101
|
Frick KM, Kim J. Mechanisms underlying the rapid effects of estradiol and progesterone on hippocampal memory consolidation in female rodents. Horm Behav 2018; 104:100-110. [PMID: 29727606 PMCID: PMC6226372 DOI: 10.1016/j.yhbeh.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Although rapid effects of 17β‑estradiol (E2) and progesterone on cellular functions have been observed for several decades, a proliferation of data in recent years has demonstrated the importance of these actions to cognition. In particular, an emerging literature has demonstrated that these hormones promote the consolidation of spatial and object recognition memories in rodents via rapid activation of numerous cellular events including cell signaling, histone modifications, and local protein translation in the hippocampus. This article provides an overview of the evidence demonstrating that E2 and progesterone enhance hippocampal memory consolidation in female rodents, and then discusses numerous molecular mechanisms thus far shown to mediate the beneficial effects of these hormones on memory formation.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
102
|
Nithianandam V, Chien CT. Actin blobs prefigure dendrite branching sites. J Cell Biol 2018; 217:3731-3746. [PMID: 30042190 PMCID: PMC6168249 DOI: 10.1083/jcb.201711136] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/28/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Nithianandam and Chien show via in vivo imaging that a dynamic population of F-actin termed actin blobs propagates bidirectionally in dendrites and stalls at future branching sites. The F-actin–severing protein Tsr/cofilin is a regulator of actin blob dynamics and dendrite branching. The actin cytoskeleton provides structural stability and adaptability to the cell. Neuronal dendrites frequently undergo morphological changes by emanating, elongating, and withdrawing branches. However, the knowledge about actin dynamics in dendrites during these processes is limited. By performing in vivo imaging of F-actin markers, we found that F-actin was highly dynamic and heterogeneously distributed in dendritic shafts with enrichment at terminal dendrites. A dynamic F-actin population that we named actin blobs propagated bidirectionally at an average velocity of 1 µm/min. Interestingly, these actin blobs stalled at sites where new dendrites would branch out in minutes. Overstabilization of F-actin by the G15S mutant abolished actin blobs and dendrite branching. We identified the F-actin–severing protein Tsr/cofilin as a regulator of dynamic actin blobs and branching activity. Hence, actin blob localization at future branching sites represents a dendrite-branching mechanism to account for highly diversified dendritic morphology.
Collapse
Affiliation(s)
- Vanitha Nithianandam
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Ting Chien
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan .,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
103
|
Koshida R, Tome S, Takei Y. Myosin Id localizes in dendritic spines through the tail homology 1 domain. Exp Cell Res 2018; 367:65-72. [PMID: 29559226 DOI: 10.1016/j.yexcr.2018.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Dendritic spines, the postsynaptic compartments at excitatory synapses, are capable of changing their shape and size to modulate synaptic transmission. The actin cytoskeleton and a variety of actin-binding proteins play a critical role in the dynamics of dendritic spines. Class I myosins are monomeric motor proteins that move along actin filaments using the energy of ATP hydrolysis. Of these class I myosins, myosin Id, the mammalian homolog of Drosophila Myo31DF, has been reported to be expressed in neurons, whereas its subcellular localization in neurons remained unknown. Here, we investigated the subcellular localization of myosin Id and determined the domain responsible for it. We found that myosin Id is enriched in the F-actin-rich pseudopodia of HEK293T cells and in the dendritic spines of primary hippocampal neurons. Both deletion and substitution of the tail homology 1 (TH1) domain drastically diminishes its colocalization with F-actin. In addition, the mutant form lacking the TH1 domain is less distributed in dendritic spines than is the full-length form. Taken together, our findings reveal that myosin Id localizes in dendritic spines through the TH1 domain.
Collapse
Affiliation(s)
- Ryusuke Koshida
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Saki Tome
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
104
|
Luo F, Zhang J, Burke K, Romito-DiGiacomo RR, Miller RH, Yang Y. Oligodendrocyte-specific loss of Cdk5 disrupts the architecture of nodes of Ranvier as well as learning and memory. Exp Neurol 2018; 306:92-104. [PMID: 29729246 DOI: 10.1016/j.expneurol.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
Myelination of the central nervous system is important for normal motor and sensory neuronal function and recent studies also link it to efficient learning and memory. Cyclin-dependent kinase 5 (Cdk5) is required for normal oligodendrocyte development, myelination and myelin repair. Here we show that conditional deletion of Cdk5 by targeting with CNP (CNP;Cdk5 CKO) results in hypomyelination and disruption of the structural integrity of Nodes of Ranvier. In addition, CNP;Cdk5 CKO mice exhibited a severe impairment of learning and memory compared to controls that may reflect perturbed neuron-glial interactions. Co-culture of cortical neurons with CNP;Cdk5 CKO oligodendrocyte lineage cells resulted in a significant reduction in the density of neuronal dendritic spines. In short term fear-conditioning studies, CNP;Cdk5 CKO mice had decreased hippocampal levels of immediate early genes such as Arc and Fos, and lower levels of p-CREB and p-cofilin suggested these pathways are affected by the levels of myelination. The novel roles of Cdk5 in oligodendrocyte lineage cells may provide insights for helping understand the cognitive changes sometimes seen in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Jessie Zhang
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Kathryn Burke
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Rita R Romito-DiGiacomo
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Robert H Miller
- Department of Anatomy and Regenerative Biology, George Washington University, Washington DC 20037, United States.
| | - Yan Yang
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States; Center for Translational Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States.
| |
Collapse
|
105
|
EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Mol Psychiatry 2018; 23:1303-1319. [PMID: 28397836 PMCID: PMC5984092 DOI: 10.1038/mp.2017.63] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
In many societies, the majority of adults regularly consume alcohol. However, only a small proportion develops alcohol addiction. Individuals at risk often show a high sensation-seeking/low-anxiety behavioural phenotype. Here we asked which role EF hand domain containing 2 (EFhd2; Swiprosin-1) plays in the control of alcohol addiction-associated behaviours. EFhd2 knockout (KO) mice drink more alcohol than controls and spontaneously escalate their consumption. This coincided with a sensation-seeking and low-anxiety phenotype. A reversal of the behavioural phenotype with β-carboline, an anxiogenic inverse benzodiazepine receptor agonist, normalized alcohol preference in EFhd2 KO mice, demonstrating an EFhd2-driven relationship between personality traits and alcohol preference. These findings were confirmed in a human sample where we observed a positive association of the EFhd2 single-nucleotide polymorphism rs112146896 with lifetime drinking and a negative association with anxiety in healthy adolescents. The lack of EFhd2 reduced extracellular dopamine levels in the brain, but enhanced responses to alcohol. In confirmation, gene expression analysis revealed reduced tyrosine hydroxylase expression and the regulation of genes involved in cortex development, Eomes and Pax6, in EFhd2 KO cortices. These findings were corroborated in Xenopus tadpoles by EFhd2 knockdown. Magnetic resonance imaging (MRI) in mice showed that a lack of EFhd2 reduces cortical volume in adults. Moreover, human MRI confirmed the negative association between lifetime alcohol drinking and superior frontal gyrus volume. We propose that EFhd2 is a conserved resilience factor against alcohol consumption and its escalation, working through Pax6/Eomes. Reduced EFhd2 function induces high-risk personality traits of sensation-seeking/low anxiety associated with enhanced alcohol consumption, which may be related to cortex function.
Collapse
|
106
|
Blackwell KT, Salinas AG, Tewatia P, English B, Hellgren Kotaleski J, Lovinger DM. Molecular mechanisms underlying striatal synaptic plasticity: relevance to chronic alcohol consumption and seeking. Eur J Neurosci 2018; 49:768-783. [PMID: 29602186 DOI: 10.1111/ejn.13919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/02/2023]
Abstract
The striatum, the input structure of the basal ganglia, is a major site of learning and memory for goal-directed actions and habit formation. Spiny projection neurons of the striatum integrate cortical, thalamic, and nigral inputs to learn associations, with cortico-striatal synaptic plasticity as a learning mechanism. Signaling molecules implicated in synaptic plasticity are altered in alcohol withdrawal, which may contribute to overly strong learning and increased alcohol seeking and consumption. To understand how interactions among signaling molecules produce synaptic plasticity, we implemented a mechanistic model of signaling pathways activated by dopamine D1 receptors, acetylcholine receptors, and glutamate. We use our novel, computationally efficient simulator, NeuroRD, to simulate stochastic interactions both within and between dendritic spines. Dopamine release during theta burst and 20-Hz stimulation was extrapolated from fast-scan cyclic voltammetry data collected in mouse striatal slices. Our results show that the combined activity of several key plasticity molecules correctly predicts the occurrence of either LTP, LTD, or no plasticity for numerous experimental protocols. To investigate spatial interactions, we stimulate two spines, either adjacent or separated on a 20-μm dendritic segment. Our results show that molecules underlying LTP exhibit spatial specificity, whereas 2-arachidonoylglycerol exhibits a spatially diffuse elevation. We also implement changes in NMDA receptors, adenylyl cyclase, and G protein signaling that have been measured following chronic alcohol treatment. Simulations under these conditions suggest that the molecular changes can predict changes in synaptic plasticity, thereby accounting for some aspects of alcohol use disorder.
