101
|
Arnaud N, Baldus C, Laurenz LJ, Bröning S, Brandt M, Kunze S, Austermann M, Zimmermann L, Daubmann A, Thomasius R. Does a mindfulness-augmented version of the German Strengthening Families Program reduce substance use in adolescents? Study protocol for a randomized controlled trial. Trials 2020; 21:114. [PMID: 31992356 PMCID: PMC6988370 DOI: 10.1186/s13063-020-4065-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/11/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mindfulness training (MT) for parents of adolescents has been shown to improve mental health and stress-related outcomes in individuals and their families. Studies of MT among young people are mainly delivered in educational or clinical settings, and there is a need for controlled studies on both parent-directed and adolescent-directed approaches. It is unclear whether MT has preventive effects for substance use outcomes. The primary objective of this trial is to evaluate the effectiveness of family-based MT targeting both adolescents and their parents to prevent adolescent substance use and enhance neurobehavioral self-regulation skills that play a major role in addiction development and mental health. METHODS/DESIGN The trial design is a superiority, two-arm, randomized controlled trial in which families will participate either in the full curriculum of the evidence-based Strengthening Families Program 10-14 (SFP 10-14, German adaptation) or in a mindfulness-enhanced version of this program (SFP-Mind). Both seven-session interventions are highly structured and will each be delivered over a period of approximately 7 weeks. The experimental intervention SFP-Mind is a modified version of the SFP 10-14 in which some elements were eliminated or changed to enable the inclusion of additional parent-directed and adolescent-directed mindfulness components. The primary outcome is adolescent self-reported alcohol use based on an alcohol initiation index at 18-month follow-up. Dispositional mindfulness, impulsivity, and emotion regulation will be included as secondary outcomes and potential mechanisms of action. The study will recruit and randomize 216 adolescents, aged 10-14 years, and their parents who will be followed up for 18 months. DISCUSSION This trial aims to evaluate the effectiveness of SFP-Mind for family-based prevention of substance use and promoting mental health in adolescence. TRIAL REGISTRATION German Register of Clinical Studies, DRKS00015678. Registered on 25 February 2019.
Collapse
Affiliation(s)
- Nicolas Arnaud
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Christiane Baldus
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Léa Josette Laurenz
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Bröning
- Institute of Research and Education GmbH associated with the Medical School Hamburg (MSH), Hamburg, Germany
| | - Maja Brandt
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Kunze
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Austermann
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Zimmermann
- Institute of Research and Education GmbH associated with the Medical School Hamburg (MSH), Hamburg, Germany
| | - Anne Daubmann
- Institute of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Thomasius
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
102
|
Mao Y, Fisher DW, Yang S, Keszycki RM, Dong H. Protein-protein interactions underlying the behavioral and psychological symptoms of dementia (BPSD) and Alzheimer's disease. PLoS One 2020; 15:e0226021. [PMID: 31951614 PMCID: PMC6968845 DOI: 10.1371/journal.pone.0226021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder currently affecting 45 million people worldwide, ranking as the 6th highest cause of death. Throughout the development and progression of AD, over 90% of patients display behavioral and psychological symptoms of dementia (BPSD), with some of these symptoms occurring before memory deficits and therefore serving as potential early predictors of AD-related cognitive decline. However, the biochemical links between AD and BPSD are not known. In this study, we explored the molecular interactions between AD and BPSD using protein-protein interaction (PPI) networks built from OMIM (Online Mendelian Inheritance in Man) genes that were related to AD and two distinct BPSD domains, the Affective Domain and the Hyperactivity, Impulsivity, Disinhibition, and Aggression (HIDA) Domain. Our results yielded 8 unique proteins for the Affective Domain (RHOA, GRB2, PIK3R1, HSPA4, HSP90AA1, GSK3beta, PRKCZ, and FYN), 5 unique proteins for the HIDA Domain (LRP1, EGFR, YWHAB, SUMO1, and EGR1), and 6 shared proteins between both BPSD domains (APP, UBC, ELAV1, YWHAZ, YWHAE, and SRC) and AD. These proteins might suggest specific targets and pathways that are involved in the pathogenesis of these BPSD domains in AD.
Collapse
Affiliation(s)
- Yimin Mao
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
- Applied Science Institute, Jiangxi University of Science and Technology, Jiangxi, China
| | - Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shuxing Yang
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
| | - Rachel M. Keszycki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
103
|
Tashjian SM, Galván A. Neural recruitment related to threat perception differs as a function of adolescent sleep. Dev Sci 2020; 23:e12933. [PMID: 31863619 DOI: 10.1111/desc.12933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/19/2023]
Abstract
Detecting threat cues in the environment is an important aspect of social functioning. This is particularly true for adolescents as social threats become more salient and they navigate increasingly complex relationships outside of the family. Sleep relates to socioemotional processing throughout development, but the neurobiological relevance of sleep for threat perceptions in adolescence remains unknown. In the present study, 46 human adolescents (aged 14-18 years; 26 female) made judgments while undergoing a brain scan about whether unfamiliar, affectively neutral, computer-generated faces were threatening. Prior to the scan, several indices of sleep were assessed nightly for two-weeks using actigraphy. Sleep duration and poor sleep quality (defined as less efficiency, more awakenings, longer awakenings), factors influenced by biological and psychosocial changes during adolescence, elicited distinct neural activation patterns. Sleep duration was positively associated with activation in visual and face processing regions (occipital cortex, occipital fusiform gyrus), and this activation was linked to increased threat detection during the threat perception task. Sleep quality was negatively related to dorsolateral prefrontal cortex activation, which moderated the relation between reaction time (RT) and exposure to faces. Findings suggest reduced threat perception for adolescents with shorter sleep durations and more impulsive responding (as evinced by less consistent RT) for adolescents experiencing worse quality sleep. This study identifies an association between sleep and neural functioning relevant for socioemotional decision making during adolescence, a time when these systems undergo significant development.
Collapse
Affiliation(s)
- Sarah M Tashjian
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adriana Galván
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
104
|
Karoly HC, Ross JM, Ellingson JM, Feldstein Ewing SW. Exploring Cannabis and Alcohol Co-Use in Adolescents: A Narrative Review of the Evidence. J Dual Diagn 2020; 16:58-74. [PMID: 31519143 PMCID: PMC7007306 DOI: 10.1080/15504263.2019.1660020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Amidst the evolving policy surrounding cannabis legalization in the United States, cannabis use is becoming increasingly prevalent as perceptions of harm decrease, particularly among adolescents. Cannabis and alcohol are commonly used by adolescents and are often used together. However, developmental research has historically taken a "single substance" approach to examine the association of substance use and adolescent brain and behavior rather than examining co-(or poly-substance) use of multiple substances, such as cannabis and alcohol. Thus, the acute effects of cannabis and alcohol, and the impact of co-use of cannabis and alcohol on the adolescent brain, cognitive function and subsequent psychosocial outcomes remains understudied. This narrative review aims to examine the effects of cannabis and alcohol on adolescents across a number of behavioral and neurobiological outcomes. Methods: The PubMed and Google Scholar databases were searched for the last 10 years to identify articles reporting on acute effects of cannabis and alcohol administration, and the effects of cannabis and alcohol on neuropsychological, neurodevelopmental, neural (e.g., structural and functional neuroimaging), and psychosocial outcomes in adolescents. When adolescent data were not available, adult studies were included as support for potential areas of future direction in adolescent work. Results: Current studies of the impact of cannabis and alcohol on adolescent brain and behavior have yielded a complicated pattern. Some suggest that the use of cannabis in addition to alcohol during adolescence may have a "protective" effect, yielding neuropsychological and structural brain outcomes that are better than those for adolescents who use only alcohol. However, other adolescent studies suggest that cannabis and alcohol co-use is associated with negative health and social outcomes such as poorer academic performance and impaired driving. Conclusion: Variation in study methodologies, policy-level limitations and our limited understanding of the developmental neurobiological effects of cannabis preclude the straightforward interpretation of the existing data on adolescent cannabis and alcohol use. Further research on this topic is requisite to inform the development of effective intervention and prevention programs for adolescent substance users, which hinge on a more comprehensive understanding of how cannabis-and its intersection with alcohol-impacts the developing brain and behavior.
Collapse
Affiliation(s)
- Hollis C Karoly
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - J Megan Ross
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jarrod M Ellingson
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Sarah W Feldstein Ewing
- Department of Child & Adolescent Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
105
|
Herman AM, Duka T. The Role of Impulsivity Facets on the Incidence and Development of Alcohol Use Disorders. Curr Top Behav Neurosci 2020; 47:197-221. [PMID: 32474898 DOI: 10.1007/7854_2020_137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic relapsing disorder defined according to the Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5; American Psychiatric Association 2013), "by a cluster of behavioural and physical symptoms, which can include, withdrawal, tolerance and craving". Social, emotional, behavioural and cognitive factors are important contributors to AUD. Impulsivity, a multifaceted behavioural concept, defined as a predisposition for rapid and unplanned actions, without considering potential negative consequences of these actions, represents an important such factor. In this chapter, research on the role of distinct impulsivity dimensions in different severity stages of alcohol use is presented.Increased self-reported (trait) impulsivity and an inability to wait, as well as difficulty to adjust behaviour appropriately following a failure to withhold a response are observed across the spectrum of alcohol-use severities. Research on temporal impulsivity (inability to delay gratification) consistently shows deficits in more severe alcohol users. Data on temporal impulsivity in early stages of alcohol use are less consistent, with some studies showing no differences between high and moderate drinkers, while others indicating increased impulsivity in high alcohol users. Data on reflexion impulsivity are currently limited to draw conclusions. Recent research is also presented suggesting the importance of perception and interpretation of physiological and emotional signals on alcohol use behaviour highlighting the necessity of comprehensive integration of the field of the study of emotion and interoception with impulsivity research.
