Maytê Bolean
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Luca Coppeta
- Department
of Occupational Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
| | - Nicola Rosato
- Department
of Experimental Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
| | - Massimo Bottini
- Department
of Experimental Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
- Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Pietro Ciancaglini
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Ana Paula Ramos
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| |
Collapse
|
115
|
Bhattacharya DS, Svechkarev D, Bapat A, Patil P, Hollingsworth MA, Mohs AM. Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44. ACS Biomater Sci Eng 2020; 6:3585-3598. [PMID: 32617404 PMCID: PMC7331950 DOI: 10.1021/acsbiomaterials.0c00115] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many targeting strategies can be employed to direct nanoparticles to tumors for imaging and therapy. However, tumors display a dynamic, heterogeneous microenvironment that undergoes spatiotemporal changes, including the expression of targetable cell-surface biomarkers. Here, we develop a nanoparticle system to effectively target two receptors overexpressed in the microenvironment of aggressive tumors. Hyaluronic acid (HA) was regioselectivity modified using a multi-step synthetic approach to alter binding specificities for CD44 and P-selectin to tumor cell interaction. The dual-targeting strategy utilizes sulfate modifications on HA that targets P-selectin, in addition to native targeting of CD44, which exploits spatiotemporal alterations in the expression patterns of these two receptors in cancer sites. Using biophysical characterization and in vitro studies, we demonstrate that modified HA nanoparticles effectively targets both P-selectin+ and CD44+ cells, which lays the groundwork for future in vivo biomedical applications.
Collapse
Affiliation(s)
- Deep S. Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Aishwarya Bapat
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Prathamesh Patil
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
116
|
Zhu H, Sun Y, Yi T, Wang S, Mi J, Meng Q. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process. Biochimie 2020; 175:77-84. [PMID: 32417459 DOI: 10.1016/j.biochi.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022]
Abstract
Due to its unique mechanical properties, spider silk shows great promise as a strong super-thin fiber in many fields. Although progress has been made in the field of synthesizing spider-silk fiber from recombinant spidroin (spider silk protein) in the last few decades, methods to obtain synthetic spider-silk fibers as tough as natural silk from small-sized recombinant protein with a simple spinning process have eluded scientists. In this paper, a recombinant spidroin (MW: 93.4 kDa) was used to spin tough synthetic spider-silk fibers with a simple wet-spinning process. Titanium oxide incorporation and formaldehyde cross-linking were used to improve the mechanical properties of synthetic spider-silk fibers. Fibers treated with incorporation or/and cross-linking varied in microstructure, strength and extensibility while all exhibited enhanced strength and toughness. In particular, one fiber possessed a toughness of 249 ± 22 MJ/m3. This paper presents a new method to successfully spin tough spider-silk fibers in a simple way.
Collapse
Affiliation(s)
- Hongnian Zhu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yuan Sun
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tuo Yi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Suyang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Junpeng Mi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
117
|
Exposure to Zinc Oxide Nanoparticles Disrupts Endothelial Tight and Adherens Junctions and Induces Pulmonary Inflammatory Cell Infiltration. Int J Mol Sci 2020; 21:ijms21103437. [PMID: 32414036 PMCID: PMC7279309 DOI: 10.3390/ijms21103437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) are frequently encountered nanomaterials in our daily lives. Despite the benefits of ZnONPs in a variety of applications, many studies have shown potential health hazards of exposure to ZnONPs. We have shown that oropharyngeal aspiration of ZnONPs in mice increases lung inflammation. However, the detailed mechanisms underlying pulmonary inflammatory cell infiltration remain to be elucidated. Endothelium functions as a barrier between the blood stream and the blood vessel wall. Endothelial barrier dysfunction may increase infiltration of immune cells into the vessel wall and underlying tissues. This current study examined the effects of ZnONPs exposure on endothelial barriers. ZnONPs exposure increased leukocyte infiltration in the mouse lungs. In endothelial cells, ZnONPs reduced the continuity of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1) at the cell junctions. ZnONPs induced adherens junction protein VE-cadherin internalization from membrane to cytosol and dissociation with β-catenin, leading to reduced and diffused staining of VE-cadherin and β-catenin at cell junctions. Our results demonstrated that ZnONPs disrupted both tight and adherens junctions, compromising the integrity and stability of the junction network, leading to inflammatory cell infiltration. Thus, ZnONPs exposure in many different settings should be carefully evaluated for vascular effects and subsequent health impacts.
Collapse
|
118
|
Boey A, Ho HK. All Roads Lead to the Liver: Metal Nanoparticles and Their Implications for Liver Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000153. [PMID: 32163668 DOI: 10.1002/smll.202000153] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Metal nanoparticles (NPs) are frequently encountered in daily life, and concerns have been raised about their toxicity and safety. Among which, they naturally accumulate in the liver after introduction into the body, independent of the route of administration. Some NPs exhibit intrinsic pharmaceutical effects that are related to their physical parameters, and their inadvertent accumulation in the liver can exert strong effects on liver function and structure. Even as such physiological consequences are often categorically dismissed as toxic and deleterious, there are cell type-specific and NP-specific biological responses that elicit distinctive pharmacological consequences that can be harnessed for good. By limiting the scope of discussion to metallic NPs, this work attempts to provide a balanced perspective on their safety in the liver, and discusses both possible therapeutic benefits and potential accidental liver damage arising from their interaction with specific parenchymal and nonparenchymal cell types in the liver.
Collapse
Affiliation(s)
- Adrian Boey
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| |
Collapse
|
119
|
Huang C, Chen F, Zhang L, Yang Y, Yang X, Pan W. 99mTc Radiolabeled HA/TPGS-Based Curcumin-Loaded Nanoparticle for Breast Cancer Synergistic Theranostics: Design, in vitro and in vivo Evaluation. Int J Nanomedicine 2020; 15:2987-2998. [PMID: 32431497 PMCID: PMC7200226 DOI: 10.2147/ijn.s242490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Emerging cancer therapy requires highly sensitive diagnosis in combination with cancer-targeting therapy. In this study, a self-assembled pH-sensitive curcumin (Cur)-loaded nanoparticle of 99mTc radiolabeled hyaluronan-cholesteryl hemisuccinate conjugates (HA-CHEMS) and D-a-tocopheryl polyethylene glycol succinate (TPGS) was prepared for breast cancer synergistic theranostics. Materials and Methods The synthesized amphiphilic HA-CHEMS conjugates and TPGS self-assembled into Cur-loaded nanoparticles (HA-CHEMS-Cur-TPGS NPs) in an aqueous environment. The physicochemical properties of HA-CHEMS-Cur-TPGS NPs were characterized by transmission electron microscopy (TEM) and dynamic lighter scattering (DLS). The in vitro cytotoxicity of HA-CHEMS-Cur-TPGS NPs against breast cancer cells was evaluated by using the methyl thiazolyl tetrazolium (MTT) assay. Moreover, the in vivo animal experiments of HA-CHEMS-Cur-TPGS NPs including SPECT/CT imaging biodistribution and antitumor efficiency were investigated in 4T1 tumor-bearing BALB/c mice; furthermore, pharmacokinetics were investigated in healthy mice. Results HA-CHEMS-Cur-TPGS NPs exhibited high curcumin loading, uniform particle size distribution, and excellent stability in vitro. In the cytotoxicity assay, HA-CHEMS-Cur-TPGS NPs showed remarkably higher cytotoxicity to 4T1 cells with an IC50 value at 38 μg/mL, compared with free curcumin (77 μg/mL). Moreover, HA-CHEMS-Cur-TPGS NPs could be effectively and stably radiolabeled with 99mTc. The SPECT images showed that 99mTc-HA-CHEMS-Cur-TPGS NPs could target the 4T1 tumor up to 4.85±0.24%ID/g at 4 h post-injection in BALB/c mice. More importantly, the in vivo antitumor efficacy studies showed that HA-CHEMS-Cur-TPGS NPs greatly inhibited the tumor growth without resulting in obvious toxicities to major organs. Conclusion The results indicated that HA-CHEMS-Cur-TPGS NPs with stable 99mTc labeling and high curcumin-loading capacity hold great potential for breast cancer synergistic theranostics.