Collapse
Affiliation(s)
- Kim T Blackwell
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA.,Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Armando G Salinas
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA.,National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Parul Tewatia
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Brad English
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David M Lovinger
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
107
|
Popik B, Crestani AP, Silva MO, Quillfeldt JA, de Oliveira Alvares L. Calpain modulates fear memory consolidation, retrieval and reconsolidation in the hippocampus. Neurobiol Learn Mem 2018; 151:53-58. [PMID: 29630999 DOI: 10.1016/j.nlm.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
It has been proposed that long-lasting changes in dendritic spines provide a physical correlate for memory formation and maintenance. Spine size and shape are highly plastic, controlled by actin polymerization/depolymerization cycles. This actin dynamics are regulated by proteins such as calpain, a calcium-dependent cysteine protease that cleaves the structural cytoskeleton proteins and other targets involved in synaptic plasticity. Here, we tested whether the pharmacological inhibition of calpain in the dorsal hippocampus affects memory consolidation, retrieval and reconsolidation in rats trained in contextual fear conditioning. We first found that post-training infusion of the calpain inhibitor PD150606 impaired long-term memory consolidation, but not short-term memory. Next, we showed that pre-test infusion of the calpain inhibitor hindered memory retrieval. Finally, blocking calpain activity after memory reactivation disrupted reconsolidation. Taken together, our results show that calpain play an essential role in the hippocampus by enabling memory formation, expression and reconsolidation.
Collapse
Affiliation(s)
- Bruno Popik
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Ana Paula Crestani
- Laboratório de Psicobiologia e Neurocomputação, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91.501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Mateus Oliveira Silva
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Jorge Alberto Quillfeldt
- Laboratório de Psicobiologia e Neurocomputação, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91.501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil.
| |
Collapse
|
108
|
Abe H, Jitsuki S, Nakajima W, Murata Y, Jitsuki-Takahashi A, Katsuno Y, Tada H, Sano A, Suyama K, Mochizuki N, Komori T, Masuyama H, Okuda T, Goshima Y, Higo N, Takahashi T. CRMP2-binding compound, edonerpic maleate, accelerates motor function recovery from brain damage. Science 2018; 360:50-57. [DOI: 10.1126/science.aao2300] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Brain damage such as stroke is a devastating neurological condition that may severely compromise patient quality of life. No effective medication-mediated intervention to accelerate rehabilitation has been established. We found that a small compound, edonerpic maleate, facilitated experience-driven synaptic glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic-acid) receptor delivery and resulted in the acceleration of motor function recovery after motor cortex cryoinjury in mice in a training-dependent manner through cortical reorganization. Edonerpic bound to collapsin-response-mediator-protein 2 (CRMP2) and failed to augment recovery in CRMP2-deficient mice. Edonerpic maleate enhanced motor function recovery from internal capsule hemorrhage in nonhuman primates. Thus, edonerpic maleate, a neural plasticity enhancer, could be a clinically potent small compound with which to accelerate rehabilitation after brain damage.
Collapse
|
109
|
Paeonol promotes hippocampal synaptic transmission: The role of the Kv2.1 potassium channel. Eur J Pharmacol 2018; 827:227-237. [PMID: 29550337 DOI: 10.1016/j.ejphar.2018.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022]
Abstract
Paeonol is a major constituent of the Chinese herb Moutan cortex radices. Recent studies report that paeonol has neuroprotective effects and improves impaired learning and memory. However, its underlying mechanisms by which paeonol contributes to synaptic transmission remain unclear. In this study, we found that paeonol increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs), but had no effect on the amplitude in rat hippocampal CA1 neurons. Similarly, the acetylcholinesterase (AChE) inhibitor rivastigmine increased the frequency of mEPSCs, but had no effect upon amplitude in rat hippocampal neurons. Rivastigmine also inhibited the delayed outward K+ currents in rat hippocampal CA1 neurons, but had no effect in nucleus ambiguus (NA) neurons. The Kv2 blocker guangxitoxin-1E increased the frequency of both mEPSCs and sEPSCs of rat hippocampal CA1 neurons, without affecting their amplitude. Our results suggest that paeonol and rivastigmine enhance spontaneous presynaptic transmitter release, which may be associated with the inhibition of the hippocampal Kv2 current and with therapeutic potential in neurotransmitter deficits found in Alzheimer's disease (AD). Moreover, our data also show that paeonol protects against Aβ25-35-induced impairment of long-term potentiation (LTP) in mouse hippocampal neurons. However, guangxitoxin-1E failed to potentiate the evoked field excitatory postsynaptic potentials (fEPSPs), LTP and Aβ25-35-induced impairment of LTP. These results indicate that paeonol may has the potential to improve learning and memory in AD. Interestingly, this effect is not involved in the inhibition of the hippocampal Kv2 current.
Collapse
|
110
|
Iobbi C, Korte M, Zagrebelsky M. Nogo-66 Restricts Synaptic Strengthening via Lingo1 and the ROCK2-Cofilin Pathway to Control Actin Dynamics. Cereb Cortex 2018; 27:2779-2792. [PMID: 27166169 DOI: 10.1093/cercor/bhw122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nogo-A restricts long-term potentiation (LTP) at the Schaffer collateral-CA1 pathway in the adult hippocampus via 2 extracellular domains: Nogo-A-Δ20 and Nogo-66. Nogo-66 signals via Nogo Receptor 1 (NgR1) to regulate synaptic function. Whether the NgR1 coreceptors Lingo1 and p75NTR are involved in the signaling in this context is still not known. Moreover, the intracellular cascade mediating the activity of Nogo-66 in restricting LTP is unexplored. We combine electrophysiology and biochemistry in acute hippocampal slices and demonstrate that a loss of function for Lingo1 results in a significant increase in LTP levels at the Schaffer collateral-CA1 pathway, and that Lingo1 is the NgR1 coreceptor mediating the role of Nogo-66 in restricting LTP. Our data show that p75NTR is not involved in mediating the Nogo-66 effect on LTP. Moreover, loss of function for p75NTR and NgR1 equally attenuate LTD, suggesting that p75NTR might mediate the NgR1-dependent regulation of LTD, independently of Nogo-66. Finally, our results indicate that Nogo-66 signaling limits LTP via the ROCK2-Cofilin pathway to control the dynamics of the actin cytoskeleton. The present results elucidate the signaling pathway activated by Nogo-66 to control LTP and contribute to the understanding of how Nogo-A stabilizes the neural circuits to limit activity-dependent plasticity events in the mature hippocampus.
Collapse
Affiliation(s)
- Cristina Iobbi
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany.,Helmholtz Centre for Infection Research, AG NIND, 38124, Braunschweig, Germany
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
111
|
Sungur AÖ, Stemmler L, Wöhr M, Rust MB. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice. Front Behav Neurosci 2018. [PMID: 29515378 PMCID: PMC5825895 DOI: 10.3389/fnbeh.2018.00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for associative learning, but also for “non-matching-to-sample” learning. Here we report the absence of an ASD- or a SCZ-like phenotype in cofilin1 mutants, and we conclude that cofilin1 is relevant specifically for non-social cognition.
Collapse
Affiliation(s)
- A Özge Sungur
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Lea Stemmler
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany.,DFG Research Training Group-Membrane Plasticity in Tissue Development and Remodeling, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
112
|
Aβ mediates F-actin disassembly in dendritic spines leading to cognitive deficits in Alzheimer's disease. J Neurosci 2018; 38:1085-1099. [PMID: 29246925 PMCID: PMC5792472 DOI: 10.1523/jneurosci.2127-17.2017] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023] Open
Abstract
Dendritic spine loss is recognized as an early feature of Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Dendritic spine structure is defined by filamentous actin (F-actin) and we observed depolymerization of synaptosomal F-actin accompanied by increased globular-actin (G-actin) at as early as 1 month of age in a mouse model of AD (APPswe/PS1ΔE9, male mice). This led to recall deficit after contextual fear conditioning (cFC) at 2 months of age in APPswe/PS1ΔE9 male mice, which could be reversed by the actin-polymerizing agent jasplakinolide. Further, the F-actin-depolymerizing agent latrunculin induced recall deficit after cFC in WT mice, indicating the importance of maintaining F-/G-actin equilibrium for optimal behavioral response. Using direct stochastic optical reconstruction microscopy (dSTORM), we show that F-actin depolymerization in spines leads to a breakdown of the nano-organization of outwardly radiating F-actin rods in cortical neurons from APPswe/PS1ΔE9 mice. Our results demonstrate that synaptic dysfunction seen as F-actin disassembly occurs very early, before onset of pathological hallmarks in AD mice, and contributes to behavioral dysfunction, indicating that depolymerization of F-actin is causal and not consequent to decreased spine density. Further, we observed decreased synaptosomal F-actin levels in postmortem brain from mild cognitive impairment and AD patients compared with subjects with normal cognition. F-actin decrease correlated inversely with increasing AD pathology (Braak score, Aβ load, and tangle density) and directly with performance in episodic and working memory tasks, suggesting its role in human disease pathogenesis and progression.SIGNIFICANCE STATEMENT Synaptic dysfunction underlies cognitive deficits in Alzheimer's disease (AD). The cytoskeletal protein actin plays a critical role in maintaining structure and function of synapses. Using cultured neurons and an AD mouse model, we show for the first time that filamentous actin (F-actin) is lost selectively from synapses early in the disease process, long before the onset of classical AD pathology. We also demonstrate that loss of synaptic F-actin contributes directly to memory deficits. Loss of synaptosomal F-actin in human postmortem tissue correlates directly with decreased performance in memory test and inversely with AD pathology. Our data highlight that synaptic cytoarchitectural changes occur early in AD and they may be targeted for the development of therapeutics.
