101
|
Wei S, Low SW, Poore CP, Chen B, Gao Y, Nilius B, Liao P. Comparison of Anti-oncotic Effect of TRPM4 Blocking Antibody in Neuron, Astrocyte and Vascular Endothelial Cell Under Hypoxia. Front Cell Dev Biol 2020; 8:562584. [PMID: 33195194 PMCID: PMC7604339 DOI: 10.3389/fcell.2020.562584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
In stroke and other neurological diseases, Transient Receptor Potential Melastatin 4 (TRPM4) has been reported to cause oncotic cell death which is due to an excessive influx of sodium ions. Following stroke, hypoxia condition activates TRPM4 channel, and the sodium influx via TRPM4 is further enhanced by an increased TRPM4 expression. However, the effect of TRPM4 inhibition on oncotic cell death, particularly during the acute stage, remains largely unknown. Recently, we have developed a polyclonal antibody M4P that specifically inhibits TRPM4 channel. M4P blocks the channel via binding to a region close to the channel pore from extracellular space. Using M4P, we evaluated the acute effect of blocking TRPM4 in neurons, astrocytes, and vascular endothelial cells. In a rat stroke model, M4P co-localized with neuronal marker NeuN and endothelial marker vWF, whereas few GFAP positive astrocytes were stained by M4P in the ipsilateral hemisphere. When ATP was acutely depleted in cultured cortical neurons and microvascular endothelial cells, cell swelling was induced. Application of M4P significantly blocked TRPM4 current and attenuated oncosis. TUNEL assay, PI staining and western blot on cleaved Caspase-3 revealed that M4P could ameliorate apoptosis after 24 h hypoxia exposure. In contrast, acute ATP depletion in cultured astrocytes failed to demonstrate an increase of cell volume, and application of M4P or control IgG had no effect on cell volume change. When TRPM4 was overexpressed in astrocytes, acute ATP depletion successfully induced oncosis which could be suppressed by M4P treatment. Our results demonstrate that comparing to astrocytes, neurons, and vascular endothelial cells are more vulnerable to hypoxic injury. During the acute stage of stroke, blocking TRPM4 channel could protect neurons and vascular endothelial cells from oncotic cell death.
Collapse
Affiliation(s)
- Shunhui Wei
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Low
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Charlene Priscilla Poore
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Bo Chen
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Yahui Gao
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ping Liao
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
| |
Collapse
|
102
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
103
|
Robert SM, Reeves BC, Alper SL, Zhang J, Kahle KT. New drugs on the horizon for cerebral edema: what's in the clinical development pipeline? Expert Opin Investig Drugs 2020; 29:1099-1105. [PMID: 32815401 PMCID: PMC8104020 DOI: 10.1080/13543784.2020.1813715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Research has advanced our understanding of the molecular and cellular mechanisms of cerebral edema and has propelled the development of novel antiedema therapeutics. Current evidence supports aberrant neuro-glial ion transport as a central mechanism that underlies pathological fluid accumulation after central nervous system injury. AREAS COVERED Novel agents in clinical development show potential in altering the natural history and treatment of cerebral edema. Using the PubMed and Google Scholar databases, we review recent advances in our understanding of cerebral edema and describe agents under active investigation, their mechanism, and their application in recent and ongoing clinical trials. EXPERT OPINION Pharmacotherapies that target molecular mechanisms underlying the compensatory post-injury response of ion channels and transporters that lead to pathological alteration of osmotic gradients are the most promising therapeutic strategies. Repurposing of drugs such as glyburide that inhibit the aberrant upregulation of ion channels such as SUR1-TRPM4, and novel agents, such as ZT-1a, which reestablish physiological regulation of ion channels such as NKCC1/KCC, could be useful adjuvants to prevent and even reverse fluid accumulation in the brain parenchyma.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine , New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine , New Haven, CT, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School , Boston, MA, USA
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories , Exeter, UK
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology and Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale School of Medicine , New Haven, CT, USA
| |
Collapse
|
104
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
105
|
Shi YQ, Fan P, Zhang GC, Zhang YH, Li MZ, Wang F, Li BX. Probucol-induced hERG Channel Reduction can be Rescued by Matrine and Oxymatrine in vitro. Curr Pharm Des 2020; 25:4606-4612. [PMID: 31657676 PMCID: PMC7327797 DOI: 10.2174/1381612825666191026170033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/19/2019] [Indexed: 01/24/2023]
Abstract
Background The human ether-a-go-go-related gene (hERG) potassium channel is the rapidly activating component of cardiac delayed rectifier potassium current (IKr), which is a crucial determinant of cardiac repolarization. The reduction of hERG current is commonly believed to cause Long QT Syndrome (LQTs). Probucol, a cholesterol-lowering drug, induces LQTs by inhibiting the expression of the hERG channel. Unfortunately, there is currently no effective therapeutic method to rescue probucol-induced LQTs. Methods Patch-clamp recording techniques were used to detect the action potential duration (APD) and current of hERG. Western blot was performed to measure the expression levels of proteins. Results In this study, we demonstrated that 1 μM matrine and oxymatrine could rescue the hERG current and hERG surface expression inhibited by probucol. In addition, matrine and oxymatrine significantly shortened the prolonged action potential duration induced by probucol in neonatal cardiac myocytes. We proposed a novel mechanism underlying the probucol induced decrease in the expression of transcription factor Specificity protein 1 (Sp1), which is an established transactivator of the hERG gene. We also demonstrated that matrine and oxymatrine were able to upregulate Sp1 expression which may be one of the possible mechanisms by which matrine and oxymatrine rescued probucol-induced hERG channel deficiency. Conclusion Our current results demonstrate that matrine and oxymatrine could rescue probucol-induced hERG deficiency in vitro, which may lead to potentially effective therapeutic drugs for treating acquired LQT2 by probucol in the future.
Collapse
Affiliation(s)
- Yuan-Qi Shi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Pan Fan
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, No. 148 Baojian Road, Nangang District, Harbin 150081, China
| | - Guo-Cui Zhang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Yu-Hao Zhang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Ming-Zhu Li
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Fang Wang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Bao-Xin Li
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China.,State-Province Key Laboratory of Biopharmaceutical Engineering, No. 157 Baojian Road, Harbin, 150086, China
| |
Collapse
|
106
|
Lee H, Kim E. Repositioning medication for cardiovascular and cerebrovascular disease to delay the onset and prevent progression of Alzheimer's disease. Arch Pharm Res 2020; 43:932-960. [PMID: 32909178 DOI: 10.1007/s12272-020-01268-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a complex, progressive, neurodegenerative disorder. As with other common chronic diseases, multiple risk factors contribute to the onset and progression of AD. Many researchers have evaluated the epidemiologic and pathophysiological association between AD, cardiovascular diseases (CVDs), and cerebrovascular diseases (CBVDs), including commonly reported risk factors such as diabetes, hypertension, and dyslipidemia. Relevant therapies of CVDs/CBVDs for the attenuation of AD have also been empirically investigated. Considering the challenges of new drug development, in terms of cost and time, multifactorial approaches such as therapeutic repositioning of CVD/CBVD medication should be explored to delay the onset and progression of AD. Thus, in this review, we discuss our current understanding of the association between cardiovascular risk factors and AD, as revealed by clinical and non-clinical studies, as well as the therapeutic implications of CVD/CBVD medication that may attenuate AD. Furthermore, we discuss future directions by evaluating ongoing trials in the field.
Collapse
Affiliation(s)
- Heeyoung Lee
- Department of Clinical Medicinal Sciences, Konyang University, 121 Daehakro, Nonsan, 32992, Republic of Korea
| | - EunYoung Kim
- Evidence-Based Research Laboratory, Division of Clinical Pharmacotherapy, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
107
|
|
108
|
Zhou K, Liu Y, Zhao Z, Wang Y, Huang L, Chai R, Li G, Jiang T. ABCC8 mRNA expression is an independent prognostic factor for glioma and can predict chemosensitivity. Sci Rep 2020; 10:12682. [PMID: 32728190 PMCID: PMC7391768 DOI: 10.1038/s41598-020-69676-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and is associated with very low survival rates. The development of reliable biomarkers can help to elucidate the molecular mechanisms involved in glioma development. Here the expression of ABCC8 mRNA, clinical characteristics, and survival information based on 1893 glioma samples from four independent databases were analyzed. The expression patterns of ABCC8 mRNA were compared by a Chi square test. The overall survival rate of gliomas was evaluated according to the expression level of ABCC8 mRNA. The prognostic value of this marker in gliomas was tested using Cox single factor and multi factor regression analyses. We found patients with low WHO grade, oligodendrocytoma, low molecular grade, IDH mutation, and 1p19q combined deletion had high ABCC8 mRNA expression. The patients with high expression of ABCC8 mRNA had longer survival. ABCC8 mRNA expression was a new independent prognostic index for glioma. Temozolomide chemotherapy was an independent index to prolong overall survival in high ABCC8 mRNA expression glioma patients, whereas in patients with low expression, there was no significant difference. So ABCC8 mRNA expression could be an independent prognostic indicator for glioma patients and could predict the sensitivity of glioma to temozolomide.
Collapse
Affiliation(s)
- Kaijia Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yanwei Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yinyuan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Lijie Huang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Ruichao Chai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
109
|
Ahad MA, Kumaran KR, Ning T, Mansor NI, Effendy MA, Damodaran T, Lingam K, Wahab HA, Nordin N, Liao P, Müller CP, Hassan Z. Insights into the neuropathology of cerebral ischemia and its mechanisms. Rev Neurosci 2020; 31:521-538. [DOI: 10.1515/revneuro-2019-0099] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
Abstract
AbstractCerebral ischemia is a result of insufficient blood flow to the brain. It leads to limited supply of oxygen and other nutrients to meet metabolic demands. These phenomena lead to brain damage. There are two types of cerebral ischemia: focal and global ischemia. This condition has significant impact on patient’s health and health care system requirements. Animal models such as transient occlusion of the middle cerebral artery and permanent occlusion of extracranial vessels have been established to mimic the conditions of the respective type of cerebral ischemia and to further understand pathophysiological mechanisms of these ischemic conditions. It is important to understand the pathophysiology of cerebral ischemia in order to identify therapeutic strategies for prevention and treatment. Here, we review the neuropathologies that are caused by cerebral ischemia and discuss the mechanisms that occur in cerebral ischemia such as reduction of cerebral blood flow, hippocampal damage, white matter lesions, neuronal cell death, cholinergic dysfunction, excitotoxicity, calcium overload, cytotoxic oedema, a decline in adenosine triphosphate (ATP), malfunctioning of Na+/K+-ATPase, and the blood-brain barrier breakdown. Altogether, the information provided can be used to guide therapeutic strategies for cerebral ischemia.
