101
|
Abstract
The development of multiple disease-relevant autoantibodies is a hallmark of autoimmune diseases. In autoimmune type 1 diabetes (T1D), a variable time frame of autoimmunity precedes the clinically overt disease. The relevance of T follicular helper (TFH) cells for the immune system is increasingly recognized. Their pivotal contribution to antibody production by providing help to germinal center (GC) B cells facilitates the development of a long-lived humoral immunity. Their complex differentiation process, involving various stages and factors like B cell lymphoma 6 (Bcl6), is strictly controlled, as anomalous regulation of TFH cells is connected with immunopathologies. While the adverse effects of a TFH cell-related insufficient humoral immunity are obvious, the role of increased TFH frequencies in autoimmune diseases like T1D is currently highlighted. High levels of autoantigen trigger an excessive induction of TFH cells, consequently resulting in the production of autoantibodies. Therefore, TFH cells might provide promising approaches for novel therapeutic strategies.
Collapse
Affiliation(s)
- Martin G Scherm
- Institute for Diabetes Research, Independent Young Investigator Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, Munich, 80939, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Verena B Ott
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Technische Universität München, Parkring 13, Garching, 85748, Germany
- Institute for Advanced Study, Technische Universität München, Lichtenbergstr. 2a, Garching, 85748, Germany
| | - Carolin Daniel
- Institute for Diabetes Research, Independent Young Investigator Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, Munich, 80939, Germany.
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.
| |
Collapse
|
102
|
Okai S, Usui F, Yokota S, Hori-I Y, Hasegawa M, Nakamura T, Kurosawa M, Okada S, Yamamoto K, Nishiyama E, Mori H, Yamada T, Kurokawa K, Matsumoto S, Nanno M, Naito T, Watanabe Y, Kato T, Miyauchi E, Ohno H, Shinkura R. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nat Microbiol 2016; 1:16103. [PMID: 27562257 DOI: 10.1038/nmicrobiol.2016.103] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023]
Abstract
Immunoglobulin A (IgA) is the main antibody isotype secreted into the intestinal lumen. IgA plays a critical role in the defence against pathogens and in the maintenance of intestinal homeostasis. However, how secreted IgA regulates gut microbiota is not completely understood. In this study, we isolated monoclonal IgA antibodies from the small intestine of healthy mouse. As a candidate for an efficient gut microbiota modulator, we selected a W27 IgA, which binds to multiple bacteria, but not beneficial ones such as Lactobacillus casei. W27 could suppress the cell growth of Escherichia coli but not L. casei in vitro, indicating an ability to improve the intestinal environment. Indeed W27 oral treatment could modulate gut microbiota composition and have a therapeutic effect on both lymphoproliferative disease and colitis models in mice. Thus, W27 IgA oral treatment is a potential remedy for inflammatory bowel disease, acting through restoration of host-microbial symbiosis.
Collapse
Affiliation(s)
- Shinsaku Okai
- Department of Immunology, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526-0829, Japan
| | - Fumihito Usui
- Department of Immunology, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526-0829, Japan
| | - Shuhei Yokota
- Department of Immunology, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526-0829, Japan
| | - Yusaku Hori-I
- Department of Immunology, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526-0829, Japan
| | - Makoto Hasegawa
- Department of Protein Function Analysis, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526-0829, Japan
| | - Toshinobu Nakamura
- Department of Epigenetics, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526-0829, Japan
| | - Manabu Kurosawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8501, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kazuya Yamamoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Eri Nishiyama
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Hiroshi Mori
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Takuji Yamada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Ken Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | | | | | | | | | - Tamotsu Kato
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa 230-0045, Japan
| | - Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa 230-0045, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa 230-0045, Japan
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| | - Reiko Shinkura
- Department of Immunology, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526-0829, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
103
|
The Gut Microbiota and Immune System Relationship in Human Graft-versus-Host Disease. Mediterr J Hematol Infect Dis 2016; 8:e2016025. [PMID: 27158438 PMCID: PMC4848019 DOI: 10.4084/mjhid.2016.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota has gained increasing interest in the pathogenesis of immune-related diseases. In this context, graft-versus-host disease is a condition characterized by an immune response which frequently complicates and limits the outcomes of hematopoietic stem cell transplantations. Past studies, carried mostly in animals, already supported a relationship between gut microbiota and graft-versus-host disease. However, the possible mechanisms underlying this connection remain elusory. Moreover, strategies to prevent graft-versus-host disease are of great interest as well as the potential role of gut microbiota modulation. We reviewed the role of gut microbiota in the development of immune system and its involvement in the graft-versus-host disease, focusing on data available on humans.
