101
|
Cork KM, Van Hook MJ, Thoreson WB. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors. Eur J Neurosci 2016; 44:2015-27. [PMID: 27255664 DOI: 10.1111/ejn.13288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 01/31/2023]
Abstract
Photoreceptors have depolarized resting potentials that stimulate calcium-dependent release continuously from a large vesicle pool but neurons can also release vesicles without stimulation. We characterized the Ca(2+) dependence, vesicle pools, and release sites involved in spontaneous release at photoreceptor ribbon synapses. In whole-cell recordings from light-adapted horizontal cells (HCs) of tiger salamander retina, we detected miniature excitatory post-synaptic currents (mEPSCs) when no stimulation was applied to promote exocytosis. Blocking Ca(2+) influx by lowering extracellular Ca(2+) , by application of Cd(2+) and other agents reduced the frequency of mEPSCs but did not eliminate them, indicating that mEPSCs can occur independently of Ca(2+) . We also measured release presynaptically from rods and cones by examining quantal glutamate transporter anion currents. Presynaptic quantal event frequency was reduced by Cd(2+) or by increased intracellular Ca(2+) buffering in rods, but not in cones, that were voltage clamped at -70 mV. By inhibiting the vesicle cycle with bafilomycin, we found the frequency of mEPSCs declined more rapidly than the amplitude of evoked excitatory post-synaptic currents (EPSCs) suggesting a possible separation between vesicle pools in evoked and spontaneous exocytosis. We mapped sites of Ca(2+) -independent release using total internal reflectance fluorescence (TIRF) microscopy to visualize fusion of individual vesicles loaded with dextran-conjugated pHrodo. Spontaneous release in rods occurred more frequently at non-ribbon sites than evoked release events. The function of Ca(2+) -independent spontaneous release at continuously active photoreceptor synapses remains unclear, but the low frequency of spontaneous quanta limits their impact on noise.
Collapse
Affiliation(s)
- Karlene M Cork
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, 4050 Durham Research Center, University of Nebraska Medical Center, Omaha, NE, 68198-5840, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, 4050 Durham Research Center, University of Nebraska Medical Center, Omaha, NE, 68198-5840, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, 4050 Durham Research Center, University of Nebraska Medical Center, Omaha, NE, 68198-5840, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
102
|
Trimbuch T, Rosenmund C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat Rev Neurosci 2016; 17:118-25. [PMID: 26806630 DOI: 10.1038/nrn.2015.16] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When it comes to fusion with the neuronal cell membrane, does a synaptic vesicle have a choice whether to stop or to go? Recent work suggests that complexin, a tiny protein found within the synaptic terminal, contributes to the mechanism through which this choice is made. How complexin plays this consulting part and which synaptic vesicle proteins it interacts with remain open questions. Indeed, studies in mice and flies have led to the proposal of different models of complexin function. We suggest that understanding the modular nature of complexin will help us to unpick its role in synaptic vesicle release.
Collapse
Affiliation(s)
- Thorsten Trimbuch
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Christian Rosenmund
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
103
|
Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proc Natl Acad Sci U S A 2016; 113:5095-100. [PMID: 27091977 DOI: 10.1073/pnas.1522927113] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.
Collapse
|
104
|
Kuzuya A, Zoltowska KM, Post KL, Arimon M, Li X, Svirsky S, Maesako M, Muzikansky A, Gautam V, Kovacs D, Hyman BT, Berezovska O. Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol 2016; 14:25. [PMID: 27036734 PMCID: PMC4818459 DOI: 10.1186/s12915-016-0248-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background Synaptic loss strongly correlates with memory deterioration. Local accumulation of amyloid β (Aβ) peptide, and neurotoxic Aβ42 in particular, due to abnormal neuronal activity may underlie synaptic dysfunction, neurodegeneration, and memory impairments. To gain an insight into molecular events underlying neuronal activity-regulated Aβ production at the synapse, we explored functional outcomes of the newly discovered calcium-dependent interaction between Alzheimer’s disease-associated presenilin 1 (PS1)/γ-secretase and synaptic vesicle proteins. Results Mass spectrometry screen of mouse brain lysates identified synaptotagmin 1 (Syt1) as a novel synapse-specific PS1-binding partner that shows Ca2+-dependent PS1 binding profiles in vitro and in vivo. We found that Aβ level, and more critically, conformation of the PS1 and the Aβ42/40 ratio, are affected by Syt1 overexpression or knockdown, indicating that Syt1 and its interaction with PS1 might regulate Aβ production at the synapse. Moreover, β-secretase 1 (BACE1) stability, β- and γ-secretase activity, as well as intracellular compartmentalization of PS1 and BACE1, but not of amyloid precursor protein (APP), nicastrin (Nct), presenilin enhancer 2 (Pen-2), or synaptophysin (Syp) were altered in the absence of Syt1, suggesting a selective effect of Syt1 on PS1 and BACE1 trafficking. Conclusions Our findings identify Syt1 as a novel Ca2+-sensitive PS1 modulator that could regulate synaptic Aβ, opening avenues for novel and selective synapse targeting therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0248-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Kuzuya
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Katarzyna M Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kathryn L Post
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Muriel Arimon
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xuejing Li
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sarah Svirsky
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alona Muzikansky
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Vivek Gautam
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dora Kovacs
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
105
|
Li XW, Cao L, Wang F, Yang QG, Tong JJ, Li XY, Chen GH. Maternal inflammation linearly exacerbates offspring age-related changes of spatial learning and memory, and neurobiology until senectitude. Behav Brain Res 2016; 306:178-96. [PMID: 26992827 DOI: 10.1016/j.bbr.2016.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 01/06/2023]
Abstract
Maternal inflammation during pregnancy can elevate the risk of neurodegenerative disorders in offspring. However, how it affects age-related impairments of spatial learning and memory and changes in the neurobiological indictors in the offspring in later adulthood is still elusive. In this study, the CD-1 mice with maternal gestational inflammation due to receiving lipopolysaccharide (LPS, i.p. 50 or 25μg/kg) were divided into 3-, 12-, 18-, and 22-month-old groups. The spatial learning and memory were evaluated using a six-radial arm water maze and the levels of presynaptic proteins (synaptotagmin-1 and syntaxin-1) and histone acetylation (H3K9ac and H4K8ac) in the dorsal hippocampus were detected using the immunohistochemical method. The results indicated that there were significant age-related impairments of spatial learning and memory, decreased levels of H4K8ac, H3K9ac, and syntaxin-1, and increased levels of synaptotagmin-1 in the offspring mice from 12 months old to 22 months old compared to the same-age controls. Maternal LPS treatment significantly exacerbated the offspring impairments of spatial learning and memory, the reduction of H3K9ac, H4K8ac, and syntaxin-1, and the increment of synaptotagmin-1 from 12 months old to 22 months old compared to the same-age control groups. The changes in the neurobiological indicators significantly correlated with the impairments of spatial learning and memory. Furthermore, this correlation, besides the age and LPS-treatment effects, also showed a dose-dependent effect. Our results suggest that maternal inflammation during pregnancy could exacerbate age-related impairments of spatial learning and memory, and neurobiochemical indicators in the offspring CD-1 mice from midlife to senectitude.
Collapse
Affiliation(s)
- Xue-Wei Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Fang Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Qi-Gang Yang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Jing-Jing Tong
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Xue-Yan Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China; Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, and the Center of Anhui Province in Psychologic Medicine, Chaohu, Hefei 238000, Anhui Province, PR China
| | - Gui-Hai Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China; Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, and the Center of Anhui Province in Psychologic Medicine, Chaohu, Hefei 238000, Anhui Province, PR China; Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou 423000, Hunan Province, PR China.
| |
Collapse
|
106
|
Cho RW, Buhl LK, Volfson D, Tran A, Li F, Akbergenova Y, Littleton JT. Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity. Neuron 2016; 88:749-61. [PMID: 26590346 DOI: 10.1016/j.neuron.2015.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/20/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Synaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less clear. The SNARE complex mediates neurotransmitter release in response to presynaptic Ca(2+) entry. Here we show that the SNARE fusion clamp Complexin undergoes activity-dependent phosphorylation that alters the basic properties of neurotransmission in Drosophila. Retrograde signaling following stimulation activates PKA-dependent phosphorylation of the Complexin C terminus that selectively and transiently enhances spontaneous release. Enhanced spontaneous release is required for activity-dependent synaptic growth. These data indicate that SNARE-dependent fusion mechanisms can be regulated in an activity-dependent manner and highlight the key role of spontaneous neurotransmitter release as a mediator of functional and structural plasticity.