Collapse
Affiliation(s)
- Mohamad Anuar Ahad
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kesevan Rajah Kumaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Tiang Ning
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nur Izzati Mansor
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kamilla Lingam
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Habibah Abdul Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore 308433, Singapore
| | - Christian P. Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich Alexander University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
- USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
110
|
Huang K, Ji Z, Wu Y, Huang Y, Li G, Zhou S, Yang Z, Huang W, Yang G, Weng G, Chen P, Pan S. Safety and efficacy of glibenclamide combined with rtPA in acute cerebral ischemia with occlusion/stenosis of anterior circulation (SE-GRACE): study protocol for a randomized controlled trial. BMC Neurol 2020; 20:239. [PMID: 32527232 PMCID: PMC7291425 DOI: 10.1186/s12883-020-01823-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Thrombolysis with recombinant tissue plasminogen activator (rtPA) improves outcome for patients with acute ischemic stroke (AIS), but many of them still have substantial disability. Glibenclamide (US adopted name, glyburide), a long-acting sulfonylurea, shows promising result in treating AIS from both preclinical and clinical studies. This study investigates the safety and efficacy of glibenclamide combined with rtPA in treating AIS patients. Methods This is a prospective, randomized, double-blind, placebo-controlled, multicenter trial with an estimated sample size of 306 cases, starting in January 2018. Patients aged 18 to 74 years, presented with a symptomatic anterior circulation occlusion with a deficit on the NIHSS of 4 to 25 points and treated with intravenous rtPA within the first 4.5 h of their clinical onsets, are eligible for participation in this study. The target time from the onset of symptoms to receive the study drug is of 10 h. Subjects are randomized 1: 1 to receive glibenclamide or placebo with a loading dose of 1.25 mg, followed by 0.625 mg every 8 h for total 5 days. The primary efficacy endpoint is 90-day good outcome, measured as modified Rankin Scale of 0 to 2. Safety outcomes are all-cause 30-day mortality and early neurological deterioration, with a focus on cardiac- and glucose-related serious adverse events. Discussion This study will provide valuable information about the safety and efficacy of oral glibenclamide for AIS patients treated with rtPA. This would bring benefits to a large number of patients if the agent is proved to be effective. Trial registration The trial was registered on September 14th 2017 at www.clinicaltrials.gov having identifier NCT03284463. Registration was performed before recruitment was initiated.
Collapse
Affiliation(s)
- Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, Guangzhou, 510515, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, Guangzhou, 510515, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, Guangzhou, 510515, China
| | - Yunqiang Huang
- Department of Neurology, Heyuan People's Hospital, Heyuan, China
| | - Guangning Li
- Department of Neurology, Huadu district People's Hospital, Guangzhou, China
| | - Saijun Zhou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi Yang
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Wenguo Huang
- Department of Neurology, Maoming Hospital of Traditional Chinese Medicine, Maoming, China
| | - Guoshuai Yang
- Department of Neurology, Haikou People's Hospital, Haikou, China
| | - Guohu Weng
- Department of Neurology, Hainan Hospital of Traditional Chinese Medicine, Haikou, China
| | - Pingyan Chen
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, Guangzhou, 510515, China.
| |
Collapse
|
111
|
Alquisiras-Burgos I, Ortiz-Plata A, Franco-Pérez J, Millán A, Aguilera P. Resveratrol reduces cerebral edema through inhibition of de novo SUR1 expression induced after focal ischemia. Exp Neurol 2020; 330:113353. [PMID: 32380020 DOI: 10.1016/j.expneurol.2020.113353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/26/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
Cerebral edema is a clinical problem that frequently follows ischemic infarcts. Sulfonylurea receptor 1 (SUR1) is an inducible protein that can form a heteromultimeric complex with aquaporin 4 (AQP4) that mediate the ion/water transport involved in brain tissue swelling. Transcription of the Abcc8 gene coding for SUR1 depends on the activity of transcriptional factor SP1, which is modulated by the cellular redox environment. Since oxidative stress is implicated in the induced neuronal damage in ischemia and edema formation, the present study aimed to evaluate if the antioxidant resveratrol (RSV) prevents the damage by reducing the de novo expression of SUR1 in the ischemic brain. Male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by different times of reperfusion. RSV (1.9 mg/kg; i.v.) was administered at the onset of reperfusion. Brain damage and edema formation were recognized by neurological evaluation, time of survival, TTC (2,3,5-Triphenyltetrazolium chloride) staining, Evans blue extravasation, and water content. RSV mechanism of action was studied by SP1 binding activity measured through the Electrophoretic Mobility Shift Assay, and Abcc8 and Aqp4 gene expression evaluated by qPCR, immunofluorescence, and Western blot. We found that RSV reduced the infarct area and cerebral edema, prevented blood-brain barrier damage, improved neurological performance, and increased survival. Additionally, our findings suggest that the antioxidant activity of RSV targeted SP transcription factors and inhibited SUR1 and AQP4 expression. Thus, RSV by decreasing SUR1 expression could contribute to reducing edema formation, constituting a therapeutic alternative for edema reduction in stroke.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México
| | - Alma Ortiz-Plata
- Laboratorio de Neuropatología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| | - Javier Franco-Pérez
- Laboratorio de Formación Reticular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| | - Alejandro Millán
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Lázaro Cárdenas s/n Ciudad Universitaria, Chilpancingo, Guerrero, 39070, México
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| |
Collapse
|
112
|
Abstract
Translational genomics represents a broad field of study that combines genome and transcriptome-wide studies in humans and model systems to refine our understanding of human biology and ultimately identify new ways to treat and prevent disease. The approaches to translational genomics can be broadly grouped into two methodologies, forward and reverse genomic translation. Traditional (forward) genomic translation begins with model systems and aims at using unbiased genetic associations in these models to derive insight into biological mechanisms that may also be relevant in human disease. Reverse genomic translation begins with observations made through human genomic studies and refines these observations through follow-up studies using model systems. The ultimate goal of these approaches is to clarify intervenable processes as targets for therapeutic development. In this review, we describe some of the approaches being taken to apply translational genomics to the study of diseases commonly encountered in the neurocritical care setting, including hemorrhagic and ischemic stroke, traumatic brain injury, subarachnoid hemorrhage, and status epilepticus, utilizing both forward and reverse genomic translational techniques. Further, we highlight approaches in the field that could be applied in neurocritical care to improve our ability to identify new treatment modalities as well as to provide important information to patients about risk and prognosis.
Collapse
Affiliation(s)
- Pavlos Myserlis
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6818, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Farid Radmanesh
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6818, Boston, MA, 02114, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
113
|
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci 2020; 14:51. [PMID: 32265656 PMCID: PMC7098326 DOI: 10.3389/fncel.2020.00051] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Collapse
Affiliation(s)
- Denisa Belov Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
114
|
Liu J, Li Y, Yu Y, Yuan X, Lv H, Liu L, Zhao Y, Wang Y, Ma Z. Simultaneous detection of cerebral blood perfusion and cerebral edema using swept-source optical coherence tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960087. [PMID: 31702865 DOI: 10.1002/jbio.201960087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
The progression of ischemic cerebral edema (CE) is closely related to the level of cerebral blood perfusion (CBP) and affects each other. Simultaneous detection of CBP and CE is helpful in understanding the mechanisms of ischemic CE development. In this article, a wide field of view swept-source optical coherence tomography system was used to detect CE status and CBP levels simultaneously in middle cerebral artery occlusion rats. Images reflecting these two physiological states can be reconstructed with only one C-scan. We quantify these two physiological states into four parameters, which contain two vascular parameters (vascular displacement distance and vascular perfusion density) and two edema parameters (optical attenuation coefficient and edema area). The association between the two vascular parameters and the two edema parameters was analyzed. The results show that there is a strong linear relationship between blood flow parameters and edema parameters. This work provides a new option for CE in vivo detection, and is very likely to play an important role in the development of relevant drugs or in selection of treatment options.
Collapse
Affiliation(s)
- Jian Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yan Li
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yao Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Xincheng Yuan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Hongyu Lv
- Department of Ophthalmology, Maternal and Child Health Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yuqian Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yi Wang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhenhe Ma
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
115
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
116
|
Jacobson SM, MacAllister TW, Geliebter DM. Found in translation: The rationale behind the early development of glibenclamide in large hemispheric infarction. Neurosci Lett 2020; 716:134672. [DOI: 10.1016/j.neulet.2019.134672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
|
117
|
Woo SK, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Gerzanich V, Simard JM. SUR1-TRPM4 channels, not K ATP, mediate brain swelling following cerebral ischemia. Neurosci Lett 2019; 718:134729. [PMID: 31899311 DOI: 10.1016/j.neulet.2019.134729] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/30/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Preclinical and emerging clinical data show that glibenclamide reduces space occupying edema and brain swelling following cerebral ischemia. Glibenclamide is a potent inhibitor of numerous sulfonylurea receptor (SUR)-regulated channels, including KATP (SUR1-KIR6.2, SUR2A-KIR6.2, SUR2B-KIR6.2, SUR2B-KIR6.1) and SUR1-TRPM4. Here, we used molecularly specific oligodeoxynucleotides (ODNs) to investigate the role of various SUR-regulated ion channel subunits in post-ischemic brain swelling. METHODS Focal cerebral ischemia was induced in adult male rats by permanent middle cerebral artery occlusion (pMCAo). We used this model to study the effects of antisense-ODNs (AS-ODNs) directed against Abcc8/SUR1, Trpm4/TRPM4, Kcnj8/KIR6.1 and Kcnj11/KIR6.2 on hemispheric swelling, with sense or scrambled ODNs used as controls. We used antibody-based Förster resonance energy transfer (immuno-FRET) and co-immunoprecipitation to study the co-assembly of SUR1-TRPM4 heteromers. RESULTS In the combined control groups administered sense or scrambled ODNs, pMCAo resulted in uniformly large infarct volumes (mean ± SD: 57.4 ± 8.8 %; n = 34) at 24 h after onset of ischemia, with no effect of AS-ODNs on infarct size. In controls, hemispheric swelling was 23.9 ± 4.1 % (n = 34), and swelling was linearly related to infarct volume (P < 0.02). In the groups administered anti-Abcc8/SUR1 or anti-Trpm4/TRPM4 AS-ODN, hemispheric swelling was significantly less, 11.6 ± 3.9 % and 12.8 ± 5.8 % respectively (P < 0.0001), and the relationship between infarct volume and swelling was reduced and not significant. AS-ODNs directed against Kcnj8/KIR6.1 and Kcnj11/KIR6.2 had no significant effect on hemispheric swelling (23.3 ± 5.4 % and 22.9 ± 5.8 % respectively). Post-ischemic tissues showed co-assembly of SUR1-TRPM4 heteromers. CONCLUSIONS Post-ischemic hemispheric swelling can be decoupled from infarct volume. SUR1-TRPM4 channels, not KATP, mediate post-ischemic brain swelling.