Collapse
Affiliation(s)
- Chong Huang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fen Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China.,Zhejiang Jingxin Pharmaceutical Co., Ltd, Xinchang 312500, People's Republic of China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
120
|
O’Connor BB, Grevesse T, Zimmerman JF, Ardoña HAM, Jimenez JA, Bitounis D, Demokritou P, Parker KK. Human brain microvascular endothelial cell pairs model tissue-level blood-brain barrier function. Integr Biol (Camb) 2020; 12:64-79. [PMID: 32195539 PMCID: PMC7155416 DOI: 10.1093/intbio/zyaa005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier plays a critical role in delivering oxygen and nutrients to the brain while preventing the transport of neurotoxins. Predicting the ability of potential therapeutics and neurotoxicants to modulate brain barrier function remains a challenge due to limited spatial resolution and geometric constraints offered by existing in vitro models. Using soft lithography to control the shape of microvascular tissues, we predicted blood-brain barrier permeability states based on structural changes in human brain endothelial cells. We quantified morphological differences in nuclear, junction, and cytoskeletal proteins that influence, or indicate, barrier permeability. We established a correlation between brain endothelial cell pair structure and permeability by treating cell pairs and tissues with known cytoskeleton-modulating agents, including a Rho activator, a Rho inhibitor, and a cyclic adenosine monophosphate analog. Using this approach, we found that high-permeability cell pairs showed nuclear elongation, loss of junction proteins, and increased actin stress fiber formation, which were indicative of increased contractility. We measured traction forces generated by high- and low-permeability pairs, finding that higher stress at the intercellular junction contributes to barrier leakiness. We further tested the applicability of this platform to predict modulations in brain endothelial permeability by exposing cell pairs to engineered nanomaterials, including gold, silver-silica, and cerium oxide nanoparticles, thereby uncovering new insights into the mechanism of nanoparticle-mediated barrier disruption. Overall, we confirm the utility of this platform to assess the multiscale impact of pharmacological agents or environmental toxicants on blood-brain barrier integrity.
Collapse
Affiliation(s)
- Blakely B O’Connor
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Thomas Grevesse
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - John F Zimmerman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Herdeline Ann M Ardoña
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jorge A Jimenez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
121
|
Jia J, Wang Z, Yue T, Su G, Teng C, Yan B. Crossing Biological Barriers by Engineered Nanoparticles. Chem Res Toxicol 2020; 33:1055-1060. [PMID: 32223181 DOI: 10.1021/acs.chemrestox.9b00483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineered nanoparticles (ENPs) may cause toxicity if they cross various biological barriers and are accumulated in vital organs. Which factors affect barrier crossing efficiency of ENPs are crucial to understand. Here, we present strong data showing that various nanoparticles crossed biological barriers to enter vital animal organs and cause toxicity. We also point out that physicochemical properties of ENPs, modifications of ENPs in biofluid, and physiological and pathological conditions of the body all affect barrier crossing efficiency. We also summarized our limited understanding of the related mechanisms. On the basis of this summary, major research gaps and direction of further efforts are then discussed.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zengjin Wang
- School of Public Health, Shandong University, Jinan 250100, China
| | - Tongtao Yue
- Center for Bioengineering and Biotechnology, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.,School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
122
|
Ahamed M, Akhtar MJ, Alaizeri ZM, Alhadlaq HA. TiO 2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10425-10435. [PMID: 31942711 DOI: 10.1007/s11356-019-07130-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Widespread application of titanium dioxide nanoparticles (nTiO2) and ubiquitous cadmium (Cd) pollution may increase their chance of co-existence in the natural environment. Toxicological information on co-exposure of nTiO2 and Cd in mammalian models is largely lacking. Hence, we studied the combined effects of nTiO2 and Cd in human liver (HepG2) and breast cancer (MCF-7) cells. We observed that nTiO2 did not produce toxicity to HepG2 and MCF-7 cells. However, moderate concentration of Cd exposure caused cytotoxicity to both cells. Interestingly, non-cytotoxic concentration of nTiO2 effectively enhanced the oxidative stress response of Cd indicated by pro-oxidants generation (reactive oxygen species, hydrogen peroxide, and lipid peroxidation) and antioxidants depletion (glutathione level and glutathione reductase, superoxide dismutase, and catalase enzymes). Moreover, nTiO2 potentiated the Cd-induced apoptosis in both cells suggested by altered expression of p53, bax, and bcl-2 genes along with low mitochondrial membrane potential. Cellular uptake results demonstrated that nTiO2 facilitates the internalization of Cd into the cells. Overall, this study demonstrated that non-cytotoxic concentration of nTiO2 enhanced the toxicological potential of Cd in human cells. Therefore, more attention should be paid on the combine effects of nTiO2 and Cd on human health.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - ZabnAllah M Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
123
|
Yang N, Wu Q, Xu Y. Fe Nanoparticles Enhanced Surfactin Production in Bacillus amyloliquefaciens. ACS OMEGA 2020; 5:6321-6329. [PMID: 32258866 PMCID: PMC7114131 DOI: 10.1021/acsomega.9b03648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/22/2020] [Indexed: 05/17/2023]
Abstract
Surfactin, as one of the most powerful biosurfactants, can be widely applied in agriculture, food, and pharmaceutics. However, low biosynthesis efficiency is the major obstacle in its commercialization. Here, we used nanoparticles to increase the surfactin production in Bacillus amyloliquefaciens MT45 through enhancing the secretion (the key step of surfactin biosynthesis). The results showed that the surfactin titer increased from 4.93 to 7.15 g/L in the flask and from 5.94 to 9.18 g/L in a 7 L bioreactor by adding 5 g/L Fe nanoparticles. They were the highest titers in the reported wild-type strain. Our results indicated that Fe nanoparticles enhanced the expression of genes involved in the biosynthesis of surfactin. Moreover, Fe nanoparticles increased the permeability of cell membranes, resulting in a more efficient secretion of surfactin. This study provides an efficient strategy for increasing the biosynthesis of microbial metabolites and provides new insights into the nanoparticles' impacts on microbes.