Collapse
Affiliation(s)
- Richard W Cho
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Lauren K Buhl
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dina Volfson
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne Tran
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Li
- Department of Cell Biology, Nanobiology Institute, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yulia Akbergenova
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
107
|
Maxeiner S, Luo F, Tan A, Schmitz F, Südhof TC. How to make a synaptic ribbon: RIBEYE deletion abolishes ribbons in retinal synapses and disrupts neurotransmitter release. EMBO J 2016; 35:1098-114. [PMID: 26929012 DOI: 10.15252/embj.201592701] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Synaptic ribbons are large proteinaceous scaffolds at the active zone of ribbon synapses that are specialized for rapid sustained synaptic vesicles exocytosis. A single ribbon-specific protein is known, RIBEYE, suggesting that ribbons may be constructed from RIBEYE protein. RIBEYE knockdown in zebrafish, however, only reduced but did not eliminate ribbons, indicating a more ancillary role. Here, we show in mice that full deletion of RIBEYE abolishes all presynaptic ribbons in retina synapses. Using paired recordings in acute retina slices, we demonstrate that deletion of RIBEYE severely impaired fast and sustained neurotransmitter release at bipolar neuron/AII amacrine cell synapses and rendered spontaneous miniature release sensitive to the slow Ca(2+)-buffer EGTA, suggesting that synaptic ribbons mediate nano-domain coupling of Ca(2+) channels to synaptic vesicle exocytosis. Our results show that RIBEYE is essential for synaptic ribbons as such, and may organize presynaptic nano-domains that position release-ready synaptic vesicles adjacent to Ca(2+) channels.
Collapse
Affiliation(s)
- Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA, USA Department of Neuroanatomy, Institute for Anatomy and Cell Biology Medical School Saarland University, Homburg/Saar, Germany
| | - Fujun Luo
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA, USA
| | - Alison Tan
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Schmitz
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology Medical School Saarland University, Homburg/Saar, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
108
|
Willmann SJ, Mueller NS, Engert S, Sterr M, Burtscher I, Raducanu A, Irmler M, Beckers J, Sass S, Theis FJ, Lickert H. The global gene expression profile of the secondary transition during pancreatic development. Mech Dev 2016; 139:51-64. [DOI: 10.1016/j.mod.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022]
|
109
|
Wang T, Yin L, Zou X, Shu Y, Rasch MJ, Wu S. A Phenomenological Synapse Model for Asynchronous Neurotransmitter Release. Front Comput Neurosci 2016; 9:153. [PMID: 26834617 PMCID: PMC4712311 DOI: 10.3389/fncom.2015.00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/21/2015] [Indexed: 12/04/2022] Open
Abstract
Neurons communicate with each other via synapses. Action potentials cause release of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is tightly time-locked to the arrival of an action potential and is thus called synchronous release. However, neurotransmitter release is stochastic and the rate of release of small quanta of neurotransmitters can be considerably elevated even long after the ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such asynchronous release varies for tissue and neuron types and has been shown recently to be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release is enhanced in human epileptic tissue implicating a possibly important role in generating abnormal neural activity. Current neural network models for simulating and studying neural activity virtually only consider synchronous release and ignore asynchronous transmitter release. Here, we develop a phenomenological model for asynchronous neurotransmitter release, which, on one hand, captures the fundamental features of the asynchronous release process, and, on the other hand, is simple enough to be incorporated in large-size network simulations. Our proposed model is based on the well-known equations for short-term dynamical synaptic interactions and includes an additional stochastic term for modeling asynchronous release. We use experimental data obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model parameters, and demonstrate that our model reproduces the characteristics of realistic asynchronous transmitter release.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Luping Yin
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of Chinese Academy of Sciences Shanghai, China
| | - Xiaolong Zou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Si Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| |
Collapse
|
110
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
111
|
Abstract
UNLABELLED The Ca(2+) sensor synaptotagmin-1 (syt-1) regulates neurotransmitter release by interacting with anionic phospholipids. Here we test the idea that the intrinsic kinetics of syt-membrane interactions determine, in part, the time course of synaptic transmission. To tune the kinetics of this interaction, we grafted structural elements from the slowest isoform, syt-7, onto the fastest isoform, syt-1, resulting in a chimera with intermediate kinetic properties. Moreover, the chimera coupled a physiologically irrelevant metal, Sr(2+), to membrane fusion in vitro. When substituted for syt-1 in mouse hippocampal neurons, the chimera slowed the kinetics of synaptic transmission. Neurons expressing the chimera also evinced rapid and efficient Sr(2+) triggered release, in contrast to the weak response of neurons expressing syt-1. These findings reveal presynaptic sensor-membrane interactions as a major factor regulating the speed of the release machinery. Finally, the chimera failed to clamp the elevated spontaneous fusion rate exhibited by syt-1 KO neurons, indicating that the metal binding loops of syt-1 regulate the two modes of release by distinct mechanisms. SIGNIFICANCE STATEMENT In calcium, synaptotagmin-1 triggers neurotransmitter release by interacting with membranes. Here, we demonstrate that intrinsic properties of this interaction control the time course of synaptic transmission. We engineered a "chimera" using synaptotagmin-1 and elements of a slower isoform, synaptotagmin-7. When expressed in neurons, the chimera slowed the rate of neurotransmitter release. Furthermore, unlike native synaptotagmin-1, the chimera was able to function robustly in the presence of strontium-a metal not present in cells. We exploited this ability to show that a key function of synaptotagmin-1 is to penetrate cell membranes. This work sheds light on fundamental mechanisms of neurotransmitter release.
Collapse
|
112
|
Fanutza T, Del Prete D, Ford MJ, Castillo PE, D’Adamio L. APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. eLife 2015; 4:e09743. [PMID: 26551565 PMCID: PMC4755753 DOI: 10.7554/elife.09743] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause familial Alzheimer's disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer's disease, alterations of this synaptic role of APP could contribute to dementia.
Collapse
Affiliation(s)
- Tomas Fanutza
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Dolores Del Prete
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Luciano D’Adamio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
113
|
Bacaj T, Wu D, Burré J, Malenka RC, Liu X, Südhof TC. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. PLoS Biol 2015; 13:e1002267. [PMID: 26437117 PMCID: PMC4593569 DOI: 10.1371/journal.pbio.1002267] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022] Open
Abstract
In forebrain neurons, Ca(2+) triggers exocytosis of readily releasable vesicles by binding to synaptotagmin-1 and -7, thereby inducing fast and slow vesicle exocytosis, respectively. Loss-of-function of synaptotagmin-1 or -7 selectively impairs the fast and slow phase of release, respectively, but does not change the size of the readily-releasable pool (RRP) of vesicles as measured by stimulation of release with hypertonic sucrose, or alter the rate of vesicle priming into the RRP. Here we show, however, that simultaneous loss-of-function of both synaptotagmin-1 and -7 dramatically decreased the capacity of the RRP, again without altering the rate of vesicle priming into the RRP. Either synaptotagmin-1 or -7 was sufficient to rescue the RRP size in neurons lacking both synaptotagmin-1 and -7. Although maintenance of RRP size was Ca(2+)-independent, mutations in Ca(2+)-binding sequences of synaptotagmin-1 or synaptotagmin-7--which are contained in flexible top-loop sequences of their C2 domains--blocked the ability of these synaptotagmins to maintain the RRP size. Both synaptotagmins bound to SNARE complexes; SNARE complex binding was reduced by the top-loop mutations that impaired RRP maintenance. Thus, synaptotagmin-1 and -7 perform redundant functions in maintaining the capacity of the RRP in addition to nonredundant functions in the Ca(2+) triggering of different phases of release.
