101
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Alghamdi RA, Exposito-Rodriguez M, Mullineaux PM, Brooke GN, Laissue PP. Assessing Phototoxicity in a Mammalian Cell Line: How Low Levels of Blue Light Affect Motility in PC3 Cells. Front Cell Dev Biol 2021; 9:738786. [PMID: 34977004 PMCID: PMC8718804 DOI: 10.3389/fcell.2021.738786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
Phototoxicity is a significant constraint for live cell fluorescence microscopy. Excessive excitation light intensities change the homeostasis of the observed cells. Erroneous and misleading conclusions may be the problematic consequence of observing such light-induced pathophysiology. In this study, we assess the effect of blue light, as commonly used for GFP and YFP excitation, on a motile mammalian cell line. Tracking PC3 cells at different light doses and intensities, we show how motility can be used to reliably assess subtle positive and negative effects of illumination. We further show that the effects are a factor of intensity rather than light dose. Mitotic delay was not a sensitive indicator of phototoxicity. For early detection of the effect of blue light, we analysed the expression of genes involved in oxidative stress. This study addresses the need for relatively simple and sensitive methods to establish a dose-response curve for phototoxicity in mammalian cell line models. We conclude with a working model for phototoxicity and recommendations for its assessment.
Collapse
Affiliation(s)
- Rana A. Alghamdi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Marino Exposito-Rodriguez
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | - Greg N. Brooke
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Philippe P. Laissue
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- *Correspondence: Philippe P. Laissue,
| |
Collapse
|
103
|
Stepaniak MD, Square TA, Miller CT. Evolved Bmp6 enhancer alleles drive spatial shifts in gene expression during tooth development in sticklebacks. Genetics 2021; 219:6374454. [PMID: 34849839 PMCID: PMC8664583 DOI: 10.1093/genetics/iyab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in enhancers have been shown to often underlie natural variation but the evolved differences in enhancer activity can be difficult to identify in vivo. Threespine sticklebacks (Gasterosteus aculeatus) are a robust system for studying enhancer evolution due to abundant natural genetic variation, a diversity of evolved phenotypes between ancestral marine and derived freshwater forms, and the tractability of transgenic techniques. Previous work identified a series of polymorphisms within an intronic enhancer of the Bone morphogenetic protein 6 (Bmp6) gene that are associated with evolved tooth gain, a derived increase in freshwater tooth number that arises late in development. Here, we use a bicistronic reporter construct containing a genetic insulator and a pair of reciprocal two-color transgenic reporter lines to compare enhancer activity of marine and freshwater alleles of this enhancer. In older fish, the two alleles drive partially overlapping expression in both mesenchyme and epithelium of developing teeth, but the freshwater enhancer drives a reduced mesenchymal domain and a larger epithelial domain relative to the marine enhancer. In younger fish, these spatial shifts in enhancer activity are less pronounced. Comparing Bmp6 expression by in situ hybridization in developing teeth of marine and freshwater fish reveals similar evolved spatial shifts in gene expression. Together, these data support a model in which the polymorphisms within this enhancer underlie evolved tooth gain by shifting the spatial expression of Bmp6 during tooth development, and provide a general strategy to identify spatial differences in enhancer activity in vivo.
Collapse
Affiliation(s)
- Mark D Stepaniak
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tyler A Square
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
104
|
van der Linden FH, Mahlandt EK, Arts JJG, Beumer J, Puschhof J, de Man SMA, Chertkova AO, Ponsioen B, Clevers H, van Buul JD, Postma M, Gadella TWJ, Goedhart J. A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nat Commun 2021; 12:7159. [PMID: 34887382 PMCID: PMC8660884 DOI: 10.1038/s41467-021-27249-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
The most successful genetically encoded calcium indicators (GECIs) employ an intensity or ratiometric readout. Despite a large calcium-dependent change in fluorescence intensity, the quantification of calcium concentrations with GECIs is problematic, which is further complicated by the sensitivity of all GECIs to changes in the pH in the biological range. Here, we report on a sensing strategy in which a conformational change directly modifies the fluorescence quantum yield and fluorescence lifetime of a circular permutated turquoise fluorescent protein. The fluorescence lifetime is an absolute parameter that enables straightforward quantification, eliminating intensity-related artifacts. An engineering strategy that optimizes lifetime contrast led to a biosensor that shows a 3-fold change in the calcium-dependent quantum yield and a fluorescence lifetime change of 1.3 ns. We dub the biosensor Turquoise Calcium Fluorescence LIfeTime Sensor (Tq-Ca-FLITS). The response of the calcium sensor is insensitive to pH between 6.2-9. As a result, Tq-Ca-FLITS enables robust measurements of intracellular calcium concentrations by fluorescence lifetime imaging. We demonstrate quantitative imaging of calcium concentrations with the turquoise GECI in single endothelial cells and human-derived organoids.
Collapse
Affiliation(s)
- Franka H van der Linden
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eike K Mahlandt
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Janine J G Arts
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Hematology at Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Joep Beumer
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Jens Puschhof
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Saskia M A de Man
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna O Chertkova
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas Ponsioen
- Center for Molecular Medicine, Oncode Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Jaap D van Buul
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Hematology at Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
105
|
Nasu Y, Murphy-Royal C, Wen Y, Haidey JN, Molina RS, Aggarwal A, Zhang S, Kamijo Y, Paquet ME, Podgorski K, Drobizhev M, Bains JS, Lemieux MJ, Gordon GR, Campbell RE. A genetically encoded fluorescent biosensor for extracellular L-lactate. Nat Commun 2021; 12:7058. [PMID: 34873165 PMCID: PMC8648760 DOI: 10.1038/s41467-021-27332-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
L-Lactate, traditionally considered a metabolic waste product, is increasingly recognized as an important intercellular energy currency in mammals. To enable investigations of the emerging roles of intercellular shuttling of L-lactate, we now report an intensiometric green fluorescent genetically encoded biosensor for extracellular L-lactate. This biosensor, designated eLACCO1.1, enables cellular resolution imaging of extracellular L-lactate in cultured mammalian cells and brain tissue.
Collapse
Affiliation(s)
- Yusuke Nasu
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ciaran Murphy-Royal
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1 Canada ,grid.410559.c0000 0001 0743 2111Centre Hospitalier de l’Université de Montréal, Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC H2X 0A9 Canada
| | - Yurong Wen
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7 Canada ,grid.452438.c0000 0004 1760 8119Department of Talent Highland, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710061 China
| | - Jordan N. Haidey
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Rosana S. Molina
- grid.41891.350000 0001 2156 6108Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Abhi Aggarwal
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA
| | - Shuce Zhang
- grid.17089.37Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Yuki Kamijo
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Marie-Eve Paquet
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, Laval University, Québec, QC G1E 1T2 Canada ,grid.23856.3a0000 0004 1936 8390Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC G1J 2G3 Canada
| | - Kaspar Podgorski
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA
| | - Mikhail Drobizhev
- grid.41891.350000 0001 2156 6108Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Jaideep S. Bains
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - M. Joanne Lemieux
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Grant R. Gordon
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Robert E. Campbell
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan ,grid.17089.37Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| |
Collapse
|
106
|
Adhikari DP, Biener G, Stoneman MR, Badu DN, Paprocki JD, Eis A, Park PSH, Popa I, Raicu V. Comparative photophysical properties of some widely used fluorescent proteins under two-photon excitation conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120133. [PMID: 34243141 DOI: 10.1016/j.saa.2021.120133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Understanding the photophysical properties of fluorescent proteins (FPs), such as emission and absorption spectra, molecular brightness, photostability, and photo-switching, is critical to the development of criteria for their selection as tags for fluorescent-based biological applications. While two-photon excitation imaging techniques have steadily gained popularity - due to comparatively deeper penetration depth, reduced out-of-focus photobleaching, and wide separation between emission spectra and two-photon excitation spectra -, most studies reporting on the photophysical properties of FPs tend to remain focused on single-photon excitation. Here, we report our investigation of the photophysical properties of several commonly used fluorescent proteins using two-photon microscopy with spectral resolution in both excitation and emission. Our measurements indicate that not only the excitation (and sometimes emission) spectra of FPs may be markedly different between single-photon and two-photon excitation, but also their relative brightness and their photo-stability. A good understanding of the photophysical properties of FPs under two-photon excitation is essential for choosing the right tag(s) for a desired experiment.