Collapse
Affiliation(s)
- Seung Kyoon Woo
- Departments of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Natalia Tsymbalyuk
- Departments of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Orest Tsymbalyuk
- Departments of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Svetlana Ivanova
- Departments of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Volodymyr Gerzanich
- Departments of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - J Marc Simard
- Departments of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Departments of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
118
|
Piccardi B, Biagini S, Iovene V, Palumbo V. Blood Biomarkers of Parenchymal Damage in Ischemic Stroke Patients Treated With Revascularization Therapies. Biomark Insights 2019; 14:1177271919888225. [PMID: 31903021 PMCID: PMC6931146 DOI: 10.1177/1177271919888225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Postischemic reperfusion injury may exacerbate cerebral damage and capillary dysfunction, leading to brain edema (BE), hemorrhagic transformation (HT), necrosis, and injury from free radicals with subsequent infarct growth (IG). Several plasmatic biomarkers involved in the ischemic cascade have been studied in relation to radiological and clinical outcomes of reperfusion injury in ischemic stroke with heterogeneous results. This article provides a brief overview of the contribution of circulating biomarkers to the pathophysiology of parenchymal damage in ischemic stroke patients treated with revascularization therapies. Methods We included full reports with measurements of plasma markers in patients with acute ischemic stroke treated with revascularization therapies. Findings Our research included a large number of observational studies investigating a possible role of circulating biomarkers in the development of parenchymal damage after acute stroke treatments. To make the results clearer, we divided the review in 4 sections, exploring the relation of different biomarkers with each of the indicators of parenchymal damage (HT, BE, IG, recanalization). Discussion and conclusion Definite conclusions are difficult to draw because of heterogeneity across studies. However, our review seems to confirm an association between some circulating biomarkers (particularly matrix metalloproteinase-9) and occurrence of parenchymal damage in ischemic stroke patients treated with revascularization therapies.
Collapse
Affiliation(s)
- Benedetta Piccardi
- Benedetta Piccardi, Stroke Unit, Careggi
University Hospital, Largo Brambilla, 3, 50134 Florence, Italy.
| | | | | | | |
Collapse
|
119
|
Dashyan VG, Khodykin EA, Nikitin AS, Godkov IM, Khovrin DV, Sosnovsky EA, Asratyan SA, Sytnik AV, Ochkin SS, Akhmedzhanova NR. [Malignant cerebellar infarction: clinical course and surgical treatment]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:75-83. [PMID: 31825366 DOI: 10.17116/jnevro201911908275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To clarify the indications for surgical treatment of malignant cerebellar infarction (CI). MATERIAL AND METHODS Eighty patients with CI were studied. The malignancy of CI was understood as the development of mass effect in the posterior cranial fossa, accompanied by the decrease in consciousness due to compression of the brain stem and/or the development of occlusive hydrocephalus. The patients were divided into 2 groups. The group of malignant CI included 55 patients (68.75%) (group I), the group of benign CI included 25 patients (31.25%) (group II). Patients of group I were divided into subgroups, one of them underwent surgical treatment (surgical subgroup), and another only conservative (conservative subgroup) treatment. Surgery efficacy criteria were: restoration of consciousness to 15 points according to GCS and/or restoration of the fourth ventricle and the quadrigeminal cistern configurations. Results of treatment were assessed according to the Glasgow outcome scale. RESULTS Malignant CI occurred more frequently in patients with the volume of ischemia exceeding 20 cm3 (p<0.05) in the first day of the disease. The threshold value of mass effect, which can cause further a malignant CI, was 3 points according to the M. Jauss scale. In the group of patients with malignant CI, surgical treatment reduced the mortality rate from occlusion and dislocation syndrome by 35.8%. The most effective type of intervention was a combination of decompressive trepanation of the posterior cranial fossa and external ventricular drainage. CONCLUSION In patients with CI with the volume more than 20 cm3 and signs of mass effect in the posterior cranial fossa on the scale of M. Jauss 3 points or more, the malignant course of the disease develops in 67% of cases. These patients require careful monitoring, and, in case of development of malignant CI, surgical treatment is necessary.
Collapse
Affiliation(s)
- V G Dashyan
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia; Sklifosovsky Federal Research Institute of Emergency Medicine Moscow, Russia
| | - E A Khodykin
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia; Moscow City Clinical Hospital #13, Moscow, Russia
| | - A S Nikitin
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - I M Godkov
- Sklifosovsky Federal Research Institute of Emergency Medicine Moscow, Russia
| | - D V Khovrin
- Yudin Moscow City Clinical Hospital, Moscow, Russia
| | - E A Sosnovsky
- Veresaev Moscow City Clinical Hospital, Moscow, Russia
| | - S A Asratyan
- Buyanov Moscow City Clinical Hospital, Moscow, Russia
| | - A V Sytnik
- Moscow City Clinical Hospital #13, Moscow, Russia
| | - S S Ochkin
- Moscow City Clinical Hospital #13, Moscow, Russia
| | - N R Akhmedzhanova
- Veresaev Moscow City Clinical Hospital, Moscow, Russia; Moscow City Clinical Hospital #13, Moscow, Russia
| |
Collapse
|
120
|
Bodanapally UK, Shanmuganathan K, Parikh GY, Schwartzbauer G, Kondaveti R, Feiter TR. Quantification of Iodine Leakage on Dual-Energy CT as a Marker of Blood-Brain Barrier Permeability in Traumatic Hemorrhagic Contusions: Prediction of Surgical Intervention for Intracranial Pressure Management. AJNR Am J Neuroradiol 2019; 40:2059-2065. [PMID: 31727752 PMCID: PMC6975368 DOI: 10.3174/ajnr.a6316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Hemorrhagic contusions are associated with iodine leakage. We aimed to identify quantitative iodine-based dual-energy CT variables that correlate with the type of intracranial pressure management. MATERIALS AND METHODS Consecutive patients with contusions from May 2016 through January 2017 were retrospectively analyzed. Radiologists, blinded to the outcomes, evaluated CT variables from unenhanced admission and short-term follow-up head dual-energy CT scans obtained after contrast-enhanced whole-body CT. Treatment intensity of intracranial pressure was broadly divided into 2 groups: those managed medically and those managed surgically. Univariable analysis followed by logistic regression was used to develop a prediction model. RESULTS The study included 65 patients (50 men; median age, 48 years; Q1 to Q3, 25-65.5 years). Twenty-one patients were managed surgically (14 by CSF drainage, 7 by craniectomy). Iodine-based variables that correlated with surgical management were higher iodine concentration, pseudohematoma volume, iodine quantity in pseudohematoma, and iodine quantity in contusions. The regression model developed after inclusion of clinical variables identified 3 predictor variables: postresuscitation Glasgow Coma Scale (adjusted OR = 0.55; 95% CI, 0.38-0.79; P = .001), age (adjusted OR = 0.9; 95% CI, 0.85-0.97; P = .003), and pseudohematoma volume (adjusted OR = 2.05; 95% CI, 1.1-3.77; P = .02), which yielded an area under the curve of 0.96 in predicting surgical intracranial pressure management. The 2 predictors for craniectomy were age (adjusted OR = 0.89; 95% CI, 0.81-0.99; P = .03) and pseudohematoma volume (adjusted OR = 1.23; 95% CI, 1.03-1.45; P = .02), which yielded an area under the curve of 0.89. CONCLUSIONS Quantitative iodine-based parameters derived from follow-up dual-energy CT may predict the intensity of intracranial pressure management in patients with hemorrhagic contusions.
Collapse
Affiliation(s)
- U K Bodanapally
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., T.R.F.)
| | - K Shanmuganathan
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., T.R.F.)
| | | | - G Schwartzbauer
- Neurosurgery (G.S.), R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - R Kondaveti
- Kasturba Medical College (R.K.), Mangaluru, India
| | - T R Feiter
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., T.R.F.)
| |
Collapse
|
121
|
Al-Karagholi MAM, Ghanizada H, Hansen JM, Aghazadeh S, Skovgaard LT, Olesen J, Ashina M. Extracranial activation of ATP-sensitive potassium channels induces vasodilation without nociceptive effects. Cephalalgia 2019; 39:1789-1797. [DOI: 10.1177/0333102419888490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Levcromakalim opens ATP-sensitive potassium channels (KATP channel) and induces head pain in healthy volunteers and migraine headache in migraine patients, but no pain in other parts of the body. KATP channels are expressed in C- and Aδ-fibers, and these channels might directly activate nociceptors and thereby evoke pain in humans. Methods To assess the local effect of KATP channel opening in trigeminal and extra-trigeminal regions, we performed a crossover, double-blind, placebo-controlled study in healthy volunteers. Participants received intradermal and intramuscular injections of levcromakalim and placebo in the forehead and the forearms. Results Intradermal and intramuscular injections of levcromakalim did not evoke more pain compared to placebo in the forehead ( p > 0.05) and the forearms ( p > 0.05). Intradermal injection of levcromakalim caused more flare ( p < 0.001 ), skin temperature increase ( p < 0.001), and skin blood flow increase ( p < 0.001) compared to placebo in the forehead and the forearms. Conclusion These findings suggest that it is unlikely that levcromakalim induces head pain by direct activation of peripheral neurons.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Sameera Aghazadeh
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Lene Theil Skovgaard
- Department of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
122
|
Wang X, Chang Y, He Y, Lyu C, Li H, Zhu J, Liu K, Hu Y, Huang K, Pan S. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. Neuropharmacology 2019; 162:107845. [PMID: 31704276 DOI: 10.1016/j.neuropharm.2019.107845] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/27/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Glibenclamide protects against ischemic injury in both preclinical and clinical studies, presumably by blocking the de novo assembled sulfonylurea receptor 1-transient receptor potential M4 (Sur1-Trpm4) channel induced by ischemia. However, glibenclamide may cause unexpected serious hypoglycemia. Here, we tested whether glimepiride, another sulfonylurea with better safety, has comparable efficacy with glibenclamide and whether gene deletion of Trpm4 (Trpm4-/-) exerts similar effect. Wild-type (WT) mice subjected to temporary middle cerebral artery occlusion (tMCAO) were randomized to receive glibenclamide (an initial dose of 10 μg/kg and additional doses of 1.2 μg every 8 h), three different doses of glimepiride (10 μg/kg, 100 μg/kg and 1 mg/kg) or vehicle after ischemia, while tMCAO-treated Trpm4-/- mice were randomized to receive vehicle or glimepiride. Neurological function, infarct volume, edema formation, the integrity of blood-brain barrier and inflammatory reaction were evaluated at 24 h after ischemia. In tMCAO-treated WT mice, 10 μg/kg and 100 μg/kg glimepiride had comparable efficacy with glibenclamide in improving longa score and grip test score, reducing infarct volume, mitigating brain edema, lessening extravasation of Evans blue dye and IgG, restoring tight junction protein expression as well as suppressing inflammatory cytokines. Compared with WT mice, Trpm4-/- mice showed less neurological deficit, smaller cerebral infarction, lighter brain edema and more integrity of blood-brain barrier. As expected, glimepiride did not provide additional neuroprotection compared with vehicle in the tMCAO-treated Trpm4-/- mice. Glimepiride shows comparable efficacy with glibenclamide in alleviating brain injury after ischemic stroke in mice, possibly via targeting the Sur1-Trpm4 channel.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenfei Lyu
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
123
|
Vorasayan P, Bevers MB, Beslow LA, Sze G, Molyneaux BJ, Hinson HE, Simard JM, von Kummer R, Sheth KN, Kimberly WT. Intravenous Glibenclamide Reduces Lesional Water Uptake in Large Hemispheric Infarction. Stroke 2019; 50:3021-3027. [PMID: 31537189 PMCID: PMC6817419 DOI: 10.1161/strokeaha.119.026036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Prior studies have shown a linear relationship between computed tomography (CT)-derived radiodensity and water uptake, or brain edema, within stroke lesions. To test the hypothesis that intravenous glibenclamide (glyburide; BIIB093) reduces ischemic brain water uptake, we quantified the lesional net water uptake (NWU) on serial CT scans from patients enrolled in the phase 2 GAMES-RP Trial (Glyburide Advantage in Malignant Edema and Stroke). Methods- This was a post hoc exploratory analysis of the GAMES-RP study. Noncontrast CT scans performed between admission and day 7 (n=264) were analyzed in the GAMES-RP modified intention-to-treat sample. Quantitative change in CT radiodensity (ie, NWU) and midline shift (MLS) was measured. The gray and white matter NWU were also examined separately. Repeated-measures mixed-effects models were used to assess the effect of intravenous glibenclamide on MLS or NWU. Results- A median of 3 CT scans (interquartile range, 2-4) were performed per patient during the first 7 days after stroke. In a repeated-measures regression model, greater NWU was associated with increased MLS (β=0.23; 95% CI, 0.20-0.26; P<0.001). Treatment with intravenous glibenclamide was associated with reduced NWU (β=-2.80; 95% CI, -5.07 to -0.53; P=0.016) and reduced MLS (β=-1.50; 95% CI, -2.71 to -0.28; P=0.016). Treatment with intravenous glibenclamide reduced both gray and white matter water uptake. In mediation analysis, gray matter NWU (β=0.15; 95% CI, 0.11-0.20; P<0.001) contributed to a greater proportion of MLS mass effect, as compared with white matter NWU (β=0.08; 95% CI, 0.03-0.13; P=0.001). Conclusions- In this phase 2 post hoc analysis, intravenous glibenclamide reduced both water accumulation and mass effect after large hemispheric infarction. This study demonstrates NWU is a quantitative and modifiable biomarker of ischemic brain edema accumulation. Clinical Trial Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT01794182.