Collapse
Affiliation(s)
- Taulant Bacaj
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Dick Wu
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, California, United States of America
| | - Jacqueline Burré
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, California, United States of America
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
114
|
Spontaneous Vesicle Release Is Not Tightly Coupled to Voltage-Gated Calcium Channel-Mediated Ca2+ Influx and Is Triggered by a Ca2+ Sensor Other Than Synaptotagmin-2 at the Juvenile Mice Calyx of Held Synapses. J Neurosci 2015; 35:9632-7. [PMID: 26134646 DOI: 10.1523/jneurosci.0457-15.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well known that voltage-gated calcium channels (VGCCs)-mediated Ca(2+) influx triggers evoked synaptic vesicle release. However, the mechanisms of Ca(2+) regulation of spontaneous miniature vesicle release (mini) remain poorly understood. Here we show that blocking VGCCs at the juvenile mice (C57BL/6) calyx of Held synapse failed to cause an immediate change in minis. Instead, it resulted in a significant reduction (∼40%) of mini frequency several minutes after the blockage. By recording VGCC activity and single vesicle fusion events directly at the presynaptic terminal, we found that minis did not couple to VGCC-mediated Ca(2+) entry, arguing for a lack of direct correlation between mini and transient Ca(2+) influx. Moreover, mini frequencies displayed a lower apparent Ca(2+) cooperativity than those of evoked release. In agreement with this observation, abrogation of the Ca(2+) sensor synaptotagmin-2 had no effect on apparent Ca(2+) cooperativity of minis. Together, our study provides the first direct evidence that spontaneous minis are not mediated by transient Ca(2+) signals through VGCCs and are triggered by a Ca(2+)-sensing mechanism that is different from the evoked release at these microdomain VGCC-vesicle coupled synapses.
Collapse
|
115
|
Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY, Uervirojnangkoorn M, Zeldin OB, Brewster AS, Sauter NK, Cohen AE, Soltis SM, Alonso-Mori R, Chollet M, Lemke HT, Pfuetzner RA, Choi UB, Weis WI, Diao J, Südhof TC, Brunger AT. Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature 2015; 525:62-7. [PMID: 26280336 PMCID: PMC4607316 DOI: 10.1038/nature14975] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca(2+)- and Mg(2+)-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca(2+)-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca(2+)-triggered neurotransmitter release in mouse hippocampal neuronal synapses and for Ca(2+)-triggered vesicle fusion in a reconstituted system. We propose that this interface forms before Ca(2+) triggering, moves en bloc as Ca(2+) influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.
Collapse
Affiliation(s)
- Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Taulant Bacaj
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Minglei Zhao
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Artem Y Lyubimov
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Monarin Uervirojnangkoorn
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Oliver B Zeldin
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Aaron S Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Nicholas K Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Aina E Cohen
- SLAC National Accelerator Laboratory, Stanford, California 94305, USA
| | - S Michael Soltis
- SLAC National Accelerator Laboratory, Stanford, California 94305, USA
| | | | - Matthieu Chollet
- SLAC National Accelerator Laboratory, Stanford, California 94305, USA
| | - Henrik T Lemke
- SLAC National Accelerator Laboratory, Stanford, California 94305, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - William I Weis
- Departments of Structural Biology, Molecular and Cellular Physiology, and Photon Science, Stanford University, Stanford, California 94305, USA
| | - Jiajie Diao
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
116
|
Wu Z, Schulten K. Synaptotagmin's role in neurotransmitter release likely involves Ca(2+)-induced conformational transition. Biophys J 2015; 107:1156-66. [PMID: 25185551 DOI: 10.1016/j.bpj.2014.07.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/15/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022] Open
Abstract
Neuronal exocytosis is mediated by a Ca(2+)-triggered membrane fusion event that joins synaptic vesicles and presynaptic membrane. In this event, synaptotagmin I plays a key role as a Ca(2+) sensor protein that binds to and bends the presynaptic membrane with its C2B domain, and thereby initiates membrane fusion. We report free energy calculations according to which C2B-induced membrane bending is preceded by a Ca(2+)- and membrane-dependent conformational transition. In this transition C2B attaches to the membrane, moves its C-terminal helix from the orientation seen in the available (but membrane-free) crystal/NMR structures as pointing away from the membrane (helix-up), to an orientation pointing toward the membrane (helix-down). In the C2B helix-down state, lipid tails in the proximal membrane bilayer leaflet interact with the moved helix and become disordered, whereas tails in the distal leaflet, to keep in contact with the proximal leaflet, become stretched and ordered. The difference in lipid tail packing between the two leaflets results in an imbalance of pressure across the membrane, and thereby causes membrane bending. The lipid-disordering monitored in the simulations is well suited to facilitate Ca(2+)-triggered membrane fusion.
Collapse
Affiliation(s)
- Zhe Wu
- Department of Physics, Center for the Physics of Living Cells, Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Klaus Schulten
- Department of Physics, Center for the Physics of Living Cells, Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
117
|
Althof D, Baehrens D, Watanabe M, Suzuki N, Fakler B, Kulik Á. Inhibitory and excitatory axon terminals share a common nano-architecture of their Cav2.1 (P/Q-type) Ca(2+) channels. Front Cell Neurosci 2015; 9:315. [PMID: 26321916 PMCID: PMC4531237 DOI: 10.3389/fncel.2015.00315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 12/27/2022] Open
Abstract
Tuning of the time course and strength of inhibitory and excitatory neurotransmitter release is fundamental for the precise operation of cortical network activity and is controlled by Ca2+ influx into presynaptic terminals through the high voltage-activated P/Q-type Ca2+ (Cav2.1) channels. Proper channel-mediated Ca2+-signaling critically depends on the topographical arrangement of the channels in the presynaptic membrane. Here, we used high-resolution SDS-digested freeze-fracture replica immunoelectron microscopy together with automatized computational analysis of Cav2.1 immunogold labeling to determine the precise subcellular organization of Cav2.1 channels in both inhibitory and excitatory terminals. Immunoparticles labeling the pore-forming α1 subunit of Cav2.1 channels were enriched over the active zone of the boutons with the number of channels (3–62) correlated with the area of the synaptic membrane. Detailed analysis showed that Cav2.1 channels are non-uniformly distributed over the presynaptic membrane specialization where they are arranged in clusters of an average five channels per cluster covering a mean area with a diameter of about 70 nm. Importantly, clustered arrangement and cluster properties did not show any significant difference between GABAergic and glutamatergic terminals. Our data demonstrate a common nano-architecture of Cav2.1 channels in inhibitory and excitatory boutons in stratum radiatum of the hippocampal CA1 area suggesting that the cluster arrangement is crucial for the precise release of transmitters from the axonal boutons.
Collapse
Affiliation(s)
- Daniel Althof
- Institute of Physiology, University of Freiburg Freiburg, Germany
| | - David Baehrens
- Institute of Physiology, University of Freiburg Freiburg, Germany
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University Sapporo, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Mie, Japan
| | - Bernd Fakler
- Institute of Physiology, University of Freiburg Freiburg, Germany ; Centre for Biological Signalling Studies, University of Freiburg Freiburg, Germany
| | - Ákos Kulik
- Institute of Physiology, University of Freiburg Freiburg, Germany ; Centre for Biological Signalling Studies, University of Freiburg Freiburg, Germany
| |
Collapse
|
118
|
Mohrmann R, Dhara M, Bruns D. Complexins: small but capable. Cell Mol Life Sci 2015; 72:4221-35. [PMID: 26245303 PMCID: PMC4611016 DOI: 10.1007/s00018-015-1998-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/02/2022]
Abstract
Despite intensive research, it is still unclear how an immediate and profound acceleration of exocytosis is triggered by appropriate Ca(2+)-stimuli in presynaptic terminals. This is due to the fact that the molecular mechanisms of "docking" and "priming" reactions, which set up secretory vesicles to fuse at millisecond time scale, are extremely hard to study. Yet, driven by a fruitful combination of in vitro and in vivo analyses, our mechanistic understanding of Ca(2+)-triggered vesicle fusion has certainly advanced in the past few years. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. In particular, we will focus on the role of the small regulatory factor complexin whose function in Ca(2+)-dependent exocytosis has been controversially discussed for more than a decade. Special emphasis will also be laid on the functional relationship of complexin and synaptotagmin, as both proteins possibly act as allies and/or antagonists to govern SNARE-mediated exocytosis.
