101
|
Abstract
Atrial fibrillation is a common heart rhythm disorder that leads to an increased risk for stroke and heart failure. Atrial fibrillation is a complex disease with both environmental and genetic risk factors that contribute to the arrhythmia. Over the last decade, rapid progress has been made in identifying the genetic basis for this common condition. In this review, we provide an overview of the primary types of genetic analyses performed for atrial fibrillation, including linkage studies, genome-wide association studies, and studies of rare coding variation. With these results in mind, we aim to highlighting the existing knowledge gaps and future directions for atrial fibrillation genetics research.
Collapse
Affiliation(s)
- Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, MA, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen Groningen, the Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen Groningen, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
102
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
103
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, Lim HS, Lip GYH, Nava-Townsend S, Pak HN, Diez GR, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Pava Molano LF, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Heart Rhythm 2020; 17:e269-e316. [PMID: 32553607 DOI: 10.1016/j.hrthm.2020.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Alberto Alfie
- Division of Electrophysiology, Instituto Cardiovascular Adventista, Clinica Bazterrica, Buenos Aires, Argentina
| | - Serge Boveda
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Nikolaos Dagres
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Dario Di Toro
- Department of Cardiology, Division of Electrophysiology, Argerich Hospital and CEMIC, Buenos Aires, Argentina
| | - Lee L Eckhardt
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kenneth Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Carina Hardy
- Arrhythmia Unit, Heart Institute, University of São Paulo Medical School, Instituto do Coração -InCor- Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center, Metrohealth Campus of Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kengo Kusano
- Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Valentina Kutyifa
- University of Rochester, Medical Center, Rochester, New York, USA; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Han S Lim
- Department of Cardiology, Austin Health, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology, National Institute of Cardiology "Ignacio Chavez," Mexico City, Mexico
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic, Arrhytmias Unity, CMN 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | - William Sauer
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anil Saxena
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diego Vanegas
- Hospital Militar Central, Fundarritmia, Bogotá, Colombia
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Arthur Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam, the Netherlands
| | - T Jared Bunch
- Department of Medicine, Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah, USA
| | | | - Alfred E Buxton
- Department of Medicine, The Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lars Eckardt
- Department for Cardiology, Electrophysiology, University Hospital Münster, Münster, Germany
| | - Heidi Estner
- Department of Medicine, I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Anne M Gillis
- University of Calgary - Libin Cardiovascular Institute of Alberta, Calgary, Canada
| | - Rodrigo Isa
- Clínica RedSalud Vitacura and Hospital el Carmen de Maipú, Santiago, Chile
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Joshua D Moss
- Department of Cardiac Electrophysiology, University of California San Francisco, San Francisco, California, USA
| | - Gi-Byung Nam
- Division of Cardiology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Mauricio Pimentel
- Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mukund Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Wendy S Tzou
- Department of Cardiology/Cardiac Electrophysiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum, Clinic for Electrophysiology, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Alejandro Vidal
- Division of Cardiology, McGill University Health Center, Montreal, Canada
| | - Thomas Deneke
- Clinic for Cardiology II (Interventional Electrophysiology), Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
104
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, S Lim H, Lip GYH, Nava-Townsend S, Pak HN, Rodríguez Diez G, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Molano LFP, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. J Arrhythm 2020; 36:553-607. [PMID: 32782627 PMCID: PMC7411224 DOI: 10.1002/joa3.12338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany
| | - Alberto Alfie
- Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina
| | - Serge Boveda
- Department of Cardiology Clinique Pasteur Toulouse France
| | - Nikolaos Dagres
- Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany
| | - Dario Di Toro
- Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina
| | - Lee L Eckhardt
- Department of Medicine University of Wisconsin-Madison Madison WI USA
| | - Kenneth Ellenbogen
- Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA
| | - Carina Hardy
- Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil
| | - Takanori Ikeda
- Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA
| | - Andrew Krahn
- Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada
| | - Kengo Kusano
- Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Valentina Kutyifa
- University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary
| | - Han S Lim
- Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico
| | - Hui-Nam Pak
- Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico
| | - William Sauer
- Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA
| | - Anil Saxena
- Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands
| | | | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA
| | - Arthur Wilde
- Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - T Jared Bunch
- Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Alfred E Buxton
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gonzalo Calvimontes
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Tze-Fan Chao
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Lars Eckardt
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Heidi Estner
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Anne M Gillis
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Rodrigo Isa
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Josef Kautzner
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Philippe Maury
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Joshua D Moss
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gi-Byung Nam
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Brian Olshansky
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Luis Fernando Pava Molano
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Mauricio Pimentel
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Mukund Prabhu
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Wendy S Tzou
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Philipp Sommer
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Janice Swampillai
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Alejandro Vidal
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Thomas Deneke
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gerhard Hindricks
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Christophe Leclercq
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| |
Collapse
|
105
|
Bentzen BH, Bomholtz SH, Simó-Vicens R, Folkersen L, Abildgaard L, Speerschneider T, Muthukumarasamy KM, Edvardsson N, Sørensen US, Grunnet M, Diness JG. Mechanisms of Action of the KCa2-Negative Modulator AP30663, a Novel Compound in Development for Treatment of Atrial Fibrillation in Man. Front Pharmacol 2020; 11:610. [PMID: 32477117 PMCID: PMC7232560 DOI: 10.3389/fphar.2020.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Aims Small conductance Ca2+-activated K+ channels (SK channels, KCa2) are a new target for treatment of atrial fibrillation (AF). AP30663 is a small molecule inhibitor of KCa2 channels that is currently in clinical development for treatment of AF. The aim of this study is to present the electrophysiological profile and mechanism of action of AP30663 and its efficacy in prolonging atrial refractoriness in rodents, and by bioinformatic analysis investigate if genetic variants in KCNN2 or KCNN3 influence the expression level of these in human heart tissue. Methods and Results Whole-cell and inside-out patch-clamp recordings of heterologously expressed KCa2 channels revealed that AP30663 inhibits KCa2 channels with minor effects on other relevant cardiac ion channels. AP30663 modulates the KCa2.3 channel by right-shifting the Ca2+-activation curve. In isolated guinea pig hearts AP30663 significantly prolonged the atrial effective refractory period (AERP) with minor effects on the QT-interval corrected for heart rate. Similarly, in anaesthetized rats 5 and 10 mg/kg of AP30663 changed the AERP to 130.7±5.4% and 189.9±18.6 of baseline values. The expression quantitative trait loci analyses revealed that the genome wide association studies for AF SNP rs13376333 in KCNN3 is associated with increased mRNA expression of KCNN3 in human atrial appendage tissue. Conclusions AP30663 is a novel negative allosteric modulator of KCa2 channels that concentration-dependently prolonged rodent atrial refractoriness with minor effects on the QT-interval. Moreover, AF associated SNPs in KCNN3 influence KCNN3 mRNA expression in human atrial tissue. These properties support continued development of AP30663 for treatment of AF in man.
Collapse
Affiliation(s)
- Bo Hjorth Bentzen
- Acesion Pharma, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofia Hammami Bomholtz
- Acesion Pharma, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafel Simó-Vicens
- Acesion Pharma, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Folkersen
- Institute of Biological Psychiatry, Sankt Hans Hospital, Roskilde, Denmark
| | | | - Tobias Speerschneider
- Acesion Pharma, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kalai Mangai Muthukumarasamy
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nils Edvardsson
- Acesion Pharma, Copenhagen, Denmark.,Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
106
|
van Ouwerkerk AF, Bosada FM, Liu J, Zhang J, van Duijvenboden K, Chaffin M, Tucker NR, Pijnappels D, Ellinor PT, Barnett P, de Vries AAF, Christoffels VM. Identification of Functional Variant Enhancers Associated With Atrial Fibrillation. Circ Res 2020; 127:229-243. [PMID: 32248749 DOI: 10.1161/circresaha.119.316006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE Genome-wide association studies have identified a large number of common variants (single-nucleotide polymorphisms) associated with atrial fibrillation (AF). These variants are located mainly in noncoding regions of the genome and likely include variants that modulate the function of transcriptional regulatory elements (REs) such as enhancers. However, the actual REs modulated by variants and the target genes of such REs remain to be identified. Thus, the biological mechanisms by which genetic variation promotes AF has thus far remained largely unexplored. OBJECTIVE To identify REs in genome-wide association study loci that are influenced by AF-associated variants. METHODS AND RESULTS We screened 2.45 Mbp of human genomic DNA containing 12 strongly AF-associated loci for RE activity using self-transcribing active regulatory region sequencing and a recently generated monoclonal line of conditionally immortalized rat atrial myocytes. We identified 444 potential REs, 55 of which contain AF-associated variants (P<10-8). Subsequently, using an adaptation of the self-transcribing active regulatory region sequencing approach, we identified 24 variant REs with allele-specific regulatory activity. By mining available chromatin conformation data, the possible target genes of these REs were mapped. To define the physiological function and target genes of such REs, we deleted the orthologue of an RE containing noncoding variants in the Hcn4 (potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4) locus of the mouse genome. Mice heterozygous for the RE deletion showed bradycardia, sinus node dysfunction, and selective loss of Hcn4 expression. CONCLUSIONS We have identified REs at multiple genetic loci for AF and found that loss of an RE at the HCN4 locus results in sinus node dysfunction and reduced gene expression. Our approach can be broadly applied to facilitate the identification of human disease-relevant REs and target genes at cardiovascular genome-wide association studies loci.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- From the Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, the Netherlands (A.F.v.O., F.M.B., K.v.D., P.B., V.M.C.)
| | - Fernanda M Bosada
- From the Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, the Netherlands (A.F.v.O., F.M.B., K.v.D., P.B., V.M.C.)
| | - Jia Liu
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands (J.L., J.Z., D.P., A.A.F.d.V.).,Netherlands Heart Institute, Holland Heart House, Utrecht (J.L., J.Z., D.P., A.A.F.d.V.)
| | - Juan Zhang
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands (J.L., J.Z., D.P., A.A.F.d.V.).,Netherlands Heart Institute, Holland Heart House, Utrecht (J.L., J.Z., D.P., A.A.F.d.V.)
| | - Karel van Duijvenboden
- From the Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, the Netherlands (A.F.v.O., F.M.B., K.v.D., P.B., V.M.C.)
| | - Mark Chaffin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (M.C., N.R.T., P.T.E.)
| | - Nathan R Tucker
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (M.C., N.R.T., P.T.E.).,Cardiovascular Research Center, Massachusetts General Hospital, Boston (N.R.T., P.T.E.)
| | - Daniel Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands (J.L., J.Z., D.P., A.A.F.d.V.).,Netherlands Heart Institute, Holland Heart House, Utrecht (J.L., J.Z., D.P., A.A.F.d.V.)
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (M.C., N.R.T., P.T.E.).,Cardiovascular Research Center, Massachusetts General Hospital, Boston (N.R.T., P.T.E.)
| | - Phil Barnett
- From the Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, the Netherlands (A.F.v.O., F.M.B., K.v.D., P.B., V.M.C.)
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands (J.L., J.Z., D.P., A.A.F.d.V.).,Netherlands Heart Institute, Holland Heart House, Utrecht (J.L., J.Z., D.P., A.A.F.d.V.)
| | - Vincent M Christoffels
- From the Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, the Netherlands (A.F.v.O., F.M.B., K.v.D., P.B., V.M.C.)
| |
Collapse
|
107
|
Herraiz-Martínez A, Llach A, Tarifa C, Gandía J, Jiménez-Sabado V, Lozano-Velasco E, Serra SA, Vallmitjana A, Vázquez Ruiz de Castroviejo E, Benítez R, Aranega A, Muñoz-Guijosa C, Franco D, Cinca J, Hove-Madsen L. The 4q25 variant rs13143308T links risk of atrial fibrillation to defective calcium homoeostasis. Cardiovasc Res 2020; 115:578-589. [PMID: 30219899 PMCID: PMC6383060 DOI: 10.1093/cvr/cvy215] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/15/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
AIMS Single nucleotide polymorphisms on chromosome 4q25 have been associated with risk of atrial fibrillation (AF) but the exiguous knowledge of the mechanistic links between these risk variants and underlying electrophysiological alterations hampers their clinical utility. Here, we tested the hypothesis that 4q25 risk variants cause alterations in the intracellular calcium homoeostasis that predispose to spontaneous electrical activity. METHODS AND RESULTS Western blotting, confocal calcium imaging, and patch-clamp techniques were used to identify mechanisms linking the 4q25 risk variants rs2200733T and rs13143308T to defects in the calcium homoeostasis in human atrial myocytes. Our findings revealed that the rs13143308T variant was more frequent in patients with AF and that myocytes from carriers of this variant had a significantly higher density of calcium sparks (14.1 ± 4.5 vs. 3.1 ± 1.3 events/min, P = 0.02), frequency of transient inward currents (ITI) (1.33 ± 0.24 vs. 0.26 ± 0.09 events/min, P < 0.001) and incidence of spontaneous membrane depolarizations (1.22 ± 0.26 vs. 0.56 ± 0.17 events/min, P = 0.001) than myocytes from patients with the normal rs13143308G variant. These alterations were linked to higher sarcoplasmic reticulum calcium loading (10.2 ± 1.4 vs. 7.3 ± 0.5 amol/pF, P = 0.01), SERCA2 expression (1.37 ± 0.13 fold, P = 0.03), and RyR2 phosphorylation at ser2808 (0.67 ± 0.08 vs. 0.47 ± 0.03, P = 0.01) but not at ser2814 (0.28 ± 0.14 vs. 0.31 ± 0.14, P = 0.61) in patients carrying the rs13143308T risk variant. Furthermore, the presence of a risk variant or AF independently increased the ITI frequency and the increase in the ITI frequency observed in carriers of the risk variants was exacerbated in those with AF. By contrast, the presence of a risk variant did not affect the amplitude or properties of the L-type calcium current in patients with or without AF. CONCLUSIONS Here, we identify the 4q25 variant rs13143308T as a genetic risk marker for AF, specifically associated with excessive calcium release and spontaneous electrical activity linked to increased SERCA2 expression and RyR2 phosphorylation.