Collapse
Affiliation(s)
- Aleksandra M Herman
- Department of Psychology, Royal Holloway, University of London, Egham, UK.,School of Psychology, University of Sussex, Falmer, UK.,Sussex Addiction Research and Intervention Centre, University of Sussex, Falmer, UK
| | - Theodora Duka
- School of Psychology, University of Sussex, Falmer, UK. .,Sussex Addiction Research and Intervention Centre, University of Sussex, Falmer, UK.
| |
Collapse
|
106
|
Chen Z, Liu P, Zhang C, Feng T. Brain Morphological Dynamics of Procrastination: The Crucial Role of the Self-Control, Emotional, and Episodic Prospection Network. Cereb Cortex 2019; 30:2834-2853. [PMID: 31845748 DOI: 10.1093/cercor/bhz278] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Globally, about 17% individuals are suffering from the maladaptive procrastination until now, which impacts individual's financial status, mental health, and even public policy. However, the comprehensive understanding of neuroanatomical understructure of procrastination still remains gap. 688 participants including 3 independent samples were recruited for this study. Brain morphological dynamics referred to the idiosyncrasies of both brain size and brain shape. Multilinear regression analysis was utilized to delineate brain morphological dynamics of procrastination in Sample 1. In the Sample 2, cross-validation was yielded. Finally, prediction models of machine learning were conducted in Sample 3. Procrastination had a significantly positive correlation with the gray matter volume (GMV) in the left insula, anterior cingulate gyrus (ACC), and parahippocampal gyrus (PHC) but was negatively correlated with GMV of dorsolateral prefrontal cortex (dlPFC) and gray matter density of ACC. Furthermore, procrastination was positively correlated to the cortical thickness and cortical complexity of bilateral orbital frontal cortex (OFC). In Sample 2, all the results were cross-validated highly. Predication analysis demonstrated that these brain morphological dynamic can predict procrastination with high accuracy. This study ascertained the brain morphological dynamics involving in self-control, emotion, and episodic prospection brain network for procrastination, which advanced promising aspects of the biomarkers for it.
Collapse
Affiliation(s)
- Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, USA
| | - Chenyan Zhang
- Cognitive Psychology Unit, The Institute of Psychology, Faculty of Social and Behavioural Sciences, Leiden University, Gainesville, Netherlands
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| |
Collapse
|
107
|
Rosenthal A, Beck A, Zois E, Vollstädt-Klein S, Walter H, Kiefer F, Lohoff FW, Charlet K. Volumetric Prefrontal Cortex Alterations in Patients With Alcohol Dependence and the Involvement of Self-Control. Alcohol Clin Exp Res 2019; 43:2514-2524. [PMID: 31688973 PMCID: PMC6904522 DOI: 10.1111/acer.14211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/28/2019] [Indexed: 12/18/2022]
Abstract
Background: Aspects of self-control such as sensation seeking and impaired impulse control have been implicated in alcohol dependence (ALC). Conversely, sensation seeking has been ascribed a possible protective role in stress-related psychopathologies. We therefore examined gray matter (GM) morphology in individuals with ALC, focusing on differences in prefrontal regions that have been associated with self-control. Additionally, we accounted for differences in lifetime alcohol intake regarding self-control measures and cortical structures in ALC patients. Methods: With voxel-based morphometry (VBM) focusing on prefrontal a priori defined regions of interest, we assessed a group of 62 detoxified ALC patients and 62 healthy controls (HC). ALC patients were subsequently divided into high (n = 9) and low consumers (n = 53). Self-control was assessed by use of the Barratt Impulsiveness Scale and the Sensation Seeking Scale. Results: Compared to HC, ALC had significantly less GM volume in bilateral middle frontal gyrus (MFG) and right medial prefrontal cortex as well as in the right anterior cingulate. High-consuming ALC showed smaller GM in right orbitofrontal cortex as well as lower sensation seeking scores than low consumers. In low-consuming ALC, right MFG-GM was positively associated with magnitude of sensation seeking; particularly, larger MFG-GM correlated with greater thrill and adventure seeking. Conclusion: Thus, our findings (i) indicate deficient GM volume in prefrontal areas related to self-control and (ii) might accentuate the phenotypic divergence of ALC patients and emphasize the importance of the development of individual treatment options.
Collapse
Affiliation(s)
- Annika Rosenthal
- From the, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Anne Beck
- From the, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Evangelos Zois
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Section on Clinical Genomics and Experimental Therapeutics (CGET), National Institutes of Health (NIH)/National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, Maryland
| | - Henrik Walter
- From the, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics (CGET), National Institutes of Health (NIH)/National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, Maryland
| | - Katrin Charlet
- From the, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Section on Clinical Genomics and Experimental Therapeutics (CGET), National Institutes of Health (NIH)/National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, Maryland
| |
Collapse
|
108
|
Spechler PA, Chaarani B, Orr C, Mackey S, Higgins ST, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Quinlan EB, Conrod PJ, Desrivières S, Flor H, Frouin V, Gowland P, Heinz A, Ittermann B, Martinot JL, Nees F, Orfanos DP, Poustka L, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Garavan H, Althoff RR. Neuroimaging Evidence for Right Orbitofrontal Cortex Differences in Adolescents With Emotional and Behavioral Dysregulation. J Am Acad Child Adolesc Psychiatry 2019; 58:1092-1103. [PMID: 31004740 DOI: 10.1016/j.jaac.2019.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/15/2019] [Accepted: 04/11/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To characterize the structural and functional neurobiology of a large group of adolescents exhibiting a behaviorally and emotionally dysregulated phenotype. METHOD Adolescents aged 14 years from the IMAGEN study were investigated. Latent class analysis (LCA) on the Strengths and Difficulties Questionnaire (SDQ) was used to identify a class of individuals with elevated behavioral and emotional difficulties ("dysregulated"; n = 233) who were compared to a matched sample from a low symptom class (controls, n = 233). Whole-brain gray matter volume (GMV) images were compared using a general linear model with 10,000 random label permutations. Regional GMV findings were then probed for functional differences from three functional magnetic resonance imaging (fMRI) tasks. Significant brain features then informed mediation path models linking the likelihood of psychiatric disorders (DSM-IV) with dysregulation. RESULTS Whole-brain differences were found in the right orbitofrontal cortex (R.OFC; p < .05; k = 48), with dysregulated individuals exhibiting lower GMV. The dysregulated group also exhibited higher activity in this region during successful inhibitory control (F1,429 = 7.53, p < .05). Path analyses indicated significant direct effects between the likelihood of psychopathologies and dysregulation. Modeling the R.OFC as a mediator returned modest partial effects, suggesting that the path linking the likelihood of an anxiety or conduct disorder diagnoses to dysregulation is partially explained by this anatomical feature. CONCLUSION A large sample of dysregulated adolescents exhibited lower GMV in the R.OFC relative to controls. Dysregulated individuals also exhibited higher regional activations when exercising inhibitory control at performance levels comparable to those of controls. These findings suggest a neurobiological marker of dysregulation and highlight the role of the R.OFC in impaired emotional and behavioral control.
Collapse
Affiliation(s)
- Philip A Spechler
- University of Vermont, Burlington; Vermont Center on Behavior and Health, University of Vermont, Burlington.
| | - Bader Chaarani
- University of Vermont, Burlington; Vermont Center on Behavior and Health, University of Vermont, Burlington
| | | | | | - Stephen T Higgins
- University of Vermont, Burlington; Vermont Center on Behavior and Health, University of Vermont, Burlington
| | - Tobias Banaschewski
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Erin Burke Quinlan
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Herta Flor
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; School of Social Sciences, University of Mannheim, Mannheim, Germany
| | | | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, UK
| | - Andreas Heinz
- Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud - University Paris Saclay, France
| | - Frauke Nees
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Luise Poustka
- University Medical Centre Göttingen, Germany, and the Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | | | | | - Henrik Walter
- Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Hugh Garavan
- University of Vermont, Burlington; Vermont Center on Behavior and Health, University of Vermont, Burlington
| | - Robert R Althoff
- University of Vermont, Burlington; Vermont Center on Behavior and Health, University of Vermont, Burlington
| | | |
Collapse
|
109
|
Hyperdirect insula-basal-ganglia pathway and adult-like maturity of global brain responses predict inhibitory control in children. Nat Commun 2019; 10:4798. [PMID: 31641118 PMCID: PMC6805945 DOI: 10.1038/s41467-019-12756-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/30/2019] [Indexed: 11/08/2022] Open
Abstract
Inhibitory control is fundamental to children's self-regulation and cognitive development. Here we investigate cortical-basal ganglia pathways underlying inhibitory control in children and their adult-like maturity. We first conduct a comprehensive meta-analysis of extant neurodevelopmental studies of inhibitory control and highlight important gaps in the literature. Second, we examine cortical-basal ganglia activation during inhibitory control in children ages 9-12 and demonstrate the formation of an adult-like inhibitory control network by late childhood. Third, we develop a neural maturation index (NMI), which assesses the similarity of brain activation patterns between children and adults, and demonstrate that higher NMI in children predicts better inhibitory control. Fourth, we show that activity in the subthalamic nucleus and its effective connectivity with the right anterior insula predicts children's inhibitory control. Fifth, we replicate our findings across multiple cohorts. Our findings provide insights into cortical-basal ganglia circuits and global brain organization underlying the development of inhibitory control.