Collapse
Affiliation(s)
- Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany. .,Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany.
| | - Madhurima Dhara
- Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany
| | - Dieter Bruns
- Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany.
| |
Collapse
|
119
|
Anderson GR, Aoto J, Tabuchi K, Földy C, Covy J, Yee AX, Wu D, Lee SJ, Chen L, Malenka RC, Südhof TC. β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling. Cell 2015. [PMID: 26213384 DOI: 10.1016/j.cell.2015.06.056] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
α- and β-neurexins are presynaptic cell-adhesion molecules implicated in autism and schizophrenia. We find that, although β-neurexins are expressed at much lower levels than α-neurexins, conditional knockout of β-neurexins with continued expression of α-neurexins dramatically decreased neurotransmitter release at excitatory synapses in cultured cortical neurons. The β-neurexin knockout phenotype was attenuated by CB1-receptor inhibition, which blocks presynaptic endocannabinoid signaling, or by 2-arachidonoylglycerol synthesis inhibition, which impairs postsynaptic endocannabinoid release. In synapses formed by CA1-region pyramidal neurons onto burst-firing subiculum neurons, presynaptic in vivo knockout of β-neurexins aggravated endocannabinoid-mediated inhibition of synaptic transmission and blocked LTP; presynaptic CB1-receptor antagonists or postsynaptic 2-arachidonoylglycerol synthesis inhibition again reversed this block. Moreover, conditional knockout of β-neurexins in CA1-region neurons impaired contextual fear memories. Thus, our data suggest that presynaptic β-neurexins control synaptic strength in excitatory synapses by regulating postsynaptic 2-arachidonoylglycerol synthesis, revealing an unexpected role for β-neurexins in the endocannabinoid-dependent regulation of neural circuits.
Collapse
Affiliation(s)
- Garret R Anderson
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Jason Aoto
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Neurophysiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Csaba Földy
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Jason Covy
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Ada Xin Yee
- Department of Neurosurgery, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Dick Wu
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Sung-Jin Lee
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA; Nancy Pritzker Laboratory, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA; Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305-5453, USA.
| |
Collapse
|
120
|
Siegert S, Seo J, Kwon EJ, Rudenko A, Cho S, Wang W, Flood Z, Martorell AJ, Ericsson M, Mungenast AE, Tsai LH. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci 2015; 18:1008-16. [PMID: 26005852 PMCID: PMC4506960 DOI: 10.1038/nn.4023] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Abstract
Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorphisms in MIR137. We observed increased MIR137 levels compared to those in major allele-carrying cells. microRNA-137 gain of function caused downregulation of the presynaptic target genes complexin-1 (Cplx1), Nsf and synaptotagmin-1 (Syt1), leading to impaired vesicle release. In vivo, miR-137 gain of function resulted in changes in synaptic vesicle pool distribution, impaired induction of mossy fiber long-term potentiation and deficits in hippocampus-dependent learning and memory. By sequestering endogenous miR-137, we were able to ameliorate the synaptic phenotypes. Moreover, reinstatement of Syt1 expression partially restored synaptic plasticity, demonstrating the importance of Syt1 as a miR-137 target. Our data provide new insight into the mechanism by which miR-137 dysregulation can impair synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Sandra Siegert
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Jinsoo Seo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Ester J. Kwon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Andrii Rudenko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Sukhee Cho
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Wenyuan Wang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Zachary Flood
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Anthony J. Martorell
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alison E. Mungenast
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
121
|
Schneggenburger R, Rosenmund C. Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release. Nat Neurosci 2015; 18:935-41. [DOI: 10.1038/nn.4044] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022]
|
122
|
Dynamic binding mode of a Synaptotagmin-1-SNARE complex in solution. Nat Struct Mol Biol 2015; 22:555-64. [PMID: 26030874 PMCID: PMC4496268 DOI: 10.1038/nsmb.3035] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Rapid neurotransmitter release depends on the Ca2+-sensor Synaptotagmin-1 and the SNARE complex formed by synaptobrevin, syntaxin-1 and SNAP-25. How Synaptotagmin-1 triggers release remains unclear, in part because elucidating high-resolution structures of Synaptotagmin-1-SNARE complexes has been challenging. An NMR approach based on lanthanide-induced pseudocontact shifts now reveals a dynamic binding mode where basic residues in the concave side of the Synaptotagmin-1 C2B domain β-sandwich interact with a polyacidic region of the SNARE complex formed by syntaxin-1 and SNAP-25. The physiological relevance of this dynamic structural model is supported by mutations in basic residues of Synaptotagmin-1 that markedly impair SNARE-complex binding in vitro and Synaptotagmin-1 function in neurons. Mutations with milder effects on binding have correspondingly milder effects on Synaptotagmin-1 function. Our results support a model whereby their dynamic interaction facilitates cooperation between synaptotagmin-1 and the SNAREs in inducing membrane fusion.
Collapse
|
123
|
Bursting reverberation as a multiscale neuronal network process driven by synaptic depression-facilitation. PLoS One 2015; 10:e0124694. [PMID: 26017681 PMCID: PMC4446271 DOI: 10.1371/journal.pone.0124694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
Neuronal networks can generate complex patterns of activity that depend on membrane properties of individual neurons as well as on functional synapses. To decipher the impact of synaptic properties and connectivity on neuronal network behavior, we investigate the responses of neuronal ensembles from small (5-30 cells in a restricted sphere) and large (acute hippocampal slice) networks to single electrical stimulation: in both cases, a single stimulus generated a synchronous long-lasting bursting activity. While an initial spike triggered a reverberating network activity that lasted 2-5 seconds for small networks, we found here that it lasted only up to 300 milliseconds in slices. To explain this phenomena present at different scales, we generalize the depression-facilitation model and extracted the network time constants. The model predicts that the reverberation time has a bell shaped relation with the synaptic density, revealing that the bursting time cannot exceed a maximum value. Furthermore, before reaching its maximum, the reverberation time increases sub-linearly with the synaptic density of the network. We conclude that synaptic dynamics and connectivity shape the mean burst duration, a property present at various scales of the networks. Thus bursting reverberation is a property of sufficiently connected neural networks, and can be generated by collective depression and facilitation of underlying functional synapses.
Collapse
|
124
|
Schotten S, Meijer M, Walter AM, Huson V, Mamer L, Kalogreades L, ter Veer M, Ruiter M, Brose N, Rosenmund C, Sørensen JB, Verhage M, Cornelisse LN. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. eLife 2015; 4:e05531. [PMID: 25871846 PMCID: PMC4426983 DOI: 10.7554/elife.05531] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/13/2015] [Indexed: 01/08/2023] Open
Abstract
The energy required to fuse synaptic vesicles with the plasma membrane
(‘activation energy’) is considered a major determinant in synaptic
efficacy. From reaction rate theory, we predict that a class of modulations exists,
which utilize linear modulation of the energy barrier for fusion to achieve
supralinear effects on the fusion rate. To test this prediction experimentally, we
developed a method to assess the number of releasable vesicles, rate constants for
vesicle priming, unpriming, and fusion, and the activation energy for fusion by
fitting a vesicle state model to synaptic responses induced by hypertonic solutions.