Collapse
Affiliation(s)
- Na Yang
- Key Laboratory of Industrial
Biotechnology of Ministry of Education, State Key Laboratory of Food
Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qun Wu
- Key Laboratory of Industrial
Biotechnology of Ministry of Education, State Key Laboratory of Food
Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Key Laboratory of Industrial
Biotechnology of Ministry of Education, State Key Laboratory of Food
Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
124
|
Zhou H, Qiu X, Shen Z. [T 1-weighted magnetic resonance imaging contrast agents and their theranostic nanoprobes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:427-444. [PMID: 32376585 DOI: 10.12122/j.issn.1673-4254.2020.03.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) is an important imaging modality for clinical disease diagnosis, and nearly 50% of clinical MRI examinations require contrast agents to enhance the diagnostic sensitivity. This review provides a summary of the major MRI contrast agents and their classification, and the advantages and limits of the commercially available MRI contrast agents, and elaborates on the exceedingly small magnetic iron oxide nanoparticles (ES-MIONs), dotted core-shell iron and gadolinium hybrid nanoparticles (FeGd-HN) and exceedingly small gadolinium oxide nanoparticles (ES-GON). These nanoparticles can greatly improve the efficiency of T1-weighted MRI due to their high r1 value and low r2/r1 ratio, and are expected to be translated into clinical contrast agents for T1-weighted MRI. The authors also review the diagnostic and therapeutic integration system that combines MRI contrast agents with various tumor therapies, such as MRI-guided ferroptosis therapy, radiosensitization therapy, and photothermal therapy, which allow efficient treatment as well as real-time monitoring of tumors and serve as potential cancer therapy strategies. The possible future research directions in the field of MRI-based multifunctional diagnostic and therapeutic formulations are also discussed.
Collapse
Affiliation(s)
- Huimin Zhou
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhong Qiu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Zheyu Shen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
125
|
Wang DP, Wang ZJ, Zhao R, Lin CX, Sun QY, Yan CP, Zhou X, Cao JM. Silica nanomaterials induce organ injuries by Ca 2+-ROS-initiated disruption of the endothelial barrier and triggering intravascular coagulation. Part Fibre Toxicol 2020; 17:12. [PMID: 32293491 PMCID: PMC7087393 DOI: 10.1186/s12989-020-00340-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background The growing use of silica nanoparticles (SiNPs) in many fields raises human toxicity concerns. We studied the toxicity of SiNP-20 (particle diameter 20 nm) and SiNP-100 (100 nm) and the underlying mechanisms with a focus on the endothelium both in vitro and in vivo. Methods The study was conducted in cultured human umbilical vein endothelial cells (HUVECs) and adult female Balb/c mice using several techniques. Results In vitro, both SiNP-20 and SiNP-100 decreased the viability and damaged the plasma membrane of cultured HUVECs. The nanoparticles also inhibited HUVECs migration and tube formation in a concentration-dependent manner. Both SiNPs induced significant calcium mobilization and generation of reactive oxygen species (ROS), increased the phosphorylation of vascular endothelial (VE)-cadherin at the site of tyrosine 731 residue (pY731-VEC), decreased the expression of VE-cadherin expression, disrupted the junctional VE-cadherin continuity and induced F-actin re-assembly in HUVECs. The injuries were reversed by blocking Ca2+ release activated Ca2+ (CRAC) channels with YM58483 or by eliminating ROS with N-acetyl cysteine (NAC). In vivo, both SiNP-20 and SiNP-100 (i.v.) induced multiple organ injuries of Balb/c mice in a dose (range 7–35 mg/kg), particle size, and exposure time (4–72 h)-dependent manner. Heart injuries included coronary endothelial damage, erythrocyte adhesion to coronary intima and coronary coagulation. Abdominal aorta injury exhibited intimal neoplasm formation. Lung injuries were smaller pulmonary vein coagulation, bronchiolar epithelial edema and lumen oozing and narrowing. Liver injuries included multifocal necrosis and smaller hepatic vein congestion and coagulation. Kidney injuries involved glomerular congestion and swelling. Macrophage infiltration occurred in all of the observed organ tissues after SiNPs exposure. SiNPs also decreased VE-cadherin expression and altered VE-cadherin spatial distribution in multiple organ tissues in vivo. The largest SiNP (SiNP-100) and longest exposure time exerted the greatest toxicity both in vitro and in vivo. Conclusions SiNPs, administrated in vivo, induced multiple organ injuries, including endothelial damage, intravascular coagulation, and secondary inflammation. The injuries are likely caused by upstream Ca2+-ROS signaling and downstream VE-cadherin phosphorylation and destruction and F-actin remodeling. These changes led to endothelial barrier disruption and triggering of the contact coagulation pathway.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Cai-Xia Lin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qian-Yu Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Cai-Ping Yan
- Center of Translational Medicine, Shanxi Medical University, Taiyuan, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China.
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
126
|
Li X, Wang B, Zhou S, Chen W, Chen H, Liang S, Zheng L, Yu H, Chu R, Wang M, Chai Z, Feng W. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J Nanobiotechnology 2020; 18:45. [PMID: 32169073 PMCID: PMC7071704 DOI: 10.1186/s12951-020-00599-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/03/2020] [Indexed: 11/21/2022] Open
Abstract
Background To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. Results Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses. Conclusions This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs.
Collapse
Affiliation(s)
- Xue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shuang Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanqing Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyang Yu
- School of Environmental and Material Engineering, Yantai University, Beijing, 264005, China
| | - Runxuan Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Health Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
127
|
Raja G, Jang YK, Suh JS, Kim HS, Ahn SH, Kim TJ. Microcellular Environmental Regulation of Silver Nanoparticles in Cancer Therapy: A Critical Review. Cancers (Basel) 2020; 12:E664. [PMID: 32178476 PMCID: PMC7140117 DOI: 10.3390/cancers12030664] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) play significant roles in various cancer cells such as functional heterogeneity, microenvironmental differences, and reversible changes in cell properties (e.g., chemotherapy). There is a lack of targets for processes involved in tumor cellular heterogeneity, such as metabolic clampdown, cytotoxicity, and genotoxicity, which hinders microenvironmental biology. Proteogenomics and chemical metabolomics are important tools that can be used to study proteins/genes and metabolites in cells, respectively. Chemical metabolomics have many advantages over genomics, transcriptomics, and proteomics in anticancer therapy. However, recent studies with AgNPs have revealed considerable genomic and proteomic changes, particularly in genes involved in tumor suppression, apoptosis, and oxidative stress. Metabolites interact biochemically with energy storage, neurotransmitters, and antioxidant defense systems. Mechanobiological studies of AgNPs in cancer metabolomics suggest that AgNPs may be promising tools that can be exploited to develop more robust and effective adaptive anticancer therapies. Herein, we present a proof-of-concept review for AgNPs-based proteogenomics and chemical metabolomics from various tumor cells with the help of several technologies, suggesting their promising use as drug carriers for cancer therapy.