Collapse
|
104
|
Abstract
Secondary lymphoid tissues share the important function of bringing together antigens and rare antigen-specific lymphocytes to foster induction of adaptive immune responses. Peyer's patches (PPs) are unique compared to other secondary lymphoid tissues in their continual exposure to an enormous diversity of microbiome- and food-derived antigens and in the types of pathogens they encounter. Antigens are delivered to PPs by specialized microfold (M) epithelial cells and they may be captured and presented by resident dendritic cells (DCs). In accord with their state of chronic microbial antigen exposure, PPs exhibit continual germinal center (GC) activity. These GCs not only contribute to the generation of B cells and plasma cells producing somatically mutated gut antigen-specific IgA antibodies but have also been suggested to support non-specific antigen diversification of the B-cell repertoire. Here, we review current understanding of how PPs foster B-cell encounters with antigen, how they favor isotype switching to the secretory IgA isotype, and how their GC responses may uniquely contribute to mucosal immunity.
Collapse
Affiliation(s)
- Andrea Reboldi
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
105
|
Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. Int Immunopharmacol 2016; 37:79-86. [PMID: 27133028 DOI: 10.1016/j.intimp.2016.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
The human intestinal microbiota has profound effects on human physiology, including the development and maintenance of the host immune and metabolic systems. Under physiological conditions, the intestinal microbiota maintains a symbiotic relationship with the host. Abnormalities in the host-microbe relationship, however, have been implicated in multiple disorders such as inflammatory bowel diseases (IBDs), metabolic syndrome, and autoimmune diseases. There is a close correlation between dietary factors and the microbial composition in the gut. Long-term dietary habits influence the composition of the gut microbial community and consequently alter microbial metabolic activity. The diet-microbiota axis plays a vital role in the regulation of the host immune system, at least partly through altering microbial metabolism. In this review, we will describe the current findings regarding how dietary factors and microbial metabolites regulate the host immune system.
Collapse
|
106
|
Pabst O, Cerovic V, Hornef M. Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota. Trends Immunol 2016; 37:287-296. [PMID: 27066758 DOI: 10.1016/j.it.2016.03.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Starting at birth, the intestinal microbiota changes dramatically from a highly individual collection of microorganisms, dominated by comparably few species, to a mature, competitive, and diverse microbial community. Microbial colonization triggers and accompanies the maturation of the mucosal immune system and ultimately results in a mutually beneficial host-microbe interrelation in the healthy host. Here, we discuss the role of secretory immunoglobulin A (SIgA) during the establishment of the infant microbiota and life-long host-microbial homeostasis. We critically review the published literature on how SIgA affects the enteric microbiota and highlight the accessibility of the infant microbiota to therapeutic intervention.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH University, 52074 Aachen, Germany.
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH University, 52074 Aachen, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University, 52074 Aachen, Germany
| |
Collapse
|
107
|
Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, Inohara N, Núñez G. Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens. Immunity 2016; 44:647-658. [PMID: 26944199 DOI: 10.1016/j.immuni.2016.02.006] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
Abstract
The gut microbiota is compartmentalized in the intestinal lumen and induces local immune responses, but it remains unknown whether the gut microbiota can induce systemic response and contribute to systemic immunity. We report that selective gut symbiotic gram-negative bacteria were able to disseminate systemically to induce immunoglobulin G (IgG) response, which primarily targeted gram-negative bacterial antigens and conferred protection against systemic infections by E. coli and Salmonella by directly coating bacteria to promote killing by phagocytes. T cells and Toll-like receptor 4 on B cells were important in the generation of microbiota-specific IgG. We identified murein lipoprotein (MLP), a highly conserved gram-negative outer membrane protein, as a major antigen that induced systemic IgG homeostatically in both mice and humans. Administration of anti-MLP IgG conferred crucial protection against systemic Salmonella infection. Thus, our findings reveal an important function for the gut microbiota in combating systemic infection through the induction of protective IgG.
Collapse
Affiliation(s)
- Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel Cisalpino
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Saranyaraajan Varadarajan
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - H Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marilia Cascalho
- Transplantation Biology, Department of Surgery and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
108
|
Gitlin AD, von Boehmer L, Gazumyan A, Shulman Z, Oliveira TY, Nussenzweig MC. Independent Roles of Switching and Hypermutation in the Development and Persistence of B Lymphocyte Memory. Immunity 2016; 44:769-81. [PMID: 26944202 DOI: 10.1016/j.immuni.2016.01.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023]
Abstract
Somatic hypermutation (SHM) and class-switch recombination (CSR) increase the affinity and diversify the effector functions of antibodies during immune responses. Although SHM and CSR are fundamentally different, their independent roles in regulating B cell fate have been difficult to uncouple because a single enzyme, activation-induced cytidine deaminase (encoded by Aicda), initiates both reactions. Here, we used a combination of Aicda and antibody mutant alleles that separate the effects of CSR and SHM on polyclonal immune responses. We found that class-switching to IgG1 biased the fate choice made by B cells, favoring the plasma cell over memory cell fate without significantly affecting clonal expansion in the germinal center (GC). In contrast, SHM reduced the longevity of memory B cells by creating polyreactive specificities that were selected against over time. Our data define the independent contributions of SHM and CSR to the generation and persistence of memory in the antibody system.
Collapse
Affiliation(s)
- Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA.
| | - Lotta von Boehmer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Ziv Shulman
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 USA.
| |
Collapse
|
109
|
Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins. Proc Natl Acad Sci U S A 2016; 113:E1545-54. [PMID: 26929374 DOI: 10.1073/pnas.1601678113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.