We show that complexinI/II deficiency or phorbol ester stimulation indeed affects
responses to hypertonic solution in a supralinear manner. An additive vs
multiplicative relationship between activation energy and fusion rate provides a
novel explanation for previously observed non-linear effects of
genetic/pharmacological perturbations on synaptic transmission and a novel
interpretation of the cooperative nature of Ca2+-dependent
release. DOI:http://dx.doi.org/10.7554/eLife.05531.001 Information is carried around our nervous system by cells called neurons, which are
connected to each other by junctions known as synapses. Within the neurons, there are
many small compartments known as synaptic vesicles that are essential to the transfer
of information from one neuron to the next. When one neuron is activated, the
synaptic vesicles fuse with the membrane surrounding the cell to release molecules
called neurotransmitters, which cross the synapse and activate the next neuron.
Vesicle fusion is carefully regulated to control the speed and amount of
neurotransmitter release, which determines the level of activation of the next
neuron. Vesicle fusion requires energy, much of which is provided by a set of proteins found
in the synapse. The minimum amount of energy required—called the activation
energy—is influenced by many factors, including the shape of the cell's
membrane at the synapse. It is thought that altering the activation energy required
for fusion may control the activity of synapses, but it is not possible to directly
measure this in living cells. To bypass this problem, Schotten, Meijer, Walter et al. established a new method to
study vesicle fusion. This method combines a mathematical model with experimental
data of the activity of synapses. First, the neurons were placed in a solution
containing the sugar sucrose, which triggered vesicle fusion by lowering the
activation energy. The increase in vesicle fusion was smaller in neurons that lacked
two proteins called complexin I and complexin II—which control vesicle
fusion—than in the normal neurons. A molecule called phorbol ester is also able to activate the release of
neurotransmitters. When cells were treated with both sucrose and phorbol ester, the
speed of vesicle fusion was greater. The experiments show that the effects of
sucrose, phorbol ester, and the complexins multiply together to dramatically alter
vesicle fusion. Schotten, Meijer, Walter et al. suggest a new model for how the activation energy of
vesicle fusion controls the transfer of information across synapses. This might shed
new light on how the efficiency of vesicle fusion is altered when neurons are highly
active, which is thought to have strong implications for how information is processed
in the brain. DOI:http://dx.doi.org/10.7554/eLife.05531.002
Collapse
Affiliation(s)
- Sebastiaan Schotten
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Marieke Meijer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Alexander Matthias Walter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Vincent Huson
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Lauren Mamer
- NeuroCure Cluster of Excellence, Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lawrence Kalogreades
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Mirelle ter Veer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Marvin Ruiter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Christian Rosenmund
- NeuroCure Cluster of Excellence, Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jakob Balslev Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
125
|
Transmembrane tethering of synaptotagmin to synaptic vesicles controls multiple modes of neurotransmitter release. Proc Natl Acad Sci U S A 2015; 112:3793-8. [PMID: 25775572 DOI: 10.1073/pnas.1420312112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin 1 (Syt1) is a synaptic vesicle integral membrane protein that regulates neurotransmitter release by activating fast synchronous fusion and suppressing slower asynchronous release. The cytoplasmic C2 domains of Syt1 interact with SNAREs and plasma membrane phospholipids in a Ca(2+)-dependent manner and can substitute for full-length Syt1 in in vitro membrane fusion assays. To determine whether synaptic vesicle tethering of Syt1 is required for normal fusion in vivo, we performed a structure-function study with tethering mutants at the Drosophila larval neuromuscular junction. Transgenic animals expressing only the cytoplasmic C2 domains or full-length Syt1 tethered to the plasma membrane failed to restore synchronous synaptic vesicle fusion, and also failed to clamp spontaneous vesicle release. In addition, transgenic animals with shorter, but not those with longer, linker regions separating the C2 domains from the transmembrane segment abolished Syt1's ability to activate synchronous vesicle fusion. Similar defects were observed when C2 domain alignment was altered to C2B-C2A from the normal C2A-C2B orientation, leaving the tether itself intact. Although cytoplasmic and plasma membrane-tethered Syt1 variants could not restore synchronous release in syt1 null mutants, they were very effective in promoting fusion through the slower asynchronous pathway. As such, the subcellular localization of Syt1 within synaptic terminals is important for the temporal dynamics that underlie synchronous and asynchronous neurotransmitter release.
Collapse
|
126
|
Abstract
Fast synaptic communication in the brain requires synchronous vesicle fusion that is evoked by action potential-induced Ca(2+) influx. However, synaptic terminals also release neurotransmitters by spontaneous vesicle fusion, which is independent of presynaptic action potentials. A functional role for spontaneous neurotransmitter release events in the regulation of synaptic plasticity and homeostasis, as well as the regulation of certain behaviours, has been reported. In addition, there is evidence that the presynaptic mechanisms underlying spontaneous release of neurotransmitters and their postsynaptic targets are segregated from those of evoked neurotransmission. These findings challenge current assumptions about neuronal signalling and neurotransmission, as they indicate that spontaneous neurotransmission has an autonomous role in interneuronal communication that is distinct from that of evoked release.
Collapse
|
127
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
128
|
Truckenbrodt S, Rizzoli SO. Spontaneous vesicle recycling in the synaptic bouton. Front Cell Neurosci 2014; 8:409. [PMID: 25538561 PMCID: PMC4259163 DOI: 10.3389/fncel.2014.00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/11/2014] [Indexed: 11/13/2022] Open
Abstract
The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.
Collapse
Affiliation(s)
- Sven Truckenbrodt
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany ; International Max Planck Research School for Molecular Biology Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| |
Collapse
|
129
|
Weber JP, Toft-Bertelsen TL, Mohrmann R, Delgado-Martinez I, Sørensen JB. Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23. PLoS One 2014; 9:e114033. [PMID: 25422940 PMCID: PMC4244210 DOI: 10.1371/journal.pone.0114033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/03/2014] [Indexed: 12/25/2022] Open
Abstract
Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive stimulation, and can even play a dominant role in some synapses. Here, we show that substitution of SNAP-23 for SNAP-25 in mouse autaptic glutamatergic hippocampal neurons results in asynchronous release and a higher frequency of spontaneous release events (mEPSCs). Use of neurons from double-knock-out (SNAP-25, synaptotagmin-7) mice in combination with viral transduction showed that SNAP-23-driven release is triggered by endogenous synaptotagmin-7. In the absence of synaptotagmin-7 release became even more asynchronous, and the spontaneous release rate increased even more, indicating that synaptotagmin-7 acts to synchronize release and suppress spontaneous release. However, compared to synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium sensor. In the presence of SNAP-25, consequences of the elimination of synaptotagmin-7 were small or absent, indicating that the protein pairs SNAP-25/synaptotagmin-1 and SNAP-23/synaptotagmin-7 might act as mutually exclusive calcium sensors. Expression of fusion proteins between pHluorin (pH-sensitive GFP) and synaptotagmin-1 or -7 showed that vesicles that fuse using the SNAP-23/synaptotagmin-7 combination contained synaptotagmin-1, while synaptotagmin-7 barely displayed activity-dependent trafficking between vesicle and plasma membrane, implying that it acts as a plasma membrane calcium sensor. Overall, these findings support the idea of alternative syt∶SNARE combinations driving release with different kinetics and fidelity.
