101
|
Jiang Q, Tan XP, Zhang CH, Li ZY, Li D, Xu Y, Liu YX, Wang L, Ma Z. Non-Coding RNAs of Extracellular Vesicles: Key Players in Organ-Specific Metastasis and Clinical Implications. Cancers (Basel) 2022; 14:cancers14225693. [PMID: 36428785 PMCID: PMC9688215 DOI: 10.3390/cancers14225693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-encapsulated vesicles released by most cells. They act as multifunctional regulators of intercellular communication by delivering bioactive molecules, including non-coding RNAs (ncRNAs). Metastasis is a major cause of cancer-related death. Most cancer cells disseminate and colonize a specific target organ via EVs, a process known as "organ-specific metastasis". Mounting evidence has shown that EVs are enriched with ncRNAs, and various EV-ncRNAs derived from tumor cells influence organ-specific metastasis via different mechanisms. Due to the tissue-specific expression of EV-ncRNAs, they could be used as potential biomarkers and therapeutic targets for the treatment of tumor metastasis in various types of cancer. In this review, we have discussed the underlying mechanisms of EV-delivered ncRNAs in the most common organ-specific metastases of liver, bone, lung, brain, and lymph nodes. Moreover, we summarize the potential clinical applications of EV-ncRNAs in organ-specific metastasis to fill the gap between benches and bedsides.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Xiao-Ping Tan
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
| | - Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhi-Yuan Li
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Du Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yan Xu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yu Xuan Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
- Correspondence: (Z.M.); (L.W.)
| | - Zhaowu Ma
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
- Correspondence: (Z.M.); (L.W.)
| |
Collapse
|
102
|
Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232213993. [PMID: 36430471 PMCID: PMC9693078 DOI: 10.3390/ijms232213993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer has been the most common cancer in women worldwide, and metastasis is the leading cause of death from breast cancer. Even though the study of breast cancer metastasis has been extensively carried out, the molecular mechanism is still not fully understood, and diagnosis and prognosis need to be improved. Breast cancer metastasis is a complicated process involving multiple physiological changes, and lung, brain, bone and liver are the main metastatic targets. Exosomes are membrane-bound extracellular vesicles that contain secreted cellular constitutes. The biogenesis and functions of exosomes in cancer have been intensively studied, and mounting studies have indicated that exosomes play a crucial role in cancer metastasis. In this review, we summarize recent findings on the role of breast cancer-derived exosomes in metastasis organotropism and discuss the potential promising clinical applications of targeting exosomes as novel strategies for breast cancer diagnosis and therapy.
Collapse
|
103
|
Yom-Tov N, Guy R, Offen D. Extracellular vesicles over adeno-associated viruses: Advantages and limitations as drug delivery platforms in precision medicine. Adv Drug Deliv Rev 2022; 190:114535. [PMID: 36210573 DOI: 10.1016/j.addr.2022.114535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023]
Abstract
Tissue-specific uptake and sufficient biodistribution are central goals in drug development. Crossing the blood-brain barrier (BBB) represents a major challenge in delivering therapeutics to the central nervous system (CNS). Since its discovery in the late 19th century, considerable efforts have been invested in an attempt to decipher the BBB structure complexity and plasticity. In parallel, another prevalent approach is to improve a delivery system by harnessing the biological machinery in an attempt to enhance therapeutic-agent permeability. Here, we review the advantages and limitations of using extracellular vesicles over AAV systems as a delivery system for therapy, focusing on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nataly Yom-Tov
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reut Guy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Offen
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
104
|
Wang SE. Extracellular vesicles in cancer therapy. Semin Cancer Biol 2022; 86:296-309. [PMID: 35688334 PMCID: PMC10431950 DOI: 10.1016/j.semcancer.2022.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), including a variety of membrane-enclosed nanosized particles carrying cell-derived cargo, mediate a major type of intercellular communication in physiological and pathological processes. Both cancer and non-cancer cells secrete EVs, which can travel to and influence various types of cells at the primary tumor site as well as in distant organs. Tumor-derived EVs contribute to cancer cell plasticity and resistance to therapy, adaptation of tumor microenvironment, local and systemic vascular remodeling, immunomodulation, and establishment of pre-metastatic niches. Therefore, targeting the production, uptake, and function of tumor-derived EVs has emerged as a new strategy for stand-alone or combinational therapy of cancer. On the other hand, as EV cargo partially reflects the genetic makeup and phenotypic properties of the secreting cell, EV-based biomarkers that can be detected in biofluids are being developed for cancer diagnosis and for predicting and monitoring tumor response to therapy. Meanwhile, EVs from presumably safe sources are being developed as delivery vehicles for anticancer therapeutic agents and as anticancer vaccines. Numerous reviews have discussed the biogenesis and characteristics of EVs and their functions in cancer. Here, I highlight recent advancements in translation of EV research outcome towards improved care of cancer, including developments of non-invasive EV-based biomarkers and therapeutic agents targeting tumor-derived EVs as well as engineering of therapeutic EVs.
Collapse
Affiliation(s)
- Shizhen Emily Wang
- Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
105
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
106
|
Aili Y, Maimaitiming N, Qin H, Ji W, Fan G, Wang Z, Wang Y. Tumor microenvironment and exosomes in brain metastasis: Molecular mechanisms and clinical application. Front Oncol 2022; 12:983878. [PMID: 36338717 PMCID: PMC9631487 DOI: 10.3389/fonc.2022.983878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Metastasis is one of the important biological features of malignant tumors and one of the main factors responsible for poor prognosis. Although the widespread application of newer clinical technologies and their continuous development have significantly improved survival in patients with brain metastases, there is no uniform standard of care. More effective therapeutic measures are therefore needed to improve prognosis. Understanding the mechanisms of tumor cell colonization, growth, and invasion in the central nervous system is of particular importance for the prevention and treatment of brain metastases. This process can be plausibly explained by the “seed and soil” hypothesis, which essentially states that tumor cells can interact with various components of the central nervous system microenvironment to produce adaptive changes; it is this interaction that determines the development of brain metastases. As a novel form of intercellular communication, exosomes play a key role in the brain metastasis microenvironment and carry various bioactive molecules that regulate receptor cell activity. In this paper, we review the roles and prospects of brain metastatic tumor cells, the brain metastatic tumor microenvironment, and exosomes in the development and clinical management of brain metastases.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Nuersimanguli Maimaitiming
- Department of Four Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenyu Ji
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guofeng Fan
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengliang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- School of Health Management, Xinjiang Medical University, Urumqi, China
- Department of Neurosurgery, Xinjiang Bazhou People’s Hospital, Xinjiang, China
- *Correspondence: Zengliang Wang, ; Yongxin Wang,
| | - Yongxin Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Zengliang Wang, ; Yongxin Wang,
| |
Collapse
|
107
|
Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers (Basel) 2022; 14:cancers14194963. [PMID: 36230886 PMCID: PMC9563727 DOI: 10.3390/cancers14194963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Brain metastases are the most common brain tumor in adults and are associated with poor prognosis. The propensity of different solid tumors to metastasize varies greatly, with lung, breast, and melanoma primary tumors commonly leading to brain metastases, while other primaries such as prostate rarely metastasize to the brain. The molecular mechanisms that predispose and facilitate brain metastasis development are poorly understood. In this review, we present the current data on the genomic landscape of brain metastases that arise from various primary cancers and also outline potential molecular mechanisms that drive the formation of distant metastases in the brain. Abstract Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.
Collapse
|
108
|
Hirose H, Hirai Y, Sasaki M, Sawa H, Futaki S. Quantitative Analysis of Extracellular Vesicle Uptake and Fusion with Recipient Cells. Bioconjug Chem 2022; 33:1852-1859. [PMID: 36194183 DOI: 10.1021/acs.bioconjchem.2c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In precision medicine, extracellular vesicles (EVs) are promising intracellular drug delivery vehicles. The development of a quantitative analysis approach will provide valuable information from the perspective of cell biology and system design for drug delivery. Previous studies have reported quantitative methods to analyze the relative uptake or fusion of EVs to recipient cells. However, relatively few methods have enabled the simultaneous evaluation of the "number" of EVs taken up by recipient cells and those that fuse with cellular membranes. In this study, we report a simple quantitative method based on the NanoBiT system to quantify the uptake and fusion of small and large EVs (sEVs and lEVs, respectively). We assessed the abundance of these two subtypes of EVs and determined that lEVs may be more effective vehicles for transporting cargo to recipient cells. The results also indicated that both sEVs and lEVs have very low fusogenic activity, which can be improved in the presence of a fusogenic protein.