Collapse
Affiliation(s)
- Adela Herraiz-Martínez
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain.,IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Anna Llach
- IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carmen Tarifa
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain.,IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jorge Gandía
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain
| | | | | | - Selma A Serra
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain.,IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Raúl Benítez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaén, Spain
| | | | - Diego Franco
- Department of Experimental Biology, University of Jaén, Spain
| | - Juan Cinca
- IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERCV, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona CSIC-IIBB Antiguo Hospital de la Santa Creu i Sant Pau, Pabellon 11, St Antoni Ma Claret 167, Barcelona, Spain.,IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERCV, Spain
| |
Collapse
|
108
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. PITX2 upregulation increases the risk of chronic atrial fibrillation in a dose-dependent manner by modulating IKs and ICaL -insights from human atrial modelling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:191. [PMID: 32309338 PMCID: PMC7154416 DOI: 10.21037/atm.2020.01.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Functional analysis has shown that the paired-like homeodomain transcription factor 2 (PITX2) overexpression associated with atrial fibrillation (AF) leads to the slow delayed rectifier K+ current (IKs) increase and the L-type Ca2+ current (ICaL) reduction observed in isolated right atrial myocytes from chronic AF (CAF) patients. Through multiscale computational models, this study aimed to investigate the functional impact of the PITX2 overexpression on atrial electrical activity. Methods The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial action potentials (APs) was updated to incorporate experimental data on alterations in IKs and ICaL due to the PITX2 overexpression. These cell models for sinus rhythm (SR) and CAF were then incorporated into homogeneous multicellular one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) tissue models. The proarrhythmic effects of the PITX2 overexpression were quantified with ion current profiles, AP morphology, AP duration (APD) restitution, conduction velocity restitution (CVR), wavelength (WL), vulnerable window (VW) for unidirectional conduction block, and minimal substrate size required to induce re-entry. Dynamic behaviors of spiral waves were characterized by measuring lifespan (LS), tip patterns and dominant frequencies. Results The IKs increase and the ICaL decrease arising from the PITX2 overexpression abbreviated APD and flattened APD restitution (APDR) curves in single cells. It reduced WL and increased CV at high excitation rates at the 1D tissue level. Although it had no effects on VW for initiating spiral waves, it decreased the minimal substrate size necessary to sustain re-entry. It also stabilized and accelerated spiral waves in 2D and 3D tissue models. Conclusions Electrical remodeling (IKs and ICaL) due to the PITX2 overexpression increases susceptibility to AF due to increased tissue vulnerability, abbreviated APD, shortened WL and altered CV, which, in combination, facilitate initiation and maintenance of spiral waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
109
|
Diness JG, Kirchhoff JE, Speerschneider T, Abildgaard L, Edvardsson N, Sørensen US, Grunnet M, Bentzen BH. The K Ca2 Channel Inhibitor AP30663 Selectively Increases Atrial Refractoriness, Converts Vernakalant-Resistant Atrial Fibrillation and Prevents Its Reinduction in Conscious Pigs. Front Pharmacol 2020; 11:159. [PMID: 32180722 PMCID: PMC7059611 DOI: 10.3389/fphar.2020.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS To describe the effects of the KCa2 channel inhibitor AP30663 in pigs regarding tolerability, cardiac electrophysiology, pharmacokinetics, atrial functional selectivity, effectiveness in cardioversion of tachy-pacing induced vernakalant-resistant atrial fibrillation (AF), and prevention of reinduction of AF. METHODS AND RESULTS Six healthy pigs with implanted pacemakers and equipped with a Holter monitor were used to compare the effects of increasing doses (0, 5, 10, 15, 20, and 25 mg/kg) of AP30663 on the right atrial effective refractory period (AERP) and on various ECG parameters, including the QT interval. Ten pigs with implanted neurostimulators were long-term atrially tachypaced (A-TP) until sustained vernakalant-resistant AF was present. 20 mg/kg AP30663 was tested to discover if it could successfully convert vernakalant-resistant AF to sinus rhythm (SR) and protect against reinduction of AF. Seven anesthetized pigs were used for pharmacokinetic experiments. Two pigs received an infusion of 20 mg/kg AP30663 over 60 min while five pigs received 5 mg/kg AP30663 over 30 min. Blood samples were collected before, during, and after infusion on AP30663. AP30663 was well-tolerated and prominently increased the AERP in pigs with little effect on ventricular repolarization. Furthermore, it converted A-TP induced AF that had become unresponsive to vernakalant, and it prevented reinduction of AF in pigs. Both a >30 ms increase of the AERP and conversion of AF occurred in different pigs at a free plasma concentration level of around 1.0-1.4 µM of AP30663, which was achieved at a dose level of 5 mg/kg. CONCLUSION AP30663 has shown properties in animals that would be of clinical interest in man.
Collapse
Affiliation(s)
| | | | - Tobias Speerschneider
- Department of In Vivo Pharmacology, Acesion Pharma, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Abildgaard
- Department of In Vivo Pharmacology, Acesion Pharma, Copenhagen, Denmark
| | - Nils Edvardsson
- Department of In Vivo Pharmacology, Acesion Pharma, Copenhagen, Denmark
- Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulrik S. Sørensen
- Department of In Vivo Pharmacology, Acesion Pharma, Copenhagen, Denmark
| | - Morten Grunnet
- Department of In Vivo Pharmacology, Acesion Pharma, Copenhagen, Denmark
| | - Bo Hjorth Bentzen
- Department of In Vivo Pharmacology, Acesion Pharma, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
110
|
Feitosa MF, Lunetta KL, Wang L, Wojczynski MK, Kammerer CM, Perls T, Schupf N, Christensen K, Murabito JM, Province MA. Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. Atherosclerosis 2020; 297:102-110. [PMID: 32109663 DOI: 10.1016/j.atherosclerosis.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUNDS AND AIMS Several genes are known to contribute to the levels and metabolism of HDL-C, however, their protective effects in cardiovascular disease (CVD), healthy aging, and longevity are complex and poorly understood. It is also unclear if these genes predict longitudinal HDL-C change. We aimed to identify loci influencing HDL-C change. METHODS We performed a genome-wide association study (GWAS) with harmonized HDL-C and imputed genotype in three family-based studies recruited for exceptional survival (Long Life Family Study), from community-based (Framingham Heart Study) and enriched for CVD (Family Heart Study). In 7738 individuals with at least 2 visits, we employed a growth curve model to estimate the random linear trajectory parameter of age-sex-adjusted HDL-C for each person. GWAS was performed using a linear regression model on HDL-C change accounting for kinship correlations, population structure, and differences among studies. RESULTS We identified a novel association for HDL-C with GRID1 (p = 5.43 × 10-10), which encodes a glutamate receptor channel subunit involved in synaptic plasticity. Seven suggestive novel loci (p < 1.0 × 10-6; MBOAT2, LINC01876-NR4A2, NTNG2, CYSLTR2, SYNE2, CTXND1-LINC01314, and CYYR1) and a known lipid gene (ABCA10) showed associations with HDL-C change. Two additional sex-specific suggestive loci were identified in women (DCLK2 and KCNJ2). Several of these genetic variants are associated with lipid-related conditions influencing cardiovascular and metabolic health, have predictive regulatory function, and are involved in lipid-related pathways. CONCLUSIONS Modeling longitudinal HDL-C in prospective studies, with differences in healthy aging, longevity and CVD risk, contributed to gene discovery and provided insights into mechanisms of HDL-C regulation.
Collapse
Affiliation(s)
- Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Candace M Kammerer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | - Thomas Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, MA, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, Southern Denmark University, Odense, Denmark
| | - Joanne M Murabito
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
111
|
Shoemaker MB, Husser D, Roselli C, Al Jazairi M, Chrispin J, Kühne M, Neumann B, Knight S, Sun H, Mohanty S, Shaffer C, Thériault S, Rinke LL, Siland JE, Crawford DM, Ueberham L, Zardkoohi O, Büttner P, Geelhoed B, Blum S, Aeschbacher S, Smith JD, Van Wagoner DR, Freudling R, Müller-Nurasyid M, Montgomery J, Yoneda Z, Wells Q, Issa T, Weeke P, Jacobs V, Van Gelder IC, Hindricks G, Barnard J, Calkins H, Darbar D, Michaud G, Kääb S, Ellinor P, Natale A, Chung M, Nazarian S, Cutler MJ, Sinner MF, Conen D, Rienstra M, Bollmann A, Roden DM, Lubitz S. Genetic Susceptibility for Atrial Fibrillation in Patients Undergoing Atrial Fibrillation Ablation. Circ Arrhythm Electrophysiol 2020; 13:e007676. [PMID: 32078373 DOI: 10.1161/circep.119.007676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ablation is a widely used therapy for atrial fibrillation (AF); however, arrhythmia recurrence and repeat procedures are common. Studies examining surrogate markers of genetic susceptibility to AF, such as family history and individual AF susceptibility alleles, suggest these may be associated with recurrence outcomes. Accordingly, the aim of this study was to test the association between AF genetic susceptibility and recurrence after ablation using a comprehensive polygenic risk score for AF. METHODS Ten centers from the AF Genetics Consortium identified patients who had undergone de novo AF ablation. AF genetic susceptibility was measured using a previously described polygenic risk score (N=929 single-nucleotide polymorphisms) and tested for an association with clinical characteristics and time-to-recurrence with a 3 month blanking period. Recurrence was defined as >30 seconds of AF, atrial flutter, or atrial tachycardia. Multivariable analysis adjusted for age, sex, height, body mass index, persistent AF, hypertension, coronary disease, left atrial size, left ventricular ejection fraction, and year of ablation. RESULTS Four thousand two hundred seventy-six patients were eligible for analysis of baseline characteristics and 3259 for recurrence outcomes. The overall arrhythmia recurrence rate between 3 and 12 months was 44% (1443/3259). Patients with higher AF genetic susceptibility were younger (P<0.001) and had fewer clinical risk factors for AF (P=0.001). Persistent AF (hazard ratio [HR], 1.39 [95% CI, 1.22-1.58]; P<0.001), left atrial size (per cm: HR, 1.32 [95% CI, 1.19-1.46]; P<0.001), and left ventricular ejection fraction (per 10%: HR, 0.88 [95% CI, 0.80-0.97]; P=0.008) were associated with increased risk of recurrence. In univariate analysis, higher AF genetic susceptibility trended towards a higher risk of recurrence (HR, 1.08 [95% CI, 0.99-1.18]; P=0.07), which became less significant in multivariable analysis (HR, 1.06 [95% CI, 0.98-1.15]; P=0.13). CONCLUSIONS Higher AF genetic susceptibility was associated with younger age and fewer clinical risk factors but not recurrence. Arrhythmia recurrence after AF ablation may represent a genetically different phenotype compared to AF susceptibility.
Collapse
Affiliation(s)
- M Benjamin Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Daniela Husser
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - Carolina Roselli
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Program in Medical and Population Genetics, Cambridge, MA (C.R., P.E., S.L.)
| | - Meelad Al Jazairi
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Jonathan Chrispin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (J.C., H.C.)
| | - Michael Kühne
- University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.)
| | - Benjamin Neumann
- Department of Medicine, University Hospital Munich, Ludwig Maximilians University of Munich, Germany (B.N., R.F., S. Kääb, M.F.S.)
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Murray (S. Knight, V.J.).,Department of Medicine, University of Utah, Salt Lake City (S. Knight)
| | - Han Sun
- Department of Quantitative Health Sciences (H.S., J.B.), Lerner Research Institute, Cleveland Clinic, OH
| | - Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, Austin, TX (S.M., A.N.).,Department of Internal Medicine, Dell Medical School, Austin, TX (S.M., A.N.)
| | - Christian Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada (S.T., D.C.).,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada (S.T.)
| | - Lauren Lee Rinke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Joylene E Siland
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Diane M Crawford
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Laura Ueberham
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - Omeed Zardkoohi
- Departments of Cardiovascular Medicine and Molecular Cardiology, Heart and Vascular Institute (O.Z., M.C.), Lerner Research Institute, Cleveland Clinic, OH
| | - Petra Büttner
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - Bastiaan Geelhoed
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Steffen Blum
- University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.)
| | - Stefanie Aeschbacher
- University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.)
| | - Jonathan D Smith
- Department of Cellular and Molecular Medicine (J.D.S.), Lerner Research Institute, Cleveland Clinic, OH
| | - David R Van Wagoner
- Department of Molecular Cardiology (D.R.V.W.), Lerner Research Institute, Cleveland Clinic, OH
| | - Rebecca Freudling
- Department of Medicine, University Hospital Munich, Ludwig Maximilians University of Munich, Germany (B.N., R.F., S. Kääb, M.F.S.).,Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg (R.F., M.M.-N.)