Collapse
|
113
|
Deng Y, Wei J, Cheng J, Zhong P, Xiong Z, Liu A, Lin L, Chen S, Yan Z. Partial Amelioration of Synaptic and Cognitive Deficits by Inhibiting Cofilin Dephosphorylation in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1419-32. [PMID: 27372643 DOI: 10.3233/jad-160167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The loss of synaptic structure and function has been linked to the cognitive impairment of Alzheimer's disease (AD). Dysregulation of the actin cytoskeleton, which plays a key role in regulating the integrity of synapses and the transport of synaptic proteins, has been suggested to contribute to the pathology of AD. In this study, we found that glutamate receptor surface expression and synaptic function in frontal cortical neurons were significant diminished in a familial AD (FAD) model, which was correlated with the reduction of phosphorylated cofilin, a key protein regulating the dynamics of actin filaments. Injecting a cofilin dephosphorylation inhibitory peptide to FAD mice led to the partial rescue of the surface expression of AMPA and NMDA receptor subunits, as well as the partial restoration of AMPAR- and NMDAR-mediated synaptic currents. Moreover, the impaired working memory and novel object recognition memory in FAD mice were partially ameliorated by injections of the cofilin dephosphorylation inhibitory peptide. These results suggest that targeting the cofilin-actin signaling holds promise to mitigate the physiological and behavioral abnormality in AD.
Collapse
Affiliation(s)
- Yulei Deng
- Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wei
- Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.,VA Western New York Healthcare System, Buffalo, NY, USA
| | - Jia Cheng
- Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.,VA Western New York Healthcare System, Buffalo, NY, USA
| | - Zhe Xiong
- Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Aiyi Liu
- Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lin Lin
- Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Shengdi Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Yan
- Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.,VA Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
114
|
Nava N, Treccani G, Alabsi A, Kaastrup Mueller H, Elfving B, Popoli M, Wegener G, Nyengaard JR. Temporal Dynamics of Acute Stress-Induced Dendritic Remodeling in Medial Prefrontal Cortex and the Protective Effect of Desipramine. Cereb Cortex 2018; 27:694-705. [PMID: 26523035 DOI: 10.1093/cercor/bhv254] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stressful events are associated with increased risk of mood disorders. Volumetric reductions have been reported in brain areas critical for the stress response, such as medial prefrontal cortex (mPFC), and dendritic remodeling has been proposed as an underlying factor. Here, we investigated the time-dependent effects of acute stress on dendritic remodeling within the prelimbic (PL) region of the PFC, and whether treatment with the antidepressant desipramine (DMI) may interfere. Rodents were subjected to foot-shock stress: dendritic length and spine density were analyzed 1 day, 7 days, and 14 days after stress. Acute stress produced increased spine density and decreased cofilin phosphorylation at 1 day, paralleled with dendritic retraction. An overall shift in spine population was observed at 1 day, resulting in a stress-induced increase in small spines. Significant atrophy of apical dendrites was observed at 1 day, which was prevented by chronic DMI, and at 14 days after stress exposure. Chronic DMI resulted in dendritic elaboration at 7 days but did not prevent the effects of FS-stress. Collectively, these data demonstrate that 1) acute stressors may induce rapid and sustained changes of PL neurons; and 2) chronic DMI may protect neurons from rapid stress-induced synaptic changes.
Collapse
Affiliation(s)
- Nicoletta Nava
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus C 8000, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark
| | - Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark.,Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan 20133, Italy
| | - Abdelrahman Alabsi
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging,Aarhus University Hospital, Aarhus C 8000, Denmark
| | - Heidi Kaastrup Mueller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan 20133, Italy
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark.,Pharmaceutical Research Center of Excellence, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging,Aarhus University Hospital, Aarhus C 8000, Denmark
| |
Collapse
|
115
|
Zhang Y, Fu R, Liu Y, Li J, Zhang H, Hu X, Chen Y, Liu X, Li Y, Li P, Liu E, Gao N. Dephosphorylation and mitochondrial translocation of cofilin sensitizes human leukemia cells to cerulenin-induced apoptosis via the ROCK1/Akt/JNK signaling pathway. Oncotarget 2018; 7:20655-68. [PMID: 26967395 PMCID: PMC4991482 DOI: 10.18632/oncotarget.7994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, we determined that cerulenin, a natural product inhibitor of fatty acid synthase, induces mitochondrial injury and apoptosis in human leukemia cells through the mitochondrial translocation of cofilin. Only dephosphorylated cofilin could translocate to mitochondria during cerulenin-induced apoptosis. Disruption of the ROCK1/Akt/JNK signaling pathway plays a critical role in the cerulenin-mediated dephosphorylation and mitochondrial translocation of cofilin and apoptosis. In vivo studies demonstrated that cerulenin-mediated inhibition of tumor growth in a mouse xenograft model of leukemia was associated with mitochondrial translocation of cofilin and apoptosis. These data are consistent with a hierarchical model in which induction of apoptosis by cerulenin primarily results from activation of ROCK1, inactivation of Akt, and activation of JNK. This leads to the dephosphorylation and mitochondrial translocation of cofilin and culminates with cytochrome c release, caspase activation, and apoptosis. Our study has revealed a novel role of cofilin in the regulation of mitochondrial injury and apoptosis and suggests that cerulenin is a potential drug for the treatment of leukemia.
Collapse
Affiliation(s)
- Yanhao Zhang
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Ruoqiu Fu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yanxia Liu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Jing Li
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Hongwei Zhang
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Xiaoye Hu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yibiao Chen
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Xin Liu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yunong Li
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), Nanjing, China
| | - Ehu Liu
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), Nanjing, China
| | - Ning Gao
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| |
Collapse
|
116
|
Pyronneau A, He Q, Hwang JY, Porch M, Contractor A, Zukin RS. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal 2017; 10:10/504/eaan0852. [PMID: 29114038 DOI: 10.1126/scisignal.aan0852] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and a leading cause of autism. FXS is caused by a trinucleotide expansion in the gene FMR1 on the X chromosome. The neuroanatomical hallmark of FXS is an overabundance of immature dendritic spines, a factor thought to underlie synaptic dysfunction and impaired cognition. We showed that aberrantly increased activity of the Rho GTPase Rac1 inhibited the actin-depolymerizing factor cofilin, a major determinant of dendritic spine structure, and caused disease-associated spine abnormalities in the somatosensory cortex of FXS model mice. Increased cofilin phosphorylation and actin polymerization coincided with abnormal dendritic spines and impaired synaptic maturation. Viral delivery of a constitutively active cofilin mutant (cofilinS3A) into the somatosensory cortex of Fmr1-deficient mice rescued the immature dendritic spine phenotype and increased spine density. Inhibition of the Rac1 effector PAK1 with a small-molecule inhibitor rescued cofilin signaling in FXS mice, indicating a causal relationship between PAK1 and cofilin signaling. PAK1 inhibition rescued synaptic signaling (specifically the synaptic ratio of NMDA/AMPA in layer V pyramidal neurons) and improved sensory processing in FXS mice. These findings suggest a causal relationship between increased Rac1-cofilin signaling, synaptic defects, and impaired sensory processing in FXS and uncover a previously unappreciated role for impaired Rac1-cofilin signaling in the aberrant spine morphology and spine density associated with FXS.
Collapse
Affiliation(s)
- Alexander Pyronneau
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Qionger He
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Morgan Porch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anis Contractor
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
117
|
Dombert B, Balk S, Lüningschrör P, Moradi M, Sivadasan R, Saal-Bauernschubert L, Jablonka S. BDNF/trkB Induction of Calcium Transients through Ca v2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221). Front Mol Neurosci 2017; 10:346. [PMID: 29163025 PMCID: PMC5670157 DOI: 10.3389/fnmol.2017.00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca2+ transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca2+ channels (Cav2.2) in axonal growth cones. TrkB-deficient (trkBTK-/-) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca2+ transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca2+ transients and Cav2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Cav2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Cav2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.