Collapse
|
110
|
Warnell KR, Redcay E. Minimal coherence among varied theory of mind measures in childhood and adulthood. Cognition 2019; 191:103997. [DOI: 10.1016/j.cognition.2019.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
|
111
|
Hirjak D, Kubera KM, Northoff G, Fritze S, Bertolino AL, Topor CE, Schmitgen MM, Wolf RC. Cortical Contributions to Distinct Symptom Dimensions of Catatonia. Schizophr Bull 2019; 45:1184-1194. [PMID: 30753720 PMCID: PMC6811823 DOI: 10.1093/schbul/sby192] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Catatonia is a central aspect of schizophrenia spectrum disorders (SSD) and most likely associated with abnormalities in affective, motor, and sensorimotor brain regions. However, contributions of different cortical features to the pathophysiology of catatonia in SSD are poorly understood. Here, T1-weighted structural magnetic resonance imaging data at 3 T were obtained from 56 right-handed patients with SSD. Using FreeSurfer version 6.0, we calculated cortical thickness, area, and local gyrification index (LGI). Catatonic symptoms were examined on the Northoff catatonia rating scale (NCRS). Patients with catatonia (NCRS total score ≥3; n = 25) showed reduced surface area in the parietal and medial orbitofrontal gyrus and LGI in the temporal gyrus (P < .05, corrected for cluster-wise probability [CWP]) as well as hypergyrification in rostral cingulate and medial orbitofrontal gyrus when compared with patients without catatonia (n = 22; P < .05, corrected for CWP). Following a dimensional approach, a negative association between NCRS motor and behavior scores and cortical thickness in superior frontal, insular, and precentral cortex was found (34 patients with at least 1 motor and at least 1 other affective or behavioral symptom; P < .05, corrected for CWP). Positive associations were found between NCRS motor and behavior scores and surface area and LGI in superior frontal, posterior cingulate, precentral, and pericalcarine gyrus (P < .05, corrected for CWP). The data support the notion that cortical features of distinct evolutionary and genetic origin differently contribute to catatonia in SSD. Catatonia in SSD may be essentially driven by cortex variations in frontoparietal regions including regions implicated in the coordination and goal-orientation of behavior.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,To whom correspondence should be addressed; tel: 49-621-1703-0, fax: 0049-621-1703-2305, e-mail:
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alina L Bertolino
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cristina E Topor
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
112
|
Keszycki RM, Fisher DW, Dong H. The Hyperactivity-Impulsivity-Irritiability-Disinhibition-Aggression-Agitation Domain in Alzheimer's Disease: Current Management and Future Directions. Front Pharmacol 2019; 10:1109. [PMID: 31611794 PMCID: PMC6777414 DOI: 10.3389/fphar.2019.01109] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Behavioral and psychological symptoms of dementia (BPSD) afflict the vast majority of patients with dementia, especially those with Alzheimer's disease (AD). In clinical settings, patients with BPSD most often do not present with just one symptom. Rather, clusters of symptoms commonly co-occur and can, thus, be grouped into behavioral domains that may ultimately be the result of disruptions in overarching neural circuits. One major BPSD domain routinely identified across patients with AD is the hyperactivity-impulsivity-irritiability-disinhibition-aggression-agitation (HIDA) domain. The HIDA domain represents one of the most difficult sets of symptoms to manage in AD and accounts for much of the burden for caregivers and hospital staff. Although many studies recommend non-pharmacological treatments for HIDA domain symptoms as first-line, they demonstrate little consensus as to what these treatments should be and are often difficult to implement clinically. Certain symptoms within the HIDA domain also do not respond adequately to these treatments, putting patients at risk and necessitating adjunct pharmacological intervention. In this review, we summarize the current literature regarding non-pharmacological and pharmacological interventions for the HIDA domain and provide suggestions for improving treatment. As epigenetic changes due to both aging and AD cause dysfunction in drug-targeted receptors, we propose that HIDA domain treatments could be enhanced by adjunct strategies that modify these epigenetic alterations and, thus, increase efficacy and reduce side effects. To improve the implementation of non-pharmacological approaches in clinical settings, we suggest that issues regarding inadequate resources and guidance for implementation should be addressed. Finally, we propose that increased monitoring of symptom and treatment progression via novel sensor technology and the "DICE" (describe, investigate, create, and evaluate) approach may enhance both pharmacological and non-pharmacological interventions for the HIDA domain.
Collapse
Affiliation(s)
- Rachel M. Keszycki
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, Seattle, WA, United States
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
113
|
Hirjak D, Rashidi M, Fritze S, Bertolino AL, Geiger LS, Zang Z, Kubera KM, Schmitgen MM, Sambataro F, Calhoun VD, Weisbrod M, Tost H, Wolf RC. Patterns of co-altered brain structure and function underlying neurological soft signs in schizophrenia spectrum disorders. Hum Brain Mapp 2019; 40:5029-5041. [PMID: 31403239 DOI: 10.1002/hbm.24755] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Neurological soft signs (NSS) comprise a broad range of subtle neurological deficits and are considered to represent external markers of sensorimotor dysfunction frequently found in mental disorders of presumed neurodevelopmental origin. Although NSS frequently occur in schizophrenia spectrum disorders (SSD), specific patterns of co-altered brain structure and function underlying NSS in SSD have not been investigated so far. It is unclear whether gray matter volume (GMV) alterations or aberrant brain activity or a combination of both, are associated with NSS in SSD. Here, 37 right-handed SSD patients and 37 matched healthy controls underwent motor assessment and magnetic resonance imaging (MRI) at 3 T. NSS were examined on the Heidelberg NSS scale. We used a multivariate data fusion technique for multimodal MRI data-multiset canonical correlation and joint independent component analysis (mCCA + jICA)-to investigate co-altered patterns of GMV and intrinsic neural fluctuations (INF) in SSD patients exhibiting NSS. The mCCA + jICA model indicated two joint group-discriminating components (temporoparietal/cortical sensorimotor and frontocerebellar/frontoparietal networks) and one modality-specific group-discriminating component (p < .05, FDR corrected). NSS motor score was associated with joint frontocerebellar/frontoparietal networks in SSD patients. This study highlights complex neural pathomechanisms underlying NSS in SSD suggesting aberrant structure and function, predominantly in cortical and cerebellar systems that critically subserve sensorimotor dynamics and psychomotor organization.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mahmoud Rashidi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alina L Bertolino
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Matthias Weisbrod
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.,Department of Adult Psychiatry, SRH-Klinikum, Karlsbad-Langensteinbach, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
114
|
Baumann PS, Klauser P, Griffa A, Golay P, Palix J, Alameda L, Moulin V, Hagmann P, Do KQ, Conus P. Frontal cortical thickness correlates positively with impulsivity in early psychosis male patients. Early Interv Psychiatry 2019; 13:848-852. [PMID: 29770569 DOI: 10.1111/eip.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 01/16/2018] [Accepted: 03/13/2018] [Indexed: 11/28/2022]
Abstract
AIM Impulsive behaviours, which are frequent in young people suffering from psychosis have been linked to risky and violent behaviours and participate to the burden of psychotic illness. Given that morphological brain correlates of impulsivity in schizophrenia have been poorly investigated especially in young adults, the aim of this study was to investigate the relationship between impulsivity and cortical thickness in early psychosis (EP) patients. METHOD A total of 17 male subjects in the early phase of psychosis were recruited. Impulsivity was assessed with the Lecrubier Impulsivity Rating Scale. Mean cortical thickness was extracted from magnetic resonance imaging brain scans, using surface-based methods. RESULTS Mean cortical thickness in the frontal lobe correlated positively with mean impulsivity in EP male patients. CONCLUSION Our results suggest that psychotic subjects exhibiting higher impulsivity have larger frontal cortical thickness, which may pave the way towards the identification of patients with a higher risk to display impulsive behaviours.
Collapse
Affiliation(s)
- Philipp S Baumann
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alessandra Griffa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Philippe Golay
- Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julie Palix
- Department of Psychiatry, Unit for Research in Legal Psychiatry and Psychology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Luis Alameda
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Valérie Moulin
- Department of Psychiatry, Unit for Research in Legal Psychiatry and Psychology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Patric Hagmann
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
115
|
Individual differences in the effect of menstrual cycle on basal ganglia inhibitory control. Sci Rep 2019; 9:11063. [PMID: 31363112 PMCID: PMC6667495 DOI: 10.1038/s41598-019-47426-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
Basal ganglia (BG) are involved in inhibitory control (IC) and known to change in structure and activation along the menstrual cycle. Therefore, we investigated BG activation and connectivity patterns related to IC during different cycle phases. Thirty-six naturally cycling women were scanned three times performing a Stop Signal Task and hormonal levels analysed from saliva samples. We found an impaired Stop signal reaction time (SSRT) during pre-ovulatory compared to menses the higher the baseline IC of women. Blood oxygen level dependent (BOLD)-response in bilateral putamen significantly decreased during the luteal phase. Connectivity strength from the left putamen displayed an interactive effect of cycle and IC. During pre-ovulatory the connectivity with anterior cingulate cortex and left inferior parietal lobe was significantly stronger the higher the IC, and during luteal with left supplementary motor area. Right putamen's activation and left hemisphere's connectivity predicted the SSRT across participants. Therefore, we propose a compensatory mechanism for the hormonal changes across the menstrual cycle based on a lateralized pattern.
Collapse
|
116
|
Ziegler G, Hauser TU, Moutoussis M, Bullmore ET, Goodyer IM, Fonagy P, Jones PB, Lindenberger U, Dolan RJ. Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories. Nat Neurosci 2019; 22:992-999. [PMID: 31086316 PMCID: PMC7610393 DOI: 10.1038/s41593-019-0394-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
The transition from adolescence to adulthood is a period when ongoing brain development coincides with a substantially increased risk of psychiatric disorders. The developmental brain changes accounting for this emergent psychiatric symptomatology remain obscure. Capitalizing on a unique longitudinal dataset that includes in vivo myelin-sensitive magnetization transfer (MT) MRI scans, we show that this developmental period is characterized by brain-wide growth in MT trajectories within both gray matter and adjacent juxtacortical white matter. In this healthy population, the expression of common developmental traits, namely compulsivity and impulsivity, is tied to a reduced growth of these MT trajectories in frontostriatal regions. This reduction is most marked in dorsomedial and dorsolateral prefrontal regions for compulsivity and in lateral and medial prefrontal regions for impulsivity. These findings highlight that psychiatric traits of compulsivity and impulsivity are linked to regionally specific reductions in myelin-related growth in late adolescent brain development.
Collapse
Affiliation(s)
- Gabriel Ziegler
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Tobias U Hauser
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Michael Moutoussis
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- ImmunoPsychiatry, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Ian M Goodyer
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK
| | - Peter Fonagy
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK
| | - Ulman Lindenberger
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
117
|
Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A. A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front Behav Neurosci 2019; 13:99. [PMID: 31133834 PMCID: PMC6513968 DOI: 10.3389/fnbeh.2019.00099] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Growing evidence associates cerebellar abnormalities with several neuropsychiatric disorders in which compulsive symptomatology and impulsivity are part of the disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD), and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor dysfunction and essentially entails integrative processes under control of prefrontal-thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically, lesions of the posterior cerebellar vermis cause affective dysregulation and deficits in executive function. These deficits may be due to impairment of one of the main functions of the cerebellum, implementation of forward internal models of the environment. Actions that are independent of internal models may not be guided by predictive relationships or a mental representation of the goal. In this review article, we explain how this deficit might affect executive functions. Additionally, regionalized cerebellar lesions have been demonstrated to impair other brain functions such as the emergence of habits and behavioral inhibition, which are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical studies and research in animal models suggest that the cerebellum is not required for learning goal-directed behaviors, but it is critical for habit formation. Despite this accumulating data, the role of the cerebellum in compulsive symptomatology and impulsivity is still a matter of discussion. Overall, findings point to a modulatory function of the cerebellum in terminating or initiating actions through regulation of the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining ongoing actions when environmental conditions change by adjusting prefrontal activity in response to the new external and internal stimuli, thereby promoting flexible behavioral control. We elaborate on this explanatory framework and propose a working hypothesis for the involvement of the cerebellum in compulsive and impulsive endophenotypes.