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg (R.F., M.M.-N.).,German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Germany (M.M.-N., S. Kääb, M.F.S.)
| | - Jay Montgomery
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Zachary Yoneda
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Quinn Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Tariq Issa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Peter Weeke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Victoria Jacobs
- Intermountain Heart Institute, Intermountain Medical Center, Murray (S. Knight, V.J.)
| | - Isabelle C Van Gelder
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Gerhard Hindricks
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - John Barnard
- Department of Quantitative Health Sciences (H.S., J.B.), Lerner Research Institute, Cleveland Clinic, OH
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (J.C., H.C.)
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Health, Chicago (D.D.)
| | - Greg Michaud
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Stefan Kääb
- Department of Medicine, University Hospital Munich, Ludwig Maximilians University of Munich, Germany (B.N., R.F., S. Kääb, M.F.S.).,German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Germany (M.M.-N., S. Kääb, M.F.S.)
| | - Patrick Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Program in Medical and Population Genetics, Cambridge, MA (C.R., P.E., S.L.).,Massachusetts General Hospital, Cardiac Arrhythmia Service, Boston (P.E., S.L.)
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, Austin, TX (S.M., A.N.).,Department of Internal Medicine, Dell Medical School, Austin, TX (S.M., A.N.).,Scripps Clinic, Interventional Electrophysiology, San Diego, CA (A.N.).,Division of Cardiology, Stanford University, Palo Alto, CA (A.N.).,Case Western University, Cleveland, OH (A.N.)
| | - Mina Chung
- Departments of Cardiovascular Medicine and Molecular Cardiology, Heart and Vascular Institute (O.Z., M.C.), Lerner Research Institute, Cleveland Clinic, OH
| | - Saman Nazarian
- Division of Cardiology, University of Pennsylvania Perelman School of Medicine, Philadelphia (S.N.)
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT (M.J.C.)
| | - Moritz F Sinner
- Department of Medicine, University Hospital Munich, Ludwig Maximilians University of Munich, Germany (B.N., R.F., S. Kääb, M.F.S.).,German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Germany (M.M.-N., S. Kääb, M.F.S.)
| | - David Conen
- University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Population Health Research Institute, McMaster University, Hamilton, ON, Canada (S.T., D.C.)
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Andreas Bollmann
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - Dan M Roden
- Animal, Dairy, and Veterinary Sciences, Utah State University, Logan (D.M.R.)
| | - Steven Lubitz
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Program in Medical and Population Genetics, Cambridge, MA (C.R., P.E., S.L.).,Massachusetts General Hospital, Cardiac Arrhythmia Service, Boston (P.E., S.L.)
| |
Collapse
|
112
|
Ragab AAY, Sitorus GDS, Brundel BBJJM, de Groot NMS. The Genetic Puzzle of Familial Atrial Fibrillation. Front Cardiovasc Med 2020; 7:14. [PMID: 32118049 PMCID: PMC7033574 DOI: 10.3389/fcvm.2020.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical tachyarrhythmia. In Europe, AF is expected to reach a prevalence of 18 million by 2060. This estimate will increase hospitalization for AF to 4 million and 120 million outpatient visits. Besides being an independent risk factor for mortality, AF is also associated with an increased risk of morbidities. Although there are many well-defined risk factors for developing AF, no identifiable risk factors or cardiac pathology is seen in up to 30% of the cases. The heritability of AF has been investigated in depth since the first report of familial atrial fibrillation (FAF) in 1936. Despite the limited value of animal models, the advances in molecular genetics enabled identification of many common and rare variants related to FAF. The importance of AF heritability originates from the high prevalence of lone AF and the lack of clear understanding of the underlying pathophysiology. A better understanding of FAF will facilitate early identification of people at high risk of developing FAF and subsequent development of more effective management options. In this review, we reviewed FAF epidemiological studies, identified common and rare variants, and discussed their clinical implications and contributions to developing new personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed A Y Ragab
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gustaf D S Sitorus
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bianca B J J M Brundel
- Department of Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
113
|
Fu JL, Yu Q, Li MD, Hu CM, Shi G. Deleterious cardiovascular effect of exosome in digitalis-treated decompensated congestive heart failure. J Biochem Mol Toxicol 2020; 34:e22462. [PMID: 32045083 DOI: 10.1002/jbt.22462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/16/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is a medical condition inability of the heart to pump sufficient blood to meet the metabolic demand of the body to take place. The number of hospitalized patients with cardiovascular diseases is estimated to be more than 1 million each year, of which 80% to 90% of patients ultimately progress to decompensated HF. Digitalis glycosides exert modest inotropic actions when administered to patients with decompensated HF. Although its efficacy in patients with HF and atrial fibrillation is clear, its value in patients with HF and sinus rhythm has often been questioned. A series of recent studies have cast serious doubt on the benefit of digoxin when added to contemporary HF treatment. We are hypothesizing the role and mechanism of exosome and its biological constituents responsible for worsening the disease state and mortality in decompensated HF patients on digitalis.
Collapse
Affiliation(s)
- Jin-Ling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiong Yu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meng-Di Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Chun-Mei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guang Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
114
|
Bai J, Lo A, Gladding PA, Stiles MK, Fedorov VV, Zhao J. In silico investigation of the mechanisms underlying atrial fibrillation due to impaired Pitx2. PLoS Comput Biol 2020; 16:e1007678. [PMID: 32097431 PMCID: PMC7059955 DOI: 10.1371/journal.pcbi.1007678] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/06/2020] [Accepted: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is a major cause of stroke and morbidity. Recent genome-wide association studies have shown that paired-like homeodomain transcription factor 2 (Pitx2) to be strongly associated with AF. However, the mechanisms underlying Pitx2 modulated arrhythmogenesis and variable effectiveness of antiarrhythmic drugs (AADs) in patients in the presence or absence of impaired Pitx2 expression remain unclear. We have developed multi-scale computer models, ranging from a single cell to tissue level, to mimic control and Pitx2-knockout atria by incorporating recent experimental data on Pitx2-induced electrical and structural remodeling in humans, as well as the effects of AADs. The key findings of this study are twofold. We have demonstrated that shortened action potential duration, slow conduction and triggered activity occur due to electrical and structural remodelling under Pitx2 deficiency conditions. Notably, the elevated function of calcium transport ATPase increases sarcoplasmic reticulum Ca2+ concentration, thereby enhancing susceptibility to triggered activity. Furthermore, heterogeneity is further elevated due to Pitx2 deficiency: 1) Electrical heterogeneity between left and right atria increases; and 2) Increased fibrosis and decreased cell-cell coupling due to structural remodelling slow electrical propagation and provide obstacles to attract re-entry, facilitating the initiation of re-entrant circuits. Secondly, our study suggests that flecainide has antiarrhythmic effects on AF due to impaired Pitx2 by preventing spontaneous calcium release and increasing wavelength. Furthermore, our study suggests that Na+ channel effects alone are insufficient to explain the efficacy of flecainide. Our study may provide the mechanisms underlying Pitx2-induced AF and possible explanation behind the AAD effects of flecainide in patients with Pitx2 deficiency.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Patrick A. Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | - Martin K. Stiles
- Waikato Clinical School, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Vadim V. Fedorov
- Department of Physiology & Cell Biology and Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
115
|
Wang B, Lunetta KL, Dupuis J, Lubitz SA, Trinquart L, Yao L, Ellinor PT, Benjamin EJ, Lin H. Integrative Omics Approach to Identifying Genes Associated With Atrial Fibrillation. Circ Res 2020; 126:350-360. [PMID: 31801406 PMCID: PMC7004281 DOI: 10.1161/circresaha.119.315179] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Rationale: GWAS (Genome-Wide Association Studies) have identified hundreds of genetic loci associated with atrial fibrillation (AF). However, these loci explain only a small proportion of AF heritability. Objective: To develop an approach to identify additional AF-related genes by integrating multiple omics data. Methods and Results: Three types of omics data were integrated: (1) summary statistics from the AFGen 2017 GWAS; (2) a whole blood EWAS (Epigenome-Wide Association Study) of AF; and (3) a whole blood TWAS (Transcriptome-Wide Association Study) of AF. The variant-level GWAS results were collapsed into gene-level associations using fast set-based association analysis. The CpG-level EWAS results were also collapsed into gene-level associations by an adapted SNP-set Kernel Association Test approach. Both GWAS and EWAS gene-based associations were then meta-analyzed with TWAS using a fixed-effects model weighted by the sample size of each data set. A tissue-specific network was subsequently constructed using the NetWAS (Network-Wide Association Study). The identified genes were then compared with the AFGen 2018 GWAS that contained more than triple the number of AF cases compared with AFGen 2017 GWAS. We observed that the multiomics approach identified many more relevant AF-related genes than using AFGen 2018 GWAS alone (1931 versus 206 genes). Many of these genes are involved in the development and regulation of heart- and muscle-related biological processes. Moreover, the gene set identified by multiomics approach explained much more AF variance than those identified by GWAS alone (10.4% versus 3.5%). Conclusions: We developed a strategy to integrate multiple omics data to identify AF-related genes. Our integrative approach may be useful to improve the power of traditional GWAS, which might be particularly useful for rare traits and diseases with limited sample size.
Collapse
Affiliation(s)
- Biqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Steven A. Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ludovic Trinquart
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Lixia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emelia J. Benjamin
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Sections of Preventive Medicine and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Honghuang Lin
- Boston University and National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
116
|
Genetic variants associated with atrial fibrillationand long-term recurrence after catheter ablation for atrialfibrillation in Turkish patients. Anatol J Cardiol 2020; 25:129-138. [PMID: 33583820 DOI: 10.14744/anatoljcardiol.2020.44082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Genome-wide association studies have revealed that single nucleotide polymorphisms (SNPs) are associated with atrial fibrillation (AF) and can predict AF recurrence after catheter ablation in different populations. However, there exists no such data for the Turkish population. We aimed to investigate whether 11 SNPs in the PITX2, ZFHX3, EPHX2, CAV1, TBX5, TGF-1, and SCN10A were related to AF and whether these SNPs can predict long-term atrial tachyarrhythmia (ATa) recurrence after pulmonary vein isolation (PVI) for AF in Turkish patients. METHODS A total of 245 consecutive patients with non-valvular AF (44.9% men, mean age: 60.2±13.2 years, 65.3% paroxysmal AF) and 50 age- and sex-matched controls were included in this analysis. The clinical features and genetic variants were compared between the 2 groups. Of the 245 patients, 128 who underwent PVI with second-generation cryoballoon were further examined for long-term recurrence after the procedure. RESULTS Four SNPs in PITX2 were significantly associated with AF (rs10033464_T: OR 3.29, 95%CI: 1.38-7.82, p=0.007; rs6838973_T: OR 3.06, 95% CI 1.36-6.87, p=0.007; rs3853445_C: OR 2.84, 95%CI: 1.27-6.36, p=0.011; rs17570669_T: OR 4.03, 95% CI: 1.71-9.51, p=0.001). Among these patients who underwent PVI, one locus in CAV1 (rs3807989_G: OR 4.50, 95% CI 1.04-19.31, p=0.043) and early recurrence (OR: 8.06, 95% CI: 2.12-30.55, p=0.002) predicted long-term AF recurrence after catheter ablation. CONCLUSION Significant associations exists between 4 SNPs in PITX2 and AF (rs10033464, rs6838973, rs3853445, and rs17570669) in Turkish patients. In addition, 1 genetic variant in CAV1 (rs3807989) and early recurrence can predict long-term ATa recurrence after catheter ablation.
Collapse
|
117
|
Tuteja S, Qu L, Vujkovic M, Dunbar RL, Chen J, DerOhannessian S, Rader DJ. Genetic Variants Associated With Plasma Lipids Are Associated With the Lipid Response to Niacin. J Am Heart Assoc 2019; 7:e03488. [PMID: 30371334 PMCID: PMC6404865 DOI: 10.1161/jaha.117.008461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Niacin is a broad-spectrum lipid-modulating drug, but its mechanism of action is unclear. Genome-wide association studies have identified multiple loci associated with blood lipid levels and lipoprotein (a). It is unknown whether these loci modulate response to niacin. Methods and Results Using data from the AIM - HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL /High Triglycerides and Impact on Global Health Outcomes) trial (n=2054 genotyped participants), we determined whether genetic variations at validated loci were associated with a differential change in plasma lipids and lipoprotein (a) 1 year after randomization to either statin+placebo or statin+niacin in a variant-treatment interaction model. Nominally significant interactions ( P<0.05) were found for genetic variants in MVK , LIPC , PABPC 4, AMPD 3 with change in high-density lipoprotein cholesterol; SPTLC 3 with change in low-density lipoprotein cholesterol; TOM 1 with change in total cholesterol; PDXDC 1 and CYP 26A1 with change in triglycerides; and none for lipoprotein (a). We also investigated whether these loci were associated with cardiovascular events. The risk of coronary disease related death was higher in the minor allele carriers at the LIPC locus in the placebo group (odds ratio 2.08, 95% confidence interval 1.11-3.90, P=0.02) but not observed in the niacin group (odds ratio 0.89, 95% confidence interval 0.48-1.65, P=0.7); P-interaction =0.02. There was a greater risk for acute coronary syndrome (odds ratio 1.85, 95% confidence interval 1.16-2.77, P=0.02) and revascularization events (odds ratio 1.64, 95% confidence interval 1.2-2.22, P=0.002) in major allele carriers at the CYP 26A1 locus in the placebo group not seen in the niacin group. Conclusions Genetic variation at loci previously associated with steady-state lipid levels displays evidence for lipid response to niacin treatment. Clinical Trials Registration URL: https://www.clinicaltrials.gov . Unique identifier: NCT00120289.