Collapse
Affiliation(s)
- Pongpat Vorasayan
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Matthew B. Bevers
- Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Lauren A. Beslow
- Division of Neurology, Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Gordon Sze
- Division of Neuroradiology, Department of Radiology, Yale University School of Medicine, New Haven, CT
| | | | - Holly E. Hinson
- Department of Neurology, Oregon Health Sciences University, Portland, OR, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland, Baltimore, MD, USA
| | - Rüdiger von Kummer
- Department of Neuroradiology, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Kevin N. Sheth
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
124
|
Dexmedetomidine attenuates the induction and reverses the progress of 6-hydroxydopamine- induced parkinsonism; involvement of KATP channels, alpha 2 adrenoceptors and anti-inflammatory mechanisms. Toxicol Appl Pharmacol 2019; 382:114743. [DOI: 10.1016/j.taap.2019.114743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/20/2019] [Accepted: 08/30/2019] [Indexed: 01/18/2023]
|
125
|
Broocks G, Kemmling A, Aberle J, Kniep H, Bechstein M, Flottmann F, Leischner H, Faizy TD, Nawabi J, Schön G, Sporns P, Thomalla G, Fiehler J, Hanning U. Elevated blood glucose is associated with aggravated brain edema in acute stroke. J Neurol 2019; 267:440-448. [PMID: 31667625 DOI: 10.1007/s00415-019-09601-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE Clinical outcome after endovascular thrombectomy in patients with acute ischemic stroke still varies significantly. Higher blood glucose levels (BGL) have been associated with worse clinical outcome, but the pathophysiological causes are not yet understood. We hypothesized that higher levels of BGL are associated with more pronounced ischemic brain edema and worse clinical outcome mediated by cerebral collateral circulation. METHODS 178 acute ischemic stroke patients who underwent mechanical thrombectomy were included. Early ischemic brain edema was determined using quantitative lesion water uptake on initial computed tomography (CT) and collateral status was assessed with an established 5-point scoring system in CT-angiography. Good clinical outcome was defined as functional independence (modified Rankin Scale [mRS] score 0-2). Multivariable logistic regression analysis was performed to predict functional independence and linear regression analyses to investigate the impact of BGL and collateral status on water uptake. RESULTS The mean BGL at admission was significantly lower in patients with good outcome at 90 days (116.5 versus 138.5 mg/dl; p < 0.001) and early water uptake was lower (6.3% versus 9.6%; p < 0.001). The likelihood for good outcome declined with increasing BGL (odds ratio [OR] per 100 mg/dl BGL increase: 0.15; 95% CI 0.02-0.86; p = 0.039). Worse collaterals (1% water uptake per point, 95% CI 0.4-1.7%) and higher BGL (0.6% per 10 mg/dl BGL, 95% CI 0.3-0.8%) were significantly associated with increased water uptake. CONCLUSION Elevated admission BGL were associated with increased early brain edema and poor clinical outcome mediated by collateral status. Patients with higher BGL might be targeted by adjuvant anti-edematous treatment.
Collapse
Affiliation(s)
- Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Andre Kemmling
- Department of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany.,Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jens Aberle
- Department of Endocrinology and Diabetology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge Kniep
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Matthias Bechstein
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Fabian Flottmann
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hannes Leischner
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias D Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jawed Nawabi
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Department of Radiology, Charité University Medical Center, Berlin, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Sporns
- Department of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
126
|
Pergakis M, Badjatia N, Chaturvedi S, Cronin CA, Kimberly WT, Sheth KN, Simard JM. BIIB093 (IV glibenclamide): an investigational compound for the prevention and treatment of severe cerebral edema. Expert Opin Investig Drugs 2019; 28:1031-1040. [PMID: 31623469 DOI: 10.1080/13543784.2019.1681967] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Brain swelling due to edema formation is a major cause of neurological deterioration and death in patients with large hemispheric infarction (LHI) and severe traumatic brain injury (TBI), especially contusion-TBI. Preclinical studies have shown that SUR1-TRPM4 channels play a critical role in edema formation and brain swelling in LHI and TBI. Glibenclamide, a sulfonylurea drug and potent inhibitor of SUR1-TRPM4, was reformulated for intravenous injection, known as BIIB093.Areas covered: We discuss the findings from Phase 2 clinical trials of BIIB093 in patients with LHI (GAMES-Pilot and GAMES-RP) and from a small Phase 2 clinical trial in patients with TBI. For the GAMES trials, we review data on objective biological variables, adjudicated edema-related endpoints, functional outcomes, and mortality which, despite missing the primary endpoint, supported the initiation of a Phase 3 trial in LHI (CHARM). For the TBI trial, we review data on MRI measures of edema and the initiation of a Phase 2 trial in contusion-TBI (ASTRAL).Expert opinion: Emerging clinical data show that BIIB093 has the potential to transform our management of patients with LHI, contusion-TBI and other conditions in which swelling leads to neurological deterioration and death.
Collapse
Affiliation(s)
- Melissa Pergakis
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seemant Chaturvedi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolyn A Cronin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin N Sheth
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
127
|
Minnema AJ, Mehta A, Boling WW, Schwab J, Simard JM, Farhadi HF. SCING-Spinal Cord Injury Neuroprotection with Glyburide: a pilot, open-label, multicentre, prospective evaluation of oral glyburide in patients with acute traumatic spinal cord injury in the USA. BMJ Open 2019; 9:e031329. [PMID: 31601596 PMCID: PMC6797422 DOI: 10.1136/bmjopen-2019-031329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Acute traumatic spinal cord injury (tSCI) is a devastating neurological disorder with no pharmacological neuroprotective strategy proven effective to date. Progressive haemorrhagic necrosis (PHN) represents an increasingly well-characterised mechanism of secondary injury after tSCI that negatively impacts neurological outcomes following acute tSCI. Preclinical studies evaluating the use of the Food and Drug Administration-approved sulfonylurea receptor 1-transient receptor potential melastatin 4 channel blocker glyburide in rodent models have shown reduced secondary microhaemorrhage formation and the absence of capillary fragmentation, the pathological hallmark of PHN. METHODS AND ANALYSIS In this initial phase multicentre open-label pilot study, we propose to enrol 10 patients with acute cervical tSCI to primarily assess the feasibility, and safety of receiving oral glyburide within 8 hours of injury. Secondary objectives include pharmacokinetics and preliminary evaluations on neurological recovery as well as blood and MRI-based injury biomarkers. Analysis will be performed using the descriptive and non-parametric statistics. ETHICS AND DISSEMINATION Glyburide has been shown as an effective neuroprotective agent in preclinical tSCI models and in the treatment of ischaemic stroke with the additional risk of a hypoglycaemic response. Given the ongoing secondary injury and the traumatic hyperglycaemic stress response seen in patients with tSCI, glyburide; thus, offers an appealing neuroprotective strategy to supplement standard of care treatment. The study protocol was approved by the Ohio State University Biomedical Institutional Review Board. The protocol was amended in February 2017 with changes related to study feasibility and patient recruitment. Specifically, the route of administration was changed to the oral form to allow for streamlined and rapid drug administration, and the injury-to-drug time window was extended to 8 hours in an effort to further enhance enrolment. Participants or legally authorised representatives are informed about the trial and its anticipated risks orally and in written form using an approved informed consent form prior to inclusion. The findings of this study will be disseminated to the participants and to academic peers through scientific conferences and peer-reviewed journal publications. TRIAL REGISTRATION NUMBERS NCT02524379 and 2014H0335.
Collapse
Affiliation(s)
- Amy Janelle Minnema
- Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - A Mehta
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Warren W Boling
- Department of Neurological Surgery, Loma Linda University, Loma Linda, California, USA
| | - Jan Schwab
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - J Marc Simard
- Department of Neurological Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - H Francis Farhadi
- Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
128
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
129
|
Cerebral Edema After Cardiopulmonary Resuscitation: A Therapeutic Target Following Cardiac Arrest? Neurocrit Care 2019; 28:276-287. [PMID: 29080068 DOI: 10.1007/s12028-017-0474-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We sought to review the role that cerebral edema plays in neurologic outcome following cardiac arrest, to understand whether cerebral edema might be an appropriate therapeutic target for neuroprotection in patients who survive cardiopulmonary resuscitation. Articles indexed in PubMed and written in English. Following cardiac arrest, cerebral edema is a cardinal feature of brain injury and is a powerful prognosticator of neurologic outcome. Like other conditions characterized by cerebral ischemia/reperfusion, neuroprotection after cardiac arrest has proven to be difficult to achieve. Neuroprotection after cardiac arrest generally has focused on protecting neurons, not the microvascular endothelium or blood-brain barrier. Limited preclinical data suggest that strategies to reduce cerebral edema may improve neurologic outcome. Ongoing research will be necessary to determine whether targeting cerebral edema will improve patient outcomes after cardiac arrest.