Collapse
Affiliation(s)
- Ganesan Raja
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea;
| | - Yoon-Kwan Jang
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Jung-Soo Suh
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Heon-Su Kim
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Sang Hyun Ahn
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Tae-Jin Kim
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea;
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
- Institute of Systems Biology, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
128
|
Chu X, Wu F, Sun B, Zhang M, Song S, Zhang P, Wang Y, Zhang Q, Zhou N, Shen J. Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination. Colloids Surf B Biointerfaces 2020; 190:110930. [PMID: 32146275 DOI: 10.1016/j.colsurfb.2020.110930] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/09/2023]
Abstract
Multifunctional carbon dots (CDs) present enormous potential in numerous applications and have attracted widespread attention for various applications in the biomedical field. Bacterial infection is a common health issue; the development of antibacterial materials with low toxicity and good biocompatibility is becoming more important. In this work, we synthesized a new type of nitrogen co-doped carbon dots-genipin covalent conjugate (N-CDs-GP) via hydrothermal methods. The microstructure and chemical composition of the N-CDs-GP were characterized. The biocompatibility, stability, antibacterial activity, and fluorescence performance of the N-CDs-GP were assessed. The results revealed that N-CDs-GP possessed high biocompatibility, high light stability, and broad antibacterial activity. Additionally, selective Gram-positive bacterial imaging by N-CDs-GP provided a more rapid method of bacterial detection. The N-CDs-GP have the potential to be applied as bioimaging and antibacterial agents and for bacterial discrimination.
Collapse
Affiliation(s)
- Xiaohong Chu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Fan Wu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Baohong Sun
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Saijie Song
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Yuli Wang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China; Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China.
| |
Collapse
|
129
|
Liang YJ, Wang H, Yu H, Feng G, Liu F, Ma M, Zhang Y, Gu N. Magnetic navigation helps PLGA drug loaded magnetic microspheres achieve precise chemoembolization and hyperthermia. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
130
|
Chang YN, Liang Y, Xia S, Bai X, Zhang J, Kong J, Chen K, Li J, Xing G. The High Permeability of Nanocarriers Crossing the Enterocyte Layer by Regulation of the Surface Zonal Pattern. Molecules 2020; 25:molecules25040919. [PMID: 32092877 PMCID: PMC7070455 DOI: 10.3390/molecules25040919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium is a major barrier that limits the absorption of oral drugs. The integrity of the epithelial tissue is a very important factor for preventing intestinal diseases. However, destabilization of the epithelium can promote the transportation of nanocarriers and increase the absorption of oral drugs. In our research, three different gold nanoparticles (GNPs) of the same size but with differing negative surface charge were designed and constructed as a model to determine the surface properties crucial for promoting absorptivity and bioavailability of the nanocarriers. The higher the ratio of surface carboxyl groups on GNPs, the higher capacity to induce transepithelial electrical resistance change and cell monolayer tight junction opening with higher permeability. The half carboxyl and half methyl surfaced GNPs displayed unique zonal surface patterns exhibited the greater ability to pass through intestinal epithelial cell layer but had a relatively small influence on tight junction distribution.
Collapse
Affiliation(s)
- Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
| | - Yuelan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shibo Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
| | - Xue Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
| | - Jianglong Kong
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.-N.C.); (Y.L.); (S.X.); (X.B.); (J.Z.); (J.K.); (K.C.); (J.L.)
- Correspondence: ; Tel.: +86-10-88235738
| |
Collapse
|
131
|
Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020; 240:119902. [PMID: 32105817 DOI: 10.1016/j.biomaterials.2020.119902] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Nanotechnology-based drug delivery platforms have been explored for cancer treatments and resulted in several nanomedicines in clinical uses and many in clinical trials. However, current nanomedicines have not met the expected clinical therapeutic efficacy. Thus, improving therapeutic efficacy is the foremost pressing task of nanomedicine research. An effective nanomedicine must overcome biological barriers to go through at least five steps to deliver an effective drug into the cytosol of all the cancer cells in a tumor. Of these barriers, nanomedicine extravasation into and infiltration throughout the tumor are the two main unsolved blockages. Up to now, almost all the nanomedicines are designed to rely on the high permeability of tumor blood vessels to extravasate into tumor interstitium, i.e., the enhanced permeability and retention (EPR) effect or so-called "passive tumor accumulation"; however, the EPR features are not so characteristic in human tumors as in the animal tumor models. Following extravasation, the large size nanomedicines are almost motionless in the densely packed tumor microenvironment, making them restricted in the periphery of tumor blood vessels rather than infiltrating in the tumors and thus inaccessible to the distal but highly malignant cells. Recently, we demonstrated using nanocarriers to induce transcytosis of endothelial and cancer cells to enable nanomedicines to actively extravasate into and infiltrate in solid tumors, which led to radically increased anticancer activity. In this perspective, we make a brief discussion about how active transcytosis can be employed to overcome the difficulties, as mentioned above, and solve the inherent extravasation and infiltration dilemmas of nanomedicines.
Collapse
|
132
|
Sevencan C, McCoy RSA, Ravisankar P, Liu M, Govindarajan S, Zhu J, Bay BH, Leong DT. Cell Membrane Nanotherapeutics: From Synthesis to Applications Emerging Tools for Personalized Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900201] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cansu Sevencan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Reece Sean Ashley McCoy
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Priyaharshini Ravisankar
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Centre for Advanced 2D MaterialsGraphene Research Centre Singapore 117546 Singapore
| | - Meng Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Suresh Govindarajan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jingyi Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education InstitutesDepartment of Biomedical EngineeringJinan University Guangzhou 510632 China
| | - Boon Huat Bay
- Department of AnatomyNational University of Singapore 4 Medical Drive Singapore 117594 Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of Singapore Singapore 117456 Singapore
| |
Collapse
|
133
|
Gao Y, Shi Y, Wang L, Kong S, Du J, Lin G, Feng Y. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105106. [PMID: 31670178 DOI: 10.1016/j.cmpb.2019.105106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The process of nanoparticles (NPs) entering blood circulation to actively target tumor cells involves four stages-the transport of NPs in blood vessels, transvascular transport of NPs, transport of NPs in the tumor interstitial matrix and entry of NPs into tumor cells. These four stages are a complex process involving mechanical, physical, biochemical, and biophysical factors, the tumor microenvironment (TME) and properties of NPs play important roles in this process. Because this process involves a large number of factors and is very complex, it is difficult to study with conventional methods. METHODS Using mathematical models for simulation is suitable for addressing this complex situation and can describe the complexity well. RESULTS This work focuses on the theoretical simulation of NPs that target tumor cells to illustrate the effects of the abnormal microenvironment of tumors and properties of NPs on the transport process. Mathematical models constructed by different methods are enumerated. Through studying these mathematical models, different methods to overcome nanoparticle (NP) transport obstacles are illustrated. CONCLUSIONS It is necessary to construct a theoretical model of active targeting nanodrug delivery under the coupling of micro-flow field and specific binding force field, and to simulate and analyze the delivery process at mesoscopic scale using computational fluid dynamics (CFD) method, so as to reveal the law and characteristics of drug delivery and cell uptake in the micro-environment of tumors in vivo. The methods and techniques discussed can serve as the basis for systematic studies of active targeting of functional nanoparticles to tumor cells.