Collapse
Affiliation(s)
- Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| | - Yusuke Hirai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido001-0020, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| |
Collapse
|
109
|
Kaleem M, Dalhat MH, Azmi L, Asar TO, Ahmad W, Alghanmi M, Almostadi A, Zughaibi TA, Tabrez S. An Insight into Molecular Targets of Breast Cancer Brain Metastasis. Int J Mol Sci 2022; 23:ijms231911687. [PMID: 36232989 PMCID: PMC9569595 DOI: 10.3390/ijms231911687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain metastasis is one of the major reasons of death in breast cancer (BC) patients, significantly affecting the quality of life, physical activity, and interdependence on several individuals. There is no clear evidence in scientific literature that depicts an exact mechanism relating to brain metastasis in BC patients. The tendency to develop breast cancer brain metastases (BCBMs) differs by the BC subtype, varying from almost half with triple-negative breast cancer (TNBC) (HER2- ER- PR-), one-third with HER2+ (human epidermal growth factor receptor 2-positive, and around one-tenth with luminal subclass (ER+ (estrogen positive) or PR+ (progesterone positive)) breast cancer. This review focuses on the molecular pathways as possible therapeutic targets of BCBMs and their potent drugs under different stages of clinical trial. In view of increased numbers of clinical trials and systemic studies, the scientific community is hopeful of unraveling the underlying mechanisms of BCBMs that will help in designing an effective treatment regimen with multiple molecular targets.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Faculty of Pharmacy, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru 560091, India
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Torki A. Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
110
|
Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal 2022; 15:eaaz4742. [PMID: 36166511 DOI: 10.1126/scisignal.aaz4742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Sara Zanivan
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
111
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
112
|
Kaddour H, McDew-White M, Madeira MM, Tranquille MA, Tsirka SE, Mohan M, Okeoma CM. Chronic delta-9-tetrahydrocannabinol (THC) treatment counteracts SIV-induced modulation of proinflammatory microRNA cargo in basal ganglia-derived extracellular vesicles. J Neuroinflammation 2022; 19:225. [PMID: 36096938 PMCID: PMC9469539 DOI: 10.1186/s12974-022-02586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Present Address: Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591 USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Miguel M. Madeira
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Malik A. Tranquille
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Stella E. Tsirka
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524 USA
| |
Collapse
|
113
|
Kobayashi M, Fujiwara K, Takahashi K, Yoshioka Y, Ochiya T, Podyma-Inoue KA, Watabe T. Transforming growth factor-β-induced secretion of extracellular vesicles from oral cancer cells evokes endothelial barrier instability via endothelial-mesenchymal transition. Inflamm Regen 2022; 42:38. [PMID: 36057626 PMCID: PMC9441046 DOI: 10.1186/s41232-022-00225-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background During metastasis, cancer cells undergo epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β), which is abundant in the tumor microenvironment, and acquire invasive and metastatic potentials. Metastasis to distant organs requires intravascular invasion and extravasation of cancer cells, which is accompanied by the disruption of the adhesion between vascular endothelial cells. Cancer cell-derived extracellular vesicles (EVs) have been suggested to induce the destabilization of normal blood vessels at the metastatic sites. However, the roles of EVs secreted from cancer cells that have undergone EMT in the destabilization of blood vessels remain to be elucidated. In the present study, we characterized EVs secreted by oral cancer cells undergoing TGF-β-induced EMT and elucidated their effects on the characteristics of vascular endothelial cells. Methods Induction of EMT by TGF-β in human oral cancer cells was assessed using quantitative RT-PCR (qRT-PCR) and immunocytochemistry. Oral cancer cell-derived EVs were isolated from the conditioned media of oral cancer cells that were treated with or without TGF-β using ultracentrifugation, and characterized using nanoparticle tracking analysis and immunoblotting. The effects of EVs on human umbilical artery endothelial cells were examined by qRT-PCR, cellular staining, and permeability assay. The significant differences between means were determined using a t-test or one-way analysis of variance with Tukey’s multiple comparisons test. Results Oral cancer cells underwent EMT in response to TGF-β as revealed by changes in the expression of epithelial and mesenchymal cell markers at both the RNA and protein levels. Oral cancer cells treated with TGF-β showed increased EV production and altered EV composition when compared with untreated cells. The EVs that originated from cells that underwent EMT by TGF-β induced endothelial-mesenchymal transition, which was characterized by the decreased and increased expression of endothelial and mesenchymal cell markers, respectively. EVs derived from oral cancer cells also induced intercellular gap formation which led to the loss of endothelial cell barrier stability. Conclusions EVs released from oral cancer cells that underwent TGF-β-induced EMT target endothelial cells to induce vascular destabilization. Detailed characterization of oral cancer-derived EVs and factors responsible for EV-mediated vascular instability will lead to the development of agents targeting metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00225-7.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Tokyo, 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Tokyo, 160-0023, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
114
|
Lischnig A, Bergqvist M, Ochiya T, Lässer C. Quantitative Proteomics Identifies Proteins Enriched in Large and Small Extracellular Vesicles. Mol Cell Proteomics 2022; 21:100273. [PMID: 35918030 PMCID: PMC9486130 DOI: 10.1016/j.mcpro.2022.100273] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022] Open
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs), such as exosomes. However, recent studies have shown that several of these markers can also be present in other subpopulations of EVs to a similar degree. Furthermore, few markers have been identified as enriched or uniquely present in larger EVs, such as microvesicles. The aim of this study was to address these issues by conducting an in-depth comparison of the proteome of large and small EVs. Large (16,500g) and small EVs (118,000g) were isolated from three cell lines using a combination of differential ultracentrifugation and a density cushion and quantitative mass spectrometry (tandem mass tag-liquid chromatography-tandem mass spectrometry) was used to identify differently enriched proteins in large and small EVs. In total, 6493 proteins were quantified, with 818 and 1567 proteins significantly enriched in small and large EVs, respectively. Tetraspanins, ADAMs and ESCRT proteins, as well as SNAREs and Rab proteins associated with endosomes were enriched in small EVs compared with large EVs, whereas ribosomal, mitochondrial, and nuclear proteins, as well as proteins involved in cytokinesis, were enriched in large EVs compared with small EVs. However, Flotillin-1 was not differently expressed in large and small EVs. In conclusion, our study shows that the proteome of large and small EVs are substantially dissimilar. We validated several proteins previously suggested to be enriched in either small or large EVs (e.g., ADAM10 and Mitofilin, respectively), and we suggest several additional novel protein markers.
Collapse
Affiliation(s)
- Anna Lischnig
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Bergqvist
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Cecilia Lässer
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
115
|
Wu A, Wolley MJ, Fenton RA, Stowasser M. Using human urinary extracellular vesicles to study physiological and pathophysiological states and regulation of the sodium chloride cotransporter. Front Endocrinol (Lausanne) 2022; 13:981317. [PMID: 36105401 PMCID: PMC9465297 DOI: 10.3389/fendo.2022.981317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC), expressed in the renal distal convoluted tubule, plays a major role in Na+, Cl- and K+ homeostasis and blood pressure as exemplified by the symptoms of patients with non-functional NCC and Gitelman syndrome. NCC activity is modulated by a variety of hormones, but is also influenced by the extracellular K+ concentration. The putative "renal-K+ switch" mechanism is a relatively cohesive model that links dietary K+ intake to NCC activity, and may offer new targets for blood pressure control. However, a remaining hurdle for full acceptance of this model is the lack of human data to confirm molecular findings from animal models. Extracellular vesicles (EVs) have attracted attention from the scientific community due to their potential roles in intercellular communication, disease pathogenesis, drug delivery and as possible reservoirs of biomarkers. Urinary EVs (uEVs) are an excellent sample source for the study of physiology and pathology of renal, urothelial and prostate tissues, but the diverse origins of uEVs and their dynamic molecular composition present both methodological and data interpretation challenges. This review provides a brief overview of the state-of-the-art, challenges and knowledge gaps in current uEV-based analyses, with a focus on the application of uEVs to study the "renal-K+ switch" and NCC regulation. We also provide recommendations regarding biospecimen handling, processing and reporting requirements to improve experimental reproducibility and interoperability towards the realisation of the potential of uEV-derived biomarkers in hypertension and clinical practice.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
- Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| |
Collapse
|
116
|
Sertoli cell survival and barrier function are regulated by miR-181c/d-Pafah1b1 axis during mammalian spermatogenesis. Cell Mol Life Sci 2022; 79:498. [PMID: 36008729 PMCID: PMC9411099 DOI: 10.1007/s00018-022-04521-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Sertoli cells contribute to the formation of the blood-testis barrier (BTB), which is necessary for normal spermatogenesis. Recently, microRNAs (miRNAs) have emerged as posttranscriptional regulatory elements in BTB function during spermatogenesis. Our previous study has shown that miR-181c or miR-181d (miR-181c/d) is highly expressed in testes from boars at 60 days old compared with at 180 days old. Herein, we found that overexpression of miR-181c/d via miR-181c/d mimics in murine Sertoli cells (SCs) or through injecting miR-181c/d-overexpressing lentivirus in murine testes perturbs BTB function by altering BTB-associated protein distribution at the Sertoli cell-cell interface and F-actin organization, but this in vivo perturbation disappears approximately 6 weeks after the final treatment. We also found that miR-181c/d represses Sertoli cell proliferation and promotes its apoptosis. Moreover, miR-181c/d regulates Sertoli cell survival and barrier function by targeting platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (Pafah1b1) gene. Furthermore, miR-181c/d suppresses PAFAH1B1 expression, reduces the complex of PAFAH1B1 with IQ motif-containing GTPase activating protein 1, and inhibits CDC42/PAK1/LIMK1/Cofilin pathway which is required for F-actin stabilization. In total, our results reveal the regulatory axis of miR-181c/d-Pafah1b1 in cell survival and barrier function of Sertoli cells and provide additional insights into miRNA functions in mammalian spermatogenesis.