Collapse
Affiliation(s)
- Dhruba P Adhikari
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | | | - Dammar N Badu
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Joel D Paprocki
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Annie Eis
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA; Department of Biological Sciences, University of Wisconsin-Milwaukee, WI 53211, USA.
| |
Collapse
|
107
|
Fu Y, Brown KM, Jones NG, Moreno SNJ, Sibley LD. Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress. eLife 2021; 10:e73011. [PMID: 34860156 PMCID: PMC8683080 DOI: 10.7554/elife.73011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e., tachyzoites) and establishing chronic infection (i.e., bradyzoites). Calcium ion (Ca2+) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca2+ signaling pathways in bradyzoites remain largely unexplored. Here, we show that Ca2+ responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca2+ responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca2+ imaging demonstrated lower Ca2+ basal levels, reduced magnitude, and slower Ca2+ kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with downregulation of Ca2+-ATPases involved in intracellular Ca2+ storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca2+ rapidly restored their intracellular Ca2+ and ATP stores, leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca2+ signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility.
Collapse
Affiliation(s)
- Yong Fu
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Kevin M Brown
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Nathaniel G Jones
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of GeorgiaAthensUnited States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| |
Collapse
|
108
|
Kuzmić M, Linares GC, Fialová JL, Iv F, Salaün D, Llewellyn A, Gomes M, Belhabib M, Liu Y, Asano K, Rodrigues M, Isnardon D, Tachibana T, Koenderink GH, Badache A, Mavrakis M, Verdier-Pinard P. Septin-microtubule association via a motif unique to the isoform 1 of septin 9 tunes stress fibers. J Cell Sci 2021; 135:273936. [PMID: 34854883 DOI: 10.1242/jcs.258850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022] Open
Abstract
Septins, a family of GTP-binding proteins assembling into higher order structures, interface with the membrane, actin filaments and microtubules, which positions them as important regulators of cytoarchitecture. Septin 9 (SEPT9), which is frequently overexpressed in tumors and mutated in hereditary neuralgic amyotrophy (HNA), mediates the binding of septins to microtubules, but the molecular determinants of this interaction remained uncertain. We demonstrate that a short MAP-like motif unique to SEPT9 isoform 1 (SEPT9_i1) drives septin octamer-microtubule interaction in cells and in vitro reconstitutions. Septin-microtubule association requires polymerizable septin octamers harboring SEPT9_i1. Although outside of the MAP-like motif, HNA mutations abrogates this association, identifying a putative regulatory domain. Removal of this domain from SEPT9_i1 sequesters septins on microtubules, promotes microtubule stability and alters actomyosin fiber distribution and tension. Thus, we identify key molecular determinants and potential regulatory roles of septin-microtubule interaction, paving the way to deciphering the mechanisms underlying septin-associated pathologies.
Collapse
Affiliation(s)
- Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Gerard Castro Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jindřiška Leischner Fialová
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - François Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Danièle Salaün
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Alex Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Yuxiang Liu
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Keisuke Asano
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Magda Rodrigues
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan.,Cell Engineering Corporation, Osaka, Japan
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| |
Collapse
|
109
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Stepanenko OV, Sulatskaya AI. New findings on GFP-like protein application as fluorescent tags: Fibrillogenesis, oligomerization, and amorphous aggregation. Int J Biol Macromol 2021; 192:1304-1310. [PMID: 34687761 DOI: 10.1016/j.ijbiomac.2021.10.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/19/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Green fluorescent proteins (GFP) are commonly used as fluorescent tags and biosensors in cell biology and medicine. However, the propensity of GFP-like proteins to aggregate and the consequence of intermolecular interaction for their application have not been thoroughly examined. In this work, alternative aggregation pathways of superfolder green fluorescent protein (sfGFP) were demonstrated using a spectroscopic and microscopic study of the samples prepared by equilibrium microdialysis. Besides oligomerization of native monomers, we showed for the first time the condition-specific formation by sfGFP of either amyloid fibrils (at increased temperature or acidity) or amorphous aggregates (at physiological conditions). Both types of sfGFP aggregates had lost green fluorescence and were toxic to cells. Thus, when using GFP-like proteins as fluorescent tags, one should take into account their high ability to form aggregates with lost unique visible fluorescence in the cellular environment, which affects cell viability. Moreover, the results of this work cast doubt on the correctness of the data on the fibrillogenesis of various amyloidogenic proteins obtained using their fusion with GFP-like proteins.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
110
|
Montero Llopis P, Senft RA, Ross-Elliott TJ, Stephansky R, Keeley DP, Koshar P, Marqués G, Gao YS, Carlson BR, Pengo T, Sanders MA, Cameron LA, Itano MS. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat Methods 2021; 18:1463-1476. [PMID: 34099930 DOI: 10.1038/s41592-021-01156-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
Although fluorescence microscopy is ubiquitous in biomedical research, microscopy methods reporting is inconsistent and perhaps undervalued. We emphasize the importance of appropriate microscopy methods reporting and seek to educate researchers about how microscopy metadata impact data interpretation. We provide comprehensive guidelines and resources to enable accurate reporting for the most common fluorescence light microscopy modalities. We aim to improve microscopy reporting, thus improving the quality, rigor and reproducibility of image-based science.
Collapse
Affiliation(s)
| | - Rebecca A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Daniel P Keeley
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| | - Preman Koshar
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermo Marqués
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Ya-Sheng Gao
- Duke Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | | | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mark A Sanders
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Lisa A Cameron
- Duke Light Microscopy Core Facility, Duke University, Durham, NC, USA
| | - Michelle S Itano
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
111
|
Bousmah Y, Valenta H, Bertolin G, Singh U, Nicolas V, Pasquier H, Tramier M, Merola F, Erard M. tdLanYFP, a Yellow, Bright, Photostable, and pH-Insensitive Fluorescent Protein for Live-Cell Imaging and Förster Resonance Energy Transfer-Based Sensing Strategies. ACS Sens 2021; 6:3940-3947. [PMID: 34676768 DOI: 10.1021/acssensors.1c00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Yellow fluorescent proteins (YFPs) are widely used as optical reporters in Förster resonance energy transfer (FRET)-based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pH values. Here, we characterize the yellow fluorescent protein tdLanYFP, derived from the tetrameric protein from the cephalochordate Branchiostoma lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133,000 mol-1·L·cm-1, it is, to our knowledge, the brightest dimeric fluorescent protein available. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and in live cells. As a consequence, tdLanYFP allows imaging of cellular structures with subdiffraction resolution using STED nanoscopy and is compatible with the use of spectromicroscopies in single-molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pH values. Finally, we show that tdLanYFP is a valuable FRET partner either as a donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFP a very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging including FRET experiments at acidic pH.
Collapse
Affiliation(s)
- Yasmina Bousmah
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Hana Valenta
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)−UMR 6290, 35000 Rennes, France
| | - Utkarsh Singh
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Valérie Nicolas
- Microscopy Facility (MIPSIT), Ingénierie et Plateformes au Service de l’Innovation Thérapeutique−IPSIT−UMS−US31−UMS3679 (IPSIT), Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Hélène Pasquier
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Marc Tramier
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)−UMR 6290, 35000 Rennes, France
| | - Fabienne Merola
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Marie Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| |
Collapse
|
112
|
Mora-Sierra Z, Gopan G, Chang R, Leckband DE, Gruebele M. Stabilization and Kinetics of an Adsorbed Protein Depends on the Poly( N-isopropylacrylamide) Grafting Density. Biomacromolecules 2021; 22:4470-4478. [PMID: 34606244 DOI: 10.1021/acs.biomac.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solubility transition at the lower critical solution temperature (LCST, 32 °C) of poly(N-isopropylacrylamide) (PNIPAM) is widely used as a thermal switch to rapidly and reversibly capture and release proteins and cells. It is generally assumed that proteins adsorbed to PNIPAM above the LCST are unaffected by polymer interactions. Here we show that the folding stability of the enzyme phosphoglycerate kinase (PGK) is increased by interactions with end-grafted PNIPAM films above the LCST. We systematically compare two protein mutants with different stabilities. The stabilization mirrors the degree of protein adsorption under grafting conditions studied previously. Maximum stabilization occurs when proteins adsorb to low density, collapsed polymer "mushrooms". In the denser polymer "brush" regime, protein stabilization decreases back to a value indistinguishable from the bulk solution, consistent with low protein adsorption on dense, collapsed brushes. The temperature-dependent kinetics measured by Fast Relaxation Imaging reveals that PNIPAM does not affect the overall folding/unfolding mechanism. Based on the different stabilizations of two mutants and the relaxation kinetics, we hypothesize that the polymer acts mainly by increasing the conformational entropy of the folded protein by interacting with the protein surface and less by crowding the unfolded state of PGK.