Collapse
Affiliation(s)
- Yan Gao
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shengli Kong
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Du
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Yihua Feng
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
134
|
Pérez-Arizti JA, Ventura-Gallegos JL, Galván Juárez RE, Ramos-Godinez MDP, Colín-Val Z, López-Marure R. Titanium dioxide nanoparticles promote oxidative stress, autophagy and reduce NLRP3 in primary rat astrocytes. Chem Biol Interact 2020; 317:108966. [PMID: 32004531 DOI: 10.1016/j.cbi.2020.108966] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used in the food industry, cosmetics, personal care and paints among others. Through occupational exposure and daily consumption, and because of their small size, TiO2-NPs can enter the body through different routes such as oral, dermal and inhalation, and accumulate in multiple organs including the brain. TiO2-NPs cause severe damage to many cell types, however their effects in the central nervous system remain largely unexplored. Therefore, in the present study we determined the cytotoxic effect of TiO2-NPs on rat astrocytes. We tested the oxidant properties of TiO2-NPs through DTT depletion, and measured oxidative stress-induced damage in mitochondria, through oxidation of 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) and loss of mitochondrial membrane potential (ΔΨm) with Mitotracker Green FM. We further examined oxidative stress-derived responses such as IκB-α degradation by Western Blot, NF-κB translocation by EMSA, autophagy induction by LC3-II levels, and expression of the inflammasome protein NLRP3. TiO2-NPs showed high oxidant properties and induced strong oxidative stress in astrocytes following their internalization, causing mitochondrial damage detected by ΔΨm loss. Responses against oxidative damage such as NF-κB translocation and autophagy were induced and NLRP3 protein expression was downregulated, indicating lower inflammasome-mediated responses in astrocytes. These results support TiO2-NPs cytotoxicity in astrocytes, cells that play key roles in neuronal homeostasis and their dysfunction can lead to neurological disorders including cognitive impairment and memory loss.
Collapse
Affiliation(s)
- José Antonio Pérez-Arizti
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - José Luis Ventura-Gallegos
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico; Departamento de Medicina Genómica y Toxicología Ambiental IIB, Universidad Nacional Autónoma de México, Mexico
| | | | | | - Zaira Colín-Val
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico.
| |
Collapse
|
135
|
Yang B, Jiang J, Jiang L, Zheng P, Wang F, Zhou Y, Chen Z, Li M, Lian M, Tang S, Liu X, Peng H, Wang Q. Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo. Int J Biol Macromol 2020; 149:108-115. [PMID: 31987952 DOI: 10.1016/j.ijbiomac.2020.01.222] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
Zedoary turmeric oil (ZTO) has a strong antitumor activity. However, its volatility, insolubility, low bioavailability, and difficulty of medication owing to oily liquid limit its clinical applications. Solid lipid nanoparticles can provide hydrophobic environment to dissolve hydrophobic drug and solidify the oily active composition to decrease the volatility and facilitate the medication. Chitosan has been widely used in pharmaceutics in recent years and coating with chitosan further enhances the internalization of particles by cells due to charge attract. Here, Chitosan (CS)-coated solid lipid nanoparticles (SLN) loaded with ZTO was prepared and characterized using dynamic laser scanner (DLS) and transmission electron microscope (TEM). The uptake and distribution of drug were evaluated in vitro and in vivo. The average sizes of ZTO-SLN and CS-ZTO-SLN were 134.3 ± 3.42 nm and 210.7 ± 4.59 nm, respectively. CS coating inverted the surface charge of particles from -8.93 ± 1.92 mV to +9.12 ± 2.03 mV. The liver accumulation of CS-ZTO-SLN was higher than ZTO-SLN (chitosan-uncoated particles) by analysis of tissue homogenate using HPLC, and the bioavailability of ZTO was also obviously improved. The results suggested that SLN coated with CS improved the features of ZTO formulation and efficiently deliver drug to the liver.
Collapse
Affiliation(s)
- Bo Yang
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Jiaqi Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Lei Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Peiyu Zheng
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Fuling Wang
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Yang Zhou
- School of Pharmacy, Harbin University of Commerce, 138, Tong Da Street, Harbin 150076, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Minghui Li
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Shukun Tang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China.
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, 1 Xin Yang Road, Daqing 163319, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
136
|
Jia W, Burns JM, Villantay B, Tang JC, Vankayala R, Lertsakdadet B, Choi B, Nelson JS, Anvari B. Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:275-287. [PMID: 31820920 PMCID: PMC7028219 DOI: 10.1021/acsami.9b18624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.
Collapse
Affiliation(s)
- Wangcun Jia
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
| | - Betty Villantay
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
| | - Jack C. Tang
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
| | | | - Ben Lertsakdadet
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697
| | - J. Stuart Nelson
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
- Corresponding Author
| |
Collapse
|
137
|
Zhao H, Liu C, Gu Z, Dong L, Li F, Yao C, Yang D. Persistent Luminescent Nanoparticles Containing Hydrogels for Targeted, Sustained, and Autofluorescence-Free Tumor Metastasis Imaging. NANO LETTERS 2020; 20:252-260. [PMID: 31793303 DOI: 10.1021/acs.nanolett.9b03755] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metastasis is the primary cause of cancer morbidity and mortality. To obtain an effective diagnosis and treatment, precise imaging of tumor metastasis is required. Here we prepared persistent luminescent nanoparticles (PLNPs) containing a hydrogel (PL-gel) for targeted, sustained, and autofluorescence-free tumor metastasis imaging. PLNPs offered renewable long-lasting near-infrared (NIR) emitting without in situ radiation, favoring deep tissue penetration imaging without background interference. PLNPs were conjugated with 4-carboxyphenyl boronic acid (CPBA) to yield PLNPs-CPBA, which specifically recognized metastatic breast cancer cells (MBA-MD-231 cells) and enabled receptor-mediated endocytosis for specific cancer cell labeling. The PLNPs-CPBA-labeled cancer cells enabled sensitive imaging performance and high viability without influencing the migration and invasiveness of cancer cells for long-term tracking. PLNPs-CPBA were further encapsulated inside alginate to generate PL-gel for sustained PLNPs-CPBA release and tumor cell labeling, and the PL-gel showed enhanced renewable persistent luminescence compared to the PLNPs-CPBA suspension. The metastasis in the mouse breast cancer model was continuously tracked by persistent luminescence imaging, showing that PL-gel achieved noninvasive and highly selective imaging of tumor metastasis without background interference. Our PL-gel could be rationally designed to specifically target other types of cancer cells and thus provide a powerful and generic platform for the study of tumor metastasis.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chunxia Liu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Luxi Dong
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300350 , P. R. China
| | - Feng Li
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| |
Collapse
|
138
|
Zhu H, Ni N, Govindarajan S, Ding X, Leong DT. Phototherapy with layered materials derived quantum dots. NANOSCALE 2020; 12:43-57. [PMID: 31799539 DOI: 10.1039/c9nr07886j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum dots (QDs) originating from two-dimensional (2D) sheets of graphitic carbon nitride (g-C3N4), graphene, hexagonal boron nitride (h-BN), monoatomic buckled crystals (phosphorene), germanene, silicene and transition metal dichalcogenides (TMDCs) are emerging zero-dimensional materials. These QDs possess diverse optical properties, are chemically stable, have surprisingly excellent biocompatibility and are relatively amenable to surface modifications. It is therefore not difficult to see that these QDs have potential in a variety of bioapplications, including biosensing, bioimaging and anticancer and antimicrobial therapy. In this review, we briefly summarize the recent progress of these exciting QD based nanoagents and strategies for phototherapy. In addition, we will discuss about the current limitations, challenges and future prospects of QDs in biomedical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore. and Centre for Advanced 2D Materials, Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Suresh Govindarajan
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Xianguang Ding
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore. and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
139
|
Wu J, Yang J, Yu M, Sun W, Han Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride causes blood–brain barrier disruption through intracellular calcium-mediated RhoA/Rho kinase signaling and myosin light chain kinase. Metallomics 2020; 12:2075-2083. [DOI: 10.1039/d0mt00187b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanum caused endothelial barrier hyperpermeability, loss of VE-cadherin and rearrangement of the actin cytoskeleton, though intracellular Ca2+-mediated RhoA/ROCK and MLCK pathways.