Collapse
Affiliation(s)
- Marta Miquel
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Saleem M Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Isis Gil-Miravet
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
118
|
Rolls ET. The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia 2019; 128:14-43. [DOI: 10.1016/j.neuropsychologia.2017.09.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/04/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
|
119
|
Fasano MC, Semeraro C, Cassibba R, Kringelbach ML, Monacis L, de Palo V, Vuust P, Brattico E. Short-Term Orchestral Music Training Modulates Hyperactivity and Inhibitory Control in School-Age Children: A Longitudinal Behavioural Study. Front Psychol 2019; 10:750. [PMID: 31001182 PMCID: PMC6457347 DOI: 10.3389/fpsyg.2019.00750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/18/2019] [Indexed: 11/24/2022] Open
Abstract
Survey studies have shown that participating in music groups produces several benefits, such as discipline, cooperation and responsibility. Accordingly, recent longitudinal studies showed that orchestral music training has a positive impact on inhibitory control in school-age children. However, most of these studies examined long periods of training not always feasible for all families and institutions and focused on children’s measures ignoring the viewpoint of the teachers. Considering the crucial role of inhibitory control on hyperactivity, inattention and impulsivity, we wanted to explore if short orchestral music training would promote a reduction of these impulsive behaviors in children. This study involved 113 Italian children from 8 to 10 years of age. 55 of them attended 3 months of orchestral music training. The training included a 2-hour lesson per week at school and a final concert. The 58 children in the control group did not have any orchestral music training. All children were administered tests and questionnaires measuring inhibitory control and hyperactivity near the beginning and end of the 3-month training period. We also collected information regarding the levels of hyperactivity of the children as perceived by the teachers at both time points. Children in the music group showed a significant improvement in inhibitory control. Moreover, in the second measurement the control group showed an increase in self-reported hyperactivity that was not found in the group undergoing the music training program. This change was not noticed by the teachers, implying a discrepancy between self-reported and observed behavior at school. Our results suggest that even an intense and brief period of orchestral music training is sufficient to facilitate the development of inhibitory control by modulating the levels of self-reported hyperactivity. This research has implications for music pedagogy and education especially in children with high hyperactivity. Future investigations will test whether the findings can be extended to children diagnosed with ADHD.
Collapse
Affiliation(s)
- Maria C Fasano
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University - The Royal Academy of Music, Aarhus, Denmark
| | - Cristina Semeraro
- Department of Psychology, Educational Sciences, Communication, University of Bari, Bari, Italy
| | - Rosalinda Cassibba
- Department of Psychology, Educational Sciences, Communication, University of Bari, Bari, Italy
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University - The Royal Academy of Music, Aarhus, Denmark.,Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Institut D'études Avancées de Paris, Paris, France
| | - Lucia Monacis
- Department of Humanities, University of Foggia, Foggia, Italy
| | - Valeria de Palo
- Department of Humanities, University of Foggia, Foggia, Italy
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University - The Royal Academy of Music, Aarhus, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University - The Royal Academy of Music, Aarhus, Denmark
| |
Collapse
|
120
|
Ejova A, Ohtsuka K. Erroneous gambling-related beliefs emerge from broader beliefs during problem-solving: a critical review and classification scheme. THINKING & REASONING 2019. [DOI: 10.1080/13546783.2019.1590233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anastasia Ejova
- School of Psychology, Faculty of Science, The University of Auckland, Auckland, New Zealand
- LEVYNA Laboratory for the Experimental Research of Religion, Masaryk University, Brno, Czech Republic
| | - Keis Ohtsuka
- Institute for Health and Sport (iHeS), College of Health and Biomedicine – Psychology, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
121
|
Baker TE, Castellanos-Ryan N, Schumann G, Cattrell A, Flor H, Nees F, Banaschewski T, Bokde A, Whelan R, Buechel C, Bromberg U, Papadopoulos Orfanos D, Gallinat J, Garavan H, Heinz A, Walter H, Brühl R, Gowland P, Paus T, Poustka L, Martinot JL, Lemaitre H, Artiges E, Paillère Martinot ML, Smolka MN, Conrod P. Modulation of orbitofrontal-striatal reward activity by dopaminergic functional polymorphisms contributes to a predisposition to alcohol misuse in early adolescence. Psychol Med 2019; 49:801-810. [PMID: 29909784 DOI: 10.1017/s0033291718001459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Abnormalities in reward circuit function are considered a core feature of addiction. Yet, it is still largely unknown whether these abnormalities stem from chronic drug use, a genetic predisposition, or both. METHODS In the present study, we investigated this issue using a large sample of adolescent children by applying structural equation modeling to examine the effects of several dopaminergic polymorphisms of the D1 and D2 receptor type on the reward function of the ventral striatum (VS) and orbital frontal cortex (OFC), and whether this relationship predicted the propensity to engage in early alcohol misuse behaviors at 14 years of age and again at 16 years of age. RESULTS The results demonstrated a regional specificity with which the functional polymorphism rs686 of the D1 dopamine receptor (DRD1) gene and Taq1A of the ANKK1 gene influenced medial and lateral OFC activation during reward anticipation, respectively. Importantly, our path model revealed a significant indirect relationship between the rs686 of the DRD1 gene and early onset of alcohol misuse through a medial OFC × VS interaction. CONCLUSIONS These findings highlight the role of D1 and D2 in adjusting reward-related activations within the mesocorticolimbic circuitry, as well as in the susceptibility to early onset of alcohol misuse.
Collapse
Affiliation(s)
- Travis E Baker
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| | | | | | - Anna Cattrell
- Institute of Psychiatry, King's College London,London,UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim,Heidelberg University,Square J5, Mannheim,Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim,Heidelberg University,Square J5, Mannheim,Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry,Central Institute of Mental Health,Faculty of Clinical Medicine Mannheim,Medical Faculty Mannheim,Heidelberg University,Square J5, 68159 Mannheim,Germany
| | - Arun Bokde
- Discipline of Psychiatry,School of Medicine and Trinity College Institute of Neurosciences, Trinity College,Dublin,Ireland
| | - Rob Whelan
- Discipline of Psychiatry,School of Medicine and Trinity College Institute of Neurosciences, Trinity College,Dublin,Ireland
| | - Christian Buechel
- University Medical Centre Hamburg-Eppendorf,Haus S10, Martinistr. 52, Hamburg,Germany
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf,Haus S10, Martinistr. 52, Hamburg,Germany
| | | | - Juergen Gallinat
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology,University of Vermont,05405 Burlington, Vermont,USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt,Abbestr. 2 - 12, Berlin,Germany
| | - Penny Gowland
- School of Psychology, University of Nottingham, University Park,Nottingham,UK
| | - Tomáš Paus
- Rotman Research Institute, University of Toronto,Toronto,Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry,Central Institute of Mental Health,Faculty of Clinical Medicine Mannheim,Medical Faculty Mannheim,Heidelberg University,Square J5, 68159 Mannheim,Germany
| | | | - Herve Lemaitre
- Institut National de la Sante et de la Recherche Medicale, INSERM CEAUnit1000, Imaging & Psychiatry, University Paris Sud,91400 Orsay,France
| | - Eric Artiges
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| | | | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center,Technische Universität Dresden,Dresden,Germany
| | - Patricia Conrod
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| |
Collapse
|
122
|
Reynaud AJ, Froesel M, Guedj C, Ben Hadj Hassen S, Cléry J, Meunier M, Ben Hamed S, Hadj-Bouziane F. Atomoxetine improves attentional orienting in a predictive context. Neuropharmacology 2019; 150:59-69. [PMID: 30876931 DOI: 10.1016/j.neuropharm.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022]
Abstract
The role of norepinephrine (NE) in visuo-spatial attention remains poorly understood. Our goal was to identify the attentional processes influenced by atomoxetine (ATX) injections, a NE-reuptake inhibitor that boosts the level of NE in the brain, and to characterize these influences. We tested the effects of ATX injections, on seven monkeys performing a saccadic cued task in which cues and distractors were used to manipulate spatial attention. We found that when the cue accurately predicted the location of the upcoming cue in 80% of the trials, ATX consistently improved attentional orienting, as measured from reaction times (RTs). These effects were best accounted for by a faster accumulation rate in the valid trials, rather than by a change in the decision threshold. By contrast, the effect of ATX on alerting and distractor interference was more inconsistent. Finally, we also found that, under ATX, RTs to non-cued targets were longer when these were presented separately from cued targets. This suggests that the impact of NE on visuo-spatial attention depends on the context, such that the adaptive changes elicited by the highly informative value of the cues in the most frequent trials were accompanied by a cost in the less frequent trials.
Collapse
Affiliation(s)
- Amélie J Reynaud
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France; University UCBL, Lyon 1, F-69000, France.
| | - Mathilda Froesel
- University UCBL, Lyon 1, F-69000, France; CNRS, UMR5229, Institut des Sciences Cognitives Marc Jeannerod, France
| | - Carole Guedj
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France; University UCBL, Lyon 1, F-69000, France
| | - Sameh Ben Hadj Hassen
- University UCBL, Lyon 1, F-69000, France; CNRS, UMR5229, Institut des Sciences Cognitives Marc Jeannerod, France
| | - Justine Cléry
- University UCBL, Lyon 1, F-69000, France; CNRS, UMR5229, Institut des Sciences Cognitives Marc Jeannerod, France
| | - Martine Meunier
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France; University UCBL, Lyon 1, F-69000, France
| | - Suliann Ben Hamed
- University UCBL, Lyon 1, F-69000, France; CNRS, UMR5229, Institut des Sciences Cognitives Marc Jeannerod, France
| | - Fadila Hadj-Bouziane
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France; University UCBL, Lyon 1, F-69000, France.
| |
Collapse
|
123
|
Salvatore JE, Han S, Farris SP, Mignogna KM, Miles MF, Agrawal A. Beyond genome-wide significance: integrative approaches to the interpretation and extension of GWAS findings for alcohol use disorder. Addict Biol 2019; 24:275-289. [PMID: 29316088 PMCID: PMC6037617 DOI: 10.1111/adb.12591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a heritable complex behavior. Due to the highly polygenic nature of AUD, identifying genetic variants that comprise this heritable variation has proved to be challenging. With the exception of functional variants in alcohol metabolizing genes (e.g. ADH1B and ALDH2), few other candidate loci have been confidently linked to AUD. Genome-wide association studies (GWAS) of AUD and other alcohol-related phenotypes have either produced few hits with genome-wide significance or have failed to replicate on further study. These issues reinforce the complex nature of the genetic underpinnings for AUD and suggest that both GWAS studies with larger samples and additional analysis approaches that better harness the nominally significant loci in existing GWAS are needed. Here, we review approaches of interest in the post-GWAS era, including in silico functional analyses; functional partitioning of single nucleotide polymorphism heritability; aggregation of signal into genes and gene networks; and validation of identified loci, genes and gene networks in postmortem brain tissue and across species. These integrative approaches hold promise to illuminate our understanding of the biological basis of AUD; however, we recognize that the main challenge continues to be the extremely polygenic nature of AUD, which necessitates large samples to identify multiple loci associated with AUD liability.