Collapse
|
110
|
Abstract
IgA is induced through T-cell-dependent and -independent pathways. In this issue, Bunker et al. (2015) now show that the T-cell-independent pathway is sufficient to coat most small intestinal microbes specifically, and Fransen et al. (2015) find that IgA coating promotes uptake of microbes into Peyer's patches and drives further induction in a positive-feedback loop.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Maurice Müller Laboratories, UVCM, University Hospital of Bern, 3010 Bern, Switzerland.
| | - Kathy D McCoy
- Maurice Müller Laboratories, UVCM, University Hospital of Bern, 3010 Bern, Switzerland
| |
Collapse
|
111
|
Immuno-ecology: how the microbiome regulates tolerance and autoimmunity. Curr Opin Immunol 2015; 37:34-9. [DOI: 10.1016/j.coi.2015.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/19/2015] [Accepted: 09/25/2015] [Indexed: 01/06/2023]
|
112
|
Levy M, Thaiss CA, Elinav E. Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. Genome Med 2015; 7:120. [PMID: 26589591 PMCID: PMC4654884 DOI: 10.1186/s13073-015-0249-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human microbiome, often referred to as the 'second genome', encompasses up to 100-fold more genes than the host genome. In contrast to the human genome, the microbial genome is flexible and amenable to change during the host's lifetime. As the composition of the microbial metagenome has been associated with the development of human disease, the mechanisms controlling the composition and function of the metagenome are of considerable interest and therapeutic potential. In the past few years, studies have revealed how the host immune system is involved in determining the microbial metagenome, and, in turn, how the microbiota regulates gene expression in the immune system. This species-specific bidirectional interaction is required for homeostatic health, whereas aberrations in the tightly controlled regulatory circuits that link the host immunogenome and the microbial metagenome drive susceptibility to common human diseases. Here, we summarize some of the major principles orchestrating this cross-talk between microbial and host genomes, with a special focus on the interaction between the intestinal immune system and the gut microbiome. Understanding the reciprocal genetic and epigenetic control between host and microbiota will be an important step towards the development of novel therapies against microbiome-driven diseases.
Collapse
Affiliation(s)
- Maayan Levy
- Immunology Department, Weizmann Institute of Science, 100 Herzl Street, Rehovot, 76100, Israel
| | - Christoph A Thaiss
- Immunology Department, Weizmann Institute of Science, 100 Herzl Street, Rehovot, 76100, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 100 Herzl Street, Rehovot, 76100, Israel.
| |
Collapse
|
113
|
Runtsch MC, Hu R, Alexander M, Wallace J, Kagele D, Petersen C, Valentine JF, Welker NC, Bronner MP, Chen X, Smith DP, Ajami NJ, Petrosino JF, Round JL, O'Connell RM. MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis. Oncotarget 2015; 6:28556-72. [PMID: 26456940 PMCID: PMC4745677 DOI: 10.18632/oncotarget.5597] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022] Open
Abstract
Host-microbial interactions within the mammalian intestines must be properly regulated in order to promote host health and limit disease. Because the microbiota provide constant immunological signals to intestinal tissues, a variety of regulatory mechanisms have evolved to ensure proper immune responses to maintain homeostasis. However, many of the genes that comprise these regulatory pathways, including immune-modulating microRNAs (miRNAs), have not yet been identified or studied in the context of intestinal homeostasis. Here, we investigated the role of microRNA-146a (miR-146a) in regulating intestinal immunity and barrier function and found that this miRNA is expressed in a variety of gut tissues in adult mice. By comparing intestinal gene expression in WT and miR-146a-/- mice, we demonstrate that miR-146a represses a subset of gut barrier and inflammatory genes all within a network of immune-related signaling pathways. We also found that miR-146a restricts the expansion of intestinal T cell populations, including Th17, Tregs, and Tfh cells. GC B cells, Tfh ICOS expression, and the production of luminal IgA were also reduced by miR-146a in the gut. Consistent with an enhanced intestinal barrier, we found that miR-146a-/- mice are resistant to DSS-induced colitis, a model of Ulcerative Colitis (UC), and this correlated with elevated colonic miR-146a expression in human UC patients. Taken together, our data describe a role for miR-146a in constraining intestinal barrier function, a process that alters gut homeostasis and enhances at least some forms of intestinal disease in mice.
Collapse
Affiliation(s)
- Marah C. Runtsch
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Ruozhen Hu
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | - Jared Wallace
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Dominique Kagele
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Charisse Petersen
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John F. Valentine
- Department of Medicine, Division of Gastroenterology, University of Utah, Salt Lake City, UT, USA
| | - Noah C. Welker
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Mary P. Bronner
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Xinjian Chen
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Daniel P. Smith
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nadim J. Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - June L. Round
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Ryan M. O'Connell
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
114
|
The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol 2015; 36:460-70. [PMID: 26169256 DOI: 10.1016/j.it.2015.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/01/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022]
Abstract
The immune system has developed strategies to maintain a homeostatic relationship with the resident microbiota. IgA is central in holding this relationship, as the most dominant immunoglobulin isotype at the mucosal surface of the intestine. Recent studies report a role for IgA in shaping the composition of the intestinal microbiota and exploit strategies to characterise IgA-binding bacteria for their inflammatory potential. We review these findings here, and place them in context of the current understanding of the range of microorganisms that contribute to the IgA repertoire and the pathways that determine the quality of the IgA response. We examine why only certain intestinal microbes are coated with IgA, and discuss how understanding the determinants of this specific responsiveness may provide insight into diseases associated with dysbiosis.