Collapse
Affiliation(s)
- Jie Wu
- Department of Occupational and Environmental Health
- School of Public Health
- Jinzhou Medical University
- Jinzhou 121001
- P. R. China
| | - Jinghua Yang
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Miao Yu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Wenchang Sun
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Yarao Han
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Xiaobo Lu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Cuihong Jin
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Shengwen Wu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Yuan Cai
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| |
Collapse
|
140
|
Zhang M, Ye JJ, Xia Y, Wang ZY, Li CX, Wang XS, Yu W, Song W, Feng J, Zhang XZ. Platelet-Mimicking Biotaxis Targeting Vasculature-Disrupted Tumors for Cascade Amplification of Hypoxia-Sensitive Therapy. ACS NANO 2019; 13:14230-14240. [PMID: 31714733 DOI: 10.1021/acsnano.9b07330] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumorous vasculature plays key roles in sustaining tumor growth. Vascular disruption is accompanied by internal coagulation along with platelet recruitment and the resulting suppression of oxygen supply. We intend to artificially create this physiological process to establish the mutual feedback between vascular disruption and platelet-mimicking biotaxis for the cascade amplification of hypoxia-dependent therapy. To prove this concept, mesoporous silica nanoparticles are co-loaded with a hypoxia-activated prodrug (HAP) and a vessel-disruptive agent and then coated with platelet membranes. Upon entering into tumors, our nanotherapeutic can disrupt local vasculature for tumor inhibition. This platelet membrane-coated nanoplatform shares the hemorrhage-tropic function with parental platelets and can be persistently recruited by the vasculature-disrupted tumors. In this way, the intratumoral vascular disruption and tumor targeting are biologically interdependent and mutually reinforced. Relying on this mutual feedback, tumorous hypoxia was largely promoted by more than 20-fold, accounting for the effective recovery of the HAP's cytotoxicity. Consequently, our bioinspired nanodesign has demonstrated highly specific and effective antitumor potency via the biologically driven cooperation among intratumoral vascular disruption, platelet-mimicking biotaxis, cascade hypoxia amplification, and hypoxia-sensitive chemotherapy. This study offers a paradigm of correlating the therapeutic design with the physiologically occurring events to achieve better therapy performance.
Collapse
Affiliation(s)
- Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Jing-Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Yu Xia
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Zi-Yang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xiao-Shuang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Wuyang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Wen Song
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
141
|
Ha MK, Chung KH, Yoon TH. Heterogeneity in Biodistribution and Cytotoxicity of Silver Nanoparticles in Pulmonary Adenocarcinoma Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E36. [PMID: 31877823 PMCID: PMC7022517 DOI: 10.3390/nano10010036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022]
Abstract
Cellular association of nanoparticles (NPs) and their resultant cytotoxicity are heterogeneous in nature and can be influenced by the variances in NPs' properties, cell types, and status. However, conventional in vitro assays typically consider the administered NP dose and the averaged cellular responses based on the assumption of a uniform distribution of monodisperse NPs in homogeneous cells, which might be insufficient to describe the complex nature of cell-NP interactions. Here, using flow cytometry, we report observations of the heterogeneity in the cellular association of silver nanoparticles (AgNPs) in A549 cells, which resulted in distinct dose-response relationships and cytotoxicity. Type I and Type II cells were moderately associated with AgNPs but as the cellular AgNP dose increased, Type I cells remained viable while Type II cells became less viable. Type III cells did not have high affinity with AgNPs but were, however, the least viable. Transmission electron microscopic images revealed that the biodistribution and the released Ag+ ions contributed to the distinct toxic effects of AgNPs in different populations. This single-cell dose-response analysis approach enabled the examination of how differently individual cells responded to different cellular NP doses and provided insights into nanotoxicity pathways at a single-cell level.
Collapse
Affiliation(s)
- My Kieu Ha
- Center for Next Generation Cytometry, Hanyang University, Seoul 04763, Korea; (M.K.H.); (K.H.C.)
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Kyung Hwun Chung
- Center for Next Generation Cytometry, Hanyang University, Seoul 04763, Korea; (M.K.H.); (K.H.C.)
| | - Tae Hyun Yoon
- Center for Next Generation Cytometry, Hanyang University, Seoul 04763, Korea; (M.K.H.); (K.H.C.)
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
142
|
Liu H, Li C, Qian Y, Hu L, Fang J, Tong W, Nie R, Chen Q, Wang H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 2019; 232:119700. [PMID: 31881379 DOI: 10.1016/j.biomaterials.2019.119700] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023]
Abstract
Graphene quantum dots (GQDs) are considered emerging nanomaterials for photothermal therapy (PTT) of cancer due to their good biocompatibility and rapid excretion. However, the optical absorbance of GQDs in shorter wavelengths (<1000 nm) limits their overall therapeutic efficacies as photothermal agent in the second near infrared window (1000-1700 nm, NIR-II). Herein, we report a type of GQDs with strong absorption (1070 nm) in NIR-II region that was synthesized via a one-step solvothermal treatment using phenol as single precursor by tuning the decomposition of hydrogen peroxide under a high magnetic field with an intensity of 9T. The obtained 9T-GQDs demonstrate uniform size distribution (3.6 nm), and tunable fluorescence (quantum yield, 16.67%) and high photothermal conversion efficacy (33.45%). In vitro and in vivo results indicate that 9T-GQDs could efficiently ablate tumor cells and inhibit the tumor growth under NIR-II irradiation. Moreover, the 9T-GQDs exhibited enhanced NIR imaging of tumor in living mice, suggesting the great probability of using 9T-GQDs for in vivo NIR imaging-guided PTT in the NIR-II window.