Collapse
|
117
|
Goenka A, Tiek DM, Song X, Iglesia RP, Lu M, Hu B, Cheng SY. The Role of Non-Coding RNAs in Glioma. Biomedicines 2022; 10:2031. [PMID: 36009578 PMCID: PMC9405925 DOI: 10.3390/biomedicines10082031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
For decades, research in cancer biology has been focused on the protein-coding fraction of the human genome. However, with the discovery of non-coding RNAs (ncRNAs), it has become known that these entities not only function in numerous fundamental life processes such as growth, differentiation, and development, but also play critical roles in a wide spectrum of human diseases, including cancer. Dysregulated ncRNA expression is found to affect cancer initiation, progression, and therapy resistance, through transcriptional, post-transcriptional, or epigenetic processes in the cell. In this review, we focus on the recent development and advances in ncRNA biology that are pertinent to their role in glioma tumorigenesis and therapy response. Gliomas are common, and are the most aggressive type of primary tumors, which account for ~30% of central nervous system (CNS) tumors. Of these, glioblastoma (GBM), which are grade IV tumors, are the most lethal brain tumors. Only 5% of GBM patients survive beyond five years upon diagnosis. Hence, a deeper understanding of the cellular non-coding transcriptome might help identify biomarkers and therapeutic agents for a better treatment of glioma. Here, we delve into the functional roles of microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) in glioma tumorigenesis, discuss the function of their extracellular counterparts, and highlight their potential as biomarkers and therapeutic agents in glioma.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Marie Tiek
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
118
|
Baldasici O, Pileczki V, Cruceriu D, Gavrilas LI, Tudoran O, Balacescu L, Vlase L, Balacescu O. Breast Cancer-Delivered Exosomal miRNA as Liquid Biopsy Biomarkers for Metastasis Prediction: A Focus on Translational Research with Clinical Applicability. Int J Mol Sci 2022; 23:ijms23169371. [PMID: 36012638 PMCID: PMC9408950 DOI: 10.3390/ijms23169371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis represents the most important cause of breast cancer-associated mortality. Even for early diagnosed stages, the risk of metastasis is significantly high and predicts a grim outcome for the patient. Nowadays, efforts are made for identifying blood-based biomarkers that could reliably distinguish patients with highly metastatic cancers in order to ensure a closer follow-up and a more personalized therapeutic method. Exosomes are nano vesicles secreted by cancer cells that can transport miRNAs, proteins, and other molecules and deliver them to recipient cells all over the body. Through this transfer, cancer cells modulate their microenvironment and facilitate the formation of the pre-metastatic niche, leading to sustained progression. Exosomal miRNAs have been extensively studied due to their promising potential as prognosis biomarkers for metastatic breast cancer. In this review, we tried to depict an overview of the existing literature regarding exosomal miRNAs that are already validated as potential biomarkers, and which could be immediately available for the clinic. Moreover, in the last section, we highlighted several miRNAs that have proven their function in preclinical studies and could be considered for clinical validation. Considering the lack of standard methods for evaluating exosomal miRNA, we also discussed the challenges and the technical aspects underlying this issue.
Collapse
Affiliation(s)
- Oana Baldasici
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Valentina Pileczki
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Daniel Cruceriu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, “Babes-Bolyai” University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Laura Ioana Gavrilas
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Oana Tudoran
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
119
|
Li C, Zheng H, Xiong J, Huang Y, Li H, Jin H, Ai S, Wang Y, Su T, Sun G, Xiao X, Fu T, Wang Y, Gao X, Liang P. miR-596-3p suppresses brain metastasis of non-small cell lung cancer by modulating YAP1 and IL-8. Cell Death Dis 2022; 13:699. [PMID: 35961957 PMCID: PMC9374706 DOI: 10.1038/s41419-022-05062-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Brain metastasis (BM) frequently occurs in advanced non-small cell lung cancer (NSCLC) and is associated with poor clinical prognosis. Due to the location of metastatic lesions, the surgical resection is limited and the chemotherapy is ineffective because of the existence of the blood brain barrier (BBB). Therefore, it is essential to enhance our understanding about the underlying mechanisms associated with brain metastasis in NSCLC. In the present study, we explored the RNA-Seq data of brain metastasis cells from the GEO database, and extracted RNA collected from primary NSCLC tumors as well as paired brain metastatic lesions followed by microRNA PCR array. Meanwhile, we improved the in vivo model and constructed a cancer stem cell-derived transplantation model of brain metastasis in mice. Our data indicated that the level of miR-596-3p is high in primary NSCLC tumors, but significantly downregulated in the brain metastatic lesion. The prediction target of microRNA suggested that miR-596-3p was considered to modulate two genes essential in the brain invasion process, YAP1 and IL-8 that restrain the invasion of cancer cells and permeability of BBB, respectively. Moreover, in vivo experiments suggested that our model mimics the clinical aspect of NSCLC and improves the success ratio of brain metastasis model. The results demonstrated that miR-596-3p significantly inhibited the capacity of NSCLC cells to metastasize to the brain. Furthermore, these finding elucidated that miR-596-3p exerts a critical role in brain metastasis of NSCLC by modulating the YAP1-IL8 network, and this miRNA axis may provide a potential therapeutic strategy for brain metastasis.
Collapse
Affiliation(s)
- Chenlong Li
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Hongshan Zheng
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Jinsheng Xiong
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Yuxin Huang
- Heilongjiang Tuomeng Technology Co.Ltd, Harbin, 150040 Heilongjiang China
| | - Haoyang Li
- grid.45672.320000 0001 1926 5090Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia ,grid.64924.3d0000 0004 1760 5735Cancer Systems Biology Center, the China-Japan Union Hospital, Jilin University, Changchun, 130001 Jilin China ,grid.64924.3d0000 0004 1760 5735College of Computer Science and Technology, Jilin University, Changchun, 130001 Jilin China
| | - Hua Jin
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Siqi Ai
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Yingjie Wang
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Tianqi Su
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Guiyin Sun
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Xu Xiao
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Tianjiao Fu
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Yujie Wang
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| | - Xin Gao
- grid.45672.320000 0001 1926 5090Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
| | - Peng Liang
- grid.412651.50000 0004 1808 3502Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, 150001 Heilongjiang China
| |
Collapse
|
120
|
Zare M, Pemmada R, Madhavan M, Shailaja A, Ramakrishna S, Kandiyil SP, Donahue JM, Thomas V. Encapsulation of miRNA and siRNA into Nanomaterials for Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14081620. [PMID: 36015246 PMCID: PMC9416290 DOI: 10.3390/pharmaceutics14081620] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/22/2023] Open
Abstract
Globally, cancer is amongst the most deadly diseases due to the low efficiency of the conventional and obsolete chemotherapeutic methodologies and their many downsides. The poor aqueous solubility of most anticancer medications and their low biocompatibility make them ineligible candidates for the design of delivery systems. A significant drawback associated with chemotherapy is that there are no advanced solutions to multidrug resistance, which poses a major obstacle in cancer management. Since RNA interference (RNAi) can repress the expression of genes, it is viewed as a novel tool for advanced drug delivery. this is being explored as a promising drug targeting strategy for the treatment of multiple diseases, including cancer. However, there are many obstructions that hinder the clinical uses of siRNA drugs due to their low permeation into cells, off-target impacts, and possible unwanted immune responses under physiological circumstances. Thus, in this article, we review the design measures for siRNA conveyance frameworks and potential siRNA and miRNA drug delivery systems for malignant growth treatment, including the use of liposomes, dendrimers, and micelle-based nanovectors and functional polymer-drug delivery systems. This article sums up the advancements and challenges in the use of nanocarriers for siRNA delivery and remarkably centers around the most critical modification strategies for nanocarriers to build multifunctional siRNA and miRNA delivery vectors. In short, we hope this review will throw light on the dark areas of RNA interference, which will further open novel research arenas in the development of RNAi drugs for cancer.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.Z.); (S.R.)