Collapse
Affiliation(s)
- Sony Tuteja
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Liming Qu
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Marijana Vujkovic
- 2 Department of Biostatistics and Epidemiology Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Richard L Dunbar
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA.,4 Cardiometabolic and Lipid Clinic Corporal Michael J. Crescenz VA Medical Center Philadelphia PA.,5 ICON plc North Wales PA
| | - Jinbo Chen
- 2 Department of Biostatistics and Epidemiology Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Stephanie DerOhannessian
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Daniel J Rader
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA.,3 Department of Genetics Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| |
Collapse
|
118
|
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia seen in clinical practice. Occasionally, no common risk factors are present in patients with this arrhythmia. This suggests the potential underlying role of genetic factors associated with predisposition to developing AF. Methods and Results We conducted a comprehensive review of the literature through large online libraries, including PubMed. Many different potassium and sodium channel mutations have been discussed in their relation to AF. There have also been non–ion channel mutations that have been linked to AF. Genome‐wide association studies have helped in identifying potential links between single‐nucleotide polymorphisms and AF. Ancestry studies have also highlighted a role of genetics in AF. Blacks with a higher percentage of European ancestry are at higher risk of developing AF. The emerging field of ablatogenomics involves the use of genetic profiles in their relation to recurrence of AF after catheter ablation. Conclusions The evidence for the underlying role of genetics in AF continues to expand. Ultimately, the role of genetics in risk stratification of AF and its recurrence is of significant interest. No established risk scores that are useful in clinical practice are present to date.
Collapse
Affiliation(s)
- Julien Feghaly
- 1 Department of Internal Medicine St Louis University Hospital St Louis MO
| | - Patrick Zakka
- 2 Department of Internal Medicine Emory University Hospital Atlanta GA
| | - Barry London
- 3 Department of Cardiovascular Medicine University of Iowa Carver College of Medicine Iowa City IA
| | - Calum A MacRae
- 4 Department of Cardiovascular Medicine Brigham and Women's Hospital Boston MA
| | - Marwan M Refaat
- 5 Department of Cardiovascular Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
119
|
Early sarcomere and metabolic defects in a zebrafish pitx2c cardiac arrhythmia model. Proc Natl Acad Sci U S A 2019; 116:24115-24121. [PMID: 31704768 DOI: 10.1073/pnas.1913905116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The major AF susceptibility locus 4q25 establishes long-range interactions with the promoter of PITX2, a transcription factor gene with critical functions during cardiac development. While many AF-linked loci have been identified in genome-wide association studies, mechanistic understanding into how genetic variants, including those at the 4q25 locus, increase vulnerability to AF is mostly lacking. Here, we show that loss of pitx2c in zebrafish leads to adult cardiac phenotypes with substantial similarities to pathologies observed in AF patients, including arrhythmia, atrial conduction defects, sarcomere disassembly, and altered cardiac metabolism. These phenotypes are also observed in a subset of pitx2c +/- fish, mimicking the situation in humans. Most notably, the onset of these phenotypes occurs at an early developmental stage. Detailed analyses of pitx2c loss- and gain-of-function embryonic hearts reveal changes in sarcomeric and metabolic gene expression and function that precede the onset of cardiac arrhythmia first observed at larval stages. We further find that antioxidant treatment of pitx2c -/- larvae significantly reduces the incidence and severity of cardiac arrhythmia, suggesting that metabolic dysfunction is an important driver of conduction defects. We propose that these early sarcomere and metabolic defects alter cardiac function and contribute to the electrical instability and structural remodeling observed in adult fish. Overall, these data provide insight into the mechanisms underlying the development and pathophysiology of some cardiac arrhythmias and importantly, increase our understanding of how developmental perturbations can predispose to functional defects in the adult heart.
Collapse
|
120
|
Zhang M, Hill MC, Kadow ZA, Suh JH, Tucker NR, Hall AW, Tran TT, Swinton PS, Leach JP, Margulies KB, Ellinor PT, Li N, Martin JF. Long-range Pitx2c enhancer-promoter interactions prevent predisposition to atrial fibrillation. Proc Natl Acad Sci U S A 2019; 116:22692-22698. [PMID: 31636200 PMCID: PMC6842642 DOI: 10.1073/pnas.1907418116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genome-wide association studies found that increased risk for atrial fibrillation (AF), the most common human heart arrhythmia, is associated with noncoding sequence variants located in proximity to PITX2 Cardiomyocyte-specific epigenomic and comparative genomics uncovered 2 AF-associated enhancers neighboring PITX2 with varying conservation in mice. Chromosome conformation capture experiments in mice revealed that the Pitx2c promoter directly contacted the AF-associated enhancer regions. CRISPR/Cas9-mediated deletion of a 20-kb topologically engaged enhancer led to reduced Pitx2c transcription and AF predisposition. Allele-specific chromatin immunoprecipitation sequencing on hybrid heterozygous enhancer knockout mice revealed that long-range interaction of an AF-associated region with the Pitx2c promoter was required for maintenance of the Pitx2c promoter chromatin state. Long-range looping was mediated by CCCTC-binding factor (CTCF), since genetic disruption of the intronic CTCF-binding site caused reduced Pitx2c expression, AF predisposition, and diminished active chromatin marks on Pitx2 AF risk variants located at 4q25 reside in genomic regions possessing long-range transcriptional regulatory functions directed at PITX2.
Collapse
Affiliation(s)
- Min Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Zachary A Kadow
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ji Ho Suh
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Nathan R Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Amelia W Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Tien T Tran
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Paul S Swinton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
- Texas Heart Institute, Houston, TX 77030
| | - John P Leach
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Na Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030;
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
- Texas Heart Institute, Houston, TX 77030
| |
Collapse
|
121
|
van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Hill MC, Montefiori LE, Scholman KT, Liu J, de Vries AAF, Boukens BJ, Ellinor PT, Goumans MJTH, Efimov IR, Nobrega MA, Barnett P, Martin JF, Christoffels VM. Identification of atrial fibrillation associated genes and functional non-coding variants. Nat Commun 2019; 10:4755. [PMID: 31628324 PMCID: PMC6802215 DOI: 10.1038/s41467-019-12721-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Jia Liu
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Cell Biology and Genetics, Center for Anti-ageing and Regenerative Medicine, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Nanhai Ave, 3688, Shenzhen, China
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovasular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Marie José T H Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, The University of Chicago, Chicago, USA
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Heart Institute, Houston, TX, 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
122
|
The C-terminal HCN4 variant P883R alters channel properties and acts as genetic modifier of atrial fibrillation and structural heart disease. Biochem Biophys Res Commun 2019; 519:141-147. [DOI: 10.1016/j.bbrc.2019.08.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
|
123
|
Krasi G, Precone V, Paolacci S, Stuppia L, Nodari S, Romeo F, Perrone M, Bushati V, Dautaj A, Bertelli M. Genetics and pharmacogenetics in the diagnosis and therapy of cardiovascular diseases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:7-19. [PMID: 31577248 PMCID: PMC7233637 DOI: 10.23750/abm.v90i10-s.8748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the main cause of death worldwide. The ability to accurately define individual susceptibility to these disorders is therefore of strategic importance. Linkage analysis and genome-wide association studies have been useful for the identification of genes related to cardiovascular diseases. The identification of variants predisposing to cardiovascular diseases contributes to the risk profile and the possibility of tailored preventive or therapeutic strategies. Molecular genetics and pharmacogenetics are playing an increasingly important role in the correct clinical management of patients. For instance, genetic testing can identify variants that influence how patients metabolize medications, making it possible to prescribe personalized, safer and more efficient treatments, reducing medical costs and improving clinical outcomes. In the near future we can expect a great increment in information and genetic testing, which should be acknowledged as a true branch of diagnostics in cardiology, like hemodynamics and electrophysiology. In this review we summarize the genetics and pharmacogenetics of the main cardiovascular diseases, showing the role played by genetic information in the identification of cardiovascular risk factors and in the diagnosis and therapy of these conditions. (www.actabiomedica.it)
Collapse
|
124
|
Benaglio P, D'Antonio-Chronowska A, Ma W, Yang F, Young Greenwald WW, Donovan MKR, DeBoever C, Li H, Drees F, Singhal S, Matsui H, van Setten J, Sotoodehnia N, Gaulton KJ, Smith EN, D'Antonio M, Rosenfeld MG, Frazer KA. Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits. Nat Genet 2019; 51:1506-1517. [PMID: 31570892 PMCID: PMC6858543 DOI: 10.1038/s41588-019-0499-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/15/2019] [Indexed: 12/15/2022]
Abstract
The cardiac transcription factor (TF) gene NKX2-5 has been associated with electrocardiographic (EKG) traits through genome-wide association studies (GWASs), but the extent to which differential binding of NKX2-5 at common regulatory variants contributes to these traits has not yet been studied. We analyzed transcriptomic and epigenomic data from induced pluripotent stem cell-derived cardiomyocytes from seven related individuals, and identified ~2,000 single-nucleotide variants associated with allele-specific effects (ASE-SNVs) on NKX2-5 binding. NKX2-5 ASE-SNVs were enriched for altered TF motifs, for heart-specific expression quantitative trait loci and for EKG GWAS signals. Using fine-mapping combined with epigenomic data from induced pluripotent stem cell-derived cardiomyocytes, we prioritized candidate causal variants for EKG traits, many of which were NKX2-5 ASE-SNVs. Experimentally characterizing two NKX2-5 ASE-SNVs (rs3807989 and rs590041) showed that they modulate the expression of target genes via differential protein binding in cardiac cells, indicating that they are functional variants underlying EKG GWAS signals. Our results show that differential NKX2-5 binding at numerous regulatory variants across the genome contributes to EKG phenotypes.
Collapse
Affiliation(s)
- Paola Benaglio
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Wubin Ma
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Margaret K R Donovan
- Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA.,Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA
| | - Christopher DeBoever
- Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA
| | - He Li
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Frauke Drees
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sanghamitra Singhal
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Nona Sotoodehnia
- Department of Medicine, Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA.,Department of Epidemiology, Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Erin N Smith
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Matteo D'Antonio
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Kelly A Frazer
- Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, CA, USA. .,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
125
|
Nakano Y, Ochi H, Sairaku A, Onohara Y, Tokuyama T, Motoda C, Matsumura H, Tomomori S, Amioka M, Hironobe N, Ohkubo Y, Okamura S, Makita N, Yoshida Y, Chayama K, Kihara Y. HCN4 Gene Polymorphisms Are Associated With Occurrence of Tachycardia-Induced Cardiomyopathy in Patients With Atrial Fibrillation. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001980. [PMID: 29987112 DOI: 10.1161/circgen.117.001980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tachycardia-induced cardiomyopathy (TIC) is a reversible cardiomyopathy induced by tachyarrhythmia, and the genetic background of the TIC is not well understood. The hyperpolarization-activated cyclic nucleotide-gated channel gene HCN4 is highly expressed in the conduction system where it is involved in heart rate control. We speculated that the HCN4 gene is associated with TIC. METHODS We enrolled 930 Japanese patients with atrial fibrillation (AF) for screening, 350 Japanese patients with AF for replication, and 1635 non-AF controls. In the screening AF set, we compared HCN4 single-nucleotide polymorphism genotypes between AF subjects with TIC (TIC, n=73) and without TIC (non-TIC, n=857). Of 17 HCN4 gene-tag single-nucleotide polymorphisms, rs7172796, rs2680344, rs7164883, rs11631816, and rs12905211 were significantly associated with TIC. Among them, only rs7164883 was independently associated with TIC after conditional analysis (TIC versus non-TIC: minor allele frequency, 26.0% versus 9.7%; P=1.62×10-9; odds ratio=3.2). RESULTS We confirmed this association of HCN4 single-nucleotide polymorphism rs7164883 with TIC in the replication set (TIC=41 and non-TIC=309; minor allele frequency, 28% versus 9.9%; P=1.94×10-6; odds ratio=3.6). The minor allele frequency of rs7164883 was similar in patients with AF and non-AF controls (11% versus 10.9%; P=0.908). CONCLUSIONS The HCN4 gene single-nucleotide polymorphism rs7164883 may be a new genetic marker for TIC in patients with AF.
Collapse
Affiliation(s)
- Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.). .,Laboratory for Digestive Diseases, RIKEN Center for Integrative Medical Sciences, Hiroshima, Japan (Y.N., H.O., K.C.)
| | - Hidenori Ochi
- Laboratory for Digestive Diseases, RIKEN Center for Integrative Medical Sciences, Hiroshima, Japan (Y.N., H.O., K.C.).,Liver Research Project Center Hiroshima University, Hiroshima, Japan (H.O., K.C.).,Department of Internal Medicine, Chuden Hospital, The Chugoku Electric Power Company, Japan (H.O.).,Department of Gastroenterology and Metabolism, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (H.O., K.C.)
| | - Akinori Sairaku
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Yuko Onohara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Takehito Tokuyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Chikaaki Motoda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Hiroya Matsumura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Shunsuke Tomomori
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Michitaka Amioka
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Naoya Hironobe
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Yousaku Ohkubo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Shou Okamura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| | - Naomasa Makita
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (N.M.)
| | - Yukihiko Yoshida
- Department of Cardiology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan (Y.Y.)
| | - Kazuaki Chayama
- Laboratory for Digestive Diseases, RIKEN Center for Integrative Medical Sciences, Hiroshima, Japan (Y.N., H.O., K.C.).,Liver Research Project Center Hiroshima University, Hiroshima, Japan (H.O., K.C.).,Department of Gastroenterology and Metabolism, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (H.O., K.C.)