Collapse
|
115
|
Berkowska MA, Schickel JN, Grosserichter-Wagener C, de Ridder D, Ng YS, van Dongen JJM, Meffre E, van Zelm MC. Circulating Human CD27-IgA+ Memory B Cells Recognize Bacteria with Polyreactive Igs. THE JOURNAL OF IMMUNOLOGY 2015; 195:1417-26. [PMID: 26150533 DOI: 10.4049/jimmunol.1402708] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
The vast majority of IgA production occurs in mucosal tissue following T cell-dependent and T cell-independent Ag responses. To study the nature of each of these responses, we analyzed the gene-expression and Ig-reactivity profiles of T cell-dependent CD27(+)IgA(+) and T cell-independent CD27(-)IgA(+) circulating memory B cells. Gene-expression profiles of IgA(+) subsets were highly similar to each other and to IgG(+) memory B cell subsets, with typical upregulation of activation markers and downregulation of inhibitory receptors. However, we identified the mucosa-associated CCR9 and RUNX2 genes to be specifically upregulated in CD27(-)IgA(+) B cells. We also found that CD27(-)IgA(+) B cells expressed Abs with distinct Ig repertoire and reactivity compared with those from CD27(+)IgA(+) B cells. Indeed, Abs from CD27(-)IgA(+) B cells were weakly mutated, often used Igλ chain, and were enriched in polyreactive clones recognizing various bacterial species. Hence, T cell-independent IgA responses are likely involved in the maintenance of gut homeostasis through the production of polyreactive mutated IgA Abs with cross-reactive anti-commensal reactivity.
Collapse
Affiliation(s)
- Magdalena A Berkowska
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | | | - Dick de Ridder
- The Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, 2628 CD Delft, the Netherlands
| | - Yen Shing Ng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands;
| |
Collapse
|
116
|
Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat Immunol 2015; 16:880-8. [DOI: 10.1038/ni.3213] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023]
|
117
|
Abstract
Immunoglobulin A (IgA) is the most abundantly produced immunoglobulin found primarily on mucosal surfaces. The generation of IgA and its involvement in mucosal immune responses have been intensely studied over the past years. IgA can be generated in T cell-dependent and T cell-independent pathways, and it has an important impact on maintaining homeostasis within the mucosal immune system. There is good evidence that B-1 cells contribute substantially to the production of mucosal IgA and thus play an important role in regulating commensal microbiota. However, whether B-1 cells produce antigen-specific or only nonspecific IgA remains to be determined. This review will discuss what is currently known about IgA production by B-1 cells and the functional relevance of B-1 cell-derived IgA both in vitro and in vivo.
Collapse
Affiliation(s)
- Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
118
|
Abstract
The symbiotic relationship between the mammalian host and gut microbes has fascinated many researchers in recent years. Use of germ-free animals has contributed to our understanding of how commensal microbes affect the host. Immunodeficiency animals lacking specific components of the mammalian immune system, on the other hand, enable studying of the reciprocal function-how the host controls which microbes to allow for symbiosis. Here we review the recent advances and discuss our perspectives of how to better understand the latter, with an emphasis on the effects of adaptive immunity on the composition and diversity of gut commensal bacteria.
Collapse
Affiliation(s)
- Husen Zhang
- Department of Civil and Environmental Engineering; Virginia Tech; Blacksburg, VA USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology; Virginia Tech; Blacksburg, VA USA,Correspondence to: Xin M. Luo;
| |
Collapse
|
119
|
Xiong N, Hu S. Regulation of intestinal IgA responses. Cell Mol Life Sci 2015; 72:2645-55. [PMID: 25837997 DOI: 10.1007/s00018-015-1892-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/20/2022]
Abstract
The intestine harbors enormous numbers of commensal bacteria and is under frequent attack from food-borne pathogens and toxins. A properly regulated immune response is critical for homeostatic maintenance of commensals and for protection against infection and toxins in the intestine. Immunoglobulin A (IgA) isotype antibodies function specifically in mucosal sites such as the intestines to help maintain intestinal health by binding to and regulating commensal microbiota, pathogens and toxins. IgA antibodies are produced by intestinal IgA antibody-secreting plasma cells generated in gut-associated lymphoid tissues from naïve B cells in response to stimulations of the intestinal bacteria and components. Research on generation, migration, and maintenance of IgA-secreting cells is important in our effort to understand the biology of IgA responses and to help better design vaccines against intestinal infections.