Collapse
Affiliation(s)
- Benjamin Dombert
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
118
|
Mittal N, Minasyan A, Romaneschi N, Hakimian JK, Gonzalez-Fernandez G, Albert R, Desai N, Mendez IA, Schallert T, Ostlund SB, Walwyn W. Beta-arrestin 1 regulation of reward-motivated behaviors and glutamatergic function. PLoS One 2017; 12:e0185796. [PMID: 28973019 PMCID: PMC5626489 DOI: 10.1371/journal.pone.0185796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
The two highly homologous non-visual arrestins, beta-arrestin 1 and 2, are ubiquitously expressed in the central nervous system, yet knowledge of their disparate roles is limited. While beta-arrestin 2 (βarr2) has been implicated in several aspects of reward-related learning and behavior, very little is known about the behavioral function of beta-arrestin 1 (βarr1). Using mice lacking βarr1, we focused on the role of this scaffolding and signal transduction protein in reward-motivated behaviors and in striatal glutamatergic function. We found that βarr1 KO mice were both slower in acquiring cocaine self-administration and in extinguishing this behavior. They also showed deficits in learning tasks supported by a natural food reward, suggesting a general alteration in reward processing. We then examined glutamatergic synaptic strength in WT and KO medium spiny neurons (MSNs) of the Nucleus Accumbens (NAc) shell in naïve animals, and from those that underwent cocaine self-administration. An increase in the AMPA/NMDA (A/N) ratio and a relative lack of GluN2B-enriched NMDARs was found in naïve KO vs WT MSNs. Applying Lim Domain Kinase (LIMK1), the kinase that phosphorylates and inactivates cofilin, to these cells, showed that both βarr1 and LIMK regulate the A/N ratio and GluN2B-NMDARs. Cocaine self-administration increased the A/N ratio and GluN2B-NMDARs in WT MSNs and, although the A/N ratio also increased in KO MSNs, this was accompanied by fewer GluN2B-NMDARs and an appearance of calcium-permeable AMPARs. Finally, to examine the consequences of reduced basal GluN2B-NMDARs in reward-processing seen in KO mice, we chronically infused ifenprodil, a GluN2B antagonist, into the NAc shell of WT mice. This intervention substantially reduced food-motivated behavior. Together these findings identify a previously unknown role of βarr1 in regulating specific reward-motivated behaviors and glutamatergic function.
Collapse
Affiliation(s)
- Nitish Mittal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States of America
| | - Ani Minasyan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Nicole Romaneschi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Joshua K. Hakimian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Gabriel Gonzalez-Fernandez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Ralph Albert
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Nina Desai
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Ian A. Mendez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Timothy Schallert
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States of America
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, UCI Center for Addiction Neuroscience, School of Biological Sciences, University of California Irvine, Irvine, United States of America
| | - Wendy Walwyn
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
119
|
Nirschl JJ, Ghiretti AE, Holzbaur ELF. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat Rev Neurosci 2017; 18:585-597. [PMID: 28855741 DOI: 10.1038/nrn.2017.100] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurons are akin to modern cities in that both are dependent on robust transport mechanisms. Like the best mass transit systems, trafficking in neurons must be tailored to respond to local requirements. Neurons depend on both high-speed, long-distance transport and localized dynamics to correctly deliver cargoes and to tune synaptic responses. Here, we focus on the mechanisms that provide localized regulation of the transport machinery, including the cytoskeleton and molecular motors, to yield compartment-specific trafficking in the axon initial segment, axon terminal, dendrites and spines. The synthesis of these mechanisms provides a sophisticated and responsive transit system for the cell.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Amy E Ghiretti
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
120
|
Buhusi M, Etheredge C, Granholm AC, Buhusi CV. Increased Hippocampal ProBDNF Contributes to Memory Impairments in Aged Mice. Front Aging Neurosci 2017; 9:284. [PMID: 28912711 PMCID: PMC5583170 DOI: 10.3389/fnagi.2017.00284] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/14/2017] [Indexed: 01/27/2023] Open
Abstract
Memory decline during aging or accompanying neurodegenerative diseases, represents a major health problem. Neurotrophins have long been considered relevant to the mechanisms of aging-associated cognitive decline and neurodegeneration. Mature Brain-Derived Neurotrophic Factor (BDNF) and its precursor (proBDNF) can both be secreted in response to neuronal activity and exert opposing effects on neuronal physiology and plasticity. In this study, biochemical analyses revealed that increased levels of proBDNF are present in the aged mouse hippocampus relative to young and that the level of hippocampal proBDNF inversely correlates with the ability to perform in a spatial memory task, the water radial arm maze (WRAM). To ascertain the role of increased proBDNF levels on hippocampal function and memory we performed infusions of proBDNF into the CA1 region of the dorsal hippocampus in male mice trained in the WRAM paradigm: In well-performing aged mice, intra-hippocampal proBDNF infusions resulted in a progressive and significant impairment of memory performance. This impairment was associated with increased p-cofilin levels, an important regulator of dendritic spines and synapse physiology. On the other hand, in poor performers, intra-hippocampal infusions of TAT-Pep5, a peptide which blocks the interaction between the p75 Neurotrophin Receptor (p75NTR) and RhoGDI, significantly improved learning and memory, while saline infusions had no effect. Our results support a role for proBDNF and its receptor p75NTR in aging-related memory impairments.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State UniversityLogan, UT, United States
| | - Chris Etheredge
- Department of Neuroscience, Medical University of South CarolinaCharleston, SC, United States
| | - Ann-Charlotte Granholm
- Department of Neuroscience, Medical University of South CarolinaCharleston, SC, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State UniversityLogan, UT, United States
| |
Collapse
|
121
|
Social isolation suppresses actin dynamics and synaptic plasticity through ADF/cofilin inactivation in the developing rat barrel cortex. Sci Rep 2017; 7:8471. [PMID: 28814784 PMCID: PMC5559554 DOI: 10.1038/s41598-017-08849-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Exposure to a stressful environment early in life can cause psychiatric disorders by disrupting circuit formation. Actin plays central roles in regulating neuronal structure and protein trafficking. We have recently reported that neonatal isolation inactivated ADF/cofilin, the actin depolymerizing factor, resulted in a reduced actin dynamics at spines and an attenuation of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor delivery in the juvenile rat medial prefrontal cortex (mPFC), leading to altered social behaviours. Here, we investigated the impact of neonatal social isolation in the developing rat barrel cortex. Similar to the mPFC study, we detected an increase in stable actin fraction in spines and this resulted in a decreased synaptic AMPA receptor delivery. Thus, we conclude that early life social isolation affects multiple cortical areas with common molecular changes.
Collapse
|
122
|
Lei W, Myers KR, Rui Y, Hladyshau S, Tsygankov D, Zheng JQ. Phosphoinositide-dependent enrichment of actin monomers in dendritic spines regulates synapse development and plasticity. J Cell Biol 2017; 216:2551-2564. [PMID: 28659327 PMCID: PMC5551708 DOI: 10.1083/jcb.201612042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
Dendritic spines are small postsynaptic compartments of excitatory synapses in the vertebrate brain that are modified during learning, aging, and neurological disorders. The formation and modification of dendritic spines depend on rapid assembly and dynamic remodeling of the actin cytoskeleton in this highly compartmentalized space, but the precise mechanisms remain to be fully elucidated. In this study, we report that spatiotemporal enrichment of actin monomers (G-actin) in dendritic spines regulates spine development and plasticity. We first show that dendritic spines contain a locally enriched pool of G-actin that can be regulated by synaptic activity. We further find that this G-actin pool functions in spine development and its modification during synaptic plasticity. Mechanistically, the relatively immobile G-actin pool in spines depends on the phosphoinositide PI(3,4,5)P3 and involves the actin monomer-binding protein profilin. Together, our results have revealed a novel mechanism by which dynamic enrichment of G-actin in spines regulates the actin remodeling underlying synapse development and plasticity.