Collapse
|
113
|
Sulatskaya AI, Kosolapova AO, Bobylev AG, Belousov MV, Antonets KS, Sulatsky MI, Kuznetsova IM, Turoverov KK, Stepanenko OV, Nizhnikov AA. β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. Int J Mol Sci 2021; 22:11316. [PMID: 34768745 PMCID: PMC8582884 DOI: 10.3390/ijms222111316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Insoluble protein aggregates with fibrillar morphology called amyloids and β-barrel proteins both share a β-sheet-rich structure. Correctly folded β-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that β-barrel proteins can adopt cross-β amyloid folds have emerged. Different β-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by β-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with β-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the β-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The β-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming β-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming β-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of β-folds.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia;
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
114
|
Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy. Neurosci Res 2021; 179:31-38. [PMID: 34666101 DOI: 10.1016/j.neures.2021.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Through the decades, 2-photon fluorescence microscopy has allowed visualization of microstructures, such as synapses, with high spatial resolution in deep brain tissue. However, signal transduction, such as protein activity and protein-protein interaction in neurons in tissues and in vivo, has remained elusive because of the technical difficulty of observing biochemical reactions at the level of subcellular resolution in light-scattering tissues. Recently, 2-photon fluorescence microscopy combined with fluorescence lifetime imaging microscopy (2pFLIM) has enabled visualization of various protein activities and protein-protein interactions at submicrometer resolution in tissue with a reasonable temporal resolution. Thus far, 2pFLIM has been extensively applied for imaging kinase and small GTPase activation in dendritic spines of hippocampal neurons in slice cultures. However, it has been recently applied to various subcellular structures, such as axon terminals and nuclei, and has increased our understanding of spatially organized molecular dynamics. One of the future directions of 2pFLIM utilization is to combine various optogenetic tools for manipulating protein activity. This combination allows the activation of specific proteins with light and visualization of its readout as the activation of downstream molecules. Here, we have introduced the recent application of 2pFLIM for neurons and present the utilization of a new optogenetic tool in combination with 2pFLIM.
Collapse
|
115
|
Tekieli T, Yemini E, Nejatbakhsh A, Wang C, Varol E, Fernandez RW, Masoudi N, Paninski L, Hobert O. Visualizing the organization and differentiation of the male-specific nervous system of C. elegans. Development 2021; 148:dev199687. [PMID: 34415309 PMCID: PMC8489020 DOI: 10.1242/dev.199687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
Sex differences in the brain are prevalent throughout the animal kingdom and particularly well appreciated in the nematode Caenorhabditis elegans, where male animals contain a little-studied set of 93 male-specific neurons. To make these neurons amenable for future study, we describe here how a multicolor reporter transgene, NeuroPAL, is capable of visualizing the distinct identities of all male-specific neurons. We used NeuroPAL to visualize and characterize a number of features of the male-specific nervous system. We provide several proofs of concept for using NeuroPAL to identify the sites of expression of gfp-tagged reporter genes and for cellular fate analysis by analyzing the effect of removal of several developmental patterning genes on neuronal identity acquisition. We use NeuroPAL and its intrinsic cohort of more than 40 distinct differentiation markers to show that, even though male-specific neurons are generated throughout all four larval stages, they execute their terminal differentiation program in a coordinated manner in the fourth larval stage. This coordinated wave of differentiation, which we call 'just-in-time' differentiation, couples neuronal maturation programs with the appearance of sexual organs.
Collapse
Affiliation(s)
- Tessa Tekieli
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Amin Nejatbakhsh
- Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Erdem Varol
- Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Robert W. Fernandez
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Liam Paninski
- Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
116
|
Wolf S, Wan Y, McDole K. Current approaches to fate mapping and lineage tracing using image data. Development 2021; 148:dev198994. [PMID: 34498046 DOI: 10.1242/dev.198994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visualizing, tracking and reconstructing cell lineages in developing embryos has been an ongoing effort for well over a century. Recent advances in light microscopy, labelling strategies and computational methods to analyse complex image datasets have enabled detailed investigations into the fates of cells. Combined with powerful new advances in genomics and single-cell transcriptomics, the field of developmental biology is able to describe the formation of the embryo like never before. In this Review, we discuss some of the different strategies and applications to lineage tracing in live-imaging data and outline software methodologies that can be applied to various cell-tracking challenges.
Collapse
Affiliation(s)
- Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yinan Wan
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
117
|
Dunsing V, Petrich A, Chiantia S. Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection. eLife 2021; 10:e69687. [PMID: 34494547 PMCID: PMC8545396 DOI: 10.7554/elife.69687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Signaling pathways in biological systems rely on specific interactions between multiple biomolecules. Fluorescence fluctuation spectroscopy provides a powerful toolbox to quantify such interactions directly in living cells. Cross-correlation analysis of spectrally separated fluctuations provides information about intermolecular interactions but is usually limited to two fluorophore species. Here, we present scanning fluorescence spectral correlation spectroscopy (SFSCS), a versatile approach that can be implemented on commercial confocal microscopes, allowing the investigation of interactions between multiple protein species at the plasma membrane. We demonstrate that SFSCS enables cross-talk-free cross-correlation, diffusion, and oligomerization analysis of up to four protein species labeled with strongly overlapping fluorophores. As an example, we investigate the interactions of influenza A virus (IAV) matrix protein 2 with two cellular host factors simultaneously. We furthermore apply raster spectral image correlation spectroscopy for the simultaneous analysis of up to four species and determine the stoichiometry of ternary IAV polymerase complexes in the cell nucleus.
Collapse
Affiliation(s)
- Valentin Dunsing
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| | - Annett Petrich
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| | - Salvatore Chiantia
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| |
Collapse
|
118
|
Li J, Ding Y, Liu H, He H, Yu D, Wang X, Wang X, Yu X, Ge B, Huang F. Oligomerization-Enhanced Receptor-Ligand Binding Revealed by Dual-Color Simultaneous Tracking on Living Cell Membranes. J Phys Chem Lett 2021; 12:8164-8169. [PMID: 34410720 DOI: 10.1021/acs.jpclett.1c01844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
GPCR oligomerization plays a critical role in cellular signaling, yet the stoichiometry of the interactions between oligomers and binding ligands in living cells remains a longstanding challenge. Here, by developing a dual-color simultaneous tracking system based on a total internal reflection fluorescence microscope (TIRFM), the CCR5-CCL5 interactions are visualized and quantitatively assessed in real time. Results show that each oligomeric state of CCR5 could bind with CCL5 but with different binding affinities; CCR5 dimers have a 3.5-fold higher binding affinity than the monomers. The dimerization may cause an asymmetric conformational change which makes the first binding pocket have a 3.5-fold higher binding affinity and the second have only a half compared with the monomeric CCR5. This study is the first example to directly scrutinize the CCR5-CCL5 interactions at the single-molecule level on living cell membranes and will offer great potential for the interaction stoichiometry study of diverse surface proteins.
Collapse
Affiliation(s)
- Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yanzhi Ding
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hengheng Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoxi Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
119
|
Iv F, Martins CS, Castro-Linares G, Taveneau C, Barbier P, Verdier-Pinard P, Camoin L, Audebert S, Tsai FC, Ramond L, Llewellyn A, Belhabib M, Nakazawa K, Di Cicco A, Vincentelli R, Wenger J, Cabantous S, Koenderink GH, Bertin A, Mavrakis M. Insights into animal septins using recombinant human septin octamers with distinct SEPT9 isoforms. J Cell Sci 2021; 134:jcs258484. [PMID: 34350965 DOI: 10.1242/jcs.258484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Septin GTP-binding proteins contribute essential biological functions that range from the establishment of cell polarity to animal tissue morphogenesis. Human septins in cells form hetero-octameric septin complexes containing the ubiquitously expressed SEPT9 subunit (also known as SEPTIN9). Despite the established role of SEPT9 in mammalian development and human pathophysiology, biochemical and biophysical studies have relied on monomeric SEPT9, thus not recapitulating its native assembly into hetero-octameric complexes. We established a protocol that enabled, for the first time, the isolation of recombinant human septin octamers containing distinct SEPT9 isoforms. A combination of biochemical and biophysical assays confirmed the octameric nature of the isolated complexes in solution. Reconstitution studies showed that octamers with either a long or a short SEPT9 isoform form filament assemblies, and can directly bind and cross-link actin filaments, raising the possibility that septin-decorated actin structures in cells reflect direct actin-septin interactions. Recombinant SEPT9-containing octamers will make it possible to design cell-free assays to dissect the complex interactions of septins with cell membranes and the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Francois Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Cyntia Taveneau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Australia; Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Australia
| | - Pascale Barbier
- Aix-Marseille Univ, CNRS, UMR 7051, Institut de Neurophysiopathologie (INP), 13005 Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Luc Camoin
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Feng-Ching Tsai
- Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Laurie Ramond
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Alex Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Koyomi Nakazawa
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS UMR7257, Aix Marseille Univ, 13009 Marseille, France
| | - Jerome Wenger
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Aurélie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| |
Collapse
|
120
|
Recent advances in FRET-Based biosensors for biomedical applications. Anal Biochem 2021; 630:114323. [PMID: 34339665 DOI: 10.1016/j.ab.2021.114323] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023]
Abstract
Fluorescence resonance energy transfer (FRET)-based biosensors are effective analytical tools extensively used in fields of biomedicine, pharmacology, toxicology, and food sciences. Ratiometric imaging of substantial cellular processes, molecular components, and biological interactions is widely performed by these biosensors. A variety of FRET-based biosensors have provided comprehensive insights into underlying mechanisms of pathological conditions in live cells, tissues, and organisms. Moreover, integration of FRET-based biosensors with the current bioanalytical techniques allows for accurate, rapid, and sensitive diagnosis and proposes the advanced strategies for treatment. Precise analysis of ligand-receptor interactions by FRET-based biosensors has presented a basis for determination of novel therapeutic agents. Therefore, this study was designed to review the recent developments in FRET-based biosensors and their biomedical applications. In addition, characteristics, challenges, and outlooks of these biosensors were discussed.