Collapse
Affiliation(s)
- Jessica E. Salvatore
- Department of Psychology; Virginia Commonwealth University; Richmond VA USA
- Virginia Institute for Psychiatric and Behavioral Genetics; Virginia Commonwealth University; Richmond VA USA
| | - Shizhong Han
- Department of Psychiatry; University of Iowa; Iowa City IA USA
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins School of Medicine; Baltimore MD USA
| | - Sean P. Farris
- Waggoner Center for Alcohol and Addiction Research; The University of Texas at Austin; Austin TX USA
| | - Kristin M. Mignogna
- Virginia Institute for Psychiatric and Behavioral Genetics; Virginia Commonwealth University; Richmond VA USA
| | - Michael F. Miles
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
| | - Arpana Agrawal
- Department of Psychiatry; Washington University School of Medicine; Saint Louis MO USA
| |
Collapse
|
124
|
Chick CF. Cooperative versus competitive influences of emotion and cognition on decision making: A primer for psychiatry research. Psychiatry Res 2019; 273:493-500. [PMID: 30708200 DOI: 10.1016/j.psychres.2019.01.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 01/16/2023]
Abstract
Clinical research across the developmental spectrum increasingly reveals the nuanced ways in which emotion and cognition can work to either support or derail rational (i.e., healthy or goal-consistent) decision making. However, psychological theories offer discrepant views on how these processes interact, and on whether emotion is helpful or harmful to rational decision making. In order to translate theoretical predictions from basic psychology to clinical research, an understanding of theoretical perspectives on emotion and cognition, as informed by experimental psychology, is needed. Here, I review the ways in which dual-process theories have incorporated emotion into the process of decision making, discussing how they account for both positive and negative influences. I first describe seven theoretical perspectives that make explicit assumptions and predictions about the interaction between emotion and cognition: affect as information, the affect heuristic, risk as feelings, hot versus cool cognition, the somatic parker hypothesis, prospect theory, and fuzzy-trace theory. I then discuss the conditions under which each theoretical perspective conceptualizes emotion as beneficial or harmful to decision making, providing examples from research on psychiatric disorders.
Collapse
Affiliation(s)
- Christina F Chick
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, 401 Quarry Road, Palo Alto, CA 94305, United States.
| |
Collapse
|
125
|
Russell BS, Hutchison M, Fusco A. Emotion Regulation Outcomes and Preliminary Feasibility Evidence From a Mindfulness Intervention for Adolescent Substance Use. JOURNAL OF CHILD & ADOLESCENT SUBSTANCE ABUSE 2019. [DOI: 10.1080/1067828x.2018.1561577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
126
|
Provenza NR, Matteson ER, Allawala AB, Barrios-Anderson A, Sheth SA, Viswanathan A, McIngvale E, Storch EA, Frank MJ, McLaughlin NCR, Cohn JF, Goodman WK, Borton DA. The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental Disorders. Front Neurosci 2019; 13:152. [PMID: 30890909 PMCID: PMC6412779 DOI: 10.3389/fnins.2019.00152] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mental disorders are a leading cause of disability worldwide, and available treatments have limited efficacy for severe cases unresponsive to conventional therapies. Neurosurgical interventions, such as lesioning procedures, have shown success in treating refractory cases of mental illness, but may have irreversible side effects. Neuromodulation therapies, specifically Deep Brain Stimulation (DBS), may offer similar therapeutic benefits using a reversible (explantable) and adjustable platform. Early DBS trials have been promising, however, pivotal clinical trials have failed to date. These failures may be attributed to targeting, patient selection, or the “open-loop” nature of DBS, where stimulation parameters are chosen ad hoc during infrequent visits to the clinician’s office that take place weeks to months apart. Further, the tonic continuous stimulation fails to address the dynamic nature of mental illness; symptoms often fluctuate over minutes to days. Additionally, stimulation-based interventions can cause undesirable effects if applied when not needed. A responsive, adaptive DBS (aDBS) system may improve efficacy by titrating stimulation parameters in response to neural signatures (i.e., biomarkers) related to symptoms and side effects. Here, we present rationale for the development of a responsive DBS system for treatment of refractory mental illness, detail a strategic approach for identification of electrophysiological and behavioral biomarkers of mental illness, and discuss opportunities for future technological developments that may harness aDBS to deliver improved therapy.
Collapse
Affiliation(s)
- Nicole R Provenza
- Brown University School of Engineering, Providence, RI, United States.,Charles Stark Draper Laboratory, Cambridge, MA, United States
| | - Evan R Matteson
- Brown University School of Engineering, Providence, RI, United States
| | - Anusha B Allawala
- Brown University School of Engineering, Providence, RI, United States
| | - Adriel Barrios-Anderson
- Psychiatric Neurosurgery Program at Butler Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Elizabeth McIngvale
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Michael J Frank
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicole C R McLaughlin
- Psychiatric Neurosurgery Program at Butler Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jeffrey F Cohn
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - David A Borton
- Brown University School of Engineering, Providence, RI, United States.,Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Department of Veterans Affairs, Providence Medical Center, Center for Neurorestoration and Neurotechnology, Providence, RI, United States
| |
Collapse
|
127
|
Vassileva J, Conrod PJ. Impulsivities and addictions: a multidimensional integrative framework informing assessment and interventions for substance use disorders. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180137. [PMID: 30966920 PMCID: PMC6335463 DOI: 10.1098/rstb.2018.0137] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Impulse control is becoming a critical survival skill for the twenty-first century. Impulsivity is implicated in virtually all externalizing behaviours and disorders, and figures prominently in the aetiology and long-term sequelae of substance use disorders (SUDs). Despite its robust clinical and predictive validity, the study of impulsivity is complicated by its multidimensional nature, characterized by a variety of trait-like personality dimensions, as well as by more state-dependent neurocognitive dimensions, with variable convergence across measures. This review provides a hierarchical framework for linking self-report and neurocognitive measures to latent constructs of impulsivity and, in turn, to different psychopathology vulnerabilities, including substance-specific addictions and comorbidities. Impulsivity dimensions are presented as novel behavioural targets for prevention and intervention. Novel treatment approaches addressing domains of impulsivity are reviewed and recommendations for future directions in research and clinical interventions for SUDs are offered. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.
Collapse
Affiliation(s)
- Jasmin Vassileva
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J. Conrod
- Department of Psychiatry, University of Montreal, Montreal, Canada
- Centre de Recherche, CHU Ste Justine, Montreal, Canada
| |
Collapse
|
128
|
An Essential Role of the Intraparietal Sulcus in Response Inhibition Predicted by Parcellation-Based Network. J Neurosci 2019; 39:2509-2521. [PMID: 30692225 DOI: 10.1523/jneurosci.2244-18.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023] Open
Abstract
The posterior parietal cortex (PPC) features close anatomical and functional relationships with the prefrontal cortex. However, the necessity of the PPC in executive functions has been questioned. The present study used the stop-signal task to examine response inhibition, an executive function that inhibits prepotent response tendency. The brain activity and resting-state functional connectivity were measured to analyze a parcellation-based network that was aimed at identifying a candidate PPC region essential for response inhibition in humans. The intraparietal sulcus (IPS) was activated during response inhibition and connected with the inferior frontal cortex and the presupplementary motor area, the two frontal regions known to be necessary for response inhibition. Next, transcranial magnetic stimulation (TMS) was used to test the essential role of the IPS region for response inhibition. TMS over the IPS region prolonged the stop-signal reaction time (SSRT), the standard behavioral index used to evaluate stopping performance, when stimulation was applied 30-0 ms before stopping. On the contrary, stimulation over the temporoparietal junction region, an area activated during response inhibition but lacking connectivity with the two frontal regions, did not show changes in SSRT. These results indicate that the IPS identified using the parcellation-based network plays an essential role in executive functions.SIGNIFICANCE STATEMENT Based on the previous neuropsychological studies reporting no impairment in executive functions after lesions in the posterior parietal cortex (PPC), the necessity of PPC in executive functions has been questioned. Here, contrary to the long-lasting view, by using recently developed analysis in functional MRI ("parcellation-based network analysis"), we identified the intraparietal sulcus (IPS) region in the PPC as essential for response inhibition: one executive function to stop actions that are inaccurate in a given context. The necessity of IPS for response inhibition was further tested by an interventional technique of transcranial magnetic stimulation. Stimulation to the IPS disrupted the performance of stopping. Our findings suggest that the IPS plays essential roles in executive functions.
Collapse
|
129
|
Cheng W, Rolls ET, Robbins TW, Gong W, Liu Z, Lv W, Du J, Wen H, Ma L, Quinlan EB, Garavan H, Artiges E, Papadopoulos Orfanos D, Smolka MN, Schumann G, Kendrick K, Feng J. Decreased brain connectivity in smoking contrasts with increased connectivity in drinking. eLife 2019; 8:e40765. [PMID: 30616717 PMCID: PMC6336408 DOI: 10.7554/elife.40765] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023] Open
Abstract
In a group of 831 participants from the general population in the Human Connectome Project, smokers exhibited low overall functional connectivity, and more specifically of the lateral orbitofrontal cortex which is associated with non-reward mechanisms, the adjacent inferior frontal gyrus, and the precuneus. Participants who drank a high amount had overall increases in resting state functional connectivity, and specific increases in reward-related systems including the medial orbitofrontal cortex and the cingulate cortex. Increased impulsivity was found in smokers, associated with decreased functional connectivity of the non-reward-related lateral orbitofrontal cortex; and increased impulsivity was found in high amount drinkers, associated with increased functional connectivity of the reward-related medial orbitofrontal cortex. The main findings were cross-validated in an independent longitudinal dataset with 1176 participants, IMAGEN. Further, the functional connectivities in 14-year-old non-smokers (and also in female low-drinkers) were related to who would smoke or drink at age 19. An implication is that these differences in brain functional connectivities play a role in smoking and drinking, together with other factors.