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Rakesh Pemmada
- Departments of Materials Science and Engineering, Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, India
- Correspondence: (M.M.); (V.T.)
| | - Aswathy Shailaja
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.Z.); (S.R.)
| | | | - James M. Donahue
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Vinoy Thomas
- Departments of Materials Science and Engineering, Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
- Center for Nanoscale Materials and Biointegration (CNMB), Center for Clinical and Translational Science (CCTS), University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Correspondence: (M.M.); (V.T.)
| |
Collapse
|
121
|
Sirkisoon SR, Wong GL, Aguayo NR, Doheny DL, Zhu D, Regua AT, Arrigo A, Manore SG, Wagner C, Thomas A, Singh R, Xing F, Jin G, Watabe K, Lo HW. Breast cancer extracellular vesicles-derived miR-1290 activates astrocytes in the brain metastatic microenvironment via the FOXA2→CNTF axis to promote progression of brain metastases. Cancer Lett 2022; 540:215726. [PMID: 35589002 PMCID: PMC9387054 DOI: 10.1016/j.canlet.2022.215726] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023]
Abstract
Mechanisms underlying breast cancer brain metastasis (BCBM) are still unclear. In this study, we observed that extracellular vesicles (EVs) secreted from breast cancer cells with increased expression of tGLI1, a BCBM-promoting transcription factor, strongly activated astrocytes. EV-derived microRNA/miRNA microarray revealed tGLI1-positive breast cancer cells highly secreted miR-1290 and miR-1246 encapsulated in EVs. Genetic knockin/knockout studies established a direct link between tGLI1 and both miRNAs. Datamining and analysis of patient samples revealed that BCBM patients had more circulating EV-miRs-1290/1246 than those without metastasis. Ectopic expression of miR-1290 or miR-1246 strongly activated astrocytes whereas their inhibitors abrogated the effect. Conditioned media from miR-1290- or miR-1246-overexpressing astrocytes promoted mammospheres. Furthermore, miRs-1290/1246 suppressed expression of FOXA2 transcription repressor, leading to CNTF cytokine secretion and subsequent activation of astrocytes. Finally, we conducted a mouse study to demonstrate that astrocytes overexpressing miR-1290, but not miR-1246, enhanced intracranial colonization and growth of breast cancer cells. Collectively, our findings demonstrate, for the first time, that breast cancer EV-derived miR-1290 and miR-1246 activate astrocytes in the brain metastatic microenvironment and that EV-derived miR-1290 promotes progression of brain metastases through the novel EV-miR-1290→FOXA2→CNTF signaling axis.
Collapse
Affiliation(s)
- Sherona R Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Noah R Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Calvin Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexandra Thomas
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
122
|
Zhu Z, Zhai Y, Hao Y, Wang Q, Han F, Zheng W, Hong J, Cui L, Jin W, Ma S, Yang L, Cheng G. Specific anti-glioma targeted-delivery strategy of engineered small extracellular vesicles dual-functionalised by Angiopep-2 and TAT peptides. J Extracell Vesicles 2022; 11:e12255. [PMID: 35932288 PMCID: PMC9451528 DOI: 10.1002/jev2.12255] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/04/2022] [Accepted: 07/22/2022] [Indexed: 01/06/2023] Open
Abstract
Glioma is one of the primary malignant brain tumours in adults, with a poor prognosis. Pharmacological reagents targeting glioma are limited to achieve the desired therapeutic effect due to the presence of blood-brain barrier (BBB). Effectively crossing the BBB and specifically targeting to the brain tumour are the major challenge for the glioma treatments. Here, we demonstrate that the well-defined small extracellular vesicles (sEVs) with dual-targeting drug delivery and cell-penetrating functions, modified by Angiopep-2 and trans-activator of transcription peptides, enable efficient and specific chemotherapy for glioma. The high efficiency of engineered sEVs in targeting BBB and glioma was assessed in both monolayer culture cells and BBB model in vitro, respectively. The observed high targeting efficiency was re-validated in subcutaneous tumour and orthotopic glioma mice models. After loading the doxorubicin into dual-modified functional sEVs, this specific dual-targeting delivery system could cross the BBB, reach the glioma, and penetrate the tumour. Such a mode of drug delivery significantly improved more than 2-fold survival time of glioma mice with very few side effects. In conclusion, utilization of the dual-modified sEVs represents a unique and efficient strategy for drug delivery, holding great promise for the treatments of central nervous system diseases.
Collapse
Affiliation(s)
- Zhanchi Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yuanxin Zhai
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Ying Hao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong, China
| | - Quanwei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Fang Han
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, China
| | - Jing Hong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Leisha Cui
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wei Jin
- Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, China
| | - Lingyan Yang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong, China
| |
Collapse
|
123
|
Funahashi Y, Yoshino Y, Iga JI, Ueno SI. Impact of clozapine on the expression of miR-675-3p in plasma exosomes derived from patients with schizophrenia. World J Biol Psychiatry 2022; 24:303-313. [PMID: 35904423 DOI: 10.1080/15622975.2022.2104924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Recently, the expression changes of microRNAs (miRNAs) in the serum exosomes (EXO) of schizophrenia (SCZ) have been reported. The aim of this study was to investigate the global expression changes of miRNA derived from the plasma EXO of patients with treatment-resistant schizophrenia (TRS) and the effects of clozapine on miRNA expression. METHODS Global miRNA expression changes in plasma EXO between TRS and controls were studied using microarray analysis. Then, miRNA expressions among TRS, non-TRS, and controls were confirmed with quantitative qPCR experiments. We also studied changes in EXO miRNA expression with in-vitro SH-SY5Y cells. RESULTS A microarray for miRNA expression analysis (nine controls vs. nine patients with TRS) revealed 13 up- and 18 downregulated miRNAs that were relevant to neuronal and brain development based on gene ontology analysis. Of those, upregulated miR-675-3p expression was successfully validated in the same cohort by qPCR experiments. Conversely, miR-675-3p expression levels were significantly decreased in the non-TRS cohort (50 controls vs. 50 patients without TRS without clozapine treatment). CONCLUSIONS We identified global miRNA changes in plasma EXO derived from patients with SCZ that were relevant to neuronal functions, among which, hsa-miR-675-3p expression was upregulated by clozapine treatment.
Collapse
Affiliation(s)
- Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan
| |
Collapse
|
124
|
Ramos-Zaldívar HM, Polakovicova I, Salas-Huenuleo E, Corvalán AH, Kogan MJ, Yefi CP, Andia ME. Extracellular vesicles through the blood-brain barrier: a review. Fluids Barriers CNS 2022; 19:60. [PMID: 35879759 PMCID: PMC9310691 DOI: 10.1186/s12987-022-00359-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/15/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are particles naturally released from cells that are delimited by a lipid bilayer and are unable to replicate. How the EVs cross the Blood–Brain barrier (BBB) in a bidirectional manner between the bloodstream and brain parenchyma remains poorly understood. Most in vitro models that have evaluated this event have relied on monolayer transwell or microfluidic organ-on-a-chip techniques that do not account for the combined effect of all cellular layers that constitute the BBB at different sites of the Central Nervous System. There has not been direct transcytosis visualization through the BBB in mammals in vivo, and evidence comes from in vivo experiments in zebrafish. Literature is scarce on this topic, and techniques describing the mechanisms of EVs motion through the BBB are inconsistent. This review will focus on in vitro and in vivo methodologies used to evaluate EVs transcytosis, how EVs overcome this fundamental structure, and discuss potential methodological approaches for future analyses to clarify these issues. Understanding how EVs cross the BBB will be essential for their future use as vehicles in pharmacology and therapeutics.
Collapse
Affiliation(s)
- Héctor M Ramos-Zaldívar
- Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago de Chile, Chile.