Collapse
|
121
|
Henrikus SS, Tassis K, Zhang L, van der Velde JHM, Gebhardt C, Herrmann A, Jung G, Cordes T. Characterization of Fluorescent Proteins with Intramolecular Photostabilization*. Chembiochem 2021; 22:3283-3291. [PMID: 34296494 PMCID: PMC9291837 DOI: 10.1002/cbic.202100276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Indexed: 11/10/2022]
Abstract
Genetically encodable fluorescent proteins have revolutionized biological imaging in vivo and in vitro. Despite their importance, their photophysical properties, i. e., brightness, count-rate and photostability, are relatively poor compared to synthetic organic fluorophores or quantum dots. Intramolecular photostabilizers were recently rediscovered as an effective approach to improve photophysical properties of organic fluorophores. Here, direct conjugation of triplet-state quenchers or redox-active substances creates high local concentrations of photostabilizer around the fluorophore. In this paper, we screen for effects of covalently linked photostabilizers on fluorescent proteins. We produced a double cysteine mutant (A206C/L221C) of α-GFP for attachment of photostabilizer-maleimides on the β-barrel near the chromophore. Whereas labelling with photostabilizers such as trolox, a nitrophenyl group, and cyclooctatetraene, which are often used for organic fluorophores, had no effect on α-GFP-photostability, a substantial increase of photostability was found upon conjugation to azobenzene. Although the mechanism of the photostabilizing effects remains to be elucidated, we speculate that the higher triplet-energy of azobenzene might be crucial for triplet-quenching of fluorophores in the blue spectral range. Our study paves the way for the development of fluorescent proteins with photostabilizers in the protein barrel by methods such as unnatural amino acid incorporation.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Biophysical Chemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany.,current address: Francis Crick Institute, 1 Midland Road, London, NW1 AT1, UK
| | - Konstantinos Tassis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, München - Planegg-Martinsried, Germany
| | - Jasper H M van der Velde
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, München - Planegg-Martinsried, Germany
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Gregor Jung
- Biophysical Chemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, München - Planegg-Martinsried, Germany
| |
Collapse
|
122
|
The early Drosophila embryo as a model system for quantitative biology. Cells Dev 2021; 168:203722. [PMID: 34298230 DOI: 10.1016/j.cdev.2021.203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
With the rise of new tools, from controlled genetic manipulations and optogenetics to improved microscopy, it is now possible to make clear, quantitative and reproducible measurements of biological processes. The humble fruit fly Drosophila melanogaster, with its ease of genetic manipulation combined with excellent imaging accessibility, has become a major model system for performing quantitative in vivo measurements. Such measurements are driving a new wave of interest from physicists and engineers, who are developing a range of testable dynamic models of active systems to understand fundamental biological processes. The reproducibility of the early Drosophila embryo has been crucial for understanding how biological systems are robust to unavoidable noise during development. Insights from quantitative in vivo experiments in the Drosophila embryo are having an impact on our understanding of critical biological processes, such as how cells make decisions and how complex tissue shape emerges. Here, to highlight the power of using Drosophila embryogenesis for quantitative biology, I focus on three main areas: (1) formation and robustness of morphogen gradients; (2) how gene regulatory networks ensure precise boundary formation; and (3) how mechanical interactions drive packing and tissue folding. I further discuss how such data has driven advances in modelling.
Collapse
|
123
|
Xiao Y, Yuan Y, Jimenez M, Soni N, Yadlapalli S. Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. Proc Natl Acad Sci U S A 2021; 118:e2019756118. [PMID: 34234015 PMCID: PMC8285898 DOI: 10.1073/pnas.2019756118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circadian clocks regulate ∼24-h oscillations in gene expression, behavior, and physiology. While the genetic and molecular mechanisms of circadian rhythms are well characterized, what remains poorly understood are the intracellular dynamics of circadian clock components and how they affect circadian rhythms. Here, we elucidate how spatiotemporal organization and dynamics of core clock proteins and genes affect circadian rhythms in Drosophila clock neurons. Using high-resolution imaging and DNA-fluorescence in situ hybridization techniques, we demonstrate that Drosophila clock proteins (PERIOD and CLOCK) are organized into a few discrete foci at the nuclear envelope during the circadian repression phase and play an important role in the subnuclear localization of core clock genes to control circadian rhythms. Specifically, we show that core clock genes, period and timeless, are positioned close to the nuclear periphery by the PERIOD protein specifically during the repression phase, suggesting that subnuclear localization of core clock genes might play a key role in their rhythmic gene expression. Finally, we show that loss of Lamin B receptor, a nuclear envelope protein, leads to disruption of PER foci and per gene peripheral localization and results in circadian rhythm defects. These results demonstrate that clock proteins play a hitherto unexpected role in the subnuclear reorganization of core clock genes to control circadian rhythms, revealing how clocks function at the subcellular level. Our results further suggest that clock protein foci might regulate dynamic clustering and spatial reorganization of clock-regulated genes over the repression phase to control circadian rhythms in behavior and physiology.
Collapse
Affiliation(s)
- Yangbo Xiao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ye Yuan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Mariana Jimenez
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Neeraj Soni
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Swathi Yadlapalli
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
124
|
Yang J, Lee J, Land MA, Lai S, Igoshin OA, St-Pierre F. A synthetic circuit for buffering gene dosage variation between individual mammalian cells. Nat Commun 2021; 12:4132. [PMID: 34226556 PMCID: PMC8257781 DOI: 10.1038/s41467-021-23889-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Precise control of gene expression is critical for biological research and biotechnology. However, transient plasmid transfections in mammalian cells produce a wide distribution of copy numbers per cell, and consequently, high expression heterogeneity. Here, we report plasmid-based synthetic circuits - Equalizers - that buffer copy-number variation at the single-cell level. Equalizers couple a transcriptional negative feedback loop with post-transcriptional incoherent feedforward control. Computational modeling suggests that the combination of these two topologies enables Equalizers to operate over a wide range of plasmid copy numbers. We demonstrate experimentally that Equalizers outperform other gene dosage compensation topologies and produce as low cell-to-cell variation as chromosomally integrated genes. We also show that episome-encoded Equalizers enable the rapid generation of extrachromosomal cell lines with stable and uniform expression. Overall, Equalizers are simple and versatile devices for homogeneous gene expression and can facilitate the engineering of synthetic circuits that function reliably in every cell.
Collapse
Affiliation(s)
- Jin Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jihwan Lee
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Michelle A Land
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shujuan Lai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
125
|
Chin MY, Patwardhan AR, Ang KH, Wang AL, Alquezar C, Welch M, Nguyen PT, Grabe M, Molofsky AV, Arkin MR, Kao AW. Genetically Encoded, pH-Sensitive mTFP1 Biosensor for Probing Lysosomal pH. ACS Sens 2021; 6:2168-2180. [PMID: 34102054 PMCID: PMC8240087 DOI: 10.1021/acssensors.0c02318] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Lysosomes are important sites for macromolecular degradation, defined by an acidic lumenal pH of ∼4.5. To better understand lysosomal pH, we designed a novel, genetically encoded, fluorescent protein (FP)-based pH biosensor called Fluorescence Indicator REporting pH in Lysosomes (FIRE-pHLy). This biosensor was targeted to lysosomes with lysosomal-associated membrane protein 1 (LAMP1) and reported lumenal pH between 3.5 and 6.0 with monomeric teal fluorescent protein 1 (mTFP1), a bright cyan pH-sensitive FP variant with a pKa of 4.3. Ratiometric quantification was enabled with cytosolically oriented mCherry using high-content quantitative imaging. We expressed FIRE-pHLy in several cellular models and quantified the alkalinizing response to bafilomycin A1, a specific V-ATPase inhibitor. In summary, we have engineered FIRE-pHLy, a specific, robust, and versatile lysosomal pH biosensor, that has broad applications for investigating pH dynamics in aging- and lysosome-related diseases, as well as in lysosome-based drug discovery.