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Y.N., A.S., Y.O., T.T., C.M., H.M., S.T., M.A., N.H., S.O., Y.K.)
| |
Collapse
|
126
|
Okamoto Y, Nagasawa Y, Obara Y, Ishii K, Takagi D, Ono K. Molecular identification of HSPA8 as an accessory protein of a hyperpolarization-activated chloride channel from rat pulmonary vein cardiomyocytes. J Biol Chem 2019; 294:16049-16061. [PMID: 31506297 DOI: 10.1074/jbc.ra119.007416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Pulmonary veins (PVs) are the major origin of atrial fibrillation. Recently, we recorded hyperpolarization-activated Cl- current (I Cl, h) in rat PV cardiomyocytes. Unlike the well-known chloride channel protein 2 (CLCN2) current, the activation curve of I Cl, h was hyperpolarized as the Cl- ion concentration ([Cl-] i ) increased. This current could account for spontaneous activity in PV cardiomyocytes linked to atrial fibrillation. In this study, we aimed to identify the channel underlying I Cl, h Using RT-PCR amplification specific for Clcn2 or its homologs, a chloride channel was cloned from rat PV and detected in rat PV cardiomyocytes using immunocytochemistry. The gene sequence and electrophysiological functions of the protein were identical to those previously reported for Clcn2, with protein activity observed as a hyperpolarization-activated current by the patch-clamp method. However, the [Cl-] i dependence of activation was entirely different from the observed I Cl, h of PV cardiomyocytes; the activation curve of the Clcn2-transfected cells shifted toward positive potential with increased [Cl-] i , whereas the I Cl, h of PV and left ventricular cardiomyocytes showed a leftward shift. Therefore, we used MS to explore the possibility of additional proteins interacting with CLCN2 and identified an individual 71-kDa protein, HSPA8, that was strongly expressed in rat PV cardiomyocytes. With co-expression of HSPA8 in HEK293 and PC12 cells, the CLCN2 current showed voltage-dependent activation and shifted to negative potential with increasing [Cl-] i Molecular docking simulations further support an interaction between CLCN2 and HSPA8. These findings suggest that CLCN2 in rat heart contains HSPA8 as a unique accessory protein.
Collapse
Affiliation(s)
- Yosuke Okamoto
- Department of Cell Physiology, Akita Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Yutaro Obara
- Department of Pharmacology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Daichi Takagi
- Department of Cell Physiology, Akita Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
127
|
Kalstø SM, Siland JE, Rienstra M, Christophersen IE. Atrial Fibrillation Genetics Update: Toward Clinical Implementation. Front Cardiovasc Med 2019; 6:127. [PMID: 31552271 PMCID: PMC6743416 DOI: 10.3389/fcvm.2019.00127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder worldwide and may have serious cardiovascular health consequences. AF is associated with increased risk of stroke, dementia, heart failure, and death. There are several known robust, clinical risk predictors for AF, such as male sex, increasing age, and hypertension; however, during the last couple of decades, a substantive genetic component has also been established. Over the last 10 years, the discovery of novel AF-related genetic variants has accelerated, increasing our understanding of mechanisms behind AF. Current studies are focusing on mapping the polygenic structure of AF, improving risk prediction, therapeutic development, and patient-specific management. Nevertheless, it is still difficult for clinicians to interpret the role of genetics in AF prediction and management. Here, we provide an overview of relevant topics within the genetics of AF and attempt to provide some guidance on how to interpret genetic advances and their implementation into clinical decision-making.
Collapse
Affiliation(s)
- Silje Madeleine Kalstø
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Rud, Norway
| | - Joylene Elisabeth Siland
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ingrid E Christophersen
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Rud, Norway.,The Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
128
|
D’Souza A, Trussell T, Morris GM, Dobrzynski H, Boyett MR. Supraventricular Arrhythmias in Athletes: Basic Mechanisms and New Directions. Physiology (Bethesda) 2019; 34:314-326. [DOI: 10.1152/physiol.00009.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Athletes are prone to supraventricular rhythm disturbances including sinus bradycardia, heart block, and atrial fibrillation. Mechanistically, this is attributed to high vagal tone and cardiac electrical and structural remodeling. Here, we consider the supporting evidence for these three pro-arrhythmic mechanisms in athletic human cohorts and animal models, featuring current controversies, emerging data, and future directions of relevance to the translational research agenda.
Collapse
Affiliation(s)
- Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Tariq Trussell
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Gwilym M. Morris
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Mark R. Boyett
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
129
|
Thomas AM, Cabrera CP, Finlay M, Lall K, Nobles M, Schilling RJ, Wood K, Mein CA, Barnes MR, Munroe PB, Tinker A. Differentially expressed genes for atrial fibrillation identified by RNA sequencing from paired human left and right atrial appendages. Physiol Genomics 2019; 51:323-332. [PMID: 31172864 PMCID: PMC6732415 DOI: 10.1152/physiolgenomics.00012.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022] Open
Abstract
Atrial fibrillation is a significant worldwide contributor to cardiovascular morbidity and mortality. Few studies have investigated the differences in gene expression between the left and right atrial appendages, leaving their characterization largely unexplored. In this study, differential gene expression was investigated in atrial fibrillation and sinus rhythm using left and right atrial appendages from the same patients. RNA sequencing was performed on the left and right atrial appendages from five sinus rhythm (SR) control patients and five permanent AF case patients. Differential gene expression in both the left and right atrial appendages was analyzed using the Bioconductor package edgeR. A selection of differentially expressed genes, with relevance to atrial fibrillation, were further validated using quantitative RT-PCR. The distribution of the samples assessed through principal component analysis showed distinct grouping between left and right atrial appendages and between SR controls and AF cases. Overall 157 differentially expressed genes were identified to be downregulated and 90 genes upregulated in AF. Pathway enrichment analysis indicated a greater involvement of left atrial genes in the Wnt signaling pathway whereas right atrial genes were involved in clathrin-coated vesicle and collagen formation. The differing expression of genes in both left and right atrial appendages indicate that there are different mechanisms for development, support and remodeling of AF within the left and right atria.
Collapse
Affiliation(s)
- Alison M Thomas
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Malcolm Finlay
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Kulvinder Lall
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Muriel Nobles
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Kristie Wood
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Charles A Mein
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Michael R Barnes
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
130
|
Cruz D, Pinto R, Freitas-Silva M, Nunes JP, Medeiros R. GWAS contribution to atrial fibrillation and atrial fibrillation-related stroke: pathophysiological implications. Pharmacogenomics 2019; 20:765-780. [PMID: 31368859 DOI: 10.2217/pgs-2019-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Atrial fibrillation (AF) and stroke are included in a group of complex traits that have been approached regarding of their study by susceptibility genetic determinants. Since 2007, several genome-wide association studies (GWAS) aiming to identify genetic variants modulating AF risk have been conducted. Thus, 11 GWAS have identified 26 SNPs (p < 5 × 10-2), of which 19 reached genome-wide significance (p < 5 × 10-8). From those variants, seven were also associated with cardioembolic stroke and three reached genome-wide significance in stroke GWAS. These associations may shed a light on putative shared etiologic mechanisms between AF and cardioembolic stroke. Additionally, some of these identified variants have been incorporated in genetic risk scores in order to elucidate new approaches of stroke prediction, prevention and treatment.
Collapse
Affiliation(s)
- Diana Cruz
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal.,FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Pinto
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal
| | - Margarida Freitas-Silva
- FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Department of Medicine, Centro Hospitalar São João, Porto, Portugal
| | - José Pedro Nunes
- FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Department of Medicine, Centro Hospitalar São João, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal.,FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação, 6657, 4200-172 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| |
Collapse
|
131
|
Li XH, Hu YM, Yin GL, Wu P. Correlation between HCN4 gene polymorphisms and lone atrial fibrillation risk. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2989-2993. [PMID: 31315459 DOI: 10.1080/21691401.2019.1637885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background and objective: Atrial electrical remodelling (AER) was significantly associated with atrial fibrillation (AF) development. Polymorphisms in hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4) gene might be correlated with AER. In the present study, we explored the association of HCN4 polymorphisms (rs498005 and rs7164883) with lone AF risk in a Chinese Han population. Methods: In this case-control study, the Sanger sequencing method was utilized to genotype the HCN4 polymorphisms. Relative risk of AF was assessed by the χ2 test, and presented by odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Logistic regression analysis was performed for multivariate analysis. The effects of HCN4 polymorphisms on AF clinical features were analyzed by the Mann-Whitney U test and adjusted by the Bonferroni method. Results: C allele of rs498005 was significantly correlated with increased risk of AF (OR = 1.412, 95%CI = 1.012-1.970), and the association still exited after adjustment by age, gender, the status of smoking and drinking, histories of diabetes, hyperlipidaemia and myocardial infarction (adjusted OR = 1.473, 95%CI = 1.043-2.081). G allele of rs7164883 SNP was marginally associated with enhanced AF risk after adjustment by the above clinical parameters (adjusted OR = 1.742, 95%CI = 1.019-2.980). Atrial late potential (ALP), including TP (P wave duration after filtering) and LP20 (the amplitude of superimposed potential in the final 20 ms of P wave) were significantly associated with rs498005 genotype (p < .001). Conclusion: HCN4 rs498005 and rs7164883 polymorphisms are significantly associated with AF risk.
Collapse
Affiliation(s)
- Xiao-Hong Li
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| | - Ya-Min Hu
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| | - Guang-Li Yin
- b Department of Cardiology, Hebei Provincial Hospital of Integrative Chinese and Western Medicine , Cangzhou , China
| | - Ping Wu
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| |
Collapse
|
132
|
Ebana Y, Sun Y, Yang X, Watanabe T, Makita S, Ozaki K, Tanaka T, Arai H, Furukawa T. Pathway analysis with genome-wide association study (GWAS) data detected the association of atrial fibrillation with the mTOR signaling pathway. IJC HEART & VASCULATURE 2019; 24:100383. [PMID: 31321287 PMCID: PMC6612921 DOI: 10.1016/j.ijcha.2019.100383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/20/2022]
Abstract
Background Genome-wide association studies (GWAS) have identified numerous loci associated with diseases and traits. However, the elucidation of disease mechanisms followed by drug development has remained a challenge owing to complex gene interactions. We performed pathway analysis with MAGENTA (Meta-Analysis Geneset Enrichment of variaNT Associations) to clarify the pathways in genetic background of AF. Methods The existing GWAS data were analyzed using MAGENTA. A microarray analysis was then performed for the identified pathways with human atrial tissues, followed by Gene-Set Enrichment Analysis (GSEA). Results MAGENTA identified two novel candidate pathways for AF pathogenesis, the CTCF (CCCTC-binding factor, p = 1.00 × 10−4, FDR q = 1.64 × 10−2) and mTOR pathways (mammalian target of rapamycin, p = 3.00 × 10−4, FDR q = 3.13 × 10−2). The microarray analysis with human atrial tissue using the GSEA indicated that the mTOR pathway was suppressed in AF cases compared with non-AF cases, validating the MAGENTA results, but not CTCF pathway. Conclusions MAGENTA identified a novel pathway, mTOR, followed by GSEA with human atrial tissue samples. mTOR pathway is a key interface that adapts the change of environments by pressure overload and metabolic perturbation. Our results indicate that the MTOR pathway is involved in the pathogenesis of AF, although the details of the basic mechanism remain unknown and further analysis for causal-relationship of mTOR pathway to AF is required. CTCF pathway is essential for construction of chromatin structure and transcriptional process. The gene-set components of CTCF overlap with those of mTOR in Biocarta.
Collapse
Affiliation(s)
- Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Yihan Sun
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Xiaoxi Yang
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Taiju Watanabe
- Department of Cardiovascular Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Satoru Makita
- Department of Cardiovascular Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kouichi Ozaki
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan.,Division for Genomic Medicine, Medical Genome Center, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu City, Aichi, Japan
| | - Toshihiro Tanaka
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan.,Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
133
|
Kirchhoff JE, Skarsfeldt MA, Muthukumarasamy KM, Simó-Vicens R, Bomholtz SH, Abildgaard L, Jespersen T, Sørensen US, Grunnet M, Bentzen BH, Diness JG. The K Ca2 Channel Inhibitor AP14145, But Not Dofetilide or Ondansetron, Provides Functional Atrial Selectivity in Guinea Pig Hearts. Front Pharmacol 2019; 10:668. [PMID: 31275147 PMCID: PMC6593233 DOI: 10.3389/fphar.2019.00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Prolongation of cardiac action potentials is considered antiarrhythmic in the atria but can be proarrhythmic in ventricles if the current carried by Kv11.1-channels (IKr) is inhibited. The current mediated by KCa2-channels, IKCa, is considered a promising new target for treatment of atrial fibrillation (AF). Selective inhibitors of IKr (dofetilide) and IKCa (AP14145) were used to compare the effects on ventricular and atrial repolarization. Ondansetron, which has been reported to be a potent blocker of both IKr and IKCa, was included to examine its potential atrial antiarrhythmic properties. Experimental Approach: The expression of KCa2- and Kv11.1-channels in the guinea pig heart was investigated using quantitative polymerase chain reaction (qPCR). Whole-cell patch clamp technique was used to investigate the effects of dofetilide, AP14145, and ondansetron on IKCa and/or IKr. The effect of dofetilide, AP14145, and ondansetron on atrial and ventricular repolarization was investigated in isolated hearts. A novel atrial paced in vivo guinea pig model was further validated using AP14145 and dofetilide. Key Results: AP14145 increased the atrial effective refractory period (AERP) without prolonging the QT interval with Bazett's correction for heart rate (QTcB) both ex vivo and in vivo. In contrast, dofetilide increased QTcB and, to a lesser extent, AERP in isolated hearts and prolonged QTcB with no effects on AERP in the in vivo guinea pig model. Ondansetron did not inhibit IKCa, but did inhibit IKr in vitro. Ondansetron prolonged ventricular, but not atrial repolarization ex vivo. Conclusion and Implications: IKCa inhibition by AP14145 selectively increases atrial repolarization, whereas IKr inhibition by dofetilide and ondansetron increases ventricular repolarization to a larger extent than atrial repolarization.