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases, Santiago, Chile.,Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases, Santiago, Chile.,Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Laboratorio de Nanobiotecnología, Universidad de Chile, Carlos Lorca 964, Independencia, Chile
| | - Claudia P Yefi
- Escuela de Medicina Veterinaria, Facultad de Agronomía E Ingeniería Forestal, Facultad de Ciencias Biológicas Y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo E Andia
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
125
|
Siegl F, Vecera M, Roskova I, Smrcka M, Jancalek R, Kazda T, Slaby O, Sana J. The Significance of MicroRNAs in the Molecular Pathology of Brain Metastases. Cancers (Basel) 2022; 14:cancers14143386. [PMID: 35884446 PMCID: PMC9322877 DOI: 10.3390/cancers14143386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/07/2022] Open
Abstract
Brain metastases are the most frequent intracranial tumors in adults and the cause of death in almost one-fourth of cases. The incidence of brain metastases is steadily increasing. The main reason for this increase could be the introduction of new and more efficient therapeutic strategies that lead to longer survival but, at the same time, cause a higher risk of brain parenchyma infiltration. In addition, the advances in imaging methodology, which provide earlier identification of brain metastases, may also be a reason for the higher recorded number of patients with these tumors. Metastasis is a complex biological process that is still largely unexplored, influenced by many factors and involving many molecules. A deeper understanding of the process will allow the discovery of more effective diagnostic and therapeutic approaches that could improve the quality and length of patient survival. Recent studies have shown that microRNAs (miRNAs) are essential molecules that are involved in specific steps of the metastatic cascade. MiRNAs are endogenously expressed small non-coding RNAs that act as post-transcriptional regulators of gene expression and thus regulate most cellular processes. The dysregulation of these molecules has been implicated in many cancers, including brain metastases. Therefore, miRNAs represent promising diagnostic molecules and therapeutic targets in brain metastases. This review summarizes the current knowledge on the importance of miRNAs in brain metastasis, focusing on their involvement in the metastatic cascade and their potential clinical implications.
Collapse
Affiliation(s)
- Frantisek Siegl
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Marek Vecera
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Ivana Roskova
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Radim Jancalek
- Department of Neurosurgery, St. Annes University Hospital Brno and Faculty of Medicine of Masaryk University, 656 91 Brno, Czech Republic;
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic;
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic
- Department of Pathology, University Hospital Brno, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-495-246
| |
Collapse
|
126
|
Rima XY, Zhang J, Nguyen LTH, Rajasuriyar A, Yoon MJ, Chiang CL, Walters N, Kwak KJ, Lee LJ, Reátegui E. Microfluidic harvesting of breast cancer tumor spheroid-derived extracellular vesicles from immobilized microgels for single-vesicle analysis. LAB ON A CHIP 2022; 22:2502-2518. [PMID: 35579189 PMCID: PMC9383696 DOI: 10.1039/d1lc01053k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Investigating cellular and vesicular heterogeneity in breast cancer remains a challenge, which encourages the development of controllable in vitro systems that mimic the tumor microenvironment. Although three-dimensional cell culture better recapitulates the heterogeneity observed in tumor growth and extracellular vesicle (EV) biogenesis, the physiological relevance is often contrasted with the control offered by two-dimensional cell culture. Therefore, to challenge this misconception we developed a novel microfluidic system harboring highly tunable three-dimensional EV microbioreactors (EVμBRs) to model micrometastatic EV release in breast cancer while capitalizing on the convenient, low-volume, and sterile interface provided by microfluidics. The diameter and cellular occupancy of the EVμBRs could be precisely tailored to various configurations, supporting the formation of breast cancer tumor spheroids. To immobilize the EVμBRs within a microchannel and facilitate EV extraction, oxygen inhibition in free-radical polymerization was repurposed to rapidly generate two-layer hydrodynamic traps in situ using a digital-micromirror device (DMD)-based ultraviolet (UV) projection system. Breast cancer tumor spheroid-derived EVs were harvested with as little as 20 μL from the microfluidic system and quantified by single-EV immunofluorescence for CD63 and CD81. Despite the low-volume extraction, differences in biomarker expression and coexpression of the tetraspanins on single EVs were observed. Furthermore, the EVμBRs were capable of recapitulating heterogeneity at a cellular and vesicular degree, indicating the utility and robustness of the microfluidic system to investigate physiologically relevant EVs in breast cancer and other disease models.
Collapse
Affiliation(s)
- Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Aaron Rajasuriyar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Min Jin Yoon
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Chi-Ling Chiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | | | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Spot Biosystems Ltd., Palo Alto, CA 94301, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
127
|
Gulati R, Nandi D, Sarkar K, Venkataraman P, Ramkumar KM, Ranjan P, Janardhanan R. Exosomes as Theranostic Targets: Implications for the Clinical Prognosis of Aggressive Cancers. Front Mol Biosci 2022; 9:890768. [PMID: 35813829 PMCID: PMC9260243 DOI: 10.3389/fmolb.2022.890768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are extracellular vesicles produced by various cell types and extensively distributed in physiological fluids. Because of their significant role in cancer progression, they have been a focal point for the novel cancer therapy approach. Exosomes are highly efficient at transporting proteins, RNAs, and small drugs into cancer cells for therapeutic purposes. In addition to their prominent role as potential biomarkers for transporting targeted information from their progenitor cells, exosomes have also emerged as a new avenue for developing more effective clinical diagnostics and therapeutic techniques, also known as exosome theranostics. Lipids, proteins, and nucleic acids transported by exosomes were investigated as potential biomarkers for cancer diagnosis, prognosis, and future cancer treatment targets. The unique mechanism of exosomes and their therapeutic as well as diagnostic uses, also known as theranostic applications of exosomes in malignancies, are discussed in this review.
Collapse
Affiliation(s)
- Richa Gulati
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - Dhruva Nandi
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - Koustav Sarkar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - P. Venkataraman
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - K. M. Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Priya Ranjan
- Bhubaneswar Institute of Technology, Rourkela, India
| | - Rajiv Janardhanan
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
- *Correspondence: Rajiv Janardhanan,
| |
Collapse
|
128
|
Mao D, Lu C, Zhang R, Zhu L, Song Y, Feng C, Zhang Q, Chen T, Yang Y, Chen G, Zhu X, Tan W. Computer-Aided Design of DNA Self-Limited Assembly for Relative Quantification of Membrane Proteins. Anal Chem 2022; 94:10263-10270. [PMID: 35726775 DOI: 10.1021/acs.analchem.2c01909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunofluorescence imaging of cells plays a vital role in biomedical research and clinical diagnosis. However, when it is applied to relative quantification of proteins, it suffers from insufficient fluorescence intensity or partial overexposure, resulting in inaccurate relative quantification. Herein, we report a computer-aided design of DNA self-limited assembly (CAD-SLA) technology and apply it for relative quantification of membrane proteins, a concept proposed for the first time. CAD-SLA can achieve exponential cascade signal amplification in one pot and terminate at any desired level. By conjugating CAD-SLA with immunofluorescence, in situ imaging of cell membrane proteins is achieved with a controllable amplification level. Besides, comprehensive fluorescence intensity information from fluorescent images can be obtained, accurately showing relative quantitative information. Slight protein expression differences previously indistinguishable by immunofluorescence or Western blotting can now be discriminated, making fluorescence imaging-based relative quantification a promising tool for membrane protein analysis. From the perspectives of both DNA self-assembly technology and immunofluorescence technology, this work has solved difficult problems and provided important reference for future development.
Collapse
Affiliation(s)
- Dongsheng Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Cuicui Lu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Liucun Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Qianqian Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
129
|
Huang Y, Kanada M, Ye J, Deng Y, He Q, Lei Z, Chen Y, Li Y, Qin P, Zhang J, Wei J. Exosome-mediated remodeling of the tumor microenvironment: From local to distant intercellular communication. Cancer Lett 2022; 543:215796. [PMID: 35728740 DOI: 10.1016/j.canlet.2022.215796] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are membrane-enveloped nanoscale particles that carry various bioactive signaling molecules secreted by cells. Their biological roles depend on the original cell type from which they are derived and their inclusions. Exosomes, a class of EVs, are released by almost all eukaryotic cell types, including tumor cells. Tumor cell-derived exosomes mediate signal transduction between tumor cells and surrounding non-tumor cells. This intercellular communication actively contributes to the remodeling of the tumor microenvironment (TME) to enable tumor growth, invasion, and metastasis. This review summarizes the latest progress in the exploration of exosome-mediated cell-cell communication implicated in TME remodeling and underlying mechanisms. We focus on the role of cell-cell interactions mediated by tumor cell-derived exosomes in promoting invasion and metastasis, and their potential as a therapeutic intervention target against distant metastasis. We also discuss the clinical translational significance of tumor-derived exosomes for early diagnosis, efficacy and progression evaluations.