Collapse
|
130
|
Glibenclamide and Therapeutic Hypothermia Have Comparable Effect on Attenuating Global Cerebral Edema Following Experimental Cardiac Arrest. Neurocrit Care 2019; 29:119-127. [PMID: 29150777 DOI: 10.1007/s12028-017-0479-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cerebral edema is one of the major causes of mortality following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). A subunit of the sulfonylurea receptor 1-transient receptor potential M4 (Sur1-TRPM4) channel has been implicated in the pathogenesis of ischemia-evoked cerebral edema. In this study, we examined whether glibenclamide (GBC), a Sur1-TRPM4 channel inhibitor, attenuates cerebral edema following CA/CPR and further examined the efficacy of GBC combined with therapeutic hypothermia. METHODS Isoflurane-anesthetized adult male wild-type C57Bl/6 mice subjected to 7-min CA/CPR were randomized into five groups: sham operation, control with normothermia, GBC with normothermia, control with hypothermia, and GBC with hypothermia. The primary outcome was to evaluate regional brain water content; the secondary outcome was to measure blood glucose level, Sur1-TRPM4 expression, and pro-inflammatory factor expression. RESULTS Compared with normothermia, GBC treatment or hypothermia significantly attenuated brain water content in mice subjected to CA/CPR. GBC combined with hypothermia had no additional effects on attenuating cerebral edema. Pro-inflammatory factor messenger RNA expression (TNF-α and IL-6), NFκβ activation, and SUR1-TRPM4 levels were upregulated after CA/CPR. Compared with normothermia, hypothermia, but not GBC, partly suppressed these factors' expression. CONCLUSIONS GBC attenuated cerebral edema following CA/CPR by blocking Sur1-TRPM4 channels upregulated by CA insult. The effect of GBC was comparable with that of therapeutic hypothermia alone. These results suggest that GBC is an alternative approach for treating CA-evoked cerebral edema.
Collapse
|
131
|
Yang Q, Huang Q, Hu Z, Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front Neurosci 2019; 13:1036. [PMID: 31611768 PMCID: PMC6777147 DOI: 10.3389/fnins.2019.01036] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Stroke is a major cause of death and adult disability. However, therapeutic options remain limited. Numerous pathways underlie acute responses of brain tissue to stroke. Early events following ischemic damage include reactive oxygen species (ROS)-mediated oxidative stress and glutamate-induced excitotoxicity, both of which contribute to rapid cell death within the infarct core. A subsequent cascade of inflammatory events escalates damage progression. This review explores potential neuroprotective strategies for targeting key steps in the cascade of ischemia–reperfusion (I/R) injury. NADPH oxidase (NOX) inhibitors and several drugs currently approved by the U.S. Food and Drug Administration including glucose-lowering agents, antibiotics, and immunomodulators, have shown promise in the treatment of stroke in both animal experiments and clinical trials. Ischemic conditioning, a phenomenon by which one or more cycles of a short period of sublethal ischemia to an organ or tissue protects against subsequent ischemic events in another organ, may be another potential neuroprotective strategy for the treatment of stroke by targeting key steps in the I/R injury cascade.
Collapse
Affiliation(s)
- Qianwen Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
132
|
Deng G, Ma C, Zhao H, Zhang S, Liu J, Liu F, Chen Z, Chen AT, Yang X, Avery J, Zou P, Du F, Lim KP, Holden D, Li S, Carson RE, Huang Y, Chen Q, Kimberly WT, Simard JM, Sheth KN, Zhou J. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics 2019; 9:6991-7002. [PMID: 31660082 PMCID: PMC6815966 DOI: 10.7150/thno.35791] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Stroke is a deadly disease without effective pharmacotherapies, which is due to two major reasons. First, most therapeutics cannot efficiently penetrate the brain. Second, single agent pharmacotherapy may be insufficient and effective treatment of stroke requires targeting multiple complementary targets. Here, we set to develop single component, multifunctional nanoparticles (NPs) for targeted delivery of glyburide to the brain for stroke treatment. Methods: To characterize the brain penetrability, we radiolabeled glyburide, intravenously administered it to stroke- bearing mice, and determined its accumulation in the brain using positron emission tomography-computed tomography (PET/CT). To identify functional nanomaterials to improve drug delivery to the brain, we developed a chemical extraction approach and tested it for isolation of nanomaterials from E. ulmoides, a medicinal herb. To assess the therapeutic benefits, we synthesized glyburide-loaded NPs and evaluated them in stroke- bearing mice. Results: We found that glyburide has a limited ability to penetrate the ischemic brain. We identified betulinic acid (BA) capable of forming NPs, which, after intravenous administration, efficiently penetrate the brain and significantly reduce ischemia-induced infarction as an antioxidant agent. We demonstrated that BA NPs enhance delivery of glyburide, leading to therapeutic benefits significantly greater than those achieved by either glyburide or BA NPs. Conclusion: This study suggests a new direction to identify functional nanomaterials and a simple approach to achieving anti-edema and antioxidant combination therapy. The resulting glyburide- loaded BA NPs may be translated into clinical applications to improve clinical management of stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chao Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haitian Zhao
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Xin Yang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Pan Zou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fengyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Keun-poong Lim
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Richard E. Carson
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Yiyun Huang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - W. Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kevin N. Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
133
|
Huang K, Hu Y, Wu Y, Ji Z, Wang S, Lin Z, Xu J, Pan S. Exploratory analysis of oral glibenclamide in acute ischemic stroke. Acta Neurol Scand 2019; 140:212-218. [PMID: 31141159 DOI: 10.1111/ane.13134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Intravenous glibenclamide (GBC) exerts neuroprotection in both preclinical and preliminary clinical studies. This study explored the safety and potential efficacy of oral GBC in patients with acute hemispheric infarction. MATERIALS & METHODS During January 2017 and August 2017, adult volunteers were recruited to receive oral GBC treatment, if they presented with an acute anterior ischemic stroke and a National Institute of Health Stroke Score of ≥8. Controls were those who met the above inclusion criteria and had not been on GBC or other sulfonylureas prior to stroke or after hospitalization. Propensity score matching (PSM) was performed to balance baseline characteristics. The primary endpoint was the score on the modified Rankin Scale (mRS) at 6 months. RESULTS We included 213 patients in the unmatched cohort (20 in the GBC group and 193 in the control group) and 40 patients (20 in each group) in the matched cohort. In both cohorts, GBC treatment did not increase the risks of early death, hypoglycemia, and early neurological deterioration. Although GBC did not substantially improve 6-month functional outcome that measured in shift analysis of mRS, a slight trend toward less severe disability and death (mRS 5-6) was observed. In the matched cohort, GBC treatment was associated with lighter brain edema, when CED score was used for evaluation. CONCLUSIONS In this study, oral GBC is safe in treating acute hemispheric infarction and might have potential in preventing brain edema and consequential severe disability and death. An adequately powered and randomized trial is warranted.
Collapse
Affiliation(s)
- Kaibin Huang
- Department of Neurology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Yanhong Hu
- Department of Neurology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Yongming Wu
- Department of Neurology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Zhong Ji
- Department of Neurology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Shengnan Wang
- Department of Neurology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Zhenzhou Lin
- Department of Neurology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Jiawei Xu
- Department of Neurology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Suyue Pan
- Department of Neurology Nanfang Hospital, Southern Medical University Guangzhou China
| |
Collapse
|
134
|
Eisenberg HM, Shenton ME, Pasternak O, Simard JM, Okonkwo DO, Aldrich C, He F, Jain S, Hayman EG. Magnetic Resonance Imaging Pilot Study of Intravenous Glyburide in Traumatic Brain Injury. J Neurotrauma 2019; 37:185-193. [PMID: 31354055 PMCID: PMC6921286 DOI: 10.1089/neu.2019.6538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-clinical studies of traumatic brain injury (TBI) show that glyburide reduces edema and hemorrhagic progression of contusions. We conducted a small Phase II, three-institution, randomized placebo-controlled trial of subjects with TBI to assess the safety and efficacy of intravenous (IV) glyburide. Twenty-eight subjects were randomized and underwent a 72-h infusion of IV glyburide or placebo, beginning within 10 h of trauma. Of the 28 subjects, 25 had Glasgow Coma Scale (GCS) scores of 6-10, and 14 had contusions. There were no differences in adverse events (AEs) or severe adverse events (ASEs) between groups. The magnetic resonance imaging (MRI) percent change at 72-168 h from screening/baseline was compared between the glyburide and placebo groups. Analysis of contusions (7 per group) showed that lesion volumes (hemorrhage plus edema) increased 1036% with placebo versus 136% with glyburide (p = 0.15), and that hemorrhage volumes increased 11.6% with placebo but decreased 29.6% with glyburide (p = 0.62). Three diffusion MRI measures of edema were quantified: mean diffusivity (MD), free water (FW), and tissue MD (MDt), corresponding to overall, extracellular, and intracellular water, respectively. The percent change with time for each measure was compared in lesions (n = 14) versus uninjured white matter (n = 24) in subjects receiving placebo (n = 20) or glyburide (n = 18). For placebo, the percent change in lesions for all three measures was significantly different compared with uninjured white matter (analysis of variance [ANOVA], p < 0.02), consistent with worsening of edema in untreated contusions. In contrast, for glyburide, the percent change in lesions for all three measures was not significantly different compared with uninjured white matter. Further study of IV glyburide in contusion TBI is warranted.
Collapse
Affiliation(s)
- Howard M Eisenberg
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martha E Shenton
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Research and Development, VA Boston Healthcare System, Brockton Division, Brockton, Massachusetts
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christina Aldrich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feng He
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Erik G Hayman
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
135
|
Ma J, Zhang S, Liu J, Liu F, Du F, Li M, Chen AT, Bao Y, Suh HW, Avery J, Deng G, Zhou Y, Wu P, Sheth K, Wang H, Zhou J. Targeted Drug Delivery to Stroke via Chemotactic Recruitment of Nanoparticles Coated with Membrane of Engineered Neural Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902011. [PMID: 31290245 PMCID: PMC11089900 DOI: 10.1002/smll.201902011] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/17/2019] [Indexed: 05/18/2023]
Abstract
Cell membrane coating has recently emerged as a promising biomimetic approach to engineering nanoparticles (NPs) for targeted drug delivery. However, simple cell membrane coating may not meet the need for efficient drug delivery to the brain. Here, a novel molecular engineering strategy to modify the surface of NPs with a cell membrane coating for enhanced brain penetration is reported. By using poly(lactic-co-glycolic) acid NPs as a model, it is shown that delivery of NPs to the ischemic brain is enhanced through surface coating with the membrane of neural stem cells (NSCs), and the delivery efficiency can be further increased using membrane isolated from NSCs engineered for overexpression of CXCR4. It is found that this enhancement is mediated by the chemotactic interaction of CXCR4 with SDF-1, which is enriched in the ischemic microenvironment. It is demonstrated that the resulting CXCR4-overexpressing membrane-coated NPs, termed CMNPs, significantly augment the efficacy of glyburide, an anti-edema agent, for stroke treatment. The study suggests a new approach to improving drug delivery to the ischemic brain and establishes a novel formulation of glyburide that can be potentially translated into clinical applications to improve management of human patients with stroke.