Collapse
Affiliation(s)
- Wenliang Lei
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Yanfang Rui
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Siarhei Hladyshau
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
123
|
Jȩdrzejewska-Szmek J, Luczak V, Abel T, Blackwell KT. β-adrenergic signaling broadly contributes to LTP induction. PLoS Comput Biol 2017; 13:e1005657. [PMID: 28742159 PMCID: PMC5546712 DOI: 10.1371/journal.pcbi.1005657] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 08/07/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Long-lasting forms of long-term potentiation (LTP) represent one of the major cellular mechanisms underlying learning and memory. One of the fundamental questions in the field of LTP is why different molecules are critical for long-lasting forms of LTP induced by diverse experimental protocols. Further complexity stems from spatial aspects of signaling networks, such that some molecules function in the dendrite and some are critical in the spine. We investigated whether the diverse experimental evidence can be unified by creating a spatial, mechanistic model of multiple signaling pathways in hippocampal CA1 neurons. Our results show that the combination of activity of several key kinases can predict the occurrence of long-lasting forms of LTP for multiple experimental protocols. Specifically Ca2+/calmodulin activated kinase II, protein kinase A and exchange protein activated by cAMP (Epac) together predict the occurrence of LTP in response to strong stimulation (multiple trains of 100 Hz) or weak stimulation augmented by isoproterenol. Furthermore, our analysis suggests that activation of the β-adrenergic receptor either via canonical (Gs-coupled) or non-canonical (Gi-coupled) pathways underpins most forms of long-lasting LTP. Simulations make the experimentally testable prediction that a complete antagonist of the β-adrenergic receptor will likely block long-lasting LTP in response to strong stimulation. Collectively these results suggest that converging molecular mechanisms allow CA1 neurons to flexibly utilize signaling mechanisms best tuned to temporal pattern of synaptic input to achieve long-lasting LTP and memory storage. Long-term potentiation of the strength of synaptic connections is a mechanism of learning and memory storage. One of the most confusing aspects of hippocampal synaptic potentiation is that numerous experiments have revealed the requirement for a plethora of signaling molecules. Furthermore the degree to which molecules activated by the stress response modify hippocampal synaptic potentiation and memory is still unclear. We used a computational model to demonstrate that this molecular diversity can be explained by considering a combination of several key molecules. We also show that activation of β-adrenergic receptors by the stress response appears to be involved in most forms of synaptic potentiation, though in some cases unconventional mechanisms are utilized. This suggests that novel treatments for stress-related disorders may have more success if they target unconventional mechanisms activated by β-adrenergic receptors.
Collapse
Affiliation(s)
- Joanna Jȩdrzejewska-Szmek
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, Virginia, United States of America
| | - Vincent Luczak
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kim T Blackwell
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
124
|
Shaw AE, Bamburg JR. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther 2017; 175:17-27. [PMID: 28232023 PMCID: PMC5466456 DOI: 10.1016/j.pharmthera.2017.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
125
|
The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABA A Receptor Endocytosis in the vmPFC. J Neurosci 2017. [PMID: 28630256 DOI: 10.1523/jneurosci.3859-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABAA receptor (GABAAR) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABAAR endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABAAR endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABAAR endocytosis and CPA extinction. The crucial role of GABAAR endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABAAR endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABAAR endocytosis.SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories.
Collapse
|
126
|
Different patterns of changes between actin dynamics and synaptic density in the rat's primary visual cortex during a special period of visual development. Brain Res Bull 2017; 132:199-203. [PMID: 28602762 DOI: 10.1016/j.brainresbull.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/04/2017] [Accepted: 06/05/2017] [Indexed: 01/05/2023]
Abstract
In our previous study, we found that the normalized levels of the synaptosomal filament actin (F-actin) to monomeric global actin (G-actin) ratio in the primary visual cortex (V1) of rats was significantly lower on postnatal day (P) 45 compared with P30, however, the synaptic density in the monocular area of primary visual cortex (V1M) maintained a stable high level from P30 to P45. The mechanisms underlying the different patterned of change in synaptic density and actin rearrangements from P30 to P45 are unclear. During visual development, there is a synaptic pruning process in the binocular segment of primates' visual cortex (V1B) and we suppose the pruning activity may contribute to the decreased synaptosomal F-actin to G-actin ratio. To address this issue, first, samples were derived from the region of V1B for TEM analysis but no significant difference was demonstrated between the P30 and P45 groups. In addition, the expression of PSD-95 detected by immunobloting in the synaptosomes of V1 at P30 and P45 also showed no significant difference. Combined with the previous results of actin dynamics in the V1 and synaptic density in the V1M, we conclude that the synaptic density and actin dynamics in the rats' primary visual cortex are inter-related but not absolutely identical. This study suggests actin cytoskeleton not only provides the structural basis but also regulates a various array of cellular activities underlying synaptic function. Besides, it highlights a further research of synaptic pruning.
Collapse
|
127
|
Agoglia AE, Holstein SE, Small AT, Spanos M, Burrus BM, Hodge CW. Comparison of the adolescent and adult mouse prefrontal cortex proteome. PLoS One 2017; 12:e0178391. [PMID: 28570644 PMCID: PMC5453624 DOI: 10.1371/journal.pone.0178391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/14/2017] [Indexed: 12/28/2022] Open
Abstract
Adolescence is a developmental period characterized by unique behavioral phenotypes (increased novelty seeking, risk taking, sociability and impulsivity) and increased risk for destructive behaviors, impaired decision making and psychiatric illness. Adaptive and maladaptive adolescent traits have been associated with development of the medial prefrontal cortex (mPFC), a brain region that mediates regulatory control of behavior. However, the molecular changes that underlie brain development and behavioral vulnerability have not been fully characterized. Using high-throughput 2D DIGE spot profiling with identification by MALDI-TOF mass spectrometry, we identified 62 spots in the PFC that exhibited age-dependent differences in expression. Identified proteins were associated with diverse cellular functions, including intracellular signaling, synaptic plasticity, cellular organization and metabolism. Separate Western blot analyses confirmed age-related changes in DPYSL2, DNM1, STXBP1 and CFL1 in the mPFC and expanded these findings to the dorsal striatum, nucleus accumbens, motor cortex, amygdala and ventral tegmental area. Ingenuity Pathway Analysis (IPA) identified functional interaction networks enriched with proteins identified in the proteomics screen, linking age-related alterations in protein expression to cellular assembly and development, cell signaling and behavior, and psychiatric illness. These results provide insight into potential molecular components of adolescent cortical development, implicating structural processes that begin during embryonic development as well as plastic adaptations in signaling that may work in concert to bring the cortex, and other brain regions, into maturity.
Collapse
Affiliation(s)
- Abigail E. Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah E. Holstein
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amanda T. Small
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marina Spanos
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brainard M. Burrus
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
128
|
Zafar S, Younas N, Sheikh N, Tahir W, Shafiq M, Schmitz M, Ferrer I, Andréoletti O, Zerr I. Cytoskeleton-Associated Risk Modifiers Involved in Early and Rapid Progression of Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:4009-4029. [PMID: 28573459 DOI: 10.1007/s12035-017-0589-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
A high priority in the prion field is to identify pre-symptomatic events and associated profile of molecular changes. In this study, we demonstrate the pre-symptomatic dysregulation of cytoskeleton assembly and its associated cofilin-1 pathway in strain and brain region-specific manners in MM1 and VV2 subtype-specific Creutzfeldt-Jakob disease at clinical and pre-clinical stage. At physiological level, PrPC interaction with cofilin-1 and phosphorylated form of cofilin (p-cofilin(Ser3)) was investigated in primary cultures of mouse cortex neurons (PCNs) of PrPC wild-type and knockout mice (PrP-/-). Short-interfering RNA downregulation of active form of cofilin-1 resulted in the redistribution/downregulation of PrPC, increase of activated form of microglia, accumulation of dense form of F-actin, and upregulation of p-cofilin(Ser3). This upregulated p-cofilin(Ser3) showed redistribution of expression predominantly in the activated form of microglia in PCNs. At pathological level, cofilin-1 expression was significantly altered in cortex and cerebellum in both humans and mice at pre-clinical stage and at early symptomatic clinical stage of the disease. Further, to better understand the possible mechanism of dysregulation of cofilin-1, we also demonstrated alterations in upstream regulators; LIM kinase isoform 1 (LIMK1), slingshot phosphatase isoform 1 (SSH1), RhoA-associated kinase (Rock2), and amyloid precursor protein (APP) in sporadic Creutzfeldt-Jakob disease MM1 mice and in human MM1 and VV2 frontal cortex and cerebellum samples. In conclusion, our findings demonstrated for the first time a key pre-clinical response of cofilin-1 and the associated pathway in prion disease.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany.
| | - Neelam Younas
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Nadeem Sheikh
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Waqas Tahir
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Madrid, Spain
| | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
129
|
Raven F, Van der Zee EA, Meerlo P, Havekes R. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Med Rev 2017. [PMID: 28641933 DOI: 10.1016/j.smrv.2017.05.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss.