Collapse
Affiliation(s)
- Marcus Y Chin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Anand R Patwardhan
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Kean-Hooi Ang
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Austin L Wang
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Carolina Alquezar
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Mackenzie Welch
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| | - Phi T Nguyen
- Weill Institute for Neurosciences, Department of Psychiatry, University of California, San Francisco, California 94158, United States
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Anna V Molofsky
- Weill Institute for Neurosciences, Department of Psychiatry, University of California, San Francisco, California 94158, United States
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Aimee W Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
126
|
Emmons SW, Yemini E, Zimmer M. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics 2021; 218:6303616. [PMID: 34151952 DOI: 10.1093/genetics/iyab072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
The model research animal Caenorhabditis elegans has unique properties making it particularly advantageous for studies of the nervous system. The nervous system is composed of a stereotyped complement of neurons connected in a consistent manner. Here, we describe methods for studying nervous system structure and function. The transparency of the animal makes it possible to visualize and identify neurons in living animals with fluorescent probes. These methods have been recently enhanced for the efficient use of neuron-specific reporter genes. Because of its simple structure, for a number of years, C. elegans has been at the forefront of connectomic studies defining synaptic connectivity by electron microscopy. This field is burgeoning with new, more powerful techniques, and recommended up-to-date methods are here described that encourage the possibility of new work in C. elegans. Fluorescent probes for single synapses and synaptic connections have allowed verification of the EM reconstructions and for experimental approaches to synapse formation. Advances in microscopy and in fluorescent reporters sensitive to Ca2+ levels have opened the way to observing activity within single neurons across the entire nervous system.
Collapse
Affiliation(s)
- Scott W Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 1041, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria and.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
127
|
Protasova EA, Mishin AS, Lukyanov KA, Maksimov EG, Bogdanov AM. Chromophore reduction plus reversible photobleaching: how the mKate2 "photoconversion" works. Photochem Photobiol Sci 2021; 20:791-803. [PMID: 34085171 DOI: 10.1007/s43630-021-00060-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
mKate red-to-green photoconversion is a non-canonical type of phototransformation in fluorescent proteins, with a poorly understood mechanism. We have hypothesized that the daughter mKate2 protein may also be photoconvertible, and that this phenomenon would be connected with mKate(2) chromophore photoreduction. Indeed, upon the intense irradiation of the protein sample supplemented by sodium dithionite, the accumulation of green as well as blue spectral forms is enhanced. The reaction was shown to be reversible upon the reductant's removal. However, an analysis of the fluorescence microscopy data, absorption spectra, kinetics and time-resolved fluorescence spectroscopy revealed that the short-wavelength spectral forms of mKate(2) exist before photoactivation, that their fractions increase light-independently after dithionite addition, and that the conversion is facilitated by the photobleaching of the red chromophore form.
Collapse
Affiliation(s)
- Elena A Protasova
- Faculty of Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia
| | | | - Eugene G Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.
| |
Collapse
|
128
|
Cell-type-specific, multicolor labeling of endogenous proteins with split fluorescent protein tags in Drosophila. Proc Natl Acad Sci U S A 2021; 118:2024690118. [PMID: 34074768 DOI: 10.1073/pnas.2024690118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The impact of the Drosophila experimental system on studies of modern biology cannot be understated. The ability to tag endogenously expressed proteins is essential to maximize the use of this model organism. Here, we describe a method for labeling endogenous proteins with self-complementing split fluorescent proteins (split FPs) in a cell-type-specific manner in Drosophila A short fragment of an FP coding sequence is inserted into a specific genomic locus while the remainder of the FP is expressed using an available GAL4 driver line. In consequence, complementation fluorescence allows examination of protein localization in particular cells. Besides, when inserting tandem repeats of the short FP fragment at the same genomic locus, we can substantially enhance the fluorescence signal. The enhanced signal is of great value in live-cell imaging at the subcellular level. We can also accomplish a multicolor labeling system with orthogonal split FPs. However, other orthogonal split FPs do not function for in vivo imaging besides split GFP. Through protein engineering and in vivo functional studies, we report a red split FP that we can use for duplexed visualization of endogenous proteins in intricate Drosophila tissues. Using the two orthogonal split FP systems, we have simultaneously imaged proteins that reside in distinct subsynaptic compartments. Our approach allows us to study the proximity between and localization of multiple proteins endogenously expressed in essentially any cell type in Drosophila.
Collapse
|
129
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
130
|
Iyer A, Baranov M, Foster AJ, Chordia S, Roelfes G, Vlijm R, van den Bogaart G, Poolman B. Chemogenetic Tags with Probe Exchange for Live-Cell Fluorescence Microscopy. ACS Chem Biol 2021; 16:891-904. [PMID: 33913682 PMCID: PMC8154248 DOI: 10.1021/acschembio.1c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
Fluorogenic protein tagging systems have been less developed for prokaryotes than for eukaryotic cell systems. Here, we extend the concept of noncovalent fluorogenic protein tags in bacteria by introducing transcription factor-based tags, namely, LmrR and RamR, for probe binding and fluorescence readout under aerobic and anaerobic conditions. We developed two chemogenetic protein tags that impart fluorogenicity and a longer fluorescence lifetime to reversibly bound organic fluorophores, hence the name Chemogenetic Tags with Probe Exchange (CTPEs). We present an extensive characterization of 30 fluorophores reversibly interacting with the two different CTPEs and conclude that aromatic planar structures bind with high specificity to the hydrophobic pockets of these tags. The reversible binding of organic fluorophores to the CTPEs and the superior photophysical properties of organic fluorophores enable long-term fluorescence microscopy of living bacterial cells. Our protein tags provide a general tool for investigating (sub)cellular protein localization and dynamics, protein-protein interactions, and prolonged live-cell microscopy, even under oxygen-free conditions.
Collapse
Affiliation(s)
- Aditya Iyer
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim Baranov
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alexander J. Foster
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shreyans Chordia
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Rifka Vlijm
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Geert van den Bogaart
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
131
|
Tulpule A, Guan J, Neel DS, Allegakoen HR, Lin YP, Brown D, Chou YT, Heslin A, Chatterjee N, Perati S, Menon S, Nguyen TA, Debnath J, Ramirez AD, Shi X, Yang B, Feng S, Makhija S, Huang B, Bivona TG. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell 2021; 184:2649-2664.e18. [PMID: 33848463 PMCID: PMC8127962 DOI: 10.1016/j.cell.2021.03.031] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/14/2020] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.
Collapse
Affiliation(s)
- Asmin Tulpule
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Juan Guan
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA; Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Dana S Neel
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA 94143, USA
| | - Hannah R Allegakoen
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Yone Phar Lin
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - David Brown
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - Yu-Ting Chou
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA 94143, USA
| | - Ann Heslin
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Nilanjana Chatterjee
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA 94143, USA
| | - Shriya Perati
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Shruti Menon
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Tan A Nguyen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA
| | | | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - Bin Yang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - Siyu Feng
- UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF, San Francisco, CA 94143, USA
| | - Suraj Makhija
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
132
|
Zhao X, Illing R, Ruelens P, Bachmann M, Cuniberti G, de Visser JAGM, Baraban L. Coexistence of fluorescent Escherichia coli strains in millifluidic droplet reactors. LAB ON A CHIP 2021; 21:1492-1502. [PMID: 33881032 DOI: 10.1039/d0lc01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding competition and cooperation within microbiota is of high fundamental and clinical importance, helping to comprehend species' evolution and biodiversity. We co-encapsulated and cultured two isogenic Escherichia coli strains expressing blue (BFP) and yellow (YFP) fluorescent proteins into numerous emulsion droplets and quantified their growth by employing fluorescence measurements. To characterize and compare the bacterial growth kinetics and behavior in mono and co-culture, we compared the experimental observations with predictions from a simple growth model. Varying the initial ratio (R0) of both cell types injected, we observed a broad landscape from competition to cooperation between both strains in their confined microenvironments depending on start frequency: from a nearly symmetric situation at R0 = 1, up to the domination of one subpopulation when R0 ≫ 1 (or R0 ≪ 1). Due to competition between the strains, their doubling times and final biomass ratios (R1) continuously deviate from the monoculture behavior. The correlation map of the two strains' doubling times reveals that the R0 is one of the critical parameters affecting the competitive interaction between isogenic bacterial strains. Thanks to this strategy, different species of bacteria can be monitored simultaneously in real-time. Further advantages include high statistical output, unaffected bacteria growth, and long-time measurements in a well-mixed environment. We expect that the millifluidic droplet-based reactor can be utilized for practical clinical applications, such as bacterial antibiotic resistance and enzyme reaction kinetics studies.