Collapse
Affiliation(s)
- Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fenyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Hee Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Peng Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Kevin Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Haijun Wang
- Department of Neurosurgery, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
136
|
Bodanapally UK, Shanmuganathan K, Ramaswamy M, Tsymbalyuk S, Aarabi B, Parikh GY, Schwartzbauer G, Dreizin D, Simard JM, Ptak T, Li G, Liang Y, Fleiter TR. Iodine-based Dual-Energy CT of Traumatic Hemorrhagic Contusions: Relationship to In-Hospital Mortality and Short-term Outcome. Radiology 2019; 292:730-738. [PMID: 31361206 DOI: 10.1148/radiol.2019190078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BackgroundTraumatic hemorrhagic contusions are associated with iodine leak; however, quantification of leakage and its importance to outcome is unclear.PurposeTo identify iodine-based dual-energy CT variables that correlate with in-hospital mortality and short-term outcomes for contusions at hospital discharge.Materials and MethodsIn this retrospective study, consecutive patients with contusions from May 2016 through January 2017 were analyzed. Two radiologists evaluated CT variables from unenhanced admission head CT and follow-up head dual-energy CT scans obtained after contrast material-enhanced whole-body CT. The outcomes evaluated were in-hospital mortality, Rancho Los Amigos scale (RLAS) score, and disability rating scale (DRS) score. Logistic regression and linear regression were used to develop prediction models for categorical and continuous outcomes, respectively.ResultsThe study included 65 patients (median age, 48 years; interquartile range, 25-65.5 years); 50 were men. Dual-energy CT variables that correlated with mortality, RLAS score, and DRS score were iodine concentration, pseudohematoma volume, iodine quantity in pseudohematoma, and iodine quantity in contusion. The single-energy CT variable that correlated with mortality, RLAS score, and DRS score was hematoma volume at follow-up CT. Multiple logistic regression analysis after inclusion of clinical variables identified two predictors that enabled determination of mortality: postresuscitation Glasgow coma scale (P-GCS) (adjusted odds ratio, 0.42; 95% confidence interval [CI]: 0.2, 0.86; P = 0.01) and iodine quantity in pseudohematoma (adjusted odds ratio, 1.4 per milligram; 95% CI: 1.02 per milligram, 1.9 per milligram; P = 0.03), with a mean area under the receiver operating characteristic curve of 0.96 ± 0.05 (standard error). For RLAS, the predictors were P-GCS (mean coefficient, 0.32 ± 0.06; P < .001) and iodine quantity in contusion (mean coefficient, -0.04 per milligram ± 0.02; P = 0.01). Predictors for DRS were P-GCS (mean coefficient, -1.15 ± 0.27; P < .001), age (mean coefficient, 0.13 per year ± 0.04; P = .002), and iodine quantity in contusion (mean coefficient, 0.19 per milligram ± 0.07; P = .02).ConclusionIodine-based dual-energy CT variables correlate with in-hospital mortality and short-term outcomes for contusions at hospital discharge.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by Talbott and Hess in this issue.
Collapse
Affiliation(s)
- Uttam K Bodanapally
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Kathirkamanathan Shanmuganathan
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Meghna Ramaswamy
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Solomiya Tsymbalyuk
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Bizhan Aarabi
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Gunjan Y Parikh
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Gary Schwartzbauer
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - David Dreizin
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - J Marc Simard
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Thomas Ptak
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Guang Li
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Yuanyuan Liang
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| | - Thorsten R Fleiter
- From the Departments of Diagnostic Radiology and Nuclear Medicine (U.K.B., K.S., D.D., T.P., G.L., T.R.F.), Neurosurgery (B.A., G.S., M.S.), Neurology, R. Adams Cowley Shock Trauma Center (Y.G.P.), Epidemiology and Public Health (Y.L.), University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201; and University of Maryland School of Medicine, Baltimore, Md (M.R., S.T.)
| |
Collapse
|
137
|
Sp1 in Astrocyte Is Important for Neurite Outgrowth and Synaptogenesis. Mol Neurobiol 2019; 57:261-277. [PMID: 31317491 DOI: 10.1007/s12035-019-01694-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/03/2019] [Indexed: 02/04/2023]
Abstract
In this study, we found that Sp1 was highly expressed in astrocytes, implying that Sp1 might be important for the function of astrocytes. Sp1/GFAP-Cre-ERT2 conditional knockout mice were constructed to study the role of Sp1 in astrocytes. Knockout of Sp1 in astrocytes altered astrocytic morphology and decreased GFAP expression in the cortex and hippocampus but did not affect cell viability. Loss of Sp1 in astrocytes decreased the number of neurons in the cortex and hippocampus. Conditioned medium from primary astrocytes with Sp1 knockout disrupted neuronal dendritic outgrowth and synapse formation, resulting in abnormal learning, memory, and motor behavior. Sp1 knockout in astrocytes altered gene expression, including decreasing the expression of Toll-like receptor 2 and Cfb and increasing the expression of C1q and C4Bp, thereby affecting neurite outgrowth and synapse formation, resulting in disordered neuron function. Studying these gene regulations might be beneficial to understanding neuronal development and brain injury prevention.
Collapse
|
138
|
Feng PF, Zhang B, Zhao L, Fang Q, Liu Y, Wang JN, Xu XQ, Xue H, Li Y, Yan CC, Zhao X, Li BX. Intracellular Mechanism of Rosuvastatin-Induced Decrease in Mature hERG Protein Expression on Membrane. Mol Pharm 2019; 16:1477-1488. [PMID: 30807184 DOI: 10.1021/acs.molpharmaceut.8b01102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hERG potassium channel (IKr) encoded by human ether-a-go-go-related gene plays an important role in cardiac repolarization. Decreased IKr may lead to long QT syndrome, which subsequently causes torsade de pointes and sudden cardiac death. Previous studies have shown that statins inhibit IKr and are more potent in inhibiting hERG currents when combined with other drugs. Since chemical structure of rosuvastatin is similar to that of several IKr blockers (ibutilide and E-4031), the present study aimed to reveal the mechanism that underlies rosuvastatin-induced hERG current reduction and to evaluate the possibility of cardiac toxicity. The results showed that rosuvastatin reduced hERG currents by accelerating the inactivation and prolonged action potential duration (APD) in hiPSC-CMs. Meanwhile, it was observed that rosuvastatin reduced the expression of the mature hERG. Transcription factor Sp1 was involved in hERG protein downregulation induced by rosuvastatin, and the result was verified by Sp1 siRNA and Sp1 agonist epicatechin. These results indicated that rosuvastatin could potentially inhibit transcription and reduce hERG mRNA expression. The interaction between hERG and heat shock protein was evaluated to study the mechanism of trafficking inhibition through co-immunoprecipitation. We found that rosuvastatin reduces the interaction of heat shock protein 70 (Hsp70) with the hERG protein, thereby affecting the folding of the hERG channel. Additionally, rosuvastatin significantly activates ATF6, which plays a key role in the activation of the unfolded protein response (UPR) pathway. Increased expression of the molecular chaperone calnexin and calreticulin, which are activated by ATF6 to help channel folding, further confirmed UPR activation. Meanwhile, the degradation of the hERG channel was mediated by lysosomes and proteasomes. In conclusion, Rosuvastatin reduced the expression of hERG plasma membrane by two pathways, the first is to disrupt the transport of immature hERG channels to the membrane, and the second is to increase the degradation of mature hERG channels. In addition, Rosuvastatin potently blocked hERG current, delayed cardiac repolarization, and thereby prolonged APDs and QTc intervals. Therefore, caution should be taken when rosuvastatin is used in the treatment of hyperlipidemia, especially when combined with drugs that can prolong the QT interval.
Collapse
Affiliation(s)
- Pan-Feng Feng
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Bo Zhang
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Lei Zhao
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Qing Fang
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Yan Liu
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Jun-Nan Wang
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Xue-Qi Xu
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Hui Xue
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Yang Li
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Cai-Chuan Yan
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Xin Zhao
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Bao-Xin Li
- Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| |
Collapse
|
139
|
Farr GW, Hall CH, Farr SM, Wade R, Detzel JM, Adams AG, Buch JM, Beahm DL, Flask CA, Xu K, LaManna JC, McGuirk PR, Boron WF, Pelletier MF. Functionalized Phenylbenzamides Inhibit Aquaporin-4 Reducing Cerebral Edema and Improving Outcome in Two Models of CNS Injury. Neuroscience 2019; 404:484-498. [PMID: 30738082 DOI: 10.1016/j.neuroscience.2019.01.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 01/23/2023]
Abstract
Cerebral edema in ischemic stroke can lead to increased intracranial pressure, reduced cerebral blood flow and neuronal death. Unfortunately, current therapies for cerebral edema are either ineffective or highly invasive. During the development of cytotoxic and subsequent ionic cerebral edema water enters the brain by moving across an intact blood brain barrier and through aquaporin-4 (AQP4) at astrocyte endfeet. Using AQP4-expressing cells, we screened small molecule libraries for inhibitors that reduce AQP4-mediated water permeability. Additional functional assays were used to validate AQP4 inhibition and identified a promising structural series for medicinal chemistry. These efforts improved potency and revealed a compound we designated AER-270, N-[3,5-bis (trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide. AER-270 and a prodrug with enhanced solubility, AER-271 2-{[3,5-Bis(trifluoromethyl) phenyl]carbamoyl}-4-chlorophenyl dihydrogen phosphate, improved neurological outcome and reduced swelling in two models of CNS injury complicated by cerebral edema: water intoxication and ischemic stroke modeled by middle cerebral artery occlusion.
Collapse
Affiliation(s)
- George W Farr
- Aeromics, Inc., Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | - Ramon Wade
- Aeromics, Inc., Cleveland, OH 44106, USA
| | | | | | | | - Derek L Beahm
- Department of Biology, Buffalo State College, Buffalo, NY 14222, USA
| | - Christopher A Flask
- Departments of Radiology, Biomedical Engineering and Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kui Xu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joseph C LaManna
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
140
|
Cavalla D. Using human experience to identify drug repurposing opportunities: theory and practice. Br J Clin Pharmacol 2019; 85:680-689. [PMID: 30648285 DOI: 10.1111/bcp.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Retrospective evidence drawn from real-world experience of a medicine's use outside its labelled indication is one of a number of techniques used in drug repurposing (DRP). Relying as it does on large numbers of real incidences of human experience, rather than individual case reports with limited statistical support, preclinical experiments with poor translatability or in silico associations, which are early-stage hypotheses, it represents the best validated form of DRP. Cancer is the most frequent of such DRP examples (e.g. aspirin in pancreatic cancer, hazard ratio = 0.25). This approach can be combined with pathway analysis to provide first-in-class treatments for complex diseases. Alternatively, it can be combined with prospective preclinical studies to uncover a validated mechanism for a new indication, after which a repurposed molecule is chemically optimized.