Collapse
Affiliation(s)
- Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Masamitsu Kanada
- Department of Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China.
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China.
| |
Collapse
|
130
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
131
|
Baumann Z, Auf der Maur P, Bentires‐Alj M. Feed-forward loops between metastatic cancer cells and their microenvironment-the stage of escalation. EMBO Mol Med 2022; 14:e14283. [PMID: 35506376 PMCID: PMC9174884 DOI: 10.15252/emmm.202114283] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent cancer among women, and metastases in distant organs are the leading cause of the cancer-related deaths. While survival of early-stage breast cancer patients has increased dramatically, the 5-year survival rate of metastatic patients has barely improved in the last 20 years. Metastases can arise up to decades after primary tumor resection, hinting at microenvironmental factors influencing the sudden outgrowth of disseminated tumor cells (DTCs). This review summarizes how the environment of the most common metastatic sites (lung, liver, bone, brain) is influenced by the primary tumor and by the varying dormancy of DTCs, with a special focus on how established metastases persist and grow in distant organs due to feed-forward loops (FFLs). We discuss in detail the importance of FFL of cancer cells with their microenvironment including the secretome, interaction with specialized tissue-specific cells, nutrients/metabolites, and that novel therapies should target not only the cancer cells but also the tumor microenvironment, which are thick as thieves.
Collapse
Affiliation(s)
- Zora Baumann
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Priska Auf der Maur
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Mohamed Bentires‐Alj
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| |
Collapse
|
132
|
Yang C, Passos Gibson V, Hardy P. The Role of MiR-181 Family Members in Endothelial Cell Dysfunction and Tumor Angiogenesis. Cells 2022; 11:1670. [PMID: 35626707 PMCID: PMC9140109 DOI: 10.3390/cells11101670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial dysfunction plays a critical role in many human angiogenesis-related diseases, including cancer and retinopathies. Small non-coding microRNAs (miRNAs) repress gene expression at the post-transcriptional level. They are critical for endothelial cell gene expression and function and are involved in many pathophysiological processes. The miR-181 family is one of the essential angiogenic regulators. This review summarizes the current state of knowledge of the role of miR-181 family members in endothelial cell dysfunction, with emphasis on their pathophysiological roles in aberrant angiogenesis. The actions of miR-181 members are summarized concerning their targets and associated major angiogenic signaling pathways in a cancer-specific context. Elucidating the underlying functional mechanisms of miR-181 family members that are dysregulated in endothelial cells or cancer cells is invaluable for developing miRNA-based therapeutics for angiogenesis-related diseases such as retinopathies, angiogenic tumors, and cancer. Finally, potential clinical applications of miR-181 family members in anti-angiogenic tumor therapy are discussed.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Victor Passos Gibson
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pediatrics, University of Montréal, Quebec, QC H3T 1C5, Canada
| |
Collapse
|
133
|
Rehman AU, Khan P, Maurya SK, Siddiqui JA, Santamaria-Barria JA, Batra SK, Nasser MW. Liquid biopsies to occult brain metastasis. Mol Cancer 2022; 21:113. [PMID: 35538484 PMCID: PMC9088117 DOI: 10.1186/s12943-022-01577-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
Brain metastasis (BrM) is a major problem associated with cancer-related mortality, and currently, no specific biomarkers are available in clinical settings for early detection. Liquid biopsy is widely accepted as a non-invasive method for diagnosing cancer and other diseases. We have reviewed the evidence that shows how the molecular alterations are involved in BrM, majorly from breast cancer (BC), lung cancer (LC), and melanoma, with an inception in how they can be employed for biomarker development. We discussed genetic and epigenetic changes that influence cancer cells to breach the blood-brain barrier (BBB) and help to establish metastatic lesions in the uniquely distinct brain microenvironment. Keeping abreast with the recent breakthroughs in the context of various biomolecules detections and identifications, the circulating tumor cells (CTC), cell-free nucleotides, non-coding RNAs, secretory proteins, and metabolites can be pursued in human body fluids such as blood, serum, cerebrospinal fluid (CSF), and urine to obtain potential candidates for biomarker development. The liquid biopsy-based biomarkers can overlay with current imaging techniques to amplify the signal viable for improving the early detection and treatments of occult BrM.
Collapse
Affiliation(s)
- Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
134
|
Wang Y, Chen R, Wa Y, Ding S, Yang Y, Liao J, Tong L, Xiao G. Tumor Immune Microenvironment and Immunotherapy in Brain Metastasis From Non-Small Cell Lung Cancer. Front Immunol 2022; 13:829451. [PMID: 35251014 PMCID: PMC8891382 DOI: 10.3389/fimmu.2022.829451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 01/01/2023] Open
Abstract
Brain metastasis (BM), a devastating complication of advanced malignancy, has a high incidence in non-small cell lung cancer (NSCLC). As novel systemic treatment drugs and improved, more sensitive imaging investigations are performed, more patients will be diagnosed with BM. However, the main treatment methods face a high risk of complications at present. Therefore, based on immunotherapy of tumor immune microenvironment has been proposed. The development of NSCLC and its BM is closely related to the tumor microenvironment, the surrounding microenvironment where tumor cells live. In the event of BM, the metastatic tumor microenvironment in BM is composed of extracellular matrix, tissue-resident cells that change with tumor colonization and blood-derived immune cells. Immune-related cells and chemicals in the NSCLC brain metastasis microenvironment are targeted by BM immunotherapy, with immune checkpoint inhibition therapy being the most important. Blocking cancer immunosuppression by targeting immune checkpoints provides a suitable strategy for immunotherapy in patients with advanced cancers. In the past few years, several therapeutic advances in immunotherapy have changed the outlook for the treatment of BM from NSCLC. According to emerging evidence, immunotherapy plays an essential role in treating BM, with a more significant safety profile than others. This article discusses recent advances in the biology of BM from NSCLC, reviews novel mechanisms in diverse tumor metastatic stages, and emphasizes the role of the tumor immune microenvironment in metastasis. In addition, clinical advances in immunotherapy for this disease are mentioned.
Collapse
Affiliation(s)
- Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Wa
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shikuan Ding
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Tong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
135
|
Wu Y, Niu D, Deng S, Lei X, Xie Z, Yang X. Tumor-derived or non-tumor-derived exosomal noncodingRNAs and signaling pathways in tumor microenvironment. Int Immunopharmacol 2022; 106:108626. [DOI: 10.1016/j.intimp.2022.108626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
136
|
Inagaki M, Tachikawa M. Transport Characteristics of Placenta-Derived Extracellular Vesicles and Their Relevance to Placenta-to-Maternal Tissue Communication. Chem Pharm Bull (Tokyo) 2022; 70:324-329. [DOI: 10.1248/cpb.c22-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mai Inagaki
- Graduate School of Biomedical Sciences, Tokushima University
| | | |
Collapse
|
137
|
Geng S, Tu S, Bai Z, Geng Y. Exosomal lncRNA LINC01356 Derived From Brain Metastatic Nonsmall-Cell Lung Cancer Cells Remodels the Blood-Brain Barrier. Front Oncol 2022; 12:825899. [PMID: 35574344 PMCID: PMC9092220 DOI: 10.3389/fonc.2022.825899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Brain metastasis is a severe complication that affects the survival of lung cancer patients. However, the mechanism of brain metastasis in lung cancer remains unclear. In this study, we constructed an in vitro BBB model and found that cells from the high-metastatic nonsmall cell lung cancer (NSCLC) cell line H1299 showed a higher capacity to pass through the blood-brain barrier (BBB), as verified by Transwell assays, than cells from the low-metastatic NSCLC cell line A549. Brain microvascular endothelial cells (BMECs) could internalize H1299-derived exosomes, which remarkably promoted A549 cells across the BBB. The BBB-associated exosomal long noncoding RNA (lncRNA) was selected from the RNA-Seq dataset (GSE126548) and verified by real-time PCR and Transwell assays. LncRNA LINC01356 was significantly upregulated in H1299 cells and exosomes derived from these cells compared to that of A549 cells. Moreover, LINC01356 was also upregulated in serum exosomes of patients with NSCLC with brain metastasis compared with those without metastasis. In addition, BMECs treated with LINC01356-deprived exosomes expressed higher junction proteins than those treated with the control exosomes, and silencing LINC01356 in exosomes derived from H1299 cells could inhibit A549 cells from crossing the BBB. These data might indicate that the exosomal lncRNA LINC01356 derived from brain metastatic NSCLC cells plays a key role in remodeling the BBB system, thereby participating in brain metastasis in lung cancer.