Collapse
Affiliation(s)
- Frank Raven
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Eddy A Van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
130
|
Vogel Ciernia A, Kramár EA, Matheos DP, Havekes R, Hemstedt TJ, Magnan CN, Sakata K, Tran A, Azzawi S, Lopez A, Dang R, Wang W, Trieu B, Tong J, Barrett RM, Post RJ, Baldi P, Abel T, Lynch G, Wood MA. Mutation of neuron-specific chromatin remodeling subunit BAF53b: rescue of plasticity and memory by manipulating actin remodeling. Learn Mem 2017; 24:199-209. [PMID: 28416631 PMCID: PMC5397687 DOI: 10.1101/lm.044602.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53bΔSB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53bΔSB2 mice in an effort to rescue LTP and memory. BAF53bΔSB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, University of California, Davis, California 95656, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9712, The Netherlands
| | - Thekla J Hemstedt
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Christophe N Magnan
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Keith Sakata
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Ashley Tran
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Soraya Azzawi
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Alberto Lopez
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Richard Dang
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Weisheng Wang
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Brian Trieu
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697, USA
| | - Joyce Tong
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Ruth M Barrett
- Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Rebecca J Post
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Ted Abel
- Departments of Molecular Physiology and Biophysics, Psychiatry, and Biochemistry, Iowa Neuroscience Institute, Iowa City, Iowa 50309, USA
| | - Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| |
Collapse
|
131
|
Shirao T, Hanamura K, Koganezawa N, Ishizuka Y, Yamazaki H, Sekino Y. The role of drebrin in neurons. J Neurochem 2017; 141:819-834. [PMID: 28199019 DOI: 10.1111/jnc.13988] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 01/13/2023]
Abstract
Drebrin is an actin-binding protein that changes the helical pitch of actin filaments (F-actin), and drebrin-decorated F-actin shows slow treadmilling and decreased rate of depolymerization. Moreover, the characteristic morphology of drebrin-decorated F-actin enables it to respond differently to the same signals from other actin cytoskeletons. Drebrin consists of two major isoforms, drebrin E and drebrin A. In the developing brain, drebrin E appears in migrating neurons and accumulates in the growth cones of axons and dendrites. Drebrin E-decorated F-actin links lamellipodium F-actin to microtubules in the growth cones. Then drebrin A appears at nascent synapses and drebrin A-decorated F-actin facilitates postsynaptic molecular assembly. In the adult brain, drebrin A-decorated F-actin is concentrated in the central region of dendritic spines. During long-term potentiation initiation, NMDA receptor-mediated Ca2+ influx induces the transient exodus of drebrin A-decorated F-actin via myosin II ATPase activation. Because of the unique physical characteristics of drebrin A-decorated F-actin, this exodus likely contributes to the facilitation of F-actin polymerization and spine enlargement. Additionally, drebrin reaccumulation in dendritic spines is observed after the exodus. In our drebrin exodus model of structure-based synaptic plasticity, reestablishment of drebrin A-decorated F-actin is necessary to keep the enlarged spine size during long-term potentiation maintenance. In this review, we introduce the genetic and biochemical properties of drebrin and the roles of drebrin in early stage of brain development, synaptic formation and synaptic plasticity. Further, we discuss the pathological relevance of drebrin loss in Alzheimer's disease. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuta Ishizuka
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| |
Collapse
|
132
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
133
|
Kugathasan P, Waller J, Westrich L, Abdourahman A, Tamm JA, Pehrson AL, Dale E, Gulinello M, Sanchez C, Li Y. In vivo and in vitro effects of vortioxetine on molecules associated with neuroplasticity. J Psychopharmacol 2017; 31:365-376. [PMID: 27678087 DOI: 10.1177/0269881116667710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Li
- 1 Lundbeck Research, Paramus, NJ, USA
| |
Collapse
|
134
|
Koganezawa N, Hanamura K, Sekino Y, Shirao T. The role of drebrin in dendritic spines. Mol Cell Neurosci 2017; 84:85-92. [PMID: 28161364 DOI: 10.1016/j.mcn.2017.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/06/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Dendritic spines form typical excitatory synapses in the brain and their shapes vary depending on synaptic inputs. It has been suggested that the morphological changes of dendritic spines play an important role in synaptic plasticity. Dendritic spines contain a high concentration of actin, which has a central role in supporting cell motility, and polymerization of actin filaments (F-actin) is most likely involved in spine shape changes. Drebrin is an actin-binding protein that forms stable F-actin and is highly accumulated within dendritic spines. Drebrin has two isoforms, embryonic-type drebrin E and adult-type drebrin A, that change during development from E to A. Inhibition of drebrin A expression results in a delay of synapse formation and inhibition of postsynaptic protein accumulation, suggesting that drebrin A has an important role in spine maturation. In mature synapses, glutamate stimulation induces rapid spine-head enlargement during long-term potentiation (LTP) formation. LTP stimulation induces Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors, which causes drebrin exodus from dendritic spines. Once drebrin exits from dendritic spine heads, the dynamic actin pool increases in spine heads to facilitate F-actin polymerization. To maintain enlarged spine heads, drebrin-decorated F-actin is thought to reform within the spine heads. Thus, drebrin plays a pivotal role in spine plasticity through regulation of F-actin.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| |
Collapse
|
135
|
Sinnen BL, Bowen AB, Forte JS, Hiester BG, Crosby KC, Gibson ES, Dell'Acqua ML, Kennedy MJ. Optogenetic Control of Synaptic Composition and Function. Neuron 2017; 93:646-660.e5. [PMID: 28132827 DOI: 10.1016/j.neuron.2016.12.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/22/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
The molecular composition of the postsynaptic membrane is sculpted by synaptic activity. During synaptic plasticity at excitatory synapses, numerous structural, signaling, and receptor molecules concentrate at the postsynaptic density (PSD) to regulate synaptic strength. We developed an approach that uses light to tune the abundance of specific molecules in the PSD. We used this approach to investigate the relationship between the number of AMPA-type glutamate receptors in the PSD and synaptic strength. Surprisingly, adding more AMPA receptors to excitatory contacts had little effect on synaptic strength. Instead, we observed increased excitatory input through the apparent addition of new functional sites. Our data support a model where adding AMPA receptors is sufficient to activate synapses that had few receptors to begin with, but that additional remodeling events are required to strengthen established synapses. More broadly, this approach introduces the precise spatiotemporal control of optogenetics to the molecular control of synaptic function.
Collapse
Affiliation(s)
- Brooke L Sinnen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Aaron B Bowen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Forte
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brian G Hiester
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Emily S Gibson
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
136
|
Lunardi P, Sachser RM, Sierra RO, Pedraza LK, Medina C, de la Fuente V, Romano A, Quillfeldt JA, de Oliveira Alvares L. Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Mol Neurobiol 2017; 55:958-967. [DOI: 10.1007/s12035-016-0361-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023]
|
137
|
Kukalev A, Ng YM, Ju L, Saidi A, Lane S, Mondragon A, Dormann D, Walker SE, Grey W, Ho PWL, Stephens DN, Carr AM, Lamsa K, Tse E, Yu VPCC. Deficiency of Cks1 Leads to Learning and Long-Term Memory Defects and p27 Dependent Formation of Neuronal Cofilin Aggregates. Cereb Cortex 2017; 27:11-23. [PMID: 28365778 PMCID: PMC5939225 DOI: 10.1093/cercor/bhw354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/23/2016] [Indexed: 01/11/2023] Open
Abstract
In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1-/-) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits. Furthermore, there was neuronal accumulation of cofilin-actin rods or cofilin aggregates, which are associated with defective dendritic spine maturation and synaptic loss. We further demonstrated that it was the increased p27 level that activated cofilin by suppressing the RhoA kinase-mediated inhibitory phosphorylation of cofilin, resulting in the formation of cofilin aggregates in the Cks1-/- neuronal cells. Consistent with reports that the peptidyl-prolyl-isomerase PIN1 competes with CKS1 for p27 binding, we found that inhibition of PIN1 diminished the formation of cofilin aggregates through decreasing p27 levels, thereby activating RhoA and increasing cofilin phosphorylation. Our results revealed that CKS1 is involved in normal glutamatergic synapse development and dendritic spine maturation in adult hippocampus through modulating p27 stability.
Collapse
Affiliation(s)
- Alexander Kukalev
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
- Current address:
Epigenetic Regulation and Chromatin Architecture Group
,
Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine
,
Robert-Rössle Strasse
,
Berlin-Buch 13125
,
Germany
| | - Yiu-Ming Ng
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
- Division of Haematology
,
Department of Medicine
,
The University of Hong Kong
,
Hong Kong
| | - Limei Ju
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Amal Saidi
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Sophie Lane
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Angeles Mondragon
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Dirk Dormann
- Microscopy Facility
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Sophie E. Walker
- School of Psychology
,
University of Sussex
,
Sussex, Brighton BN1 9QG
,
UK
| | - William Grey
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
| | - Philip Wing-Lok Ho
- Division of Neurology
,
Department of Medicine
,
University of Hong Kong
,
Hong Kong
| | - David N. Stephens
- School of Psychology
,
University of Sussex
,
Sussex, Brighton BN1 9QG
,
UK
| | - Antony M. Carr
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Karri Lamsa
- Department of Pharmacology
,
Oxford University
,
Oxford OX1 3QT
,
UK
- Current address:
Department of Physiology, Anatomy and Neuroscience
,
University of Szeged
,
Közép fasor 52
,
Szeged H-6726,Hungary
| | - Eric Tse
- Division of Haematology
,
Department of Medicine
,
The University of Hong Kong
,
Hong Kong
| | - Veronica P. C. C. Yu
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
| |
Collapse
|
138
|
Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories. Nat Neurosci 2016; 20:52-61. [PMID: 27869801 PMCID: PMC5191950 DOI: 10.1038/nn.4443] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/26/2016] [Indexed: 01/26/2023]
Abstract
The ability to regulate the consolidation and strengthening of memories for threatening experiences is critical for mental health, and its dysregulation may lead to psychopathologies. Re-exposure to the context in which the threat was experienced can either increase or decrease fear response through distinct processes known, respectively, as reconsolidation or extinction. Using a context retrieval-dependent memory enhancement paradigm in rats, we report that memory strengthens through the activation of direct projections from the dorsal hippocampus (dHC) to the prelimbic (PL) cortex and of critical PL molecular mechanisms, which are not required for extinction. Furthermore, while a sustained PL BDNF expression is required for memory consolidation, retrieval engages PL BDNF to regulate the excitatory and inhibitory synaptic proteins neuroligin 1 and neuroligin 2, which promote memory strengthening while inhibiting extinction. Thus, context retrieval-mediated fear memory enhancement results from a concerted action of mechanisms that strengthen memory through reconsolidation while suppressing extinction.