Collapse
Affiliation(s)
- Jens P. Weber
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Trine L. Toft-Bertelsen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ralf Mohrmann
- Department of Physiology, University of Saarland, Homburg, Germany
| | | | - Jakob B. Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
130
|
Leitz J, Kavalali ET. Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. eLife 2014; 3:e03658. [PMID: 25415052 PMCID: PMC4270043 DOI: 10.7554/elife.03658] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
Presynaptic terminals release neurotransmitters spontaneously in a manner that can be regulated by Ca(2+). However, the mechanisms underlying this regulation are poorly understood because the inherent stochasticity and low probability of spontaneous fusion events has curtailed their visualization at individual release sites. Here, using pH-sensitive optical probes targeted to synaptic vesicles, we visualized single spontaneous fusion events and found that they are retrieved extremely rapidly with faster re-acidification kinetics than their action potential-evoked counterparts. These fusion events were coupled to postsynaptic NMDA receptor-driven Ca(2+) signals, and at elevated Ca(2+) concentrations there was an increase in the number of vesicles that would undergo fusion. Furthermore, spontaneous vesicle fusion propensity in a synapse was Ca(2+)-dependent but regulated autonomously: independent of evoked fusion probability at the same synapse. Taken together, these results expand classical quantal analysis to incorporate endocytic and exocytic phases of single fusion events and uncover autonomous regulation of spontaneous fusion.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
131
|
Südhof TC. Der molekulare Mechanismus der Neurotransmitterfreisetzung und Nervenzell-Synapsen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
132
|
Südhof TC. The molecular machinery of neurotransmitter release (Nobel lecture). Angew Chem Int Ed Engl 2014; 53:12696-717. [PMID: 25339369 DOI: 10.1002/anie.201406359] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 12/18/2022]
Abstract
The most important property of synaptic transmission is its speed, which is crucial for the overall workings of the brain. In his Nobel Lecture, T. C. Südhof explains how the synaptic vesicle and the plasma membrane undergo rapid fusion during neurotransmitter release and how this process is spatially organized, such that opening of Ca(2+) -channels allows rapid translation of the entering Ca(2+) signal into a fusion event.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Lorry Lokey SIM1 Building 07-535 Room G1021, 265 Campus Drive, Stanford University School of Medicine, CA 94305 (USA)
| |
Collapse
|
133
|
Chua JJE. Macromolecular complexes at active zones: integrated nano-machineries for neurotransmitter release. Cell Mol Life Sci 2014; 71:3903-16. [PMID: 24912984 PMCID: PMC11113288 DOI: 10.1007/s00018-014-1657-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023]
Abstract
The release of neurotransmitters from synaptic vesicles exocytosing at presynaptic nerve terminals is a critical event in the initiation of synaptic transmission. This event occurs at specialized sites known as active zones. The task of faithfully executing various steps in the process is undertaken by careful orchestration of overlapping sets of molecular nano-machineries upon a core macromolecular scaffold situated at active zones. However, their composition remains incompletely elucidated. This review provides an overview of the role of the active zone in mediating neurotransmitter release and summarizes the recent progress using neuroproteomic approaches to decipher their composition. Key proteins of these nano-machineries are highlighted.
Collapse
Affiliation(s)
- John Jia En Chua
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany,
| |
Collapse
|
134
|
Del Prete D, Lombino F, Liu X, D'Adamio L. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. PLoS One 2014; 9:e108576. [PMID: 25247712 PMCID: PMC4172690 DOI: 10.1371/journal.pone.0108576] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/31/2014] [Indexed: 12/21/2022] Open
Abstract
Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.
Collapse
Affiliation(s)
- Dolores Del Prete
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Franco Lombino
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Luciano D'Adamio
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
135
|
Krishnakumar SS, Kümmel D, Jones SJ, Radoff DT, Reinisch KM, Rothman JE. Conformational dynamics of calcium-triggered activation of fusion by synaptotagmin. Biophys J 2014; 105:2507-16. [PMID: 24314081 DOI: 10.1016/j.bpj.2013.10.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/11/2013] [Accepted: 10/23/2013] [Indexed: 01/03/2023] Open
Abstract
Synaptotagmin triggers rapid exocytosis of neurotransmitters from synaptic vesicles in response to Calcium (Ca(2+)) ions. Here, we use a novel Nanodisc-based system, designed to be a soluble mimetic of the clamped synaptic vesicle-bilayer junction, combined with fluorescence resonance energy transfer (FRET) spectroscopy to monitor the structural relationships among SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor), Synaptotagmin C2 domains, and the lipid bilayer in real time during the Ca(2+)-activation process. We report that Synaptotagmin remains rigidly fixed on the partially assembled SNARE complex with no detectable internal rearrangement of its C2 domains, even as it rapidly inserts into the bilayer. We hypothesize that this straightforward, one-step physical mechanism could explain how this Ca(2+)- sensor rapidly activates neurotransmitter release from the clamped state.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| | | | | | | | | | | |
Collapse
|
136
|
Synaptic gain-of-function effects of mutant Cav2.1 channels in a mouse model of familial hemiplegic migraine are due to increased basal [Ca2+]i. J Neurosci 2014; 34:7047-58. [PMID: 24849341 DOI: 10.1523/jneurosci.2526-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Specific missense mutations in the CACNA1A gene, which encodes a subunit of voltage-gated CaV2.1 channels, are associated with familial hemiplegic migraine type 1 (FHM1), a rare monogenic subtype of common migraine with aura. We used transgenic knock-in (KI) mice harboring the human pathogenic FHM1 mutation S218L to study presynaptic Ca(2+) currents, EPSCs, and in vivo activity at the calyx of Held synapse. Whole-cell patch-clamp recordings of presynaptic terminals from S218L KI mice showed a strong shift of the calcium current I-V curve to more negative potentials, leading to an increase in basal [Ca(2+)]i, increased levels of spontaneous transmitter release, faster recovery from synaptic depression, and enhanced synaptic strength despite smaller action-potential-elicited Ca(2+) currents. The gain-of-function of transmitter release of the S218L mutant was reproduced in vivo, including evidence for an increased release probability, demonstrating its relevance for glutamatergic transmission. This synaptic phenotype may explain the misbalance between excitation and inhibition in neuronal circuits resulting in a persistent hyperexcitability state and other migraine-relevant mechanisms such as an increased susceptibility to cortical spreading depression.
Collapse
|
137
|
MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol 2014; 51:1168-83. [PMID: 24973144 DOI: 10.1007/s12035-014-8794-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/15/2014] [Indexed: 02/07/2023]
Abstract
We have previously demonstrated the involvement of specific apoptosis-associated microRNAs (miRNAs), including miR-34a, in mouse neural stem cell (NSC) differentiation. In addition, a growing body of evidence points to a critical role for autophagy during neuronal differentiation, as a response-survival mechanism to limit oxidative stress and regulate synaptogenesis associated with this process. The aim of this study was to further investigate the precise role of miR-34a during NSC differentiation. Our results showed that miR-34a expression was markedly downregulated during neurogenesis. Neuronal differentiation and cell morphology, synapse function, and electrophysiological maturation were significantly impaired in miR-34a-overexpressing NSCs. In addition, synaptotagmin 1 (Syt1) and autophagy-related 9a (Atg9a) significantly increased during neurogenesis. Pharmacological inhibition of autophagy impaired both neuronal differentiation and cell morphology. Notably, we showed that Syt1 and Atg9a are miR-34a targets in neural differentiation context, markedly decreasing after miR-34a overexpression. Syt1 overexpression and rapamycin-induced autophagy partially rescued the impairment of neuronal differentiation by miR-34a. In conclusion, our results demonstrate a novel role for miR-34a regulation of NSC differentiation, where miR-34a downregulation and subsequent increase of Syt1 and Atg9a appear to be crucial for neurogenesis progression.
Collapse
|
138
|
Lu B, Kiessling V, Tamm LK, Cafiso DS. The juxtamembrane linker of full-length synaptotagmin 1 controls oligomerization and calcium-dependent membrane binding. J Biol Chem 2014; 289:22161-71. [PMID: 24973220 DOI: 10.1074/jbc.m114.569327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synaptotagmin 1 (Syt1) is the calcium sensor for synchronous neurotransmitter release. The two C2 domains of Syt1, which may mediate fusion by bridging the vesicle and plasma membranes, are connected to the vesicle membrane by a 60-residue linker. Here, we use site-directed spin labeling and a novel total internal reflection fluorescence vesicle binding assay to characterize the juxtamembrane linker and to test the ability of reconstituted full-length Syt1 to interact with opposing membrane surfaces. EPR spectroscopy demonstrates that the majority of the linker interacts with the membrane interface, thereby limiting the extension of the C2A and C2B domains into the cytoplasm. Pulse dipolar EPR spectroscopy provides evidence that purified full-length Syt1 is oligomerized in the membrane, and mutagenesis indicates that a glycine zipper/GXXXG motif within the linker helps mediate oligomerization. The total internal reflection fluorescence-based vesicle binding assay demonstrates that full-length Syt1 that is reconstituted into supported lipid bilayers will capture vesicles containing negatively charged lipid in a Ca(2+)-dependent manner. Moreover, the rate of vesicle capture increases with Syt1 density, and mutations in the GXXXG motif that inhibit oligomerization of Syt1 reduce the rate of vesicle capture. This work demonstrates that modifications within the 60-residue linker modulate both the oligomerization of Syt1 and its ability to interact with opposing bilayers. In addition to controlling its activity, the oligomerization of Syt1 may play a role in organizing proteins within the active zone of membrane fusion.