Collapse
|
141
|
Bursting at the Seams: Molecular Mechanisms Mediating Astrocyte Swelling. Int J Mol Sci 2019; 20:ijms20020330. [PMID: 30650535 PMCID: PMC6359623 DOI: 10.3390/ijms20020330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/31/2023] Open
Abstract
Brain swelling is one of the most robust predictors of outcome following brain injury, including ischemic, traumatic, hemorrhagic, metabolic or other injury. Depending on the specific type of insult, brain swelling can arise from the combined space-occupying effects of extravasated blood, extracellular edema fluid, cellular swelling, vascular engorgement and hydrocephalus. Of these, arguably the least well appreciated is cellular swelling. Here, we explore current knowledge regarding swelling of astrocytes, the most abundant cell type in the brain, and the one most likely to contribute to pathological brain swelling. We review the major molecular mechanisms identified to date that contribute to or mitigate astrocyte swelling via ion transport, and we touch upon the implications of astrocyte swelling in health and disease.
Collapse
|
142
|
Castro L, Noelia M, Vidal-Jorge M, Sánchez-Ortiz D, Gándara D, Martínez-Saez E, Cicuéndez M, Poca MA, Simard JM, Sahuquillo J. Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K + Channels, Is Overexpressed in Human Posttraumatic Brain Contusions. J Neurotrauma 2019; 36:165-175. [PMID: 29737232 PMCID: PMC7872003 DOI: 10.1089/neu.2017.5619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain contusions (BCs) are one of the most frequent lesions in patients with moderate and severe traumatic brain injury (TBI). BCs increase their volume due to peri-lesional edema formation and/or hemorrhagic transformation. This may have deleterious consequences and its mechanisms are still poorly understood. We previously identified de novo upregulation sulfonylurea receptor (SUR) 1, the regulatory subunit of adenosine triphosphate (ATP)-sensitive potassium (KATP) channels and other channels, in human BCs. Our aim here was to study the expression of the pore-forming subunit of KATP, Kir6.2, in human BCs, and identify its localization in different cell types. Protein levels of Kir6.2 were detected by western blot (WB) from 33 contusion specimens obtained from 32 TBI patients aged 14-74 years. The evaluation of Kir6.2 expression in different cell types was performed by immunofluorescence in 29 contusion samples obtained from 28 patients with a median age of 42 years. Control samples were obtained from limited brain resections performed to access extra-axial skull base tumors or intraventricular lesions. Contusion specimens showed an increase of Kir6.2 expression in comparison with controls. Regarding cellular location of Kir6.2, there was no expression of this channel subunit in blood vessels, either in control samples or in contusions. The expression of Kir6.2 in neurons and microglia was also analyzed, but the observed differences were not statistically significant. However, a significant increase of Kir6.2 was found in glial fibrillary acidic protein (GFAP)-positive cells in contusion specimens. Our data suggest that further research on SUR1-regulated ionic channels may lead to a better understanding of key mechanisms involved in the pathogenesis of BCs, and may identify novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lidia Castro
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montoya Noelia
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marian Vidal-Jorge
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Sánchez-Ortiz
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Darío Gándara
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Saez
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Cicuéndez
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Antonia Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J. Marc Simard
- Departments of Neurosurgery, Physiology, and Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
143
|
Kimberly WT, Bevers MB, von Kummer R, Demchuk AM, Romero JM, Elm JJ, Hinson HE, Molyneaux BJ, Simard JM, Sheth KN. Effect of IV glyburide on adjudicated edema endpoints in the GAMES-RP Trial. Neurology 2018; 91:e2163-e2169. [PMID: 30446594 DOI: 10.1212/wnl.0000000000006618] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE In this secondary analysis of the Glyburide Advantage in Malignant Edema and Stroke (GAMES-RP) Trial, we report the effect of IV glyburide on adjudicated, edema-related endpoints. METHODS Blinded adjudicators assigned designations for hemorrhagic transformation, neurologic deterioration, malignant edema, and edema-related death to patients from the GAMES-RP phase II randomized controlled trial of IV glyburide for large hemispheric infarct. Rates of these endpoints were compared between treatment arms in the per-protocol sample. In those participants with malignant edema, the effects of treatment on additional markers of edema and clinical deterioration were examined. RESULTS In the per-protocol sample, 41 patients received glyburide and 36 received placebo. There was no difference in the frequency of hemorrhagic transformation (n = 24 [58.5%] in IV glyburide vs n = 23 [63.9%] in placebo, p = 0.91) or the incidence of malignant edema (n = 19 [46%] in IV glyburide vs n = 17 [47%] in placebo, p = 0.94). However, treatment with IV glyburide was associated with a reduced proportion of deaths attributed to cerebral edema (n = 1 [2.4%] with IV glyburide vs n = 8 [22.2%] with placebo, p = 0.01). In the subset of patients with malignant edema, those treated with IV glyburide had less midline shift (p < 0.01) and reduced MMP-9 (matrix metalloproteinase 9) levels (p < 0.01). The glyburide treatment group had lower rate of NIH Stroke Scale (NIHSS) increase of ≥4 during the infusion period (n = 7 [37%] in IV glyburide vs n = 12 [71%] in placebo, p = 0.043), and of change in level of alertness (NIHSS subscore 1a; n = 11 [58%] vs n = 15 [94%], p = 0.016). CONCLUSION IV glyburide was associated with improvements in midline shift, level of alertness, and NIHSS, and there were fewer deaths attributed to edema. Additional studies of IV glyburide in large hemispheric infarction are warranted to corroborate these findings. CLINICALTRIALSGOV IDENTIFIER NCT01794182. LEVEL OF EVIDENCE This study provides Class II evidence that for patients with large hemispheric infarction, IV glyburide improves some edema-related endpoints.
Collapse
Affiliation(s)
- W Taylor Kimberly
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT.
| | - Matthew B Bevers
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT
| | - Rüdiger von Kummer
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT
| | - Andrew M Demchuk
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT
| | - Javier M Romero
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT
| | - Jordan J Elm
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT
| | - Holly E Hinson
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT
| | - Bradley J Molyneaux
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT
| | - J Marc Simard
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT
| | - Kevin N Sheth
- From the Department of Neurology and Center for Genomic Medicine (W.T.K.), and Department of Radiology, Division of Neuroradiology (J.M.R.), Massachusetts General Hospital, Boston; Divisions of Stroke, Cerebrovascular and Critical Care Neurology (M.B.B.), Brigham & Women's Hospital, Boston, MA; Department of Neuroradiology (R.v.K.), Universitätsklinikum Carl Gustav Carus, Dresden, Germany; Calgary Stroke Program (A.M.D.), Department of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Canada; Department of Public Health Sciences (J.J.E.), Medical University of South Carolina, Charleston; Department of Neurology (H.E.H.), Oregon Health Sciences University, Portland; Department of Neurology (B.J.M.), University of Pittsburgh, PA; Department of Neurosurgery (J.M.S.), University of Maryland School of Medicine, Baltimore; and Division of Neurocritical Care and Emergency Neurology (K.N.S.), Yale New Haven Hospital, CT.
| |
Collapse
|
144
|
Jha RM, Elmer J, Zusman BE, Desai S, Puccio AM, Okonkwo DO, Park SY, Shutter LA, Wallisch JS, Conley YP, Kochanek PM. Intracranial Pressure Trajectories: A Novel Approach to Informing Severe Traumatic Brain Injury Phenotypes. Crit Care Med 2018; 46:1792-1802. [PMID: 30119071 PMCID: PMC6185785 DOI: 10.1097/ccm.0000000000003361] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Intracranial pressure in traumatic brain injury is dynamic and influenced by factors like injury patterns, treatments, and genetics. Existing studies use time invariant summary intracranial pressure measures thus potentially losing critical information about temporal trends. We identified longitudinal intracranial pressure trajectories in severe traumatic brain injury and evaluated whether they predicted outcome. We further interrogated the model to explore whether ABCC8 polymorphisms (a known cerebraledema regulator) differed across trajectory groups. DESIGN Prospective observational cohort. SETTING Single-center academic medical center. PATIENTS Four-hundred four severe traumatic brain injury patients. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We used group-based trajectory modeling to identify hourly intracranial pressure trajectories in days 0-5 post traumatic brain injury incorporating risk factor adjustment (age, sex, Glasgow Coma Scale 6score, craniectomy, primary hemorrhage pattern). We compared 6-month outcomes (Glasgow Outcome Scale, Disability Rating Scale, mortality) and ABCC8 tag-single-nucleotide polymorphisms associated with cerebral edema (rs2237982, rs7105832) across groups. Regression models determined whether trajectory groups predicted outcome. A six trajectory group model best fit the data, identifying cohorts differing in initial intracranial pressure, evolution, and number/proportion of spikes greater than 20 mm Hg. There were pattern differences in age, hemorrhage type, and craniectomy rates. ABCC8 polymorphisms differed across groups. GOS (p = 0.006), Disability Rating Scale (p = 0.001), mortality (p < 0.0001), and rs2237982 (p = 0.035) differed across groups. Unfavorable outcomes were surprisingly predicted by both low intracranial pressure trajectories and sustained intracranial hypertension. Intracranial pressure variability differed across groups (p < 0.001) and may reflect preserved/impaired intracranial elastance/compliance. CONCLUSIONS We employed a novel approach investigating longitudinal/dynamic intracranial pressure patterns in traumatic brain injury. In a risk adjusted model, six groups were identified and predicted outcomes. If validated, trajectory modeling may be a first step toward developing a new, granular approach for intracranial pressure phenotyping in conjunction with other phenotyping tools like biomarkers and neuroimaging. This may be particularly relevant in light of changing traumatic brain injury demographics toward the elderly.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Department of Neurology, School of Medicine, University of Pittsburgh
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh
| | - Jonathan Elmer
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Department of Emergency Medicine, School of Medicine, University of Pittsburgh
| | - Benjamin E. Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
| | - Shashvat Desai
- Department of Neurology, School of Medicine, University of Pittsburgh
| | - Ava M. Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
| | - David O. Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
| | - Seo Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh
- Department of Biostatistics, School of Public Health, University of Pittsburgh
| | - Lori A. Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Department of Neurology, School of Medicine, University of Pittsburgh
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
| | - Jessica S. Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh
| | - Yvette P. Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh
- School of Nursing, University of Pittsburgh
- Department of Human Genetics, School of Medicine, University of Pittsburgh
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh
- Department of Anesthesia, School of Medicine, University of Pittsburgh
| |
Collapse
|
145
|
Gerzanich V, Stokum JA, Ivanova S, Woo SK, Tsymbalyuk O, Sharma A, Akkentli F, Imran Z, Aarabi B, Sahuquillo J, Simard JM. Sulfonylurea Receptor 1, Transient Receptor Potential Cation Channel Subfamily M Member 4, and KIR6.2:Role in Hemorrhagic Progression of Contusion. J Neurotrauma 2018; 36:1060-1079. [PMID: 30160201 PMCID: PMC6446209 DOI: 10.1089/neu.2018.5986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In severe traumatic brain injury (TBI), contusions often are worsened by contusion expansion or hemorrhagic progression of contusion (HPC), which may double the original contusion volume and worsen outcome. In humans and rodents with contusion-TBI, sulfonylurea receptor 1 (SUR1) is upregulated in microvessels and astrocytes, and in rodent models, blockade of SUR1 with glibenclamide reduces HPC. SUR1 does not function by itself, but must co-assemble with either KIR6.2 or transient receptor potential cation channel subfamily M member 4 (TRPM4) to form KATP (SUR1-KIR6.2) or SUR1-TRPM4 channels, with the two having opposite effects on membrane potential. Both KIR6.2 and TRPM4 are reportedly upregulated in TBI, especially in astrocytes, but the identity and function of SUR1-regulated channels post-TBI is unknown. Here, we analyzed human and rat brain tissues after contusion-TBI to characterize SUR1, TRPM4, and KIR6.2 expression, and in the rat model, to examine the effects on HPC of inhibiting expression of the three subunits using intravenous antisense oligodeoxynucleotides (AS-ODN). Glial fibrillary acidic protein (GFAP) immunoreactivity was used to operationally define core versus penumbral tissues. In humans and rats, GFAP-negative core tissues contained microvessels that expressed SUR1 and TRPM4, whereas GFAP-positive penumbral tissues contained astrocytes that expressed all three subunits. Förster resonance energy transfer imaging demonstrated SUR1-TRPM4 heteromers in endothelium, and SUR1-TRPM4 and SUR1-KIR6.2 heteromers in astrocytes. In rats, glibenclamide as well as AS-ODN targeting SUR1 and TRPM4, but not KIR6.2, reduced HPC at 24 h post-TBI. Our findings demonstrate upregulation of SUR1-TRPM4 and KATP after contusion-TBI, identify SUR1-TRPM4 as the primary molecular mechanism that accounts for HPC, and indicate that SUR1-TRPM4 is a crucial target of glibenclamide.