Collapse
|
139
|
Tada H, Miyazaki T, Takemoto K, Takase K, Jitsuki S, Nakajima W, Koide M, Yamamoto N, Komiya K, Suyama K, Sano A, Taguchi A, Takahashi T. Neonatal isolation augments social dominance by altering actin dynamics in the medial prefrontal cortex. Proc Natl Acad Sci U S A 2016; 113:E7097-E7105. [PMID: 27791080 PMCID: PMC5111648 DOI: 10.1073/pnas.1606351113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Social separation early in life can lead to the development of impaired interpersonal relationships and profound social disorders. However, the underlying cellular and molecular mechanisms involved are largely unknown. Here, we found that isolation of neonatal rats induced glucocorticoid-dependent social dominance over nonisolated control rats in juveniles from the same litter. Furthermore, neonatal isolation inactivated the actin-depolymerizing factor (ADF)/cofilin in the juvenile medial prefrontal cortex (mPFC). Isolation-induced inactivation of ADF/cofilin increased stable actin fractions at dendritic spines in the juvenile mPFC, decreasing glutamate synaptic AMPA receptors. Expression of constitutively active ADF/cofilin in the mPFC rescued the effect of isolation on social dominance. Thus, neonatal isolation affects spines in the mPFC by reducing actin dynamics, leading to altered social behavior later in life.
Collapse
Affiliation(s)
- Hirobumi Tada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kiwamu Takemoto
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Susumu Jitsuki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Waki Nakajima
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mayu Koide
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naoko Yamamoto
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kasane Komiya
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kumiko Suyama
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Akane Sano
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Akiko Taguchi
- Department of Integrative Aging Neuroscience, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Takuya Takahashi
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|
140
|
Kwan V, Meka D, White S, Hung C, Holzapfel N, Walker S, Murtaza N, Unda B, Schwanke B, Yuen R, Habing K, Milsom C, Hope K, Truant R, Scherer S, Calderon de Anda F, Singh K. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants. Cell Rep 2016; 17:1892-1904. [DOI: 10.1016/j.celrep.2016.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/02/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022] Open
|
141
|
Sun J, Liu Y, Tran J, O'Neal P, Baudry M, Bi X. mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell Mol Life Sci 2016; 73:4303-4314. [PMID: 27173058 PMCID: PMC5056144 DOI: 10.1007/s00018-016-2269-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
Abstract
Emerging evidence is implicating abnormal activation of the mechanistic target of rapamycin (mTOR) pathway in several monogenetic neuropsychiatric disorders, including Angelman syndrome (AS), which is caused by deficiency in maternally inherited UBE3A. Using an AS mouse model, we show that semi-chronic rapamycin treatment improves long-term potentiation (LTP) and actin polymerization in hippocampal slices, spine morphology, and fear-conditioning learning. Activity of mTORC1 and of its downstream substrate, S6K1, was increased in hippocampus of AS mice. However, mTORC2 activity, as reflected by PKCα levels, was decreased. Both increased mTORC1 and decreased mTORC2 activities were reversed by semi-chronic rapamycin treatment. Acute treatment of hippocampal slices from AS mice with rapamycin or an S6K1 inhibitor, PF4708671, improved LTP, restored actin polymerization, and normalized mTORC1 and mTORC2 activity. These treatments also reduced Arc levels in AS mice. Treatment with Torin 1, an inhibitor of both mTORC1 and mTORC2, partially rescued LTP and actin polymerization in hippocampal slices from AS mice, while partially impairing them in wild-type (WT) mice. Torin 1 decreased mTORC1 and increased mTORC2 activity in slices from AS mice but inhibited both mTORC1 and mTORC2 in WT mice. Finally, an mTORC2 activator, A-443654, increased hippocampal LTP in AS mice and actin polymerization in both WT and AS mice. Collectively, these results indicate that events set in motion by increased mTORC1 and decreased mTORC2 activities, including increased Arc translation and impaired actin remodeling, are crucial in AS pathogenesis. Therefore, selectively targeting these two master kinase complexes may provide new therapeutic approaches for AS treatment.
Collapse
Affiliation(s)
- Jiandong Sun
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 701 E. Second Street, Pomona, CA, 91766, USA
| | - Jennifer Tran
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Patrick O'Neal
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 701 E. Second Street, Pomona, CA, 91766, USA
| | - Xiaoning Bi
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, 701 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
142
|
Singer BF, Bubula N, Przybycien-Szymanska MM, Li D, Vezina P. Stimuli associated with the presence or absence of amphetamine regulate cytoskeletal signaling and behavior. Eur Neuropsychopharmacol 2016; 26:1836-1842. [PMID: 27720500 PMCID: PMC5159205 DOI: 10.1016/j.euroneuro.2016.09.639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Drug-paired stimuli rapidly enlarge dendritic spines in the nucleus accumbens (NAcc). While increases in spine size and shape are supported by rearrangement of the actin cytoskeleton and facilitate the synaptic expression of AMPA-type glutamate receptors, it remains unclear whether drug-related stimuli can influence signaling pathways known to regulate these changes in spine morphology. These pathways were studied in rats trained on a discrimination learning paradigm using subcellular fractionation and protein immunoblotting to isolate proteins within dendritic spine compartments in the NAcc shell. An open field chamber was repeatedly associated with amphetamine in one group (Paired) and explicitly unpaired with amphetamine in another (Unpaired). Rats in a third group were exposed to the open field but never administered amphetamine (Control). When administered saline and returned to the open field one week later, Paired rats as expected displayed a conditioned locomotor response relative to rats in the other two groups. NAcc shell tissues were harvested immediately after this 30-minute test. Re-exposing Paired rats to the drug-paired excitatory context significantly decreased p-GluA2(S880), an effect consistent with reduced internalization of this subunit and increased spine proliferation in these rats. In contrast, re-exposing Unpaired rats to the drug-unpaired context, capable of inhibiting conditioned responding in these animals, significantly decreased levels of both actin binding protein Arp2/3 and p-cofilin, consistent with spine volatility, shrinkage, and inhibition of spine proliferation in these rats. These findings show that contextual stimuli previously associated with either the presence or absence of amphetamine differentially regulate cytoskeletal signaling pathways in the NAcc.
Collapse
Affiliation(s)
- Bryan F Singer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Committee on Neurobiology, University of Chicago, Chicago, IL, USA.
| | - Nancy Bubula
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | | | - Dongdong Li
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Paul Vezina
- Committee on Neurobiology, University of Chicago, Chicago, IL, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
143
|
Szabó EC, Manguinhas R, Fonseca R. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag. Sci Rep 2016; 6:33685. [PMID: 27650071 PMCID: PMC5030642 DOI: 10.1038/srep33685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
Abstract
Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture.
Collapse
Affiliation(s)
- Eszter C Szabó
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| | - Rita Manguinhas
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| |
Collapse
|
144
|
EphB2 in the Medial Prefrontal Cortex Regulates Vulnerability to Stress. Neuropsychopharmacology 2016; 41:2541-56. [PMID: 27103064 PMCID: PMC4987853 DOI: 10.1038/npp.2016.58] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 01/23/2023]
Abstract
The ephrin B2 (EphB2) receptor is a tyrosine kinase receptor that is associated with synaptic development and maturation. It has recently been implicated in cognitive deficits and anxiety. However, still unknown is the involvement of EphB2 in the vulnerability to stress. In the present study, we observed decreases in EphB2 levels and their downstream molecules in the medial prefrontal cortex (mPFC) but not in the orbitofrontal cortex (OFC) in mice that were susceptible to chronic social defeat stress. The activation of EphB2 receptors with EphrinB1-Fc in the mPFC produced stress-resistant and antidepressant-like behavioral effects in susceptible mice that lasted for at least 10 days. EphB2 receptor knockdown by short-hairpin RNA in the mPFC increased the susceptibility to stress and induced depressive-like behaviors in a subthreshold chronic social defeat stress paradigm. These behavioral effects were associated with changes in the phosphorylation of cofilin and membrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking and the expression of some synaptic proteins in the mPFC. We also found that EphB2 regulated stress-induced spine remodeling in the mPFC. Altogether, these results indicate that EphB2 is a critical regulator of stress vulnerability and might be a potential target for the treatment of depression.