Collapse
Affiliation(s)
- Bin Lu
- From the Departments of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Volker Kiessling
- the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904 Molecular Physiology and Biological Physics and
| | - Lukas K Tamm
- the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904 Molecular Physiology and Biological Physics and
| | - David S Cafiso
- From the Departments of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
139
|
Wang D, Epstein D, Khalaf O, Srinivasan S, Williamson WR, Fayyazuddin A, Quiocho FA, Hiesinger PR. Ca2+-Calmodulin regulates SNARE assembly and spontaneous neurotransmitter release via v-ATPase subunit V0a1. ACTA ACUST UNITED AC 2014; 205:21-31. [PMID: 24733584 PMCID: PMC3987144 DOI: 10.1083/jcb.201312109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ca2+–Calmodulin binding to neuronal v-ATPase V0 subunit a1 (V100) regulates SNARE complex assembly for a putative subset of synaptic vesicles that sustain spontaneous release in Drosophila. Most chemical neurotransmission occurs through Ca2+-dependent evoked or spontaneous vesicle exocytosis. In both cases, Ca2+ sensing is thought to occur shortly before exocytosis. In this paper, we provide evidence that the Ca2+ dependence of spontaneous vesicle release may partly result from an earlier requirement of Ca2+ for the assembly of soluble N-ethylmaleimide–sensitive fusion attachment protein receptor (SNARE) complexes. We show that the neuronal vacuolar-type H+-adenosine triphosphatase V0 subunit a1 (V100) can regulate the formation of SNARE complexes in a Ca2+–Calmodulin (CaM)-dependent manner. Ca2+–CaM regulation of V100 is not required for vesicle acidification. Specific disruption of the Ca2+-dependent regulation of V100 by CaM led to a >90% loss of spontaneous release but only had a mild effect on evoked release at Drosophila melanogaster embryo neuromuscular junctions. Our data suggest that Ca2+–CaM regulation of V100 may control SNARE complex assembly for a subset of synaptic vesicles that sustain spontaneous release.
Collapse
Affiliation(s)
- Dong Wang
- Department of Physiology and 2 Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin-1. J Neurosci 2014; 34:2100-10. [PMID: 24501351 DOI: 10.1523/jneurosci.3934-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of spontaneously occurring release events in glutamatergic and GABAergic neurons and their regulation is intensely debated. To study the interdependence of glutamatergic and GABAergic spontaneous release, we compared reciprocally connected "mixed" glutamatergic/GABAergic neuronal pairs from mice cultured on astrocyte islands with "homotypic" glutamatergic or GABAergic pairs and autaptic neurons. We measured mEPSC and mIPSC frequencies simultaneously from both neurons. Neuronal pairs formed both interneuronal synaptic and autaptic connections indiscriminately. We find that whereas mEPSC and mIPSC frequencies did not deviate between autaptic and synaptic connections, the frequency of mEPSCs in mixed pairs was strongly depressed compared with either autaptic neurons or glutamatergic pairs. Simultaneous imaging of synapses, or comparison to evoked release amplitudes, showed that this decrease was not caused by fewer active synapses. The mEPSC frequency was negatively correlated with the mIPSC frequency, indicating interdependence. Moreover, the reduction in mEPSC frequency was abolished when established pairs were exposed to bicuculline for 3 d, but not by long-term incubation with tetrodotoxin, indicating that spontaneous GABA release downregulates mEPSC frequency. Further investigations showed that knockout of synaptotagmin-1 did not affect mEPSC frequencies in either glutamatergic autaptic neurons or in glutamatergic pairs. However, in mixed glutamatergic/GABAergic pairs, mEPSC frequencies were increased by a factor of four in the synaptotagmin-1-null neurons, which is in line with data obtained from mixed cultures. The effect persisted after incubation with BAPTA-AM. We conclude that spontaneous GABA release exerts control over mEPSC release, and GABAergic innervation of glutamatergic neurons unveils the unclamping phenotype of the synaptotagmin-1-null neurons.
Collapse
|
141
|
Liu H, Bai H, Xue R, Takahashi H, Edwardson JM, Chapman ER. Linker mutations reveal the complexity of synaptotagmin 1 action during synaptic transmission. Nat Neurosci 2014; 17:670-7. [PMID: 24657966 PMCID: PMC4139111 DOI: 10.1038/nn.3681] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
The Ca(2+) sensor for rapid synaptic vesicle exocytosis, synaptotagmin 1 (syt), is largely composed of two Ca(2+)-sensing C2 domains, C2A and C2B. We investigated the apparent synergy between the tandem C2 domains by altering the length and rigidity of the linker that connects them. The behavior of the linker mutants revealed a correlation between the ability of the C2 domains to penetrate membranes in response to Ca(2+) and to drive evoked neurotransmitter release in cultured mouse neurons, uncovering a step in excitation-secretion coupling. Using atomic force microscopy, we found that the synergy between these C2 domains involved intra-molecular interactions between them. Thus, syt function is markedly affected by changes in the physical nature of the linker that connects its tandem C2 domains. Moreover, the linker mutations uncoupled syt-mediated regulation of evoked and spontaneous release, revealing that syt also acts as a fusion clamp before the Ca(2+) trigger.
Collapse
Affiliation(s)
- Huisheng Liu
- 1] Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA. [2] [3]
| | - Hua Bai
- 1] Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA. [2]
| | - Renhao Xue
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
142
|
|
143
|
Evoked and spontaneous transmission favored by distinct sets of synapses. Curr Biol 2014; 24:484-93. [PMID: 24560571 DOI: 10.1016/j.cub.2014.01.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/12/2013] [Accepted: 01/10/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Spontaneous "miniature" transmitter release takes place at low rates at all synapses. Long thought of as an unavoidable leak, spontaneous release has recently been suggested to be mediated by distinct pre- and postsynaptic molecular machineries and to have a specialized role in setting up and adjusting neuronal circuits. It remains unclear how spontaneous and evoked transmission are related at individual synapses, how they are distributed spatially when an axon makes multiple contacts with a target, and whether they are commonly regulated. RESULTS Electrophysiological recordings in the Drosophila larval neuromuscular junction, in the presence of the use-dependent glutamate receptor (GluR) blocker philanthotoxin, indicated that spontaneous and evoked transmission employ distinct sets of GluRs. In vivo imaging of transmission using synaptically targeted GCaMP3 to detect Ca(2+) influx through the GluRs revealed little spatial overlap between synapses participating in spontaneous and evoked transmission. Spontaneous and evoked transmission were oppositely correlated with presynaptic levels of the protein Brp: synapses with high Brp favored evoked transmission, whereas synapses with low Brp were more active spontaneously. High-frequency stimulation did not increase the overlap between evoked and spontaneous transmission, and instead decreased the rate of spontaneous release from synapses that were highly active in evoked transmission. CONCLUSIONS Although individual synapses can participate in both evoked and spontaneous transmission, highly active synapses show a preference for one mode of transmission. The presynaptic protein Brp promotes evoked transmission and suppresses spontaneous release. These findings suggest the existence of presynaptic mechanisms that promote synaptic specialization to either evoked or spontaneous transmission.