Collapse
Affiliation(s)
- Volodymyr Gerzanich
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jesse A Stokum
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seung Kyoon Woo
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amit Sharma
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Fatih Akkentli
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ziyan Imran
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bizhan Aarabi
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Sahuquillo
- 2 Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,3 Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,4 Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,5 Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
146
|
Bar B, Biller J. Select hyperacute complications of ischemic stroke: cerebral edema, hemorrhagic transformation, and orolingual angioedema secondary to intravenous Alteplase. Expert Rev Neurother 2018; 18:749-759. [PMID: 30215283 DOI: 10.1080/14737175.2018.1521723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Remarkable advances have occurred in the management of acute ischemic stroke, especially in regards to reperfusion treatments. With advances in reperfusion treatments come the risk of complications associated with these treatments. Areas covered: The article focuses on three acute complications that can occur in the setting of acute ischemic stroke: cerebral edema, hemorrhagic transformation, and orolingual angioedema following administration of alteplase, a recombinant tissue plasminogen activator. Predictors of the development of these complications are reviewed. The management of cerebral edema and hemorrhagic transformation is also reviewed in depth including potential new treatments targeting the blood-brain barrier. The article also reviews the management of the rare but potentially fatal complication of orolingual angioedema secondary to alteplase. Expert commentary: An understanding of the pathophysiology leading to the development of malignant cerebral edema and hemorrhagic transformation allows the clinician to anticipate and properly manage these acute complications. Regardless of a patient's age or comorbidities, the decision to pursue decompressive hemicraniectomy in patients with malignant cerebral edema should be based on an honest assessment of expected outcome and guided by the patient's prior wishes regarding an acceptable quality of life.
Collapse
Affiliation(s)
- Barak Bar
- a Department of Neurology , Stritch Medical Center, Loyola University Medical Center , Maywood , IL , USA
| | - Jose Biller
- a Department of Neurology , Stritch Medical Center, Loyola University Medical Center , Maywood , IL , USA
| |
Collapse
|
147
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
148
|
Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park SY, Poloyac S, Vagni VA, Janesko-Feldman KL, Hoshitsuki K, Minnigh MB, Kochanek PM. Glibenclamide Produces Region-Dependent Effects on Cerebral Edema in a Combined Injury Model of Traumatic Brain Injury and Hemorrhagic Shock in Mice. J Neurotrauma 2018; 35:2125-2135. [PMID: 29648981 PMCID: PMC6098411 DOI: 10.1089/neu.2016.4696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cerebral edema is critical to morbidity/mortality in traumatic brain injury (TBI) and is worsened by hypotension. Glibenclamide may reduce cerebral edema by inhibiting sulfonylurea receptor-1 (Sur1); its effect on diffuse cerebral edema exacerbated by hypotension/resuscitation is unknown. We aimed to determine if glibenclamide improves pericontusional and/or diffuse edema in controlled cortical impact (CCI) (5m/sec, 1 mm depth) plus hemorrhagic shock (HS) (35 min), and compare its effects in CCI alone. C57BL/6 mice were divided into five groups (n = 10/group): naïve, CCI+vehicle, CCI+glibenclamide, CCI+HS+vehicle, and CCI+HS+glibenclamide. Intravenous glibenclamide (10 min post-injury) was followed by a subcutaneous infusion for 24 h. Brain edema in injured and contralateral hemispheres was subsequently quantified (wet-dry weight). This protocol brain water (BW) = 80.4% vehicle vs. 78.3% naïve, p < 0.01) but was not reduced by glibenclamide (I%BW = 80.4%). Ipsilateral edema also developed in CCI alone (I%BW = 80.2% vehicle vs. 78.3% naïve, p < 0.01); again unaffected by glibenclamide (I%BW = 80.5%). Contralateral (C) %BW in CCI+HS was increased in vehicle (78.6%) versus naive (78.3%, p = 0.02) but unchanged in CCI (78.3%). At 24 h, glibenclamide treatment in CCI+HS eliminated contralateral cerebral edema (C%BW = 78.3%) with no difference versus naïve. By 72 h, contralateral cerebral edema had resolved (C%BW = 78.5 ± 0.09% vehicle vs. 78.3 ± 0.05% naïve). Glibenclamide decreased 24 h contralateral cerebral edema in CCI+HS. This beneficial effect merits additional exploration in the important setting of TBI with polytrauma, shock, and resuscitation. Contralateral edema did not develop in CCI alone. Surprisingly, 24 h of glibenclamide treatment failed to decrease ipsilateral edema in either model. Interspecies dosing differences versus prior studies may play an important role in these findings. Mechanisms underlying brain edema may differ regionally, with pericontusional/osmolar swelling refractory to glibenclamide but diffuse edema (via Sur1) from combined injury and/or resuscitation responsive to this therapy. TBI phenotype may mandate precision medicine approaches to treat brain edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bradley J. Molyneaux
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica S. Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel Poloyac
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent A. Vagni
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keri L. Janesko-Feldman
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keito Hoshitsuki
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. Beth Minnigh
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
149
|
Guo X, Deng G, Liu J, Zou P, Du F, Liu F, Chen AT, Hu R, Li M, Zhang S, Tang Z, Han L, Liu J, Sheth KN, Chen Q, Gou X, Zhou J. Thrombin-Responsive, Brain-Targeting Nanoparticles for Improved Stroke Therapy. ACS NANO 2018; 12:8723-8732. [PMID: 30107729 DOI: 10.1021/acsnano.8b04787] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current treatments for ischemic stroke are insufficient. The lack of effective pharmacological approaches can be mainly attributed to the difficulty in overcoming the blood-brain barrier. Here, we report a simple strategy to synthesize protease-responsive, brain-targeting nanoparticles for the improved treatment of stroke. The resulting nanoparticles respond to proteases enriched in the ischemic microenvironment, including thrombin or matrix metalloproteinase-9, by shrinking or expanding their size. Targeted delivery was achieved using surface conjugation of ligands that bind to proteins that were identified to enrich in the ischemic brain using protein arrays. By screening a variety of formulations, we found that AMD3100-conjugated, size-shrinkable nanoparticles (ASNPs) exhibited the greatest delivery efficiency. The brain targeting effect is mainly mediated by AMD3100, which interacts with CXCR4 that is enriched in the ischemic brain tissue. We showed that ASNPs significantly enhanced the efficacy of glyburide, a promising stroke therapeutic drug whose efficacy is limited by its toxicity. Due to their high efficiency in penetrating the ischemic brain and low toxicity, we anticipate that ASNPs have the potential to be translated into clinical applications for the improved treatment of stroke patients.
Collapse
Affiliation(s)
| | - Gang Deng
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | | | | | | | | | | | | | | | - Shenqi Zhang
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | - Zhishu Tang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine , Xi'an Medical University , Xi'an , Shannxi 710021 , China
| | | | - Jie Liu
- Department of Biomedical Engineering, School of Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | | | - Qianxue Chen
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine , Xi'an Medical University , Xi'an , Shannxi 710021 , China
| | | |
Collapse
|
150
|
Wilson CS, Mongin AA. Cell Volume Control in Healthy Brain and Neuropathologies. CURRENT TOPICS IN MEMBRANES 2018; 81:385-455. [PMID: 30243438 DOI: 10.1016/bs.ctm.2018.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulation of cellular volume is a critical homeostatic process that is intimately linked to ionic and osmotic balance in the brain tissue. Because the brain is encased in the rigid skull and has a very complex cellular architecture, even minute changes in the volume of extracellular and intracellular compartments have a very strong impact on tissue excitability and function. The failure of cell volume control is a major feature of several neuropathologies, such as hyponatremia, stroke, epilepsy, hyperammonemia, and others. There is strong evidence that such dysregulation, especially uncontrolled cell swelling, plays a major role in adverse pathological outcomes. To protect themselves, brain cells utilize a variety of mechanisms to maintain their optimal volume, primarily by releasing or taking in ions and small organic molecules through diverse volume-sensitive ion channels and transporters. In principle, the mechanisms of cell volume regulation are not unique to the brain and share many commonalities with other tissues. However, because ions and some organic osmolytes (e.g., major amino acid neurotransmitters) have a strong impact on neuronal excitability, cell volume regulation in the brain is a surprisingly treacherous process, which may cause more harm than good. This topical review covers the established and emerging information in this rapidly developing area of physiology.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|