Collapse
Affiliation(s)
| | - Mark Alexander Skarsfeldt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kalai Mangai Muthukumarasamy
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafel Simó-Vicens
- Acesion Pharma, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofia Hammami Bomholtz
- Acesion Pharma, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Bo Hjorth Bentzen
- Acesion Pharma, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
134
|
Yan H, Xu W, Xie J, Gao Y, Wu L, Sun L, Feng L, Chen X, Zhang T, Dai C, Li T, Lin X, Zhang Z, Wang X, Li F, Zhu X, Li J, Li Z, Chen C, Ma M, Zhang H, He Z. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun 2019; 10:2562. [PMID: 31189898 PMCID: PMC6561962 DOI: 10.1038/s41467-019-10544-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/14/2019] [Indexed: 01/06/2023] Open
Abstract
Cadmium (Cd) accumulation in rice grain poses a serious threat to human health. While several transport systems have been reported, the complexity of rice Cd transport and accumulation indicates the necessity of identifying additional genes, especially those that are responsible for Cd accumulation divergence between indica and japonica rice subspecies. Here, we show that a gene, OsCd1, belonging to the major facilitator superfamily is involved in root Cd uptake and contributes to grain accumulation in rice. Natural variation in OsCd1 with a missense mutation Val449Asp is responsible for the divergence of rice grain Cd accumulation between indica and japonica. Near-isogenic line tests confirm that the indica variety carrying the japonica allele OsCd1V449 can reduce the grain Cd accumulation. Thus, the japonica allele OsCd1V449 may be useful for reducing grain Cd accumulation of indica rice cultivars through breeding. Grain of indica rice accumulates more toxic cadmium (Cd) than japonica, but the underlying genetic basis is unclear. Here, the authors show that natural variation of OsCd1 contributes to divergence in grain Cd accumulation and transferring japonica allele to indica rice leads to reduced Cd accumulation.
Collapse
Affiliation(s)
- Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jianyin Xie
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yiwei Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Lu Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xu Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhua Dai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuni Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhanying Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Wang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Fengmei Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Zhu
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
135
|
Seifert MB, Olesen MS, Christophersen IE, Nielsen JB, Carlson J, Holmqvist F, Tveit A, Haunsø S, Svendsen JH, Platonov PG. Genetic variants on chromosomes 7p31 and 12p12 are associated with abnormal atrial electrical activation in patients with early-onset lone atrial fibrillation. Ann Noninvasive Electrocardiol 2019; 24:e12661. [PMID: 31152482 DOI: 10.1111/anec.12661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/04/2019] [Accepted: 05/05/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Abnormal P-wave morphology (PWM) has been associated with a history of atrial fibrillation (AF) in earlier studies. Although lone AF is believed to have substantial genetic basis, studies on associations between single nucleotide polymorphisms (SNP) linked to lone AF and PWM have not been reported. We aimed to assess whether SNPs previously associated with lone AF (rs2200733, rs13376333, rs3807989, and rs11047543) are also linked to P-wave abnormalities. METHODS Four SNPs were studied in 176 unrelated individuals with early-onset lone AF (age at onset <50 years), median age 38 years (19-63 years), 149 men. Using sinus rhythm ECG, orthogonal PWM was classified as Type 1-positive in leads X and Y and negative in lead Z, Type 2-positive in leads X and Y and biphasic (-/+) in lead Z, Type 3-positive in lead X and biphasic in lead Y (+/-), and the remaining as atypical. RESULTS Two SNPs were found to be significantly associated with altered P-wave morphology distribution: rs3807989 near the gene CAV1/CAV2 and rs11047543 near the gene SOX5. Both SNPs were associated with a higher risk of non-Type 1 P-wave morphology (rs3807989: OR = 4.8, 95% CI = 2.3-10.2, p < 0.001; rs11047543: OR = 4.7, 95% CI = 1.1-20.5, p = 0.04). No association was observed for rs2200733 and rs13376333. CONCLUSION In this study, the two variants rs3807989 and rs11047543, previously associated with PR interval and lone AF, were associated with altered P-wave morphology distribution in patients with early-onset lone AF. These findings suggest that common genetic variants may modify atrial conduction properties.
Collapse
Affiliation(s)
- Mariam B Seifert
- The Center for Integrative Electrocardiology, Arrhythmia Clinic Skåne University Hospital, Lund University (CIEL), Lund, Sweden.,Department of Cardiology, Frederiksberg Hospital, Copenhagen, Denmark
| | - Morten S Olesen
- Danish National Research Foundation Center for Cardiac Arrhythmia, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid E Christophersen
- The Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Department of Medical Research, Baerum Hospital, Vestre Viken Hospital Trust, Rud, Norway
| | - Jonas B Nielsen
- Danish National Research Foundation Center for Cardiac Arrhythmia, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Carlson
- The Center for Integrative Electrocardiology, Arrhythmia Clinic Skåne University Hospital, Lund University (CIEL), Lund, Sweden
| | - Fredrik Holmqvist
- The Center for Integrative Electrocardiology, Arrhythmia Clinic Skåne University Hospital, Lund University (CIEL), Lund, Sweden
| | - Arnljot Tveit
- Department of Medical Research, Baerum Hospital, Vestre Viken Hospital Trust, Rud, Norway
| | - Stig Haunsø
- Danish National Research Foundation Center for Cardiac Arrhythmia, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper H Svendsen
- Danish National Research Foundation Center for Cardiac Arrhythmia, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pyotr G Platonov
- The Center for Integrative Electrocardiology, Arrhythmia Clinic Skåne University Hospital, Lund University (CIEL), Lund, Sweden
| |
Collapse
|
136
|
Ramírez CM, Zhang X, Bandyopadhyay C, Rotllan N, Sugiyama MG, Aryal B, Liu X, He S, Kraehling JR, Ulrich V, Lin CS, Velazquez H, Lasunción MA, Li G, Suárez Y, Tellides G, Swirski FK, Lee WL, Schwartz MA, Sessa WC, Fernández-Hernando C. Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation 2019; 140:225-239. [PMID: 31154825 DOI: 10.1161/circulationaha.118.038571] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear. METHODS Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy. RESULTS We found that absence of Cav1 significantly suppressed atherogenesis in Ldlr-/-eNOS-/- mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice. CONCLUSIONS These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.
Collapse
Affiliation(s)
- Cristina M Ramírez
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology (C.M.R., X.Z., N.R., B.A., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology (C.M.R., X.Z., N.R., B.A., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Chirosree Bandyopadhyay
- Cardiovascular Research Center, Department of Internal Medicine and Cell Biology (C.B., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology (C.M.R., X.Z., N.R., B.A., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Michael G Sugiyama
- Keenan Research Centre and Departments of Laboratory Medicine and Pathobiology, Biochemistry and Medicine, University of Toronto, ON, Canada (M.G.S., W.L.L.)
| | - Binod Aryal
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology (C.M.R., X.Z., N.R., B.A., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Xinran Liu
- Department of Cell Biology (X.L.), Yale University School of Medicine, New Haven, CT
| | - Shun He
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston (S.H., F.K.S.)
| | - Jan R Kraehling
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Victoria Ulrich
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Chin Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (C.S.L.)
| | - Heino Velazquez
- Section of Nephrology (H.V.), Yale University School of Medicine, New Haven, CT
| | - Miguel A Lasunción
- Cardiovascular Research Center, Department of Internal Medicine and Cell Biology (C.B., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Guangxin Li
- Departments of Cell Biology and Biomedical Engineering (G.L., G.T.), Yale University School of Medicine, New Haven, CT.,Department of Surgery (G.L., G.T.), Yale University School of Medicine, New Haven, CT
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology (C.M.R., X.Z., N.R., B.A., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - George Tellides
- Departments of Cell Biology and Biomedical Engineering (G.L., G.T.), Yale University School of Medicine, New Haven, CT.,Department of Surgery (G.L., G.T.), Yale University School of Medicine, New Haven, CT
| | - Filip K Swirski
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston (S.H., F.K.S.)
| | - Warren L Lee
- Keenan Research Centre and Departments of Laboratory Medicine and Pathobiology, Biochemistry and Medicine, University of Toronto, ON, Canada (M.G.S., W.L.L.)
| | - Martin A Schwartz
- Department of Cell Biology (M.A.S.), Yale University School of Medicine, New Haven, CT.,Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, IRyCIS, Madrid, Spain (M.A.L.).,CIBER de Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain (M.A.L.)
| | - William C Sessa
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Department of Pharmacology (W.C.S.), Yale University School of Medicine, New Haven, CT
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program (C.M.R., X.Z., N.R., B.A., J.R.K., V.U., Y.S., W.C.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology (C.M.R., X.Z., N.R., B.A., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
137
|
Huang H, Darbar D. Genetic heterogeneity of atrial fibrillation susceptibility loci across racial or ethnic groups. Eur Heart J 2019. [PMID: 28637342 DOI: 10.1093/eurheartj/ehx289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Henry Huang
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
138
|
Pozarickij A, Williams C, Hysi PG, Guggenheim JA. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development. Commun Biol 2019; 2:167. [PMID: 31069276 PMCID: PMC6502837 DOI: 10.1038/s42003-019-0387-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/15/2019] [Indexed: 12/18/2022] Open
Abstract
A genetic contribution to refractive error has been confirmed by the discovery of more than 150 associated variants in genome-wide association studies (GWAS). Environmental factors such as education and time outdoors also demonstrate strong associations. Currently however, the extent of gene-environment or gene-gene interactions in myopia is unknown. We tested the hypothesis that refractive error-associated variants exhibit effect size heterogeneity, a hallmark feature of genetic interactions. Of 146 variants tested, evidence of non-uniform, non-linear effects were observed for 66 (45%) at Bonferroni-corrected significance (P < 1.1 × 10-4) and 128 (88%) at nominal significance (P < 0.05). LAMA2 variant rs12193446, for example, had an effect size varying from -0.20 diopters (95% CI -0.18 to -0.23) to -0.89 diopters (95% CI -0.71 to -1.07) in different individuals. SNP effects were strongest at the phenotype extremes and weaker in emmetropes. A parsimonious explanation for these findings is that gene-environment or gene-gene interactions in myopia are pervasive.
Collapse
Affiliation(s)
- Alfred Pozarickij
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ UK
| | - Cathy Williams
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Pirro G. Hysi
- Department of Ophthalmology, King’s College London, St. Thomas’ Hospital, London, SE1 7EH UK
- Department of Twin & Genetic Epidemiology, King’s College London, St. Thomas’ Hospital, London, SE1 7EH UK
| | | |
Collapse
|
139
|
Yu M, Georges A, Tucker NR, Kyryachenko S, Toomer K, Schott JJ, Delling FN, Fernandez-Friera L, Solis J, Ellinor PT, Levine RA, Slaugenhaupt SA, Hagège AA, Dina C, Jeunemaitre X, Milan DJ, Norris RA, Bouatia-Naji N. Genome-Wide Association Study-Driven Gene-Set Analyses, Genetic, and Functional Follow-Up Suggest GLIS1 as a Susceptibility Gene for Mitral Valve Prolapse. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:e002497. [PMID: 31112420 PMCID: PMC6532425 DOI: 10.1161/circgen.119.002497] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/12/2019] [Indexed: 11/16/2022]
Abstract
Background Mitral valve prolapse (MVP) is a common heart valve disease, the most frequent indication for valve repair or replacement. MVP is characterized by excess extracellular matrix secretion and cellular disorganization, which leads to bulky valves that are unable to coapt correctly during ventricular systole resulting in mitral regurgitation, and it is associated with sudden cardiac death. Here we aim to characterize globally the biological mechanisms underlying genetic susceptibility to MVP to better characterize its triggering mechanisms. Methods We applied i-GSEA4GWAS and DEPICT, two pathway enrichment tools to MVP genome-wide association studies. We followed-up the association with MVP in an independent dataset of cases and controls. This research was conducted using the UK Biobank Resource. Immunohistochemistry staining for Glis1 (GLIS family zinc finger 1) was conducted in developing heart of mice. Knockdown of Glis1 using morpholinos was performed in zebrafish animals 72 hours postfertilization. Results We show that genes at risk loci are involved in biological functions relevant to actin filament organization, cytoskeleton biology, and cardiac development. The enrichment for positive regulation of transcription, cell proliferation, and migration motivated the follow-up of GLIS1, a transcription factor from the Krüppel-like zinc finger family. In combination with previously available data, we now report a genome-wide significant association with MVP (odds ratio, 1.20; P=4.36×10-10), indicating that Glis1 is expressed during embryonic development predominantly in nuclei of endothelial and interstitial cells of mitral valves in mouse. We also show that Glis1 knockdown causes atrioventricular regurgitation in developing hearts in zebrafish. Conclusions Our findings define globally molecular and cellular mechanisms underlying common genetic susceptibility to MVP and implicate established and unprecedented mechanisms. Through the GLIS1 association and function, we point at regulatory functions during cardiac development as common mechanisms to mitral valve degeneration.