Collapse
Affiliation(s)
- Xinne Zhao
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Rico Illing
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Philip Ruelens
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - J Arjan G M de Visser
- Department of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Larysa Baraban
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany. and Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
133
|
Choquet D, Sainlos M, Sibarita JB. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat Rev Neurosci 2021; 22:237-255. [PMID: 33712727 DOI: 10.1038/s41583-021-00441-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.
Collapse
Affiliation(s)
- Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France. .,University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Bordeaux, France.
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| | - Jean-Baptiste Sibarita
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
134
|
DeVree BT, Steiner LM, Głazowska S, Ruhnow F, Herburger K, Persson S, Mravec J. Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:78. [PMID: 33781321 PMCID: PMC8008654 DOI: 10.1186/s13068-021-01922-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 05/18/2023]
Abstract
Plant cell wall-derived biomass serves as a renewable source of energy and materials with increasing importance. The cell walls are biomacromolecular assemblies defined by a fine arrangement of different classes of polysaccharides, proteoglycans, and aromatic polymers and are one of the most complex structures in Nature. One of the most challenging tasks of cell biology and biomass biotechnology research is to image the structure and organization of this complex matrix, as well as to visualize the compartmentalized, multiplayer biosynthetic machineries that build the elaborate cell wall architecture. Better knowledge of the plant cells, cell walls, and whole tissue is essential for bioengineering efforts and for designing efficient strategies of industrial deconstruction of the cell wall-derived biomass and its saccharification. Cell wall-directed molecular probes and analysis by light microscopy, which is capable of imaging with a high level of specificity, little sample processing, and often in real time, are important tools to understand cell wall assemblies. This review provides a comprehensive overview about the possibilities for fluorescence label-based imaging techniques and a variety of probing methods, discussing both well-established and emerging tools. Examples of applications of these tools are provided. We also list and discuss the advantages and limitations of the methods. Specifically, we elaborate on what are the most important considerations when applying a particular technique for plants, the potential for future development, and how the plant cell wall field might be inspired by advances in the biomedical and general cell biology fields.
Collapse
Affiliation(s)
- Brian T DeVree
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lisa M Steiner
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Felix Ruhnow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
135
|
Laxman P, Ansari S, Gaus K, Goyette J. The Benefits of Unnatural Amino Acid Incorporation as Protein Labels for Single Molecule Localization Microscopy. Front Chem 2021; 9:641355. [PMID: 33842432 PMCID: PMC8027105 DOI: 10.3389/fchem.2021.641355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023] Open
Abstract
Single Molecule Localization Microscopy (SMLM) is an imaging method that allows for the visualization of structures smaller than the diffraction limit of light (~200 nm). This is achieved through techniques such as stochastic optical reconstruction microscopy (STORM) and photoactivated localization microscopy (PALM). A large part of obtaining ideal imaging of single molecules is the choice of the right fluorescent label. An upcoming field of protein labeling is incorporating unnatural amino acids (UAAs) with an attached fluorescent dye for precise localization and visualization of individual molecules. For this technique, fluorescent probes are conjugated to UAAs and are introduced into the protein of interest (POI) as a label. Here we contrast this labeling method with other commonly used protein-based labeling methods such as fluorescent proteins (FPs) or self-labeling tags such as Halotag, SNAP-tags, and CLIP-tags, and highlight the benefits and shortcomings of the site-specific incorporation of UAAs coupled with fluorescent dyes in SMLM.
Collapse
Affiliation(s)
| | | | | | - Jesse Goyette
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Sciences, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
136
|
Sankaran J, Balasubramanian H, Tang WH, Ng XW, Röllin A, Wohland T. Simultaneous spatiotemporal super-resolution and multi-parametric fluorescence microscopy. Nat Commun 2021; 12:1748. [PMID: 33741958 PMCID: PMC7979808 DOI: 10.1038/s41467-021-22002-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Super-resolution microscopy and single molecule fluorescence spectroscopy require mutually exclusive experimental strategies optimizing either temporal or spatial resolution. To achieve both, we implement a GPU-supported, camera-based measurement strategy that highly resolves spatial structures (~100 nm), temporal dynamics (~2 ms), and molecular brightness from the exact same data set. Simultaneous super-resolution of spatial and temporal details leads to an improved precision in estimating the diffusion coefficient of the actin binding polypeptide Lifeact and corrects structural artefacts. Multi-parametric analysis of epidermal growth factor receptor (EGFR) and Lifeact suggests that the domain partitioning of EGFR is primarily determined by EGFR-membrane interactions, possibly sub-resolution clustering and inter-EGFR interactions but is largely independent of EGFR-actin interactions. These results demonstrate that pixel-wise cross-correlation of parameters obtained from different techniques on the same data set enables robust physicochemical parameter estimation and provides biological knowledge that cannot be obtained from sequential measurements.
Collapse
Affiliation(s)
- Jagadish Sankaran
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Harikrushnan Balasubramanian
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Wai Hoh Tang
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Xue Wen Ng
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Adrian Röllin
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore.
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
137
|
Liu A, Huang X, He W, Xue F, Yang Y, Liu J, Chen L, Yuan L, Xu P. pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps. Nat Commun 2021; 12:1413. [PMID: 33658493 PMCID: PMC7930027 DOI: 10.1038/s41467-021-21666-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
pH-sensitive fluorescent proteins (FPs) are highly advantageous for the non-invasive monitoring of exocytosis events. Superecliptic pHluorin (SEP), a green pH-sensitive FP, has been widely used for imaging single-vesicle exocytosis. However, the docking step cannot be visualized using this FP, since the fluorescence signal inside vesicles is too low to be observed during docking process. Among the available red pH-sensitive FPs, none is comparable to SEP for practical applications due to unoptimized pH-sensitivity and fluorescence brightness or severe photochromic behavior. In this study, we engineer a bright and photostable red pH-sensitive FP, named pHmScarlet, which compared to other red FPs has higher pH sensitivity and enables the simultaneous detection of vesicle docking and fusion. pHmScarlet can also be combined with SEP for dual-color imaging of two individual secretory events. Furthermore, although the emission wavelength of pHmScarlet is red-shifted compared to that of SEP, its spatial resolution is high enough to show the ring structure of vesicle fusion pores using Hessian structured illumination microscopy (Hessian-SIM).
Collapse
Affiliation(s)
- Anyuan Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoshuai Huang
- Biomedical Engineering Department, Peking University, Beijing, China
| | - Wenting He
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fudong Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Jiajia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lin Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Pingyong Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
138
|
Van QN, Prakash P, Shrestha R, Balius TE, Turbyville TJ, Stephen AG. RAS Nanoclusters: Dynamic Signaling Platforms Amenable to Therapeutic Intervention. Biomolecules 2021; 11:377. [PMID: 33802474 PMCID: PMC8000715 DOI: 10.3390/biom11030377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/18/2023] Open
Abstract
RAS proteins are mutated in approximately 20% of all cancers and are generally associated with poor clinical outcomes. RAS proteins are localized to the plasma membrane and function as molecular switches, turned on by partners that receive extracellular mitogenic signals. In the on-state, they activate intracellular signal transduction cascades. Membrane-bound RAS molecules segregate into multimers, known as nanoclusters. These nanoclusters, held together through weak protein-protein and protein-lipid associations, are highly dynamic and respond to cellular input signals and fluctuations in the local lipid environment. Disruption of RAS nanoclusters results in downregulation of RAS-mediated mitogenic signaling. In this review, we discuss the propensity of RAS proteins to display clustering behavior and the interfaces that are associated with these assemblies. Strategies to therapeutically disrupt nanocluster formation or the stabilization of signaling incompetent RAS complexes are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew G. Stephen
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, National Cancer Institute RAS Initiative, Inc., Frederick, MD 21702, USA; (Q.N.V.); (P.P.); (R.S.); (T.E.B.); (T.J.T.)