Collapse
|
145
|
Thibault K, Rivière S, Lenkei Z, Férézou I, Pezet S. Orofacial Neuropathic Pain Leads to a Hyporesponsive Barrel Cortex with Enhanced Structural Synaptic Plasticity. PLoS One 2016; 11:e0160786. [PMID: 27548330 PMCID: PMC4993517 DOI: 10.1371/journal.pone.0160786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Chronic pain is a long-lasting debilitating condition that is particularly difficult to treat due to the lack of identified underlying mechanisms. Although several key contributing processes have been described at the level of the spinal cord, very few studies have investigated the supraspinal mechanisms underlying chronic pain. Using a combination of approaches (cortical intrinsic imaging, immunohistochemical and behavioural analysis), our study aimed to decipher the nature of functional and structural changes in a mouse model of orofacial neuropathic pain, focusing on cortical areas involved in various pain components. Our results show that chronic neuropathic orofacial pain is associated with decreased haemodynamic responsiveness to whisker stimulation in the barrel field cortex. This reduced functional activation is likely due to the increased basal neuronal activity (measured indirectly using cFos and phospho-ERK immunoreactivity) observed in several cortical areas, including the contralateral barrel field, motor and cingulate cortices. In the same animals, immunohistochemical analysis of markers for active pre- or postsynaptic elements (Piccolo and phospho-Cofilin, respectively) revealed an increased immunofluorescence in deep cortical layers of the contralateral barrel field, motor and cingulate cortices. These results suggest that long-lasting orofacial neuropathic pain is associated with exacerbated neuronal activity and synaptic plasticity at the cortical level.
Collapse
Affiliation(s)
- Karine Thibault
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
| | - Sébastien Rivière
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
| | - Zsolt Lenkei
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
| | - Isabelle Férézou
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
| | - Sophie Pezet
- Brain Plasticity Unit, ESPCI, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
- Centre National de la Recherche Scientifique, UMR 8249, 75005, Paris, France
- * E-mail:
| |
Collapse
|
146
|
Cao F, Zhou Z, Pan X, Leung C, Xie W, Collingridge G, Jia Z. Developmental regulation of hippocampal long-term depression by cofilin-mediated actin reorganization. Neuropharmacology 2016; 112:66-75. [PMID: 27543417 DOI: 10.1016/j.neuropharm.2016.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/16/2023]
Abstract
Long lasting synaptic plasticity involves both functional and morphological changes, but how these processes are molecularly linked to achieve coordinated plasticity remains poorly understood. Cofilin is a common target of multiple signaling pathways at the synapse and is required for both functional and spine plasticity, but how it is regulated is unclear. In this study, we investigate whether the involvement of cofilin in plasticity is developmentally regulated by examining the role of cofilin in hippocampal long-term depression (LTD) in both young (2 weeks) and mature (2 months) mice. We show that both total protein level of cofilin and its activation undergo significant changes as the brain matures, so that although the amount of cofilin decreases significantly in mature mice, its regulation by protein phosphorylation becomes increasingly important. Consistent with these biochemical data, we show that cofilin-mediated actin reorganization is essential for LTD in mature, but not in young mice. In contrast to cofilin, the GluA2 interactions with NSF and PICK1 appear to be required in both young and mature mice, indicating that AMPAR internalization is a common key mechanism for LTD expression regardless of the developmental stages. These results establish the temporal specificity of cofilin in LTD regulation and suggest that cofilin-mediated actin reorganization may serve as a key mechanism underlying developmental regulation of synaptic and spine plasticity. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Feng Cao
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Canada; The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Zikai Zhou
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada; The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China; Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| | - Xingxiu Pan
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Celeste Leung
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China; Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| | - Graham Collingridge
- Department of Physiology, Faculty of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Canada; Centre for Synaptic Plasticity, School of Physiology & Pharmacology, University of Bristol, UK
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
147
|
Chazeau A, Giannone G. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell Mol Life Sci 2016; 73:3053-73. [PMID: 27105623 PMCID: PMC11108290 DOI: 10.1007/s00018-016-2214-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/18/2022]
Abstract
In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.
Collapse
Affiliation(s)
- Anaël Chazeau
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France.
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France.
| |
Collapse
|
148
|
Liu A, Zhou Z, Dang R, Zhu Y, Qi J, He G, Leung C, Pak D, Jia Z, Xie W. Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization. J Cell Biol 2016; 212:449-63. [PMID: 26880202 PMCID: PMC4754719 DOI: 10.1083/jcb.201509023] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The C-terminal domain of NLG1 is sufficient to enhance spine and synapse number and to modulate synaptic plasticity, and it exerts these effects via its interaction with SPAR and the subsequent activation of LIMK1/cofilin-mediated actin reorganization. Neuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown. In this study, we show that the CTD of NLG1 is sufficient to (a) enhance spine and synapse number, (b) modulate synaptic plasticity, and (c) exert these effects via its interaction with spine-associated Rap guanosine triphosphatase–activating protein and subsequent activation of LIM-domain protein kinase 1/cofilin–mediated actin reorganization. Our results provide a novel postsynaptic mechanism by which NLG1 regulates synapse development and function.
Collapse
Affiliation(s)
- An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Zikai Zhou
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| | - Rui Dang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Yuehua Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Junxia Qi
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Guiqin He
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Celeste Leung
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Zhengping Jia
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| |
Collapse
|
149
|
Sachser RM, Haubrich J, Lunardi PS, de Oliveira Alvares L. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology 2016; 112:94-103. [PMID: 27425202 DOI: 10.1016/j.neuropharm.2016.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Over the past years, extensive research in experimental cognitive neuroscience has provided a comprehensive understanding about the role of ionotropic glutamate receptor (IGluR)-dependent signaling underpinning postsynaptic plasticity induced by long-term potentiation (LTP), the leading cellular basis of long-term memory (LTM). However, despite the fact that iGluR-mediated postsynaptic plasticity regulates the formation and persistence of LTP and LTM, here we discuss the state-of-the-art regarding the mechanisms underpinning both LTP and LTM decay. First, we review the crucial roles that iGluRs play on memory encoding and stabilization. Second, we discuss the latest findings in forgetting considering hippocampal GluA2-AMPAR trafficking at postsynaptic sites as well as dendritic spine remodeling possibly involved in LTP decay. Third, on the role of retrieving consolidated LTMs, we discuss the mechanisms involved in memory destabilization that occurs followed reactivation that share striking similarities with the neurobiological basis of forgetting. Fourth, since different AMPAR subunits as well as postsynaptic scaffolding proteins undergo ubiquitination, the ubiquitin-proteasome system (UPS) is discussed in light of memory decay. In conclusion, we provide an integrated overview revealing some of the mechanisms determining memory forgetting that are mediated by iGluRs. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Santana Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
150
|
Banik A, Brown RE, Bamburg J, Lahiri DK, Khurana D, Friedland RP, Chen W, Ding Y, Mudher A, Padjen AL, Mukaetova-Ladinska E, Ihara M, Srivastava S, Padma Srivastava MV, Masters CL, Kalaria RN, Anand A. Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer's Disease: What are the Roadblocks and How Can They Be Overcome? J Alzheimers Dis 2016; 47:815-43. [PMID: 26401762 DOI: 10.3233/jad-150136] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical studies are essential for translation to disease treatments and effective use in clinical practice. An undue emphasis on single approaches to Alzheimer's disease (AD) appears to have retarded the pace of translation in the field, and there is much frustration in the public about the lack of an effective treatment. We critically reviewed past literature (1990-2014), analyzed numerous data, and discussed key issues at a consensus conference on Brain Ageing and Dementia to identify and overcome roadblocks in studies intended for translation. We highlight various factors that influence the translation of preclinical research and highlight specific preclinical strategies that have failed to demonstrate efficacy in clinical trials. The field has been hindered by the domination of the amyloid hypothesis in AD pathogenesis while the causative pathways in disease pathology are widely considered to be multifactorial. Understanding the causative events and mechanisms in the pathogenesis are equally important for translation. Greater efforts are necessary to fill in the gaps and overcome a variety of confounds in the generation, study design, testing, and evaluation of animal models and the application to future novel anti-dementia drug trials. A greater variety of potential disease mechanisms must be entertained to enhance progress.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Dheeraj Khurana
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, 318C Parran Hall, Pittsburgh, PA, USA
| | - Amritpal Mudher
- Southampton Neurosciences Group, University of Southampton, Southampton, UK
| | - Ante L Padjen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Elizabeta Mukaetova-Ladinska
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Sudhir Srivastava
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | - M V Padma Srivastava
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Colin L Masters
- Mental Health Research Institute, University of Melbourne, Royal Parade, The VIC, Australia
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|