Collapse
Affiliation(s)
- Sumin Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaohua Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhenwei Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yixiong Geng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
138
|
Carretero-González A, Hergueta-Redondo M, Sánchez-Redondo S, Ximénez-Embún P, Manso Sánchez L, Gil EC, Castellano D, de Velasco G, Peinado H. Characterization of plasma circulating small extracellular vesicles in patients with metastatic solid tumors and newly diagnosed brain metastasis. Oncoimmunology 2022; 11:2067944. [PMID: 35481283 PMCID: PMC9037466 DOI: 10.1080/2162402x.2022.2067944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nearly 40% of the advanced cancer patients will present brain metastases during the course of their disease, with a 2-year life expectancy of less than 10%. Immune system impairment, including the modulation of both STAT3 and PD-L1, is one of the hallmarks of brain metastases. Liquid biopsy could offer several advantages in brain metastases management, such as the possibility of noninvasive dynamic monitoring. Extracellular vesicles (EVs) have been recently proposed as novel biomarkers especially useful in liquid biopsy due to their secretion in biofluids and their role in cell communication during tumor progression. The main aim of this work was to characterize the size and protein cargo of plasma circulating EVs in patients with solid tumors and their correlation with newly diagnosed brain metastases, in addition to their association with other relevant clinical variables. We analyzed circulating EVs in the plasma of 123 patients: 42 patients with brain metastases, 50 without brain metastases and 31 healthy controls. Patients with newly diagnosed brain metastases had a lower number of circulating EVs in the plasma and a higher protein concentration in small EVs (sEVs) compared to patients without brain metastases and healthy controls. Interestingly, melanoma patients with brain metastases presented decreased STAT3 activation and increased PD-L1 levels in circulating sEVs compared to patients without central nervous system metastases. Decreased STAT3 activation and increased PD-L1 in plasma circulating sEVs identify melanoma patients with brain metastasis.
Collapse
Affiliation(s)
- Alberto Carretero-González
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luis Manso Sánchez
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - Eva Ciruelos Gil
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - Daniel Castellano
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
139
|
Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel) 2022; 14:2052. [PMID: 35565189 PMCID: PMC9105073 DOI: 10.3390/cancers14092052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however, they have limitations. With the development of novel techniques, such as personalized medicine and genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and microfluidic devices.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
140
|
Li XQ, Zhang R, Lu H, Yue XM, Huang YF. Extracellular Vesicle-Packaged CDH11 and ITGA5 Induce the Premetastatic Niche for Bone Colonization of Breast Cancer Cells. Cancer Res 2022; 82:1560-1574. [PMID: 35149589 DOI: 10.1158/0008-5472.can-21-1331] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/26/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Although most breast cancer metastases in bone cause osteolytic lesions, the osteogenic niche has commonly been described as an initiator of early-stage bone colonization of disseminated cancer cells. Tumor cell-derived extracellular vesicles (EV) have been shown to determine the organotropism of cancer cells by transferring their cargo, such as nucleic acids and proteins, to resident cells at future metastatic sites and preparing a favorable premetastatic niche. Runt-related transcription factor 2 (RUNX2) and its regulated genes have been shown to facilitate the acquisition of osteomimetic features and to enhance the bone metastatic potential of breast cancer cells. In this study, we present in vivo and in vitro evidence to clarify the role of EVs released by breast cancer cells with high RUNX2 expression in the education of osteoblasts to form an osteogenic premetastatic niche. Furthermore, different extracellular vesicular proteins were identified that mediate events subsequent to the specific recognition of tumor-derived EVs by osteoblasts via cadherin 11 (CDH11) and the induction of the osteogenic premetastatic niche by integrin α5 (ITGA5). CDH11high/ITGA5high EVs were demonstrated to be responsible for the formation of a premetastatic niche that facilitates RUNX2 high-expressing breast cancer cell colonization in bone, revealing a potential EV-based premetastatic niche blockage strategy. SIGNIFICANCE This study provides mechanistic insights into the generation of an osteogenic premetastatic niche by breast cancer-derived EVs and identifies potential EV-derived diagnostic biomarkers and targets for breast cancer bone metastasis.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Hong Lu
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiao-Min Yue
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Yu-Fan Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
141
|
Message in a Bottle: Endothelial Cell Regulation by Extracellular Vesicles. Cancers (Basel) 2022; 14:cancers14081969. [PMID: 35454874 PMCID: PMC9026533 DOI: 10.3390/cancers14081969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Elucidating the role of extracellular vesicles (EVs) in the communication mechanisms between cancer and endothelial cells (ECs) within the tumor microenvironment is an exciting challenge. At the same time, due to their ability to convey bioactive molecules, EVs may be potentially relevant from a therapeutic perspective for diverse vascular pathologies. Abstract Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.
Collapse
|
142
|
Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer. Cancers (Basel) 2022; 14:cancers14081865. [PMID: 35454774 PMCID: PMC9032679 DOI: 10.3390/cancers14081865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Mitochondria are important organelles involved in several key cellular processes including energy production and cell death regulation. For this reason, it is unsurprising that mitochondrial function and structure are altered in several pathological states including cancer. Cancer cells present variate strategies to generate sufficient energy to sustain their high proliferation rates. These adaptative strategies can be mediated by extracellular signals such as extracellular vesicles. These vesicles can alter recipient cellular behavior by delivering their molecular cargo. This review explores the different EV-mediated mitochondrial reprogramming mechanisms supporting cancer survival and progression. Abstract Altered metabolism is a defining hallmark of cancer. Metabolic adaptations are often linked to a reprogramming of the mitochondria due to the importance of these organelles in energy production and biosynthesis. Cancer cells present heterogeneous metabolic phenotypes that can be modulated by signals originating from the tumor microenvironment. Extracellular vesicles (EVs) are recognized as key players in intercellular communications and mediate many of the hallmarks of cancer via the delivery of their diverse biological cargo molecules. Firstly, this review introduces the most characteristic changes that the EV-biogenesis machinery and mitochondria undergo in the context of cancer. Then, it focuses on the EV-driven processes which alter mitochondrial structure, composition, and function to provide a survival advantage to cancer cells in the context of the hallmarks of cancers, such as altered metabolic strategies, migration and invasiveness, immune surveillance escape, and evasion of apoptosis. Finally, it explores the as yet untapped potential of targeting mitochondria using EVs as delivery vectors as a promising cancer therapeutic strategy.
Collapse
|
143
|
Hou CX, Sun NN, Han W, Meng Y, Wang CX, Zhu QH, Tang YT, Ye JH. Exosomal microRNA-23b-3p promotes tumor angiogenesis and metastasis by targeting PTEN in Salivary adenoid cystic carcinoma. Carcinogenesis 2022; 43:682-692. [PMID: 35380635 DOI: 10.1093/carcin/bgac033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA(miR)-23b-3p is known to target various genes that are involved in cancer-related pathways. Exosomes are emerging intercellular communication agents. Exosomes secreted by cancer cells can deliver active molecules to the surrounding stromal cells, thereby influencing the recipient cells and promoting the development of cancers. However, the role of exosomal miR-23b-3p in salivary adenoid cystic carcinoma (SACC) is not yet clear. In this study, we set out to investigate the potential role of cancer-derived exosomal miR-23b-3p-related PTEN in the alteration of angiogenesis and vascular permeability in SACC. We investigated the effect of exosomal miR-23b-3p on the progression of SACC. In vitro experiments indicated that exosomal miR-23b-3p led to an up-regulation of vascular permeability, and reduced expression of tight junction proteins. In addition, exosomal miR-23b-3p also enhanced angiogenesis and migration. Next, the angiogenic effect of exosomal miR-23b-3p was validated in vivo, as it led to an increase in the tumor microvasculature. Furthermore, the growth rate of SACC was faster after injection of exosomes loaded with cholesterol- modified miR-23b-3p in mice. In conclusion, these results revealed that SACC cells-derived exosomes play an important role in promoting angiogenesis and local vascular microleakage of SACC by transporting miR-23b-3p, which suggests that miR-23b-3p in the exosomes may be a potential biomarker for distant metastasis of SACC. This suggests the potential of a novel therapeutic target by delivering anti-miR-23b-3p that focuses on exosomes.