Collapse
Affiliation(s)
- Wei Cheng
- Institute of Science and Technology for Brain-inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University)Ministry of EducationShanghaiChina
- Department of Computer ScienceUniversity of WarwickCoventryUnited Kingdom
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-inspired IntelligenceFudan UniversityShanghaiChina
- Department of Computer ScienceUniversity of WarwickCoventryUnited Kingdom
- Oxford Centre for Computational NeuroscienceOxfordUnited Kingdom
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of PsychologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Weikang Gong
- Institute of Science and Technology for Brain-inspired IntelligenceFudan UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhaowen Liu
- School of Computer Science and TechnologyXidian UniversityXi’anChina
| | - Wujun Lv
- School of MathematicsShanghai University Finance and EconomicsShanghaiChina
| | - Jingnan Du
- Institute of Science and Technology for Brain-inspired IntelligenceFudan UniversityShanghaiChina
| | - Hongkai Wen
- Department of Computer ScienceUniversity of WarwickCoventryUnited Kingdom
| | - Liang Ma
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| | - Hugh Garavan
- Department of PsychiatryUniversity of VermontVermontUnited States
- Department of Psychiatry PsychologyUniversity of VermontVermontUnited States
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 'Neuroimaging & Psychiatry', University Paris Sud – Paris Saclay, University Paris Descartes, Service Hospitalier Frédéric Joliot and GH Nord Essonne Psychiatry Department 91G16OrsayFrance
| | | | - Michael N Smolka
- Department of Psychiatry and Neuroimaging CenterTechnische Universität DresdenDresdenGermany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| | - Keith Kendrick
- Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, Center for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University)Ministry of EducationShanghaiChina
- Department of Computer ScienceUniversity of WarwickCoventryUnited Kingdom
- School of Mathematical Sciences and Centre for Computational Systems BiologyFudan UniversityShanghaiChina
| |
Collapse
|
130
|
Neal LB, Gable PA. Shifts in frontal asymmetry underlying impulsive and controlled decision-making. Biol Psychol 2019; 140:28-34. [DOI: 10.1016/j.biopsycho.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 02/01/2023]
|
131
|
Pas P, Plessis SD, van den Munkhof HE, Gladwin TE, Vink M. Using subjective expectations to model the neural underpinnings of proactive inhibition. Eur J Neurosci 2019; 49:1575-1586. [PMID: 30556927 PMCID: PMC6618303 DOI: 10.1111/ejn.14308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Proactive inhibition – the anticipation of having to stop a response – relies on objective information contained in cue‐related contingencies in the environment, as well as on the subjective interpretation derived from these cues. To date, most studies of brain areas underlying proactive inhibition have exclusively considered the objective predictive value of environmental cues, by varying the probability of stop‐signals. However, by only taking into account the effect of different cues on brain activation, the subjective component of how cues affect behavior is ignored. We used a modified stop‐signal response task that includes a measurement for subjective expectation, to investigate the effect of this subjective interpretation. After presenting a cue indicating the probability that a stop‐signal will occur, subjects were asked whether they expected a stop‐signal to occur. Furthermore, response time was used to retrospectively model brain activation related to stop‐expectation. We found more activation during the cue period for 50% stop‐signal probability, when contrasting with 0%, in the mid and inferior frontal gyrus, inferior parietal lobe and putamen. When contrasting expected vs. unexpected trials, we found modest effects in the mid frontal gyrus, parietal, and occipital areas. With our third contrast, we modeled brain activation during the cue with trial‐by‐trial variances in response times. This yielded activation in the putamen, inferior parietal lobe, and mid frontal gyrus. Our study is the first to use the behavioral effects of proactive inhibition to identify the underlying brain regions, by employing an unbiased task‐design that temporally separates cue and response.
Collapse
Affiliation(s)
- Pascal Pas
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | | | | | - Matthijs Vink
- Departments of Experimental & Developmental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
132
|
Baldus C, Mokros L, Daubmann A, Arnaud N, Holtmann M, Thomasius R, Legenbauer T. Treatment effectiveness of a mindfulness-based inpatient group psychotherapy in adolescent substance use disorder - study protocol for a randomized controlled trial. Trials 2018; 19:706. [PMID: 30587217 PMCID: PMC6307182 DOI: 10.1186/s13063-018-3048-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current treatments for adolescents with substance use disorder (SUD) have had only limited success. In recent years, research has underlined the role of self-regulatory processes and impulsivity in the development and maintenance of SUD in adolescents. Mindfulness has gained much attention due to its capacity to influence self-regulatory processes, particularly in adult populations. Initial studies have shown the potential of mindfulness-based approaches in younger SUD patients. The aim of the present clinical trial is to evaluate the added treatment effect of a mindfulness-based group psychotherapy ("Mind it!") for adolescents with SUD in comparison to the current standard treatment. Moreover, we seek to explore the feasibility of the intervention and possible mediators of treatment effects. METHODS/DESIGN There will be N = 340 participants aged between 13 and 19 years who are receiving child or adolescent psychiatric or psychotherapeutic inpatient or day treatment targeting their SUD and who have reported substance use 30 days before detoxification and do not show acute psychotic or suicidal symptoms at baseline. The study is a prospective randomized controlled multi-center trial in which patients are assessed: (1) after completing a prior detoxification phase (t0), (2) at 4 weeks (t1), (3) at 8 weeks (t2), and (4) at 6 months after t2 (t3). Participants in the intervention group will receive mindfulness-based group psychotherapy in addition to their existing treatment regime. The primary outcome is substance use in the past 30 days at follow-up based on the Timeline Followback self-report. Secondary outcomes include craving, severity of dependence, and abstinence motivation. Mindfulness, impulsivity, and emotion regulation will be analyzed as possible mediators of treatment effects. DISCUSSION This trial is expected to provide evidence of the added effect of a novel, safe, and feasible treatment option for adolescents with SUD. TRIAL REGISTRATION German Register of Clinical Studies, DRKS00014041 . Registered on 17 April 2018.
Collapse
Affiliation(s)
- Christiane Baldus
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Mokros
- Landschaftsverband Westfalen-Lippe (LWL) University Hospital Hamm for Child and Adolescent Psychiatry, Ruhr-University Bochum, Hamm, Germany
| | - Anne Daubmann
- Department of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolas Arnaud
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Holtmann
- Landschaftsverband Westfalen-Lippe (LWL) University Hospital Hamm for Child and Adolescent Psychiatry, Ruhr-University Bochum, Hamm, Germany
| | - Rainer Thomasius
- German Centre for Addiction Research in Childhood and Adolescence, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Legenbauer
- Landschaftsverband Westfalen-Lippe (LWL) University Hospital Hamm for Child and Adolescent Psychiatry, Ruhr-University Bochum, Hamm, Germany
| |
Collapse
|
133
|
Wasylyshyn N, Hemenway Falk B, Garcia JO, Cascio CN, O'Donnell MB, Bingham CR, Simons-Morton B, Vettel JM, Falk EB. Global brain dynamics during social exclusion predict subsequent behavioral conformity. Soc Cogn Affect Neurosci 2018. [PMID: 29529310 PMCID: PMC5827351 DOI: 10.1093/scan/nsy007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms. Adolescent males (n = 57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and social inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (dorsal anterior cingulate cortex, anterior insula). Using predictive modeling, this measure of global connectivity during exclusion predicted the extent of conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences.
Collapse
Affiliation(s)
- Nick Wasylyshyn
- Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA.,Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brett Hemenway Falk
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier O Garcia
- Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher N Cascio
- School of Journalism and Mass Communication, University of Wisconsin, Madison, WI 53706, USA
| | | | - C Raymond Bingham
- University of Michigan Transportation Research Institute, Ann Arbor, MI 48109, USA
| | - Bruce Simons-Morton
- Eunice Kennedy Shriver National Institute on Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jean M Vettel
- Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Emily B Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA.,Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
134
|
Kvamme TL, Rømer Thomsen K, Callesen MB, Doñamayor N, Jensen M, Pedersen MU, Voon V. Distraction towards contextual alcohol cues and craving are associated with levels of alcohol use among youth. BMC Psychiatry 2018; 18:354. [PMID: 30376829 PMCID: PMC6208081 DOI: 10.1186/s12888-018-1919-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Controlling drinking behaviour requires the ability to block out distracting alcohol cues in situations in which drinking is inappropriate or harmful. However, at present few studies have investigated whether distraction and response inhibition to contextual alcohol cues are related to alcohol use in adolescents and young adults. We aimed to investigate whether tendencies towards distraction and failures of response inhibition in the presence of contextual alcohol cues, and alcohol craving were associated with higher levels of alcohol consumption, beyond what could be explained by demographic variables. METHODS To test this, 108 participants (Mean age = 21.7, range = 16-27), whom were both drinkers and non-drinkers performed a modified Go/NoGo task tailored to measure distraction and response inhibition in the presence of alcohol cues relative to neutral stimuli. Alcohol craving was assessed using a visual analogue scale of craving for different types of alcohol cues. Levels of alcohol use and problematic alcohol use were assessed using a self-report measure of number of drinking days in the previous month and the Alcohol Use Disorders Identification Test. Data were analysed using sequential multiple regression using a zero-inflated negative binomial distribution model. RESULTS Drinking days correlated with distraction but not response inhibition to contextual alcohol cues. Sequential regression analyses revealed that the inclusion of distraction bias accounted for 11% additional variance (significant) in alcohol use, in addition to that explained by demographics alone (17%). Craving for alcohol explained an additional 30% variance (significant) in alcohol use. CONCLUSIONS The results reported here support the idea that both biased distraction towards alcohol cues and alcohol craving are associated with preceding drinking days, but not necessarily drinking status. Further studies are warranted that address whether cognitive distraction to alcohol-related cues cause or is an effect of alcohol use among youth.