| |
Collapse
|
139
|
Tamura R, Jiang F, Xie J, Kamiyama D. Multiplexed labeling of cellular proteins with split fluorescent protein tags. Commun Biol 2021; 4:257. [PMID: 33637968 PMCID: PMC7910571 DOI: 10.1038/s42003-021-01780-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Self-complementing split fluorescent proteins (split FP1-10/11) have become an important labeling tool in live-cell protein imaging. However, current split FP systems to label multiple proteins in single cells have a fundamental limitation in the number of proteins that can be simultaneously labeled. Here, we describe an approach to expand the number of orthogonal split FP systems with spectrally distinct colors. By combining rational design and cycles of directed evolution, we expand the spectral color palette of FP1-10/11. We also circularly permutate GFP and synthesize the β-strand 7, 8, or 10 system. These split GFP pairs are not only capable of labeling proteins but are also orthogonal to the current FP1-10/11 pairs, offering multiplexed labeling of cellular proteins. Our multiplexing approach, using the new orthogonal split FP systems, demonstrates simultaneous imaging of four distinct proteins in single cells; the resulting images reveal nuclear localization of focal adhesion protein Zyxin.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
140
|
Smith JS, Pack TF. Noncanonical interactions of G proteins and β‐arrestins: from competitors to companions. FEBS J 2021; 288:2550-2561. [DOI: 10.1111/febs.15749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Jeffrey S. Smith
- Department of Dermatology Massachusetts General Hospital Boston MA USA
- Department of Dermatology Brigham and Women's Hospital Boston MA USA
- Department of Dermatology Beth Israel Deaconess Medical Center Boston MA USA
- Dermatology Program Boston Children's Hospital Boston MA USA
- Harvard Medical School Boston MA USA
| | | |
Collapse
|
141
|
Optogenetic Imaging of Protein Activity Using Two-Photon Fluorescence Lifetime Imaging Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:295-308. [PMID: 33398821 DOI: 10.1007/978-981-15-8763-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spatiotemporal dynamics of cellular proteins, including protein-protein interactions and conformational changes, is essential for understanding cellular functions such as synaptic plasticity, cell motility, and cell division. One of the best ways to understand the mechanisms of signal transduction is to visualize protein activity with high spatiotemporal resolution in living cells within tissues. Optogenetic probes such as fluorescent proteins, in combination with Förster Resonance Energy Transfer (FRET) techniques, enable the measurement of protein-protein interactions and conformational changes in response to signaling events in living cells. Of the various FRET detection systems, two-photon fluorescence lifetime imaging microscopy (2pFLIM) is one of the methods best suited to monitoring FRET in subcellular compartments of living cells located deep within tissues, such as brain slices. This review will introduce the principle of 2pFLIM-FRET and the use of chromoproteins for imaging intracellular protein activities and protein-protein interactions. Also, we will discuss two examples of 2pFLIM-FRET application: imaging actin polymerization in synapses of hippocampal neurons in brain sections and detecting small GTPase Cdc42 activity in astrocytes.
Collapse
|
142
|
Bartlett ME, Shuler SA, Rose DJ, Gilbert LM, Hegab RA, Lawton TJ, Messersmith RE. Paintable proteins: biofunctional coatings via covalent incorporation of proteins into a polymer network. NEW J CHEM 2021. [DOI: 10.1039/d1nj04687j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attaching proteins to surfaces while maintaining bioactivity is a promising avenue for developing new functional materials.
Collapse
Affiliation(s)
- Mairead E. Bartlett
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Scott A. Shuler
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Daniel J. Rose
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Lindsey M. Gilbert
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Rachel A. Hegab
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Thomas J. Lawton
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Reid E. Messersmith
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| |
Collapse
|
143
|
Pratt EP, Anson KJ, Tapper JK, Simpson DM, Palmer AE. Systematic Comparison of Vesicular Targeting Signals Leads to the Development of Genetically Encoded Vesicular Fluorescent Zn 2+ and pH Sensors. ACS Sens 2020; 5:3879-3891. [PMID: 33305939 DOI: 10.1021/acssensors.0c01231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetically encoded fluorescent sensors have been widely used to illuminate secretory vesicle dynamics and the vesicular lumen, including Zn2+ and pH, in living cells. However, vesicular sensors have a tendency to mislocalize and are susceptible to the acidic intraluminal pH. In this study, we performed a systematic comparison of five different vesicular proteins to target the fluorescent protein mCherry and a Zn2+ Förster resonance energy transfer (FRET) sensor to secretory vesicles. We found that motifs derived from vesicular cargo proteins, including chromogranin A (CgA), target vesicular puncta with greater efficacy than transmembrane proteins. To characterize vesicular Zn2+ levels, we developed CgA-Zn2+ FRET sensor fusions with existing sensors ZapCY1 and eCALWY-4 and characterized subcellular localization and the influence of pH on sensor performance. We simultaneously monitored Zn2+ and pH in individual secretory vesicles by leveraging the acceptor fluorescent protein as a pH sensor and found that pH influenced FRET measurements in situ. While unable to characterize vesicular Zn2+ at the single-vesicle level, we were able to monitor Zn2+ dynamics in populations of vesicles and detected high vesicular Zn2+ in MIN6 cells compared to lower levels in the prostate cancer cell line LnCaP. The combination of CgA-ZapCY1 and CgA-eCALWY-4 allows for measurement of Zn2+ from pM to nM ranges.
Collapse
Affiliation(s)
- Evan P.S. Pratt
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Kelsie J. Anson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Justin K. Tapper
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - David M. Simpson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Amy E. Palmer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| |
Collapse
|
144
|
Spatiotemporal Organization of Chemotaxis Pathways in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2020; 87:AEM.02229-20. [PMID: 33067189 DOI: 10.1128/aem.02229-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022] Open
Abstract
Magnetospirillum gryphiswaldense employs iron-rich nanoparticles for magnetic navigation within environmental redox gradients. This behavior termed magneto-aerotaxis was previously shown to rely on the sensory pathway CheOp1, but the precise localization of CheOp1-related chemoreceptor arrays during the cell cycle and its possible interconnection with three other chemotaxis pathways have remained unstudied. Here, we analyzed the localization of chemoreceptor-associated adaptor protein CheW1 and histidine kinase CheA1 by superresolution microscopy in a spatiotemporal manner. CheW1 localized in dynamic clusters that undergo occasional segregation and fusion events at lateral sites of both cell poles. Newly formed smaller clusters originating at midcell before completion of cytokinesis were found to grow in size during the cell cycle. Bipolar CheA1 localization and formation of aerotactic swim halos were affected depending on the fluorescent protein tag, indicating that CheA1 localization is important for aerotaxis. Furthermore, polar CheW1 localization was independent of cheOp2 to cheOp4 but lost in the absence of cheOp1 or cheA1 Results were corroborated by the detection of a direct protein interaction between CheA1 and CheW1 and by the observation that cheOp2- and cheOp3-encoded CheW paralogs localized in spatially distinct smaller clusters at the cell boundary. Although the findings of a minor aerotaxis-related CheOp4 phenotype and weak protein interactions between CheOp1 and CheOp4 by two-hybrid analysis implied that CheW1 and CheW4 might be part of the same chemoreceptor array, CheW4 was localized in spatially distinct polar-lateral arrays independent of CheOp1, suggesting that CheOp1 and CheOp4 are also not connected at the molecular level.IMPORTANCE Magnetotactic bacteria (MTB) use the geomagnetic field for navigation in aquatic redox gradients. However, the highly complex signal transduction networks in these environmental microbes are poorly understood. Here, we analyzed the localization of selected chemotaxis proteins to spatially and temporally resolve chemotaxis array localization in Magnetospirillum gryphiswaldense Our findings suggest that bipolar localization of chemotaxis arrays related to the key signaling pathway CheOp1 is important for aerotaxis and that CheOp1 signaling units assemble independent of the three other chemotaxis pathways present in M. gryphiswaldense Overall, our results provide deeper insights into the complex organization of signaling pathways in MTB and add to the general understanding of environmental bacteria possessing multiple chemotaxis pathways.