Collapse
Affiliation(s)
- Na Xiong
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA, 16802, USA,
| | | |
Collapse
|
120
|
Kato LM, Kawamoto S, Maruya M, Fagarasan S. The role of the adaptive immune system in regulation of gut microbiota. Immunol Rev 2015; 260:67-75. [PMID: 24942682 DOI: 10.1111/imr.12185] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system. Conversely, the immune system, particularly the adaptive immune system, plays a key role in shaping the repertoire of gut microbiota. The fitness of host immune system is reflected in the gut microbiota, and deficiencies in either innate or adaptive immunity impact on diversity and structures of bacterial communities in the gut. Here, we discuss the mechanisms that underlie this reciprocity and emphasize how the adaptive immune system via immunoglobulins (i.e. IgA) contributes to diversification and balance of gut microbiota required for immune homeostasis.
Collapse
Affiliation(s)
- Lucia M Kato
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences (IMS-RCAI), RIKEN Yokohama Institute, Yokohama, Japan
| | | | | | | |
Collapse
|
121
|
Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2015; 41:529-42. [PMID: 25367570 DOI: 10.1016/j.immuni.2014.10.004] [Citation(s) in RCA: 1319] [Impact Index Per Article: 146.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 12/22/2022]
Abstract
Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high-affinity antibodies and memory B cells. Tfh cell differentiation is a multistage, multifactorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
122
|
Lycke N, Bemark M, Spencer J. Mucosal B Cell Differentiation and Regulation. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
123
|
Fagarasan S, Macpherson AJ. The Regulation of IgA Production. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
124
|
Magadan S, Sunyer OJ, Boudinot P. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates. Results Probl Cell Differ 2015; 57:235-64. [PMID: 26537384 PMCID: PMC5124013 DOI: 10.1007/978-3-319-20819-0_10] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.
Collapse
Affiliation(s)
- Susana Magadan
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | - Oriol J Sunyer
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| |
Collapse
|
125
|
|
126
|
Chorny A, Cerutti A. Regulation and Function of Mucosal IgA and IgD. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
127
|
Abstract
Animals and many of their chronic microbial inhabitants form relationships of symbiotic mutualism, which occurs when coexisting life-forms derive mutual benefit from stable associations. While microorganisms receive a secure habitat and constant food source from vertebrate hosts, they are required for optimal immune system development and occupy niches otherwise abused by pathogens. Microbes have also been shown to provide vertebrate hosts with metabolic capabilities that enhance energy and nutrient uptake from the diet. The immune system plays a central role in the establishment and maintenance of host-microbe homeostasis, and B lineage cells play a key role in this regulation. Here, I reviewed the structure and function of the microbiota and the known mechanisms of how nonpathogenic microbes influence B cell biology and immunoglobulin repertoire development early in life. I also discuss what is known about how B lineage cells contribute to the process of shaping the composition of commensal/mutualistic microbe membership.
Collapse
Affiliation(s)
- Duane R Wesemann
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
128
|
Mathias A, Pais B, Favre L, Benyacoub J, Corthésy B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes 2014; 5:688-95. [PMID: 25536286 PMCID: PMC4615909 DOI: 10.4161/19490976.2014.983763] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While the gut epithelium represents the largest mucosal tissue, the mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple outcomes that remain poorly understood at the molecular level. Deciphering such events may provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the intestinal immune system include maturation processes prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. As commensal bacteria are naturally coated by natural and antigen-specific SIgA in the gut lumen, understanding the consequences of such an interaction may provide new clues on how the antibody contributes to homeostasis at mucosal surfaces. This review discusses several aspects of the role of SIgA in the essential communication existing between the host epithelium and members of its microbiota.
Collapse
Affiliation(s)
- Amandine Mathias
- R&D Laboratory; Division of Immunology and Allergy; Center des Laboratoires d’Epalinges; Epalinges, Switzerland
| | - Bruno Pais
- R&D Laboratory; Division of Immunology and Allergy; Center des Laboratoires d’Epalinges; Epalinges, Switzerland
| | - Laurent Favre
- Nutrition and Health; Nestlé Research Center; Lausanne, Switzerland
| | - Jalil Benyacoub
- Nutrition and Health; Nestlé Research Center; Lausanne, Switzerland
| | - Blaise Corthésy
- R&D Laboratory; Division of Immunology and Allergy; Center des Laboratoires d’Epalinges; Epalinges, Switzerland,Correspondence to: Blaise Corthésy;
| |
Collapse
|
129
|
Jacobs JP, Braun J. Immune and genetic gardening of the intestinal microbiome. FEBS Lett 2014; 588:4102-11. [PMID: 24613921 PMCID: PMC4156569 DOI: 10.1016/j.febslet.2014.02.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/19/2022]
Abstract
The mucosal immune system - consisting of adaptive and innate immune cells as well as the epithelium - is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to non-pathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility.