Collapse
Affiliation(s)
- Timo Lehmann Kvamme
- 0000 0001 1956 2722grid.7048.bCentre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Bartholins Allé 10, Building 1322, 2. Floor, Aarhus C, Denmark ,0000000121885934grid.5335.0Department of Psychiatry, University of Cambridge, Cambridge, UK ,0000 0001 1956 2722grid.7048.bCenter of Functionally Integrative Neuroscience, MINDLab, Aarhus University, Aarhus C, Denmark
| | - Kristine Rømer Thomsen
- 0000 0001 1956 2722grid.7048.bCentre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Bartholins Allé 10, Building 1322, 2. Floor, Aarhus C, Denmark
| | - Mette Buhl Callesen
- 0000 0001 1956 2722grid.7048.bCentre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Bartholins Allé 10, Building 1322, 2. Floor, Aarhus C, Denmark
| | - Nuria Doñamayor
- 0000000121885934grid.5335.0Department of Psychiatry, University of Cambridge, Cambridge, UK ,0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mads Jensen
- 0000 0001 1956 2722grid.7048.bCenter of Functionally Integrative Neuroscience, MINDLab, Aarhus University, Aarhus C, Denmark
| | - Mads Uffe Pedersen
- 0000 0001 1956 2722grid.7048.bCentre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Bartholins Allé 10, Building 1322, 2. Floor, Aarhus C, Denmark
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK. .,Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, UK. .,NIHR Biomedical Research Council, University of Cambridge, Cambridge, UK.
| |
Collapse
|
135
|
Spechler PA, Allgaier N, Chaarani B, Whelan R, Watts R, Orr C, Albaugh MD, D'Alberto N, Higgins ST, Hudson KE, Mackey S, Potter A, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Cattrell A, Conrod PJ, Desrivières S, Flor H, Frouin V, Gallinat J, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Smolka MN, Walter H, Schumann G, Althoff RR, Garavan H. The initiation of cannabis use in adolescence is predicted by sex-specific psychosocial and neurobiological features. Eur J Neurosci 2018; 50:2346-2356. [PMID: 29889330 DOI: 10.1111/ejn.13989] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Cannabis use initiated during adolescence might precipitate negative consequences in adulthood. Thus, predicting adolescent cannabis use prior to any exposure will inform the aetiology of substance abuse by disentangling predictors from consequences of use. In this prediction study, data were drawn from the IMAGEN sample, a longitudinal study of adolescence. All selected participants (n = 1,581) were cannabis-naïve at age 14. Those reporting any cannabis use (out of six ordinal use levels) by age 16 were included in the outcome group (N = 365, males n = 207). Cannabis-naïve participants at age 14 and 16 were included in the comparison group (N = 1,216, males n = 538). Psychosocial, brain and genetic features were measured at age 14 prior to any exposure. Cross-validated regularized logistic regressions for each use level by sex were used to perform feature selection and obtain prediction error statistics on independent observations. Predictors were probed for sex- and drug-specificity using post-hoc logistic regressions. Models reliably predicted use as indicated by satisfactory prediction error statistics, and contained psychosocial features common to both sexes. However, males and females exhibited distinct brain predictors that failed to predict use in the opposite sex or predict binge drinking in independent samples of same-sex participants. Collapsed across sex, genetic variation on catecholamine and opioid receptors marginally predicted use. Using machine learning techniques applied to a large multimodal dataset, we identified a risk profile containing psychosocial and sex-specific brain prognostic markers, which were likely to precede and influence cannabis initiation.
Collapse
Affiliation(s)
- Philip A Spechler
- Vermont Center on Behavior and Health, University of Vermont, Burlington, VT, USA.,Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Bader Chaarani
- Vermont Center on Behavior and Health, University of Vermont, Burlington, VT, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Richard Watts
- Department of Radiology, University of Vermont, Burlington, VT, USA
| | - Catherine Orr
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Matthew D Albaugh
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Stephen T Higgins
- Vermont Center on Behavior and Health, University of Vermont, Burlington, VT, USA.,Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Kelsey E Hudson
- Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Alexandra Potter
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Tobias Banaschewski
- Medical Faculty Mannheim, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Anna Cattrell
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia J Conrod
- Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Montreal, Canada
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Herta Flor
- Medical Faculty Mannheim, Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Jean-Luc Martinot
- DIGITEO Labs, Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud - University Paris Saclay, Gif sur Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud - Paris Saclay, University Paris Descartes, Paris, France.,Department of Adolescent Psychopathology and Medicine, AP-HP, Maison de Solenn, Cochin Hospital, Paris, France
| | - Frauke Nees
- Medical Faculty Mannheim, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Medical Faculty Mannheim, Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | | | - Tomáš Paus
- Baycrest and Departments of Psychology and Psychiatry, Rotman Research Institute, University of Toronto, Toronto, ON, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, 37075, Göttingen, Germany.,Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert R Althoff
- Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Hugh Garavan
- Vermont Center on Behavior and Health, University of Vermont, Burlington, VT, USA.,Department of Psychological Science, University of Vermont, Burlington, VT, 05401, USA.,Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
136
|
Harper J, Malone SM, Iacono WG. Conflict-related medial frontal theta as an endophenotype for alcohol use disorder. Biol Psychol 2018; 139:25-38. [PMID: 30300674 DOI: 10.1016/j.biopsycho.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022]
Abstract
Diminished cognitive control in alcohol use disorder (AUD) is thought to be mediated by prefrontal cortex circuitry dysregulation. Research testing the relationship between AUD and specific cognitive control psychophysiological correlates, such as medial frontal (MF) theta-band EEG power, is scarce, and the etiology of this relationship is largely unknown. The current report tested relationship between pathological alcohol use through young adulthood and reduced conflict-related theta at age 29 in a large prospective population-based twin sample. Greater lifetime AUD symptomatology was associated with reduced MF theta power during response conflict, but not alpha-band visual attention processing. Follow-up analyses using cotwin control analysis and biometric modeling suggested that genetic influences, and not the consequences of sustained AUD symptomatology, explained the theta-AUD association. Results provide strong evidence that AUD is genetically related to diminished conflict-related MF theta, and advance MF theta as a promising electrophysiological correlate of AUD-related dysfunctional frontal circuitry.
Collapse
Affiliation(s)
- Jeremy Harper
- Department of Psychology, University of Minnesota, USA.
| | | | | |
Collapse
|
137
|
Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 95:315-335. [PMID: 30236781 DOI: 10.1016/j.neubiorev.2018.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Although genuine motor abnormalities (GMA) are frequently found in schizophrenia, they are also considered as an intrinsic feature of bipolar, obsessive-compulsive, and neurodevelopmental disorders with early onset such as autism, ADHD, and Tourette syndrome. Such transnosological observations strongly suggest a common neural pathophysiology. This systematic review highlights the evidence on GMA and their neuroanatomical substrates in bipolar, obsessive-compulsive, and neurodevelopmental disorders. The data lends support for a common pattern contributing to GMA expression in these diseases that seems to be related to cerebello-thalamo-cortical, fronto-parietal, and cortico-subcortical motor circuit dysfunction. The identified studies provide first evidence for a motor network dysfunction as a correlate of early neurodevelopmental deviance prior to clinical symptom expression. There are also first hints for a developmental risk factor model of these mental disorders. An in-depth analysis of motor networks and related patho-(physiological) mechanisms will not only help promoting Research Domain Criteria (RDoC) Motor System construct, but also facilitate the development of novel psychopharmacological models, as well as the identification of neurobiologically plausible target sites for non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
138
|
Tsvetanov KA, Ye Z, Hughes L, Samu D, Treder MS, Wolpe N, Tyler LK, Rowe JB. Activity and Connectivity Differences Underlying Inhibitory Control Across the Adult Life Span. J Neurosci 2018; 38:7887-7900. [PMID: 30049889 PMCID: PMC6125816 DOI: 10.1523/jneurosci.2919-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibitory control requires precise regulation of activity and connectivity within multiple brain networks. Previous studies have typically evaluated age-related changes in regional activity or changes in interregional interactions. Instead, we test the hypothesis that activity and connectivity make distinct, complementary contributions to performance across the life span and the maintenance of successful inhibitory control systems. A representative sample of healthy human adults in a large, population-based life span cohort performed an integrated Stop-Signal (SS)/No-Go task during functional magnetic resonance imaging (n = 119; age range, 18-88 years). Individual differences in inhibitory control were measured in terms of the SS reaction time (SSRT), using the blocked integration method. Linear models and independent components analysis revealed that individual differences in SSRT correlated with both activity and connectivity in a distributed inhibition network, comprising prefrontal, premotor, and motor regions. Importantly, this pattern was moderated by age, such that the association between inhibitory control and connectivity, but not activity, differed with age. Multivariate statistics and out-of-sample validation tests of multifactorial functional organization identified differential roles of activity and connectivity in determining an individual's SSRT across the life span. We propose that age-related differences in adaptive cognitive control are best characterized by the joint consideration of multifocal activity and connectivity within distributed brain networks. These insights may facilitate the development of new strategies to support cognitive ability in old age.SIGNIFICANCE STATEMENT The preservation of cognitive and motor control is crucial for maintaining well being across the life span. We show that such control is determined by both activity and connectivity within distributed brain networks. In a large, population-based cohort, we used a novel whole-brain multivariate approach to estimate the functional components of inhibitory control, in terms of their activity and connectivity. Both activity and connectivity in the inhibition network changed with age. But only the association between performance and connectivity, not activity, differed with age. The results suggest that adaptive control is best characterized by the joint consideration of multifocal activity and connectivity. These insights may facilitate the development of new strategies to maintain cognitive ability across the life span in health and disease.
Collapse
Affiliation(s)
- Kamen A Tsvetanov
- Centre for Speech, Language and the Brain,
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), Department of Psychology and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, United Kingdom
| | - Zheng Ye
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Laura Hughes
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, United Kingdom
| | - David Samu
- Centre for Speech, Language and the Brain
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), Department of Psychology and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Matthias S Treder
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), Department of Psychology and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom
| | - Noham Wolpe
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), Department of Psychology and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, United Kingdom
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 7EF, United Kingdom, and
| | - Lorraine K Tyler
- Centre for Speech, Language and the Brain
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), Department of Psychology and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - James B Rowe
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), Department of Psychology and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, United Kingdom
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 7EF, United Kingdom, and
| |
Collapse
|
139
|
Kubera KM, Schmitgen MM, Maier-Hein KH, Thomann PA, Hirjak D, Wolf RC. Differential contributions of cortical thickness and surface area to trait impulsivity in healthy young adults. Behav Brain Res 2018; 350:65-71. [DOI: 10.1016/j.bbr.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 01/21/2023]
|
140
|
MAOA genotype influences neural response during an inhibitory task in adolescents with conduct disorder. Eur Child Adolesc Psychiatry 2018; 27:1159-1169. [PMID: 29855796 DOI: 10.1007/s00787-018-1170-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/19/2018] [Indexed: 12/31/2022]
Abstract
Conduct disorder (CD), a common psychiatric disorder in children and adolescents, is characterized by encroaching upon other rights and violations of age-appropriate social expectations repeatedly and persistently. Individuals with CD often have high aggressiveness and low inhibitory capacity. The monoamine oxidase A (MAOA) gene has long been associated with aggression. Effects of MAOA genotype on inhibitory control have been examined in general population. Several studies had revealed reduced activation in prefrontal areas, especially the anterior cingulate cortex (ACC), in low-expression MAOA (MAOA-L) allele carriers compared to high-expression MAOA (MAOA-H) allele carriers. However, little is known about its genetic risk influences on inhibitory processes in clinical samples. In this study, functional magnetic resonance imaging (fMRI) was administered to a sample of adolescent boys with CD during the performance of a GoStop task, 29 of whom carrying MAOA-L allele and 24 carrying MAOA-H allele. Relative to MAOA-H carriers, MAOA-L carriers in CD showed more pronounced deactivation in the precuneus, supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC). Deactivation within the default mode network (DMN) and inhibitory-related areas in MAOA-L carriers may be related to compensation for low sensitivity to inhibition and/or an atypical allocation of cognitive resources. The results suggested a possible neural mechanism through which MAOA affects inhibitory processes in a clinical sample.