Collapse
|
144
|
Bacaj T, Wu D, Yang X, Morishita W, Zhou P, Xu W, Malenka RC, Südhof TC. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 2014; 80:947-59. [PMID: 24267651 DOI: 10.1016/j.neuron.2013.10.026] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2013] [Indexed: 01/04/2023]
Abstract
In forebrain neurons, knockout of synaptotagmin-1 blocks fast Ca(2+)-triggered synchronous neurotransmitter release but enables manifestation of slow Ca(2+)-triggered asynchronous release. Here, we show using single-cell PCR that individual hippocampal neurons abundantly coexpress two Ca(2+)-binding synaptotagmin isoforms, synaptotagmin-1 and synaptotagmin-7. In synaptotagmin-1-deficient synapses of excitatory and inhibitory neurons, loss of function of synaptotagmin-7 suppressed asynchronous release. This phenotype was rescued by wild-type but not mutant synaptotagmin-7 lacking functional Ca(2+)-binding sites. Even in synaptotagmin-1-containing neurons, synaptotagmin-7 ablation partly impaired asynchronous release induced by extended high-frequency stimulus trains. Synaptotagmins bind Ca(2+) via two C2 domains, the C2A and C2B domains. Surprisingly, synaptotagmin-7 function selectively required its C2A domain Ca(2+)-binding sites, whereas synaptotagmin-1 function required its C2B domain Ca(2+)-binding sites. Our data show that nearly all Ca(2+)-triggered release at a synapse is due to synaptotagmins, with synaptotagmin-7 mediating a slower form of Ca(2+)-triggered release that is normally occluded by faster synaptotagmin-1-induced release but becomes manifest upon synaptotagmin-1 deletion.
Collapse
Affiliation(s)
- Taulant Bacaj
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
During an action potential, Ca(2+) entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca(2+) stimulate release so rapidly and precisely? Work over the last decades revealed that Ca(2+) binding to synaptotagmin triggers release by stimulating synaptotagmin binding to a core fusion machinery composed of SNARE and SM proteins that mediates membrane fusion during exocytosis. Complexin adaptor proteins assist synaptotagmin by activating and clamping this core fusion machinery. Synaptic vesicles containing synaptotagmin are positioned at the active zone, the site of vesicle fusion, by a protein complex containing RIM proteins. RIM proteins activate docking and priming of synaptic vesicles and simultaneously recruit Ca(2+) channels to active zones, thereby connecting in a single complex primed synaptic vesicles to Ca(2+) channels. This architecture allows direct flow of Ca(2+) ions from Ca(2+) channels to synaptotagmin, which then triggers fusion, thus mediating tight millisecond coupling of an action potential to neurotransmitter release.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Lorry Lokey SIM1 Building, 265 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
146
|
Ermolyuk YS, Alder FG, Surges R, Pavlov IY, Timofeeva Y, Kullmann DM, Volynski KE. Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels. Nat Neurosci 2013; 16:1754-1763. [PMID: 24185424 PMCID: PMC4176737 DOI: 10.1038/nn.3563] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/01/2013] [Indexed: 12/12/2022]
Abstract
The role of voltage-gated Ca2+ channels (VGCCs) in spontaneous miniature neurotransmitter release is incompletely understood. We found that stochastic opening of P/Q-, N- and R-type VGCCs accounts for ∼50% of all spontaneous glutamate release at rat cultured hippocampal synapses, and that R-type channels have a far greater role in spontaneous than in action potential-evoked exocytosis. VGCC-dependent miniature neurotransmitter release (minis) showed similar sensitivity to presynaptic Ca2+ chelation as evoked release, arguing for direct triggering of spontaneous release by transient spatially localized Ca(2+) domains. Experimentally constrained three-dimensional diffusion modeling of Ca2+ influx-exocytosis coupling was consistent with clustered distribution of VGCCs in the active zone of small hippocampal synapses and revealed that spontaneous VGCCs openings can account for the experimentally observed VGCC-dependent minis, although single channel openings triggered release with low probability. Uncorrelated stochastic VGCC opening is therefore a major trigger for spontaneous glutamate release, with differential roles for distinct channel subtypes.
Collapse
Affiliation(s)
- Yaroslav S Ermolyuk
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG, United Kingdom
| | - Felicity G Alder
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG, United Kingdom
| | - Rainer Surges
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG, United Kingdom
| | - Ivan Y Pavlov
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG, United Kingdom
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Centre for Complexity Science, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Dimitri M Kullmann
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG, United Kingdom
| | - Kirill E Volynski
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG, United Kingdom
| |
Collapse
|
147
|
Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 2013; 76:333-63. [PMID: 24274737 DOI: 10.1146/annurev-physiol-021113-170338] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca(2+) to trigger release and in the identity of the Ca(2+) sensor for release.
Collapse
Affiliation(s)
- Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | | |
Collapse
|
148
|
Bal M, Leitz J, Reese AL, Ramirez DMO, Durakoglugil M, Herz J, Monteggia LM, Kavalali ET. Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 2013; 80:934-46. [PMID: 24210904 DOI: 10.1016/j.neuron.2013.08.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
Abstract
Reelin is a glycoprotein that is critical for proper layering of neocortex during development as well as dynamic regulation of glutamatergic postsynaptic signaling in mature synapses. Here, we show that Reelin also acts presynaptically, resulting in robust rapid enhancement of spontaneous neurotransmitter release without affecting properties of evoked neurotransmission. This effect of Reelin requires a modest but significant increase in presynaptic Ca(2+) initiated via ApoER2 signaling. The specificity of Reelin action on spontaneous neurotransmitter release is encoded at the level of vesicular SNARE machinery as it requires VAMP7 and SNAP-25 but not synaptobrevin2, VAMP4, or vti1a. These results uncover a presynaptic regulatory pathway that utilizes the heterogeneity of synaptic vesicle-associated SNAREs and selectively augments action potential-independent neurotransmission.
Collapse
Affiliation(s)
- Manjot Bal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Abdrakhmanov M, Petrov A, Grigoryev P, Zefirov A. Depolarization-induced calcium-independent synaptic vesicle exo- and endocytosis at frog motor nerve terminals. Acta Naturae 2013; 5:77-82. [PMID: 24455186 PMCID: PMC3890992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The transmitter release and synaptic vesicle exo- and endocytosis induced by constant current depolarization of nerve terminals were studied by microelectode extracellular recording of miniature endplate currents and fluorescent microscopy (FM 1-43 styryl dye). Depolarization of the plasma membrane of nerve terminals in the control specimen was shown to significantly increase the MEPC frequency (quantal transmitter release) and exocytotic rate (FM 1-43 unloading from the synaptic vesicles preliminarily stained with the dye), which was caused by a rise in the intracellular Ca(2+) concentration due to opening of voltage-gated Ca channels. A slight increase in the MEPC frequency and in the rate of synaptic vesicle exocytosis was observed under depolarization in case of blockade of Ca channels and chelating of intracellular Ca(2+) ions (cooperative action of Cd(2+) and EGTA-AM). The processes of synaptic vesicle endocytosis (FM 1-43 loading) were proportional to the number of synaptic vesicles that had undergone exocytosis both in the control and in case of cooperative action of Cd(2+) and EGTA-AM. A hypothesis has been put forward that Ca-independent synaptic vesicle exo- and endocytosis that can be induced directly by depolarization of the membrane exists in the frog motor terminal in addition to the conventional Ca-dependent process.
Collapse
Affiliation(s)
- M.M. Abdrakhmanov
- Kazan State Medical University, Butlerov str., 49, Kazan, Russia, 420012
| | - A.M. Petrov
- Kazan State Medical University, Butlerov str., 49, Kazan, Russia, 420012
| | - P.N. Grigoryev
- Kazan State Medical University, Butlerov str., 49, Kazan, Russia, 420012
| | - A.L. Zefirov
- Kazan State Medical University, Butlerov str., 49, Kazan, Russia, 420012
| |
Collapse
|
150
|
Atlas D. The Voltage-Gated Calcium Channel Functions as the Molecular Switch of Synaptic Transmission. Annu Rev Biochem 2013; 82:607-35. [DOI: 10.1146/annurev-biochem-080411-121438] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel;
| |
Collapse
|