Collapse
|
145
|
Tanida I, Furuta Y, Yamaguchi J, Kakuta S, Oliva Trejo JA, Uchiyama Y. Two-color in-resin CLEM of Epon-embedded cells using osmium resistant green and red fluorescent proteins. Sci Rep 2020; 10:21871. [PMID: 33318540 PMCID: PMC7736269 DOI: 10.1038/s41598-020-78879-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 11/09/2022] Open
Abstract
In-resin CLEM of Epon embedded samples can greatly simplify the correlation of fluorescent images with electron micrographs. The usefulness of this technique is limited at present by the low number of fluorescent proteins that resist CLEM processing. Additionally, no study has reported the possibility of two-color in-resin CLEM of Epon embedded cells. In this study, we screened for monomeric green and red fluorescent proteins that resist CLEM processing. We identified mWasabi, CoGFP variant 0, and mCherry2; two green and one red fluorescent proteins as alternatives for in-resin CLEM. We expressed mitochondria-localized mCherry2 and histone H2B tagged with CoGFP variant 0 in cells. Green and red fluorescence was detected in 100 nm-thin sections of the Epon-embedded cells. In the same thin sections, we correlated the fluorescent signals to mitochondria and the nucleus using a scanning electron microscope. Similar results were obtained when endoplasmic reticulum-localized mCherry2 and histone H2B tagged with CoGFP variant 0 were expressed in the cells. Two-color in-resin CLEM of two cytoplasmic organelles, mitochondria and endoplasmic reticulum, was also achieved using mitochondria-localized mCherry2 and endoplasmic reticulum-localized mWasabi. In summary, we report three new fluorescent protein-alternatives suitable for in-resin CLEM of Epon-embedded samples, and achieved Epon-based two-color in-resin CLEM.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Yoko Furuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
146
|
Schmidt GW, Cuny AP, Rudolf F. Preventing Photomorbidity in Long-Term Multi-color Fluorescence Imaging of Saccharomyces cerevisiae and S. pombe. G3 (BETHESDA, MD.) 2020; 10:4373-4385. [PMID: 33023973 PMCID: PMC7718758 DOI: 10.1534/g3.120.401465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Time-lapse imaging of live cells using multiple fluorescent reporters is an essential tool to study molecular processes in single cells. However, exposure to even moderate doses of visible excitation light can disturb cellular physiology and alter the quantitative behavior of the cells under study. Here, we set out to develop guidelines to avoid the confounding effects of excitation light in multi-color long-term imaging. We use widefield fluorescence microscopy to measure the effect of the administered excitation light on growth rate (here called photomorbidity) in yeast. We find that photomorbidity is determined by the cumulative light dose at each wavelength, but independent of the way excitation light is applied. Importantly, photomorbidity possesses a threshold light dose below which no effect is detectable (NOEL). We found, that the suitability of fluorescent proteins for live-cell imaging at the respective excitation light NOEL is equally determined by the cellular autofluorescence and the fluorescent protein brightness. Last, we show that photomorbidity of multiple wavelengths is additive and imaging conditions absent of photomorbidity can be predicted. Our findings enable researchers to find imaging conditions with minimal impact on physiology and can provide framework for how to approach photomorbidity in other organisms.
Collapse
Affiliation(s)
- Gregor W Schmidt
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland and
| | - Andreas P Cuny
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland and
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Fabian Rudolf
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland and
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| |
Collapse
|
147
|
Campbell BC, Nabel EM, Murdock MH, Lao-Peregrin C, Tsoulfas P, Blackmore MG, Lee FS, Liston C, Morishita H, Petsko GA. mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc Natl Acad Sci U S A 2020; 117:30710-30721. [PMID: 33208539 PMCID: PMC7720163 DOI: 10.1073/pnas.2000942117] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although ubiquitous in biological studies, the enhanced green and yellow fluorescent proteins (EGFP and EYFP) were not specifically optimized for neuroscience, and their underwhelming brightness and slow expression in brain tissue limits the fidelity of dendritic spine analysis and other indispensable techniques for studying neurodevelopment and plasticity. We hypothesized that EGFP's low solubility in mammalian systems must limit the total fluorescence output of whole cells, and that improving folding efficiency could therefore translate into greater brightness of expressing neurons. By introducing rationally selected combinations of folding-enhancing mutations into GFP templates and screening for brightness and expression rate in human cells, we developed mGreenLantern, a fluorescent protein having up to sixfold greater brightness in cells than EGFP. mGreenLantern illuminates neurons in the mouse brain within 72 h, dramatically reducing lag time between viral transduction and imaging, while its high brightness improves detection of neuronal morphology using widefield, confocal, and two-photon microscopy. When virally expressed to projection neurons in vivo, mGreenLantern fluorescence developed four times faster than EYFP and highlighted long-range processes that were poorly detectable in EYFP-labeled cells. Additionally, mGreenLantern retains strong fluorescence after tissue clearing and expansion microscopy, thereby facilitating superresolution and whole-brain imaging without immunohistochemistry. mGreenLantern can directly replace EGFP/EYFP in diverse systems due to its compatibility with GFP filter sets, recognition by EGFP antibodies, and excellent performance in mouse, human, and bacterial cells. Our screening and rational engineering approach is broadly applicable and suggests that greater potential of fluorescent proteins, including biosensors, could be unlocked using a similar strategy.
Collapse
Affiliation(s)
- Benjamin C Campbell
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021;
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Elisa M Nabel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mitchell H Murdock
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Cristina Lao-Peregrin
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Pantelis Tsoulfas
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53211
| | - Murray G Blackmore
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Conor Liston
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Hirofumi Morishita
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gregory A Petsko
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021;
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
148
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
149
|
Sueda S. Enzyme-based protein-tagging systems for site-specific labeling of proteins in living cells. ACTA ACUST UNITED AC 2020; 69:156-166. [PMID: 32166307 DOI: 10.1093/jmicro/dfaa011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022]
Abstract
Various protein-labeling methods based on the specific interactions between genetically encoded tags and synthetic probes have been proposed to complement fluorescent protein-based labeling. In particular, labeling methods based on enzyme reactions have been intensively developed by taking advantage of the highly specific interactions between enzymes and their substrates. In this approach, the peptides or proteins are genetically attached to the target proteins as a tag, and the various labels are then incorporated into the tags by enzyme reactions with the substrates carrying those labels. On the other hand, we have been developing an enzyme-based protein-labeling system distinct from the existing ones. In our system, the substrate protein is attached to the target proteins as a tag, and the labels are incorporated into the tag by post-translational modification with an enzyme carrying those labels followed by tight complexation between the enzyme and the substrate protein. In this review, I summarize the enzyme-based protein-labeling systems with a focus on several typical methods and then describe our labeling system based on tight complexation between the enzyme and the substrate protein.
Collapse
Affiliation(s)
- Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| |
Collapse
|
150
|
Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proc Natl Acad Sci U S A 2020; 117:29144-29154. [PMID: 33148803 PMCID: PMC7682396 DOI: 10.1073/pnas.2013319117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Class A G protein−coupled receptors (GPCRs) can form dimers and oligomers via poorly understood mechanisms. We show here that the chemokine receptor CXCR4, which is a major pharmacological target, has an oligomerization behavior modulated by its active conformation. Combining advanced, single-molecule, and single-cell optical tools with functional assays and computational approaches, we unveil three key features of CXCR4 quaternary organization: CXCR4 dimerization 1) is dynamic, 2) increases with receptor expression level, and 3) can be disrupted by stabilizing an inactive receptor conformation. Ligand binding motifs reveal a ligand binding subpocket essential to modulate both CXCR4 basal activity and dimerization. This is relevant to develop new strategies to design CXCR4-targeting drugs. Although class A G protein−coupled receptors (GPCRs) can function as monomers, many of them form dimers and oligomers, but the mechanisms and functional relevance of such oligomerization is ill understood. Here, we investigate this problem for the CXC chemokine receptor 4 (CXCR4), a GPCR that regulates immune and hematopoietic cell trafficking, and a major drug target in cancer therapy. We combine single-molecule microscopy and fluorescence fluctuation spectroscopy to investigate CXCR4 membrane organization in living cells at densities ranging from a few molecules to hundreds of molecules per square micrometer of the plasma membrane. We observe that CXCR4 forms dynamic, transient homodimers, and that the monomer−dimer equilibrium is governed by receptor density. CXCR4 inverse agonists that bind to the receptor minor pocket inhibit CXCR4 constitutive activity and abolish receptor dimerization. A mutation in the minor binding pocket reduced the dimer-disrupting ability of these ligands. In addition, mutating critical residues in the sixth transmembrane helix of CXCR4 markedly diminished both basal activity and dimerization, supporting the notion that CXCR4 basal activity is required for dimer formation. Together, these results link CXCR4 dimerization to its density and to its activity. They further suggest that inverse agonists binding to the minor pocket suppress both dimerization and constitutive activity and may represent a specific strategy to target CXCR4.
Collapse
|