Collapse
Affiliation(s)
- Hongji Liu
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, PR China; Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Yong Qian
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, PR China
| | - Lin Hu
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, PR China
| | - Jun Fang
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, PR China
| | - Wei Tong
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, PR China
| | - Rongrong Nie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, JS, 210008, PR China.
| | - Qianwang Chen
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, PR China; Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, PR China.
| | - Hui Wang
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, PR China.
| |
Collapse
|
143
|
Sun Z, Zheng W, Zhu G, Lian J, Wang J, Hui P, He S, Chen W, Jiang X. Albumin Broadens the Antibacterial Capabilities of Nonantibiotic Small Molecule-Capped Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45381-45389. [PMID: 31721554 DOI: 10.1021/acsami.9b15107] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nonantibiotic small molecule-modified gold nanoparticles (Au NPs) show great potential as an alternative for commercial antibiotics, yet their narrow antibacterial spectrum hinders the wide application in clinics. We observe that Au NPs cofunctionalized with both bovine serum albumin (BSA) and 4,6-diamino-2-pyrimidinethiol (DAPT) can generate conjugates (Au_DAPT_BSA) with progressive antimicrobial activities, including decreased minimal inhibitory concentration against Gram-negative bacteria and extended antibacterial spectrum against Gram-positive bacteria compared with DAPT-capped Au NPs (Au_DAPT). Au_DAPT_BSA induces no drug resistance and can significantly decrease the number of bacteria in the biofilms formed by Pseudomonas aeruginosa and Staphylococcus aureus. In addition, Au_DAPT_BSA exhibit in vivo healing efficiency for mice with subcutaneous abscesses caused by clinically isolated, multidrug resistant Escherichia coli or S. aureus without inducing detectable toxicity to the mammalian cells/animals. Our findings provide a new strategy for strengthening nanomaterial-based bactericides such as Au NPs, especially against drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhencheng Sun
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518055 , China
| | - Wenshu Zheng
- National Center for NanoScience and Technology , Beijing 100190 , China
| | - Guoshuai Zhu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518055 , China
| | - Jie Lian
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) , Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center , Shenzhen 518052 , China
| | - Jidong Wang
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) , Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center , Shenzhen 518052 , China
| | - Ping Hui
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518055 , China
| | - Songliang He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518055 , China
| | - Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering , Shenzhen University Health Science Center , Shenzhen 518055 , China
| | - Xingyu Jiang
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| |
Collapse
|
144
|
Liu J, Yan J, Yan S, Wang Y, Zhang R, Hou P, He W, Ji M. Biomimetic and Self-Assembled Nanoclusters Targeting β-Catenin for Potent Anticancer Therapy and Enhanced Immunotherapy. NANO LETTERS 2019; 19:8708-8715. [PMID: 31744296 DOI: 10.1021/acs.nanolett.9b03414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immune checkpoint blockade therapies fail to induce immune response in the vast majority of cancer patients, so developing robust adjuvants for increasing tumor immune response is central for effective tumor immunotherapy. The Wnt/β-catenin pathway is a crucial oncogenic signal in relation to tumor immune evasion; however, none of the Wnt inhibitor under clinical or preclinical phases has demonstrated satisfactory specificity. Thus, new compounds or modalities that tumor specifically modulate the Wnt signal will be of great significance and value in clinical tumor immunotherapy. Herein, inspired by a natural phenomenon in cancer cells that the Achilles' Heel of oncoprotein β-catenin, H1 helix, predisposes β-catenin to oligomerization for proteasomal degradation and can be exacerbated by carnosic acid (CA, a Wnt inhibitor), we developed a size-tuned nanocluster (CAcluster) with well-defined supramolecular nanostructure by coassembling CA and H1 peptide. With the inherent enhanced permeability and retention (EPR) effect and the designed tumor microenvironment (TME) responsiveness, the CAcluster tumor specifically suppress the Wnt/β-catenin cascade in vivo, while maintaining a highly favorable biosafety profile. More importantly, the CAclusterin vivo improved the tumor response to the PD1/PD-L1 immune checkpoint blockade in melanoma and colon cancer. This study provides new insights into the biomimetic coassembly strategy to design supramolecular nanostructured adjuvants for hazard-free Wnt suppression and synergy with tumor immunotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Jin Yan
- Frontier Institute of Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Siqi Yan
- Ophthalmology Department , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Yubo Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Rui Zhang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Wangxiao He
- Department of Talent Highland , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Meiju Ji
- Center for Translational Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| |
Collapse
|
145
|
Fan X, Yuan Z, Shou C, Fan G, Wang H, Gao F, Rui Y, Xu K, Yin P. cRGD-Conjugated Fe 3O 4@PDA-DOX Multifunctional Nanocomposites for MRI and Antitumor Chemo-Photothermal Therapy. Int J Nanomedicine 2019; 14:9631-9645. [PMID: 31824156 PMCID: PMC6901060 DOI: 10.2147/ijn.s222797] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has great potential in the clinical treatment of tumors. However, most photothermal materials are difficult to apply due to their insufficient photothermal conversion efficiencies (PCEs), poor photostabilities and short circulation times. Furthermore, tumor recurrence is likely to occur using PTT only. In the present study, we prepared cyclo (Arg-Gly-Asp-d-Phe-Cys) [c(RGD)] conjugated doxorubicin (DOX)-loaded Fe3O4@polydopamine (PDA) nanoparticles to develop a multifunctional-targeted nanocomplex for integrated tumor diagnosis and treatment. MATERIALS AND METHODS Cytotoxicity of Fe3O4@PDA-PEG-cRGD-DOX against HCT-116 cells was determined by cck-8 assay. Cellular uptake was measured by confocal laser scanning microscope (CLSM). Pharmacokinetic performance of DOX was evaluated to compare the differences between free DOX and DOX in nanocarrier. Performance in magnetic resonance imaging (MRI) and antitumor activity of complex nanoparticles were evaluated in tumor-bearing nude mice. RESULTS Fe3O4@PDA-PEG-cRGD-DOX has a particle size of 200-300 nm and a zeta potential of 22.7 mV. Further studies in vitro and in vivo demonstrated their excellent capacity to target tumor cells and promote drug internalization, and significantly higher cytotoxicity with respect to that seen in a control group was shown for the nanoparticles. In addition, they have good thermal stability, photothermal conversion efficiencies (PCEs) and pH responsiveness, releasing more DOX in a mildly acidic environment, which is very conducive to their chemotherapeutic effectiveness in the tumor microenvironment. Fe3O4@PDA-PEG-cRGD-DOX NPs were used in a subcutaneous xenograft tumor model of nude mouse HCT-116 cells showed clear signal contrast in T2-weighted images and effective anti-tumor chemo-photothermal therapy under NIR irradiation. CONCLUSION According to our results, Fe3O4@PDA-PEG-cRGD-DOX had a satisfactory antitumor effect on colon cancer in nude mice and could be further developed as a potential integrated platform for the diagnosis and treatment of cancer to improve its antitumor activity against colon cancer.