Collapse
Affiliation(s)
- Jonathan P Jacobs
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
130
|
Castro CD, Flajnik MF. Putting J chain back on the map: how might its expression define plasma cell development? THE JOURNAL OF IMMUNOLOGY 2014; 193:3248-55. [PMID: 25240020 DOI: 10.4049/jimmunol.1400531] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Joining chain (J chain) is a small polypeptide that regulates multimerization of secretory IgM and IgA, the only two mammalian Igs capable of forming multimers. J chain also is required for poly-Ig receptor-mediated transport of these Ig classes across the mucosal epithelium. It is generally assumed that all plasma cells express J chain regardless of expressed isotype, despite the documented presence of J chain(-) plasma cells in mammals, specifically in all monomeric IgA-secreting cells and some IgG-secreting cells. Compared with most other immune molecules, J chain has not been studied extensively, in part because of technical limitations. Even the reported phenotype of the J chain-knockout mouse is often misunderstood or underappreciated. In this short review, we discuss J chain in light of the various proposed models of its expression and regulation, with an added focus on its evolutionary significance, as well as its expression in different B cell lineages/differentiation states.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
131
|
Proietti M, Cornacchione V, Rezzonico Jost T, Romagnani A, Faliti CE, Perruzza L, Rigoni R, Radaelli E, Caprioli F, Preziuso S, Brannetti B, Thelen M, McCoy KD, Slack E, Traggiai E, Grassi F. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism. Immunity 2014; 41:789-801. [PMID: 25464855 DOI: 10.1016/j.immuni.2014.10.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022]
Abstract
Microbial colonization of the gut induces the development of gut-associated lymphoid tissue (GALT). The molecular mechanisms that regulate GALT function and result in gut-commensal homeostasis are poorly defined. T follicular helper (Tfh) cells in Peyer's patches (PPs) promote high-affinity IgA responses. Here we found that the ATP-gated ionotropic P2X7 receptor controls Tfh cell numbers in PPs. Lack of P2X7 in Tfh cells enhanced germinal center reactions and high-affinity IgA secretion and binding to commensals. The ensuing depletion of mucosal bacteria resulted in reduced systemic translocation of microbial components, lowering B1 cell stimulation and serum IgM concentrations. Mice lacking P2X7 had increased susceptibility to polymicrobial sepsis, which was rescued by Tfh cell depletion or administration of purified IgM. Thus, regulation of Tfh cells by P2X7 activity is important for mucosal colonization, which in turn results in IgM serum concentrations necessary to protect the host from bacteremia.
Collapse
Affiliation(s)
- Michele Proietti
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Vanessa Cornacchione
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Novartis Institute for Biomedical Research, Fabrickstrasse 2, 4002 Basel, Switzerland
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Andrea Romagnani
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Caterina Elisa Faliti
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Rosita Rigoni
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | | | - Flavio Caprioli
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Unit of Gastroenterology 2, Fondazione IRCCS Ca' Granda, Ospedale Policlinico di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Silvia Preziuso
- Department of Veterinary Medical Sciences, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Barbara Brannetti
- Novartis Institute for Biomedical Research, Fabrickstrasse 2, 4002 Basel, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Kathy D McCoy
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Emma Slack
- Institute of Microbiology, ETH Zurich, HCI F 413 Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Elisabetta Traggiai
- Novartis Institute for Biomedical Research, Fabrickstrasse 2, 4002 Basel, Switzerland
| | - Fabio Grassi
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Department of Medical Biotechnology and Translational Medicine, University of Milan, Via G.B. Viotti 3/5, 20133 Milan, Italy.
| |
Collapse
|
132
|
Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol 2014; 5:534. [PMID: 25352838 PMCID: PMC4195361 DOI: 10.3389/fmicb.2014.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others' work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.
Collapse
Affiliation(s)
- Arnaud Moris
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France ; Department of Immunology, Hôpital Pitié-Salpêtière Paris, France
| | - Shannon Murray
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| |
Collapse
|
133
|
Abstract
How diversity of the microbiota is generated and maintained is an open question. In this issue of Immunity, Kawamoto et al. show that T follicular regulatory cells foster microbiota diversity via the regulation of IgA selection.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy.
| |
Collapse
|
134
|
Kaiko GE, Stappenbeck TS. Host-microbe interactions shaping the gastrointestinal environment. Trends Immunol 2014; 35:538-48. [PMID: 25220948 DOI: 10.1016/j.it.2014.08.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 12/18/2022]
Abstract
Tremendous advances have been made in mapping the complexity of the human gut microbiota in both health and disease states. These analyses have revealed that, rather than a constellation of individual species, a healthy microbiota comprises an interdependent network of microbes. The microbial and host interactions that shape both this network and the gastrointestinal environment are areas of intense investigation. Here we review emerging concepts of how microbial metabolic processes control commensal composition, invading pathogens, immune activation, and intestinal barrier function. We posit that all of these factors are critical for the maintenance of homeostasis and avoidance of overt inflammatory disease. A greater understanding of the underlying mechanisms will shed light on the pathogenesis of many diseases and guide new therapeutic interventions.