Collapse
Affiliation(s)
- Mengyao Yu
- INSERM, UMR970, Paris Cardiovascular Research Center, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
- Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
| | - Adrien Georges
- INSERM, UMR970, Paris Cardiovascular Research Center, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
- Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
| | - Nathan R Tucker
- Cardiology Division, Cardiovascular Research Center (N.R.T., P.T.E., D.J.M.), Massachusetts General Hospital, Harvard Medical School, Boston
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA (N.R.T., P.T.E.)
| | - Sergiy Kyryachenko
- INSERM, UMR970, Paris Cardiovascular Research Center, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
- Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
| | - Katelyn Toomer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston (K.T.)
| | - Jean-Jacques Schott
- Inserm U1087, institut du thorax, University Hospital Nantes, France (J.-J.S., C.D.)
- CNRS, UMR 6291, Université de Nantes, France (J.-J.S., C.D.)
- Université de Nantes, France (J.-J.S., C.D.)
| | - Francesca N Delling
- Department of Medicine, Division of Cardiology, University of California, San Francisco (F.N.D.)
| | - Leticia Fernandez-Friera
- HM Hospitales-Centro Integral de Enfermedades Cardiovasculares HM-CIEC, Madrid, Spain (L.F.-F., J.S.)
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.F.-F., J.S.)
| | - Jorge Solis
- HM Hospitales-Centro Integral de Enfermedades Cardiovasculares HM-CIEC, Madrid, Spain (L.F.-F., J.S.)
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.F.-F., J.S.)
| | - Patrick T Ellinor
- Cardiology Division, Cardiovascular Research Center (N.R.T., P.T.E., D.J.M.), Massachusetts General Hospital, Harvard Medical School, Boston
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA (N.R.T., P.T.E.)
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Cardiology Division (R.A.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Susan A Slaugenhaupt
- Center for Human Genetic Research, Massachusetts General Hospital and Department of Neurology, Harvard Medical School, Boston (S.A.S.)
| | - Albert A Hagège
- INSERM, UMR970, Paris Cardiovascular Research Center, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
- Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
- Department of Cardiology (A.A.H.), Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Christian Dina
- Inserm U1087, institut du thorax, University Hospital Nantes, France (J.-J.S., C.D.)
- CNRS, UMR 6291, Université de Nantes, France (J.-J.S., C.D.)
- Université de Nantes, France (J.-J.S., C.D.)
| | - Xavier Jeunemaitre
- INSERM, UMR970, Paris Cardiovascular Research Center, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
- Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
- Department of Genetics (X.J.), Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - David J Milan
- Cardiology Division, Cardiovascular Research Center (N.R.T., P.T.E., D.J.M.), Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Nabila Bouatia-Naji
- INSERM, UMR970, Paris Cardiovascular Research Center, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
- Faculty of Medicine, University Paris Descartes, Sorbonne Paris Cité, France (M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.M.Y., A.G., S.K., A.A.H., X.J., N.B.-N.)
| |
Collapse
|
140
|
Ioannou A, Papageorgiou N, Falconer D, Rehal O, Sewart E, Zacharia E, Toutouzas K, Vlachopoulos C, Siasos G, Tsioufis C, Tousoulis D. Biomarkers Associated with Stroke Risk in Atrial Fibrillation. Curr Med Chem 2019; 26:803-823. [DOI: 10.2174/0929867324666170718120651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 11/22/2022]
Abstract
Background:Atrial fibrillation (AF) is associated with an increased risk of cardioembolic stroke. The risk of cardioembolism is not adequately reduced with the administration of oral anticoagulants, since a number of patients continue to experience thromboembolic events despite receiving treatment. Therefore, identification of a circulating biomarker to identify these high-risk patients would be clinically beneficial.Objective:In the present article, we aim to review the available data regarding use of biomarkers to predict cardioembolic stroke in patients with AF.Methods:We performed a thorough search of the literature in order to analyze the biomarkers identified thus far and critically evaluate their clinical significance.Results:A number of biomarkers have been proposed to predict cardioembolic stroke in patients with AF. Some of them are already used in the clinical practice, such as d-dimers, troponins and brain natriuretic peptide. Novel biomarkers, such as the inflammatory growth differentiation factor-15, appear to be promising, while the role of micro-RNAs and genetics appear to be useful as well. Even though these biomarkers are associated with an increased risk for thromboembolism, they cannot accurately predict future events. In light of this, the use of a scoring system, that would incorporate both circulating biomarkers and clinical factors, might be more useful.Conclusions:Recent research has disclosed several biomarkers as potential predictors of cardioembolic stroke in patients with AF. However, further research is required to establish a multifactorial scoring system that will identify patients at high-risk of thromboembolism, who would benefit from more intensive treatment and monitoring.
Collapse
Affiliation(s)
| | | | | | - Onkar Rehal
- University College London Hospital, London, United Kingdom
| | - Emma Sewart
- University College London Medical School, London, United Kingdom
| | - Effimia Zacharia
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Athens, Greece
| | - Konstantinos Toutouzas
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Athens, Greece
| | - Charalambos Vlachopoulos
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Athens, Greece
| | - Costas Tsioufis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Athens, Greece
| |
Collapse
|
141
|
Wang Y, Wang JG. Genome-Wide Association Studies of Hypertension and Several Other Cardiovascular Diseases. Pulse (Basel) 2019; 6:169-186. [PMID: 31049317 PMCID: PMC6489084 DOI: 10.1159/000496150] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/07/2018] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWAS) have greatly expanded our understanding of the genetic architecture of cardiovascular diseases in the past decade. They have revealed hundreds of suggestive genetic loci that replicate known biological candidate genes and indicate the existence of a previously unsuspected new biology relevant to cardiovascular disorders. These data have been used successfully to create genetic risk scores that may improve risk prediction and the identification of susceptive individuals. Furthermore, these GWAS-identified novel pathways may herald a new era of novel drug development and stratification of patients. In this review, we will briefly summarize the literature on the candidate genes and signals discovered by GWAS on hypertension and coronary artery disease and discuss their implications on clinical medicine.
Collapse
Affiliation(s)
| | - Ji-Guang Wang
- Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
142
|
Shamsaldeen YA, Culliford L, Clout M, James AF, Ascione R, Hancox JC, Marrion NV. Role of SK channel activation in determining the action potential configuration in freshly isolated human atrial myocytes from the SKArF study. Biochem Biophys Res Commun 2019; 512:684-690. [PMID: 30922569 DOI: 10.1016/j.bbrc.2019.03.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Inhibition of SK channel function is being pursued in animal models as a possible therapeutic approach to treat atrial fibrillation (AF). However, the pharmacology of SK channels in human atria is unclear. SK channel function is inhibited by both apamin and UCL1684, with the former discriminating between SK channel subtypes. In this proof-of-principle study, the effects of apamin and UCL1684 on right atrial myocytes freshly isolated from patients in sinus rhythm undergoing elective cardiac surgery were investigated. Outward current evoked from voltage clamped human atrial myocytes was reduced by these two inhibitors of SK channel function. In contrast, membrane current underlying the atrial action potential was affected significantly only by UCL1684 and not by apamin. This pharmacology mirrors that observed in mouse atria, suggesting that mammalian atria possess two populations of SK channels, with only one population contributing to the action potential waveform. Immuno-visualization of the subcellular localization of SK2 and SK3 subunits showed a high degree of colocalization, consistent with the formation of heteromeric SK2/SK3 channels. These data reveal that human atrial myocytes express two SK channel subtypes, one exhibiting an unusual pharmacology. These channels contribute to the atrial action potential waveform and might be a target for novel therapeutic approaches to treat supraventricular arrhythmic conditions such as atrial fibrillation.
Collapse
Affiliation(s)
- Yousif A Shamsaldeen
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Lucy Culliford
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Madeleine Clout
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew F James
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Raimondo Ascione
- Translational Biomedical Research Centre, Faculty of Health Sciences, University of Bristol, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Neil V Marrion
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
143
|
Amioka M, Nakano Y, Ochi H, Onohara Y, Sairaku A, Tokuyama T, Motoda C, Matsumura H, Tomomori S, Hironobe N, Okubo Y, Okamura S, Chayama K, Kihara Y. Ser96Ala genetic variant of the human histidine-rich calcium-binding protein is a genetic predictor of recurrence after catheter ablation in patients with paroxysmal atrial fibrillation. PLoS One 2019; 14:e0213208. [PMID: 30840693 PMCID: PMC6402671 DOI: 10.1371/journal.pone.0213208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) recurrence after radiofrequency catheter ablation (RFCA) still remains a serious issue. Ca2+ handling has a considerable effect on AF recurrence. The histidine-rich calcium-binding protein (HRC) genetic single nucleotide polymorphism (SNP), rs3745297 (T>G, Ser96Ala), is known to cause a sarcoplasmic reticulum Ca2+ leak. We investigated the association between HRC Ser96Ala and AF recurrence after RFCA in paroxysmal AF (PAF) patients. METHODS AND RESULTS We enrolled PAF patients who underwent RFCA (N = 334 for screening and N = 245 for replication) and were genotyped for HRC SNP (rs3745297). The patient age was younger and rate of diabetes and hypertension lower in the PAF patients with Ser96Ala than in those without (TT/TG/GG, 179/120/35; 64±10/60±12/59±13 y, P = 0.001; 18.5/ 9.2/8.6%, P = 0.04 and 66.1/50.0/37.1%, P = 0.001, respectively). During a mean 19 month follow-up, 57 (17.1%) patients suffered from AF recurrences. The rate of an Ser96Ala was significantly higher in patients with AF recurrence than in those without in the screening set (allele frequency model: odds ratio [OR], 1.80; P = 0.006). We also confirmed this significant association in the replication set (OR 1.74; P = 0.03) and combination (P = 0.0008). A multivariate analysis revealed that the AF duration, sinus node dysfunction, and HRC Ser96Ala were independent predictors of an AF recurrence (hazard ratio [HR], 1.04, P = 0.037; HR 2.42, P = 0.018; and HR 2.66, P = 0.007, respectively). CONCLUSION HRC SNP Ser96Ala is important as a new genetic marker of AF recurrence after RFCA.
Collapse
Affiliation(s)
- Michitaka Amioka
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | | | - Yuko Onohara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Akinori Sairaku
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takehito Tokuyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Chikaaki Motoda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroya Matsumura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shunsuke Tomomori
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoya Hironobe
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yousaku Okubo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Sho Okamura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
144
|
Xiong H, Yang Q, Zhang X, Wang P, Chen F, Liu Y, Wang P, Zhao Y, Li S, Huang Y, Chen S, Wang X, Zhang H, Yu D, Tan C, Fang C, Huang Y, Wu G, Wu Y, Cheng X, Liao Y, Zhang R, Yang Y, Ke T, Ren X, Li H, Tu X, Xia Y, Xu C, Chen Q, Wang QK. Significant association of rare variant p.Gly8Ser in cardiac sodium channel β4-subunit SCN4B with atrial fibrillation. Ann Hum Genet 2019; 83:239-248. [PMID: 30821358 DOI: 10.1111/ahg.12305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022]
Abstract
Atrial fibrillation (AF) affects 33.5 million individuals worldwide. It accounts for 15% of strokes and increases risk of heart failure and sudden death. The voltage-gated cardiac sodium channel complex is responsible for the generation and conduction of the cardiac action potential, and composed of the main pore-forming α-subunit Nav 1.5 (encoded by the SCN5A gene) and one or more auxiliary β-subunits, including Nav β1 to Nav β4 encoded by SCN1B to SCN4B, respectively. We and others identified loss-of-function mutations in SCN1B and SCN2B and dominant-negative mutations in SCN3B in patients with AF. Three missense variants in SCN4B were identified in sporadic AF patients and small nuclear families; however, the association between SCN4B variants and AF remains to be further defined. In this study, we performed mutational analysis in SCN4B using a panel of 477 AF patients, and identified one nonsynonymous genomic variant p.Gly8Ser in four patients. To assess the association between the p.Gly8Ser variant and AF, we carried out case-control association studies with two independent populations (944 AF patients vs. 9,81 non-AF controls in the first discovery population and 732 cases and 1,291 controls in the second replication population). Significant association was identified in the two independent populations and in the combined population (p = 4.16 × 10-4 , odds ratio [OR] = 3.14) between p.Gly8Ser and common AF as well as lone AF (p = 0.018, OR = 2.85). These data suggest that rare variant p.Gly8Ser of SCN4B confers a significant risk of AF, and SCN4B is a candidate susceptibility gene for AF.