Collapse
Affiliation(s)
- Xi Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chenting Shou
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hong Wang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yuanpeng Rui
- Department of Image, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui, People’s Republic of China
| |
Collapse
|
146
|
Zhao L, Xing Y, Wang R, Yu F, Yu F. Self-Assembled Nanomaterials for Enhanced Phototherapy of Cancer. ACS APPLIED BIO MATERIALS 2019; 3:86-106. [DOI: 10.1021/acsabm.9b00843] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Linlu Zhao
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - FeiFei Yu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
147
|
Yang Y, Tang J, Zhang M, Gu Z, Song H, Yang Y, Yu C. Responsively Aggregatable Sub-6 nm Nanochelators Induce Simultaneous Antiangiogenesis and Vascular Obstruction for Enhanced Tumor Vasculature Targeted Therapy. NANO LETTERS 2019; 19:7750-7759. [PMID: 31657578 DOI: 10.1021/acs.nanolett.9b02691] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inhibiting the formation of new tumor blood vessels (so-called antiangiogenesis) and obstructing the established ones are two primary strategies in tumor vasculature targeted therapy. However, the therapeutic outcome of conventional methodologies relying on only one mechanism is rather limited. Herein, the first example of ultrasmall responsively aggregatable nanochelators that can intrinsically fulfill both antivasculature functions as well as high renal clearable efficiency is introduced. The nanochelators with sub-6 nm sizes exhibit not only systemic copper depletion activity for tumor antiangiogenesis but also, more surprisingly, the capability to transform from a "dispersed" state to an "aggregated" state to form large secondary particles in response to tumor microenvironment with elevated copper and phosphate levels for blood vessel obstruction. Compared to a benchmark antiangiogenic agent that can only inhibit the formation of tumor blood vessels, the nanochelators with unprecedented synergistic functions demonstrate significantly enhanced tumor inhibition activity in both breast cancer and colon cancer tumor models. Moreover, these ultrasmall nanochelators are noncytotoxic and renal clearable, ensuring superior biocompatibility. It is envisaged that the design of nanomaterials with ground-breaking properties and the synergistic antivasculature functions would offer a substantial conceptual advance for tumor vasculature targeted therapy and may provide vast opportunities for developing advanced nanomedicines.
Collapse
Affiliation(s)
- Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Yang Yang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St. Lucia , Brisbane , Queensland 4072 , Australia
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| |
Collapse
|
148
|
Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, Ho HK, Leong DT. Nanoparticles' interactions with vasculature in diseases. Chem Soc Rev 2019; 48:5381-5407. [PMID: 31495856 DOI: 10.1039/c9cs00309f] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever-growing use of inorganic nanoparticles (NPs) in biomedicine provides an exciting approach to develop novel imaging and drug delivery systems, owing to the ease with which these NPs can be functionalized to cater to various applications. In cancer therapeutics, nanomedicine generally relies on the enhanced permeability and retention (EPR) effect observed in tumour vasculature to deliver anti-cancer drugs across the endothelium. However, such a phenomenon is dependent on the tumour microenvironment and is not consistently observed in all tumour types, thereby limiting drug transport to the tumour site. On the other hand, there is a rise in utilizing inorganic NPs to intentionally induce endothelial leakiness, creating a window of opportunity to control drug delivery across the endothelium. While this active targeting approach creates a similar phenomenon compared to the EPR effect arising from tumour tissues, its drug delivery applications extend beyond cancer therapeutics and into other vascular-related diseases. In this review, we summarize the current findings of the EPR effect and assess its limitations in the context of anti-cancer drug delivery systems. While the EPR effect offers a possible route for drug passage, we further explore alternative uses of NPs to create controllable endothelial leakiness within short exposures, a phenomenon we coined as nanomaterial-induced endothelial leakiness (NanoEL). Furthermore, we discuss the main mechanistic features of the NanoEL effect that make it unique from conventionally established endothelial leakiness in homeostatic and pathologic conditions, as well as examine its potential applicability in vascular-related diseases, particularly cancer. Therefore, this new paradigm changes the way inorganic NPs are currently being used for biomedical applications.
Collapse
Affiliation(s)
- Jie Kai Tee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Cai R, Chen C. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805740. [PMID: 30589115 DOI: 10.1002/adma.201805740] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/06/2018] [Indexed: 05/17/2023]
Abstract
Engineering nanomaterials are increasingly considered promising and powerful biomedical tools or devices for imaging, drug delivery, and cancer therapies, but few nanomaterials have been tested in clinical trials. This wide gap between bench discoveries and clinical application is mainly due to the limited understanding of the biological identity of nanomaterials. When they are exposed to the human body, nanoparticles inevitably interact with bodily fluids and thereby adsorb hundreds of biomolecules. A "biomolecular corona" forms on the surface of nanomaterials and confers a new biological identity for NPs, which determines the following biological events: cellular uptake, immune response, biodistribution, clearance, and toxicity. A deep and thorough understanding of the biological effects triggered by the protein corona in vivo will speed up their translation to the clinic. To date, nearly all studies have attempted to characterize the components of protein coronas depending on different physiochemical properties of NPs. Herein, recent advances are reviewed in order to better understand the impact of the biological effects of the nanoparticle-corona on nanomedicine applications. The recent development of the impact of protein corona formation on the pharmacokinetics of nanomedicines is also highlighted. Finally, the challenges and opportunities of nanomedicine toward future clinical applications are discussed.
Collapse
Affiliation(s)
- Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, Chinese Academy of Science, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- National Center for Nanoscience and Technology, Chinese Academy of Science, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
150
|
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38:430. [PMID: 31661003 PMCID: PMC6819447 DOI: 10.1186/s13046-019-1443-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge. Recently, the focus for enhanced availability, targeted cellular uptake with minimal toxicity is achieved by nano-carriers. These smart nano-carriers carrying all the necessary arsenals (drugs, tracking probe, and ligand) designed in such a way that specifically targets the TNBC cells at site. Articulating the targeted delivery system with multifunctional molecules for high specificity, tracking, diagnosis, and treatment emerged as theranostic approach. In this review, in addition to classical treatment modalities, recent advances in nanotheranostics for early and effective diagnostic and treatment is discussed. This review highlighted the recently FDA approved immunotherapy and all the ongoing clinical trials for TNBC, in addition to nanoparticle assisted immunotherapy. Futuristic but realistic advancements in artificial intelligence (AI) and machine learning not only improve early diagnosis but also assist clinicians for their workup in TNBC. The novel concept of Nanoparticles induced endothelial leakiness (NanoEL) as a way of tumor invasion is also discussed in addition to classical EPR effect. This review intends to provide basic insight and understanding of the novel nano-therapeutic modalities in TNBC diagnosis and treatment and to sensitize the readers for continue designing the novel nanomedicine. This is the first time that designing nanoparticles with stoichiometric definable number of antibodies per nanoparticle now represents the next level of precision by design in nanomedicine.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, 160012 India
| | - Rajaletchumy Veloo Kutty
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology,University Malaysia Pahang, Tun Razak Highway, 26300 Kuantan, Pahang Malaysia
- Center of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, 26300, Kuantan, Pahang Malaysia
| |
Collapse
|