Collapse
Affiliation(s)
- Gerard E Kaiko
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
135
|
Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota. Trends Immunol 2014; 35:507-17. [PMID: 25172617 DOI: 10.1016/j.it.2014.07.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022]
Abstract
The immune system must constantly monitor the gastrointestinal tract for the presence of pathogens while tolerating trillions of commensal microbiota. It is clear that intestinal microbiota actively modulate the immune system to maintain a mutually beneficial relation, but the mechanisms that maintain homeostasis are not fully understood. Recent advances have begun to shed light on the cellular and molecular factors involved, revealing that a range of microbiota derivatives can influence host immune functions by targeting various cell types, including intestinal epithelial cells, mononuclear phagocytes, innate lymphoid cells, and B and T lymphocytes. Here, we review these findings, highlighting open questions and important challenges to overcome in translating this knowledge into new therapies for intestinal and systemic immune disorders.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Naren Srinivasan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, UK
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
136
|
Kawamoto S, Maruya M, Kato L, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M, Fagarasan S. Foxp3+ T Cells Regulate Immunoglobulin A Selection and Facilitate Diversification of Bacterial Species Responsible for Immune Homeostasis. Immunity 2014; 41:152-65. [DOI: 10.1016/j.immuni.2014.05.016] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
|
137
|
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157:121-41. [PMID: 24679531 DOI: 10.1016/j.cell.2014.03.011] [Citation(s) in RCA: 3143] [Impact Index Per Article: 314.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023]
Abstract
The microbiota plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally, this immune system-microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected.
Collapse
Affiliation(s)
- Yasmine Belkaid
- Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Timothy W Hand
- Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
138
|
Abstract
In mammals, the gastrointestinal tract is colonized by extremely dense and diverse bacterial communities that are beneficial for health. Maintenance of the complexity and the proper localization and distribution of gut bacteria is of prime importance because when disrupted, the microbial community attacks the host's tissues and causes inflammatory reactions. Our immune system provides the necessary mechanisms to maintain the homeostatic balance between microbial communities and the host. IgA plays crucial roles in regulation of host-bacteria interactions in the gut. IgA is the most abundant immunoglobulin isotype in our body, mostly produced by the IgA plasma cells residing in the lamina propria of the small and large intestine. Although it was well known that IgA provides protection against pathogens, only recently has it become clear that IgA plays critical roles in regulation of bacterial communities in the gut in steady-state conditions. Here, we summarize recent progress in our understanding of the various mechanisms of IgA synthesis in multiple anatomical sites and discuss how IgA limits bacterial access to the internal milieu of the host.
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Nakajima
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
139
|
Kamada N, Núñez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 2014; 146:1477-88. [PMID: 24503128 PMCID: PMC3995843 DOI: 10.1053/j.gastro.2014.01.060] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
The microbiota is an important factor in the development of the immune response. The interaction between the gastrointestinal tract and resident microbiota is well balanced in healthy individuals, but its breakdown can lead to intestinal and extraintestinal disease. We review current knowledge about the mechanisms that regulate the interaction between the immune system and the microbiota, focusing on the role of resident intestinal bacteria in the development of immune responses. We also discuss mechanisms that prevent immune responses against resident bacteria, and how the indigenous bacteria stimulate the immune system to protect against commensal pathobionts and exogenous pathogens. Unraveling the complex interactions between resident intestinal bacteria and the immune system could improve our understanding of disease pathogenesis and lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
140
|
Abstract
The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.
Collapse
|
141
|
Shuttling of information between the mucosal and luminal environment drives intestinal homeostasis. FEBS Lett 2014; 588:4148-57. [DOI: 10.1016/j.febslet.2014.02.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/14/2022]
|
142
|
Lycke NY. IgA B Cell Responses to Gut Mucosal Antigens: Do We Know it all? Front Immunol 2013; 4:368. [PMID: 24312091 PMCID: PMC3826092 DOI: 10.3389/fimmu.2013.00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nils Y Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
143
|
Abstract
The gastrointestinal tract is heavily colonized with commensal microbes with the concentration of bacteria increasing longitudinally down the length of the intestine. Bacteria are also spatially distributed transversely from the epithelial surface to the intestinal lumen with the inner mucus layer normally void of bacteria. Maintenance of this equilibrium is extremely important for human health and, as the dominant immunoglobulin at mucosal sites, IgA influences mutualism between the host and its normal microbiota. In this review we focus on the links between immune and microbial geography of the mammalian intestinal tract.
Collapse
|
144
|
Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 2013; 14:660-7. [PMID: 23778793 DOI: 10.1038/ni.2611] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 02/08/2023]
Abstract
The mammalian intestinal tract harbors a diverse community of trillions of microorganisms, which have co-evolved with the host immune system for millions of years. Many of these microorganisms perform functions critical for host physiology, but the host must remain vigilant to control the microbial community so that the symbiotic nature of the relationship is maintained. To facilitate homeostasis, the immune system ensures that the diverse microbial load is tolerated and anatomically contained, while remaining responsive to microbial breaches and invasion. Although the microbiota is required for intestinal immune development, immune responses also regulate the structure and composition of the intestinal microbiota. Here we discuss recent advances in our understanding of these complex interactions and their implications for human health and disease.