Collapse
Affiliation(s)
- Hongbo Xiong
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Pengxia Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Chen
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengyun Wang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfu Zhang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Chencheng Tan
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Fang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Huang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Department of Cardiology, People's Hospital, Wuhan University, Wuhan, China
| | - Yanxia Wu
- Department of Cardiology, the First Affiliated Hospital of Wuhan City, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tie Ke
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ren
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chengqi Xu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Qing K Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
145
|
Hu X, Chen L, Wu S, Xu K, Jiang W, Qin M, Zhang Y, Liu X. Integrative Analysis Reveals Key Circular RNA in Atrial Fibrillation. Front Genet 2019; 10:108. [PMID: 30838031 PMCID: PMC6389718 DOI: 10.3389/fgene.2019.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are an emerging class of RNA species that may play a critical regulatory role in gene expression control, which can serve as diagnostic biomarkers for many diseases due to their abundant, stable, and cell- or tissue-specific expression. However, the association between circRNAs and atrial fibrillation (AF) is still not clear. In this study, we used RNA sequencing data to identify and quantify the circRNAs. Differential expression analysis of the circRNAs identified 250 up- and 126 down-regulated circRNAs in AF subjects compared with healthy donors, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the parental genes of the dysregulated circRNAs indicated that the up-regulated parental genes may participate in the process of DNA damage under oxidative stress. Furthermore, to annotate the dysregulated circRNAs, we constructed and merged the competing endogenous RNA (ceRNA) network and protein-protein interaction (PPI) network, respectively. In the merged network, 130 of 246 dysregulated circRNAs were successfully characterized by more than one pathway. Notably, the five circRNAs, including chr9:15474007-15490122, chr16:75445723-75448593, hsa_circ_0007256, chr12:56563313-56563992, and hsa_circ_0003533, showed the highest significance by the enrichment analysis, and four of them were enriched in cytokine-cytokine receptor interaction. These dysregulated circRNAs may mainly participate in biological processes of inflammatory response. In conclusion, the present study identified a set of dysregulated circRNAs, and characterized their potential functions, which may be associated with inflammatory responses in AF. To our knowledge, this is the first study to uncover the association between circRNAs and AF, which not only improves our understanding of the roles of circRNAs in AF, but also provides candidates of potentially functional circRNAs for AF researchers.
Collapse
Affiliation(s)
- Xiaofeng Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Linhui Chen
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Shaohui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weifeng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
146
|
Westphal S, Stoppe C, Gruenewald M, Bein B, Renner J, Cremer J, Coburn M, Schaelte G, Boening A, Niemann B, Kletzin F, Roesner J, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Kortgen A, Stehr SN, Wittmann M, Baumgarten G, Struck R, Meyer-Treschan T, Kienbaum P, Heringlake M, Schoen J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Degenhardt F, Franke A, Mucha S, Tittmann L, Kohlhaas M, Fuernau G, Brosteanu O, Hasenclever D, Zacharowski K, Meybohm P. Genome-wide association study of myocardial infarction, atrial fibrillation, acute stroke, acute kidney injury and delirium after cardiac surgery - a sub-analysis of the RIPHeart-Study. BMC Cardiovasc Disord 2019; 19:26. [PMID: 30678657 PMCID: PMC6345037 DOI: 10.1186/s12872-019-1002-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Background The aim of our study was the identification of genetic variants associated with postoperative complications after cardiac surgery. Methods We conducted a prospective, double-blind, multicenter, randomized trial (RIPHeart). We performed a genome-wide association study (GWAS) in 1170 patients of both genders (871 males, 299 females) from the RIPHeart-Study cohort. Patients undergoing non-emergent cardiac surgery were included. Primary endpoint comprises a binary composite complication rate covering atrial fibrillation, delirium, non-fatal myocardial infarction, acute renal failure and/or any new stroke until hospital discharge with a maximum of fourteen days after surgery. Results A total of 547,644 genotyped markers were available for analysis. Following quality control and adjustment for clinical covariate, one SNP reached genome-wide significance (PHLPP2, rs78064607, p = 3.77 × 10− 8) and 139 (adjusted for all other outcomes) SNPs showed promising association with p < 1 × 10− 5 from the GWAS. Conclusions We identified several potential loci, in particular PHLPP2, BBS9, RyR2, DUSP4 and HSPA8, associated with new-onset of atrial fibrillation, delirium, myocardial infarction, acute kidney injury and stroke after cardiac surgery. Trial registration The study was registered with ClinicalTrials.gov NCT01067703, prospectively registered on 11 Feb 2010. Electronic supplementary material The online version of this article (10.1186/s12872-019-1002-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Westphal
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Stoppe
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen, University Aachen, Aachen, Germany
| | - Matthias Gruenewald
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Berthold Bein
- Department of Anaesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Asklepios Klinik St. Georg, Hamburg, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jochen Renner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mark Coburn
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen, University Aachen, Aachen, Germany
| | - Gereon Schaelte
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen, University Aachen, Aachen, Germany
| | - Andreas Boening
- Department of Cardiovascular Surgery, University of Giessen, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiovascular Surgery, University of Giessen, Giessen, Germany
| | - Frank Kletzin
- Clinic of Anaesthesiology and Intensive Care Medicine, University Hospital Rostock, Rostock, Germany
| | - Jan Roesner
- Department of Anaesthesiology and Intensive Care, Suedstadt Hospital Rostock, Rostock, Germany
| | - Ulrich Strouhal
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Reyher
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Marion Ferner
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Ivo F Brandes
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Goettingen, Goettingen, Germany
| | - Martin Bauer
- Department of Anaesthesiology and Intensive Care, Klinikum Region Hannover, Hannover, Germany
| | - Andreas Kortgen
- Department of Anaesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian N Stehr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Maria Wittmann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology and Intensive Care Medicine, Johanniter Hospital Bonn, Bonn, Germany
| | - Rafael Struck
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Tanja Meyer-Treschan
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Peter Kienbaum
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University Luebeck, Luebeck, Germany
| | - Julika Schoen
- Department of Anaesthesiology and Intensive Care Medicine, Hospital Neuruppin, Neuruppin, Germany
| | - Michael Sander
- Department of Anaesthesiology and Intensive Care, University of Giessen, Giessen, Germany
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Thorsten Smul
- Department of Anaesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ewa Wolwender
- Department of Anaesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Schilling
- Department of Anaesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Soeren Mucha
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lukas Tittmann
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Madeline Kohlhaas
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Georg Fuernau
- University Heart Center Luebeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Luebeck, Luebeck, Germany
| | - Oana Brosteanu
- Clinical Trial Centre, University Leipzig, Leipzig, Germany
| | - Dirk Hasenclever
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
147
|
Xiao N, Yang BF, Shi JZ, Yu YG, Zhang F, Miao Q, Li DR. Karoshi May Be a Consequence of Overwork-Related Malignant Arrhythmia. Med Sci Monit 2019; 25:357-364. [PMID: 30635549 PMCID: PMC6339454 DOI: 10.12659/msm.911685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Karoshi, which is sudden death associated with overwork, has become a serious problem in China. Many studies have examined the relationship between cardiovascular risks and karoshi, but there is little evidence that explains the exact mechanism by which overwork induces sudden death. In these cases, there are few obvious positive findings from forensic autopsies except for histories of overwork prior to death. Therefore, we assume that abnormalities, such as cardiac arrhythmia, rather than organic changes are the cause of karoshi. Material/Methods In the present study, the forced swim test (FST) was used to establish models of overwork. The myocardial tissues of SD rats taking FST (1 h per day, for 30 consecutive days) were collected. The arrhythmia-related molecule CX43 as well as its upstream regulation molecule Cav-1 and cSrc were tested by Western blot (WB) and immunohistochemistry (IHC). HE staining and Masson‘s staining were performed in the myocardium tissue section. Results We observed downregulation of caveolin-1 (Cav1) followed by cSrc activation, resulting in the decrease of connexin43 (Cx43) levels in overwork models. Myocardial interstitial fibrosis, which is associated with electrophysiological aberrances that result in arrhythmia, was also found in the overwork models. Conclusions These data provide a mechanistic explanation for the speculated link between karoshi and cardiac arrhythmias.
Collapse
Affiliation(s)
- Ning Xiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Orthopedics, Yiling Hospital of Yichang, Yichang, Hubei, China (mainland)
| | - Bo-Fan Yang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jing-Zhuo Shi
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yan-Geng Yu
- Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, Guangdong, China (mainland)
| | - Fu Zhang
- Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, Guangdong, China (mainland)
| | - Qi Miao
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Dong-Ri Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
148
|
Lozano-Velasco E, Garcia-Padilla C, Aránega AE, Franco D. Genetics of Atrial Fibrilation: In Search of Novel Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2019; 19:183-194. [PMID: 30727926 DOI: 10.2174/1871529x19666190206150349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic disease in humans, ranging from 2% in the general population and rising up to 10-12% in 80+ years. Genetic analyses of AF familiar cases have identified a series of point mutations in distinct ion channels, supporting a causative link. However, these genetic defects only explain a minority of AF patients. Genomewide association studies identified single nucleotide polymorphisms (SNPs), close to PITX2 on 4q25 chromosome, that are highly associated to AF. Subsequent GWAS studies have identified several new loci, involving additional transcription and growth factors. Furthermore, these risk 4q25 SNPs serve as surrogate biomarkers to identify AF recurrence in distinct surgical and pharmacological interventions. Experimental studies have demonstrated an intricate signalling pathway supporting a key role of the homeobox transcription factor PITX2 as a transcriptional regulator. Furthermore, cardiovascular risk factors such as hyperthyroidism, hypertension and redox homeostasis have been identified to modulate PITX2 driven gene regulatory networks. We provide herein a state-of-the-art review of the genetic bases of atrial fibrillation, our current understanding of the genetic regulatory networks involved in AF and its plausible usage for searching novel therapeutic targets.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
149
|
Park HS, Jeong DS, Yu HT, Pak HN, Shim J, Kim JY, Kim J, Lee JM, Kim KH, Roh SY, Cho YJ, Kim YH, Yoon NS. 2018 Korean Guidelines for Catheter Ablation of Atrial Fibrillation: Part I. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2018. [DOI: 10.18501/arrhythmia.2018.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
150
|
Hasebe H, Yoshida K, Iida M, Hatano N, Muramatsu T, Nogami A, Aonuma K. Differences in the structural characteristics and distribution of epicardial adipose tissue between left and right atrial fibrillation. Europace 2018; 20:435-442. [PMID: 28387822 DOI: 10.1093/europace/eux051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/09/2017] [Indexed: 11/12/2022] Open
Abstract
Aims Right atrial (RA) fibrillation (RAF) was previously characterized by initiation from RA ectopies, presence of a right-to-left dominant frequency gradient during atrial fibrillation (AF), and augmentation of the gradient by adenosine triphosphate infusion. We investigated structural characteristics of the bi-atria and epicardial adipose tissue (EAT) volume in patients with RAF. Methods and results By using multidetector computed tomography, RA, left atrial (LA), right and LA appendage (RAA and LAA, respectively) volumes, pulmonary vein (PV) sizes, and EAT volumes were compared between the RAF group (n = 8) and LA fibrillation (LAF) group (n = 32). Compared with the LAF group, the LA volume was smaller (median 81.3 [95% CI, 74.2-88.5] vs. 64.5 [54.8-74.2] mL/m2; P = 0.04), the LAA volume was smaller (10.1 [9.0-11.3] vs. 6.5 [4.5-8.5] mL/m2; P = 0.008), and the RAA volume was larger (10.8 [9.1-12.4] vs. 14.1 [11.6-16.6] mL/m2; P = 0.044) in the RAF group. The RA volume was not significantly different between the groups (73.6 [66.8-80.3] vs. 68.1 [57.1-79.1] mL/m2; P = 0.47). The RAF group had smaller PVs (1.44 [1.33-1.55] vs. 1.12 [0.94-1.30] cm2/m2 for the left inferior PV; P = 0.01). Both the LA-EAT and RA-EAT volumes were smaller in the RAF group than the LAF group (4.2 [2.8-5.6] vs. 9.1 [7.8-10.4] mL/m2; P < 0.001 and 5.3 [4.3-6.3] vs. 9.5 [8.4-10.6] mL/m2; P < 0.001, respectively). Conclusion RAF was structurally characterized by predominant RAA enlargement, small left atrium, and less EAT surrounding the atria. Electrical properties that determine the features of AF (RAF vs. LAF) may be genetically linked to structural properties.
Collapse
Affiliation(s)
- Hideyuki Hasebe
- Division of Arrhythmology, Shizuoka Saiseikai General Hospital, 1-1-1, Oshika, Suruga-ku, Shizuoka 422-8527, Japan
| | - Kentaro Yoshida
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masataka Iida
- Division of Clinical Engineering, Shizuoka Saiseikai General Hospital, 1-1-1, Oshika, Suruga-ku, Shizuoka 422-8527, Japan
| | - Naoki Hatano
- Division of Clinical Engineering, Shizuoka Saiseikai General Hospital, 1-1-1, Oshika, Suruga-ku, Shizuoka 422-8527, Japan
| | - Toshiro Muramatsu
- Division of Clinical Engineering, Shizuoka Saiseikai General Hospital, 1-1-1, Oshika, Suruga-ku, Shizuoka 422-8527, Japan
| | - Akihiko Nogami
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazutaka Aonuma
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|