Collapse
Affiliation(s)
- Chen-Xing Hou
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Nan-Nan Sun
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Han
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Meng
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xing Wang
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Hai Zhu
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Ye
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
144
|
Richard V, Davey MG, Annuk H, Miller N, Kerin MJ. The double agents in liquid biopsy: promoter and informant biomarkers of early metastases in breast cancer. Mol Cancer 2022; 21:95. [PMID: 35379239 PMCID: PMC8978379 DOI: 10.1186/s12943-022-01506-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer continues to be a major global problem with significant mortality associated with advanced stage and metastases at clinical presentation. However, several findings suggest that metastasis is indeed an early occurrence. The standard diagnostic techniques such as invasive core needle biopsy, serological protein marker assays, and non-invasive radiological imaging do not provide information about the presence and molecular profile of small fractions of early metastatic tumor cells which are prematurely dispersed in the circulatory system. These circulating tumor cells (CTCs) diverge from the primary tumors as clusters with a defined secretome comprised of circulating cell-free nucleic acids and small microRNAs (miRNAs). These circulatory biomarkers provide a blueprint of the mutational profile of the tumor burden and tumor associated alterations in the molecular signaling pathways involved in oncogenesis. Amidst the multitude of circulatory biomarkers, miRNAs serve as relatively stable and precise biomarkers in the blood for the early detection of CTCs, and promote step-wise disease progression by executing paracrine signaling that transforms the microenvironment to guide the metastatic CTCs to anchor at a conducive new organ. Random sampling of easily accessible patient blood or its serum/plasma derivatives and other bodily fluids collectively known as liquid biopsy (LB), forms an efficient alternative to tissue biopsies. In this review, we discuss in detail the divergence of early metastases as CTCs and the involvement of miRNAs as detectable blood-based diagnostic biomarkers that warrant a timely screening of cancer, serial monitoring of therapeutic response, and the dynamic molecular adaptations induced by miRNAs on CTCs in guiding primary and second-line systemic therapy.
Collapse
|
145
|
Direct Current Electric Field Coordinates the Migration of BV2 Microglia via ERK/GSK3β/Cofilin Signaling Pathway. Mol Neurobiol 2022; 59:3665-3677. [PMID: 35362812 DOI: 10.1007/s12035-022-02815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Direct current electric field (DCEF) steers the migration of various neural cells. Microglia, as macrophage of the central nervous system (CNS), however, have not been reported to engage in electrotaxis. Here, we applied electric fields to an in vitro environment and found directional migration of BV2 microglia toward the cathode, in a DCEF strength-dependent manner. Transcriptome analysis then revealed significant changes in the mitogen-activated protein kinase cascades. In terms of mechanism, DCEF coordinated microglia movement by regulating the ERK/GSK3β/cofilin signaling pathway, and PMA (protein kinase C activator) reversed cell migration through intervention of the ERK/GSK3β/cofilin axis. Meanwhile, LiCl (GSK3β inhibitor) showed similar functions to PMA in the electrotaxis of microglia. Furthermore, pharmacological and genetic suppression of GSK3β or cofilin also modulated microglia directional migration under DCEF. Collectively, we discovered the electrotaxis of BV2 microglia and the essential role of the ERK/GSK3β/cofilin axis in regulating cell migration via modulation of F-actin redistribution. This research highlights new insight toward mediating BV2 directional migration and provides potential direction for novel therapeutic strategies of CNS diseases.
Collapse
|
146
|
miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid tumor progression. Cell Mol Life Sci 2022; 79:216. [PMID: 35348905 PMCID: PMC8964646 DOI: 10.1007/s00018-022-04228-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation.
Collapse
|
147
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
148
|
Huang Z, Keramat S, Izadirad M, Chen ZS, Soukhtanloo M. The Potential Role of Exosomes in the Treatment of Brain Tumors, Recent Updates and Advances. Front Oncol 2022; 12:869929. [PMID: 35371984 PMCID: PMC8968044 DOI: 10.3389/fonc.2022.869929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Exosomes are small endosomal derived membrane extracellular vesicles that contain cell-specific cargos such as lipid, protein, DNA, RNA, miRNA, long non-coding RNA, and some other cell components that are released into surrounding body fluids upon the fusion of multivesicular bodies (MVB) and the plasma membrane. Exosomes are a one-of-a-kind cell-to-cell communication mechanism that might pave the way for target therapy. The use of exosomes as a therapeutic potential in a variety of cancers has been and is still being investigated. One of the most important of these has been the use of exosomes in brain tumors therapy. Exosome contents play a crucial role in brain tumor progression by providing a favorable niche for tumor cell proliferation. Also, exosomes that are secreted from tumor cells, lead to the protection of tumor cells and their proliferation in the tumor environment by reducing the inflammatory response and suppression of the immune system. Although some treatment protocols such as surgery, chemotherapy, and radiotherapy are common in brain tumors, they do not result in complete remission in the treatment of some malignant and metastatic brain tumors. Identifying, targeting, and blocking exosomes involved in the progression of brain tumors could be a promising way to reduce brain tumor progression. On the other way, brain tumor therapy with effective therapeutic components such as siRNAs, mRNAs, proteins, could be developed. Finally, our research suggested that exosomes of nanoscale sizes might be a useful tool for crossing the blood-brain barrier and delivering effective content. However, further research is needed to fully comprehend the potential involvement of the exosome in brain tumor therapy protocols.
Collapse
Affiliation(s)
- Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shayan Keramat
- Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St John’s University, New York, NY, United States
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
149
|
Zhu Y, Tao Z, Chen Y, Lin S, Zhu M, Ji W, Liu X, Li T, Hu X. Exosomal MMP-1 transfers metastasis potential in triple-negative breast cancer through PAR1-mediated EMT. Breast Cancer Res Treat 2022; 193:65-81. [PMID: 35254603 DOI: 10.1007/s10549-022-06514-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high risk of distant metastasis, in which the intercellular communication between tumor cells also plays a role. Exosomes can be released by tumor cells and promote distant metastasis through intercellular communication or changes in tumor microenvironment, it is an optimized transportation facility for biologically active payloads. This was a hypothesis-generating research on role of exosomal payload in TNBC distant metastasis. METHODS Exosomes isolated from supernatant of MDA-MB-231 and MDA-MB-231-HM (a highly pulmonary metastatic variant of parental MDA-MB-231 cells) were characterized. MMP-1 level was detected using mass spectrometry and western blot. Transwell assay, wound healing and CCK-8 assay were employed to explore the effect of exosomal MMP-1 on the metastatic capability of TNBC cells in vitro. Human breast cancer lung metastasis model in nude mice was established to observe the effect of exosomal MMP-1 in vivo. Tissue microarray and blood samples of TNBC patients were applied to analyze the relevance between MMP-1 with metastasis. RESULTS MDA-MB-231-HM cells secrete exosomes enriched MMP-1, which can be taken up and enhance invasion and migration activities of TNBC cells, including MDA-MB-231, MDA-MB-468 and BT549. After ingesting exosomes enriched with MMP-1, cells secret more MMP-1, which may interact with membrane G protein receptor protease activated receptor 1 (PAR1), thereby initiating epithelial-mesenchymal transition (EMT) to enhance capability of migration and invasion. The lung colonization model shows that the expressions of MMP-1 and PAR1 in the metastases of the 231-HM-exo treated mice were both upregulated. Clinically, the enrichment of MMP-1 can be detected in exosomes extracted from serum of patients with metastasis at higher concentration than that in pre-operative patients. Moreover, in patients with multiple distant metastases, the level of MMP-1 in exosomes is also higher than that in patients with single lesion. CONCLUSION MMP-1 from TNBC cells of high metastasis potential can promote the distant metastasis of transform those with low metastasis potential through PAR1-mediated EMT and is likely to be a potential molecular marker.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pharmacy, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Shuchen Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyu Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Ji
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaojia Liu
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ting Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
150
|
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov 2022; 21:379-399. [PMID: 35236964 DOI: 10.1038/s41573-022-00410-w] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
The field of extracellular vesicle (EV) research has developed rapidly over the last decade from the study of fundamental biology to a subject of significant clinical relevance. The potential of harnessing EVs in the diagnosis and treatment of diseases - including cancer and neurological and cardiovascular disorders - is now being recognized. Accordingly, the applications of EVs as therapeutic targets, biomarkers, novel drug delivery agents and standalone therapeutics are being actively explored. This Review provides a brief overview of the characteristics and physiological functions of the various classes of EV, focusing on their association with disease and emerging strategies for their therapeutic exploitation.
Collapse
Affiliation(s)
- Lesley Cheng
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew F Hill
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia. .,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|