Collapse
Affiliation(s)
- Eric M Brown
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
145
|
Abstract
The evolutionary emergence of vertebrates was accompanied by major morphological and functional innovations, including the development of an adaptive immune system. Vertebrate adaptive immunity is based on the clonal expression of somatically diversifying antigen receptors on lymphocytes. This is a common feature of both the jawless and jawed vertebrates , although these two groups of extant vertebrates employ structurally different types of antigen receptors and principal mechanisms for their somatic diversification . These observations suggest that the common vertebrate ancestor must have already possessed a complex immune system, including B- and T-like lymphocyte lineages and primary lymphoid organs, such as the thymus, but possibly lacked the facilities for somatic diversification of antigen receptors. Interestingly, memory formation, previously considered to be a defining feature of adaptive immunity, also occurs in the context of innate immune responses and can even be observed in unicellular organisms, attesting to the convergent evolutionary history of distinct aspects of adaptive immunity.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; ,
| | | |
Collapse
|
146
|
Abstract
Commensal bacteria inhabit mucosal and epidermal surfaces in mice and humans, and have effects on metabolic and immune pathways in their hosts. Recent studies indicate that the commensal microbiota can be manipulated to prevent and even to cure infections that are caused by pathogenic bacteria, particularly pathogens that are broadly resistant to antibiotics, such as vancomycin-resistant Enterococcus faecium, Gram-negative Enterobacteriaceae and Clostridium difficile. In this Review, we discuss how immune- mediated colonization resistance against antibiotic-resistant intestinal pathogens is influenced by the composition of the commensal microbiota. We also review recent advances characterizing the ability of different commensal bacterial families, genera and species to restore colonization resistance to intestinal pathogens in antibiotic-treated hosts.
Collapse
|
147
|
Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 2013; 25:342-51. [PMID: 24184014 DOI: 10.1016/j.smim.2013.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Segmented Filamentous Bacteria (SFB) are present in the gut microbiota of a large number of vertebrate species where they are found intimately attached to the intestinal epithelium. SFB has recently attracted considerable attention due to its outstanding capacity to stimulate innate and adaptive host immune responses without causing pathology. Recent genomic analysis placed SFB between obligate and facultative symbionts, unraveled its highly auxotrophic needs, and provided a rationale for the complex SFB life-style in close contact with the epithelium. Herein, we examine how the SFB life-style may underlie its potent immunostimulatory properties and discuss how the trade-off set up between SFB and its hosts can simultaneously help to establish and maintain the ecological niche of SFB in the intestine and drive the post-natal maturation of the host gut immune barrier.
Collapse
Affiliation(s)
- Pamela Schnupf
- INSERM, U989, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, and Institut IMAGINE, 75015 Paris, France; Institut Pasteur, Unité de Pathogénie Microbienne Moleculaire, 25-28 rue du Dr. Roux, 75015 Paris, France
| | | | | |
Collapse
|
148
|
Kato LM, Kawamoto S, Maruya M, Fagarasan S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol 2013; 92:49-56. [PMID: 24100385 DOI: 10.1038/icb.2013.54] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
The main function of the immune system is to protect the host against pathogens. However, unlike the systemic immune system, the gut immune system does not eliminate, but instead nourishes complex bacterial communities and establishes advanced symbiotic relationships. Immunoglobulin A (IgA) is the most abundant antibody isotype in mammals, produced mainly in the gut. The primary function of IgA is to maintain homeostasis at mucosal surfaces, and studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Dynamic diversification and constant adaptation of IgA responses to local microbiota require expression of activation-induced cytidine deaminase by B cells and control from T follicular helper and Foxp3(+) T cells in germinal centers (GCs). We discuss the finely tuned regulatory mechanisms for IgA synthesis in GCs of Peyer's patches and emphasize the roles of CD4(+) T cells for IgA selection and the maintenance of appropriate gut microbial communities required for immune homeostasis.
Collapse
Affiliation(s)
- Lucia M Kato
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences IMS-RCAI, RIKEN Yokohama Institute, Yokohama, Japan
| | - Shimpei Kawamoto
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences IMS-RCAI, RIKEN Yokohama Institute, Yokohama, Japan
| | - Mikako Maruya
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences IMS-RCAI, RIKEN Yokohama Institute, Yokohama, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences IMS-RCAI, RIKEN Yokohama Institute, Yokohama, Japan
| |
Collapse
|
149
|
Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013; 4:185. [PMID: 23874333 PMCID: PMC3709412 DOI: 10.3389/fimmu.2013.00185] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 01/06/2023] Open
Abstract
Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer’s patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Department of Immunology and Allergy, University State Hospital Lausanne (CHUV) , Lausanne , Switzerland
| |
Collapse
|
150
|
Naturally secreted immunoglobulins limit B1 and MZ B-cell numbers through a microbiota-independent mechanism. Blood 2013; 122:209-18. [DOI: 10.1182/blood-2012-08-447136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Key Points
The study of AID−/−µS−/− mice reveals a microbiota-independent negative feedback control of MZ and B1 cell numbers by naturally secreted Ig.
Collapse
|