Collapse
|
141
|
D'Alberto N, Chaarani B, Orr CA, Spechler PA, Albaugh MD, Allgaier N, Wonnell A, Banaschewski T, Bokde AL, Bromberg U, Büchel C, Quinlan EB, Conrod PJ, Desrivières S, Flor H, Fröhner JH, Frouin V, Gowland P, Heinz A, Itterman B, Martinot J, Paillère Martinot M, Artiges E, Nees F, Papadopoulos Orfanos D, Poustka L, Robbins TW, Smolka MN, Walter H, Whelan R, Schumann G, Potter AS, Garavan H. Individual differences in stop-related activity are inflated by the adaptive algorithm in the stop signal task. Hum Brain Mapp 2018; 39:3263-3276. [PMID: 29656430 PMCID: PMC6045976 DOI: 10.1002/hbm.24075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 11/12/2022] Open
Abstract
Research using the Stop Signal Task employing an adaptive algorithm to accommodate individual differences often report inferior performance on the task in individuals with ADHD, OCD, and substance use disorders compared to non-clinical controls. Furthermore, individuals with deficits in inhibitory control tend to show reduced neural activity in key inhibitory regions during successful stopping. However, the adaptive algorithm systematically introduces performance-related differences in objective task difficulty that may influence the estimation of individual differences in stop-related neural activity. This report examines the effect that these algorithm-related differences have on the measurement of neural activity during the stop signal task. We compared two groups of subjects (n = 210) who differed in inhibitory ability using both a standard fMRI analysis and an analysis that resampled trials to remove the objective task difficulty confound. The results show that objective task difficulty influences the magnitude of between-group differences and that controlling for difficulty attenuates stop-related activity differences between superior and poor inhibitors. Specifically, group differences in the right inferior frontal gyrus, right middle occipital gyrus, and left inferior frontal gyrus are diminished when differences in objective task difficulty are controlled for. Also, when objective task difficulty effects are exaggerated, group differences in stop related activity emerge in other regions of the stopping network. The implications of these effects for how we interpret individual differences in activity levels are discussed.
Collapse
Affiliation(s)
- Nicholas D'Alberto
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| | - Bader Chaarani
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| | - Catherine A. Orr
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| | - Philip A. Spechler
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| | - Matthew D. Albaugh
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| | - Nicholas Allgaier
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| | - Alexander Wonnell
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5Mannheim68159Germany
| | - Arun L.W. Bokde
- Discipline of PsychiatrySchool of Medicine and Trinity College Institute of Neurosciences, Trinity CollegeDublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg‐Eppendorf, House W34, 3.OG, Martinistr. 52Hamburg20246Germany
| | - Christian Büchel
- University Medical Centre Hamburg‐Eppendorf, House W34, 3.OG, Martinistr. 52Hamburg20246Germany
| | - Erin Burke Quinlan
- Medical Research Council – Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonUnited Kingdom
| | - Patricia J. Conrod
- Department of PsychiatryUniversite de Montreal, CHU Ste Justine HospitalMontrealQuebecCanada
- Department of Psychological Medicine and PsychiatryInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Sylvane Desrivières
- Medical Research Council – Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonUnited Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg University, Square J5MannheimGermany
- Department of Psychology, School of Social SciencesUniversity of MannheimMannheim68131Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging CenterTechnische Universität DresdenDresdenGermany
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique, CEA‐Saclay CenterParisFrance
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and AstronomyUniversity of Nottingham, University ParkNottinghamUnited Kingdom
| | - Andreas Heinz
- Department of Psychiatry and PsychotherapyCampus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1BerlinGermany
| | - Bernd Itterman
- Physikalisch‐Technische Bundesanstalt (PTB), Abbestr. 2 – 12BerlinGermany
| | - Jean‐Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes – Sorbonne Paris Cité and Maison de SolennParisFrance
| | - Marie‐Laure Paillère Martinot
- Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin HospitalInstitut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes – Sorbonne Paris Cité and AP‐HPParisFrance
| | - Eric Artiges
- Department 91G16, Orsay HospitalInstitut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes – Sorbonne Paris Cité and PsychiatryParisFrance
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5Mannheim68159Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg University, Square J5MannheimGermany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and PsychotherapyUniversity Medical Centre Göttingen, von‐Siebold‐Str. 5Göttingen37075Germany
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Währinger Gürtel 18‐20Vienna1090Austria
| | - Trevor W. Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging CenterTechnische Universität DresdenDresdenGermany
| | - Henrik Walter
- Department of Psychiatry and PsychotherapyCampus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1BerlinGermany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College DublinDublinIreland
| | - Gunter Schumann
- Medical Research Council – Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonUnited Kingdom
| | - Alexandra S. Potter
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| | - Hugh Garavan
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermont
| |
Collapse
|
142
|
Cheetham A, Allen NB, Whittle S, Simmons J, Yücel M, Lubman DI. Amygdala volume mediates the relationship between externalizing symptoms and daily smoking in adolescence: A prospective study. Psychiatry Res Neuroimaging 2018; 276:46-52. [PMID: 29661490 DOI: 10.1016/j.pscychresns.2018.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/31/2018] [Accepted: 03/07/2018] [Indexed: 11/28/2022]
Abstract
The current study examined amygdala and orbitofrontal cortex (OFC) volumes as mediators of the relationship between externalizing symptoms and daily smoking in adolescence. Externalizing behaviors are among the most robust predictors of adolescent smoking, and there is emerging evidence that volume reductions in the amygdala and OFC are associated with risk for substance misuse as well as aggressive, impulsive, and disinhibited tendencies. Using a prospective longitudinal design, we recruited 109 adolescents who provided data on brain volume and externalizing behaviors at age 12, and on smoking at age 18. Daily smoking at age 18 (n = 27) was predicted by externalizing behaviors (measured by the self-report Child Behavior Checklist, CBCL) as well as smaller right amygdala volumes. Right amygdala volumes mediated the relationship between externalizing symptoms and later smoking. These findings provide important insight into the neurobiological risk factors associated with adolescent smoking, and, more generally, into factors that may be associated with vulnerability to substance use disorders and related psychopathology.
Collapse
Affiliation(s)
- Ali Cheetham
- Turning Point, Eastern Health, Australia; Eastern Health Clinical School, Monash University, Australia
| | - Nicholas B Allen
- Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Australia; Department of Psychology, University of Oregon, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| | - Julian Simmons
- Melbourne School of Psychological Sciences, University of Melbourne, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| | - Murat Yücel
- Monash Clinical and Imaging Neuroscience, School of Psychology and Psychiatry, Monash University, Australia
| | - Dan I Lubman
- Turning Point, Eastern Health, Australia; Eastern Health Clinical School, Monash University, Australia.
| |
Collapse
|
143
|
Chamberlain SR, Harries M, Redden SA, Keuthen NJ, Stein DJ, Lochner C, Grant JE. Cortical thickness abnormalities in trichotillomania: international multi-site analysis. Brain Imaging Behav 2018; 12:823-828. [PMID: 28664230 PMCID: PMC5640149 DOI: 10.1007/s11682-017-9746-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Trichotillomania is a prevalent but often hidden psychiatric condition, characterized by repetitive hair pulling. The aim of this study was to confirm or refute structural brain abnormalities in trichotillomania by pooling all available global data. De-identified MRI scans were pooled by contacting authors of previous studies. Cortical thickness and sub-cortical volumes were compared between patients and controls. Patients (n = 76) and controls (n = 41) were well-matched in terms of demographic characteristics. Trichotillomania patients showed excess cortical thickness in a cluster maximal at right inferior frontal gyrus, unrelated to symptom severity. No significant sub-cortical volume differences were detected in the regions of interest. Morphometric changes in the right inferior frontal gyrus appear to play a central role in the pathophysiology of trichotillomania, and to be trait in nature. The findings are distinct from other impulsive-compulsive disorders (OCD, ADHD, gambling disorder), which have typically been associated with reduced, rather than increased, cortical thickness. Future work should examine sub-cortical and cerebellar morphology using analytic approaches designed for this purpose, and should also characterize grey matter densities/volumes.
Collapse
Affiliation(s)
- Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, Box 189 Level E4, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
- Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Michael Harries
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Sarah A Redden
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Nancy J Keuthen
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dan J Stein
- MRC Unit on Anxiety & Stress Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Christine Lochner
- MRC Unit on Anxiety & Stress Disorders, Department of Psychiatry, University of Stellenbosch, Stellenbosch, South Africa
| | - Jon E Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
144
|
Phillips AG, Geyer MA, Robbins TW. Effective Use of Animal Models for Therapeutic Development in Psychiatric and Substance Use Disorders. Biol Psychiatry 2018; 83:915-923. [PMID: 29478700 DOI: 10.1016/j.biopsych.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 12/28/2022]
Abstract
Athina Markou and others argue forcefully for the adoption of a "translational-back translational strategy" for central nervous system drug discovery involving novel application of drugs with established safety profiles in proof-of-principle studies in humans, which in turn encourage parallel studies using experimental animals to provide vital data on the neural systems and neuropharmacological mechanisms related to the actions of the candidate drugs. Encouraged by the increasing adoption of drug-development strategies involving reciprocal information exchange between preclinical animal studies and related clinical research programs, this review presents additional compelling examples related to the following: 1) the treatment of cognitive deficits that define attention-deficit/hyperactivity disorder; 2) the development of fast-acting antidepressants based on promising clinical effects with low doses of the anesthetic ketamine; and 3) new and effective medications for the treatment of substance misuse. In the context of addressing the unmet medical need for new and effective drugs for treatment of mental ill health, now may be the time to launch major new academic-industry consortia committed to open access of all preclinical and clinical data generated by this research.
Collapse
Affiliation(s)
- Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Mark A Geyer
- Department of Psychiatry, University of California-San Diego, La Jolla, California
| | - Trevor W Robbins
- Department of Psychology and Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
145
|
Association between self-reported impulsiveness and gray matter volume in healthy adults. An exploratory MRI study. Neurosci Lett 2018; 674:112-116. [DOI: 10.1016/j.neulet.2018.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/19/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
|
146
|
Risk seeking for losses modulates the functional connectivity of the default mode and left frontoparietal networks in young males. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:536-549. [DOI: 10.3758/s13415-018-0586-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
147
|
Gulick D, Gamsby JJ. Racing the clock: The role of circadian rhythmicity in addiction across the lifespan. Pharmacol Ther 2018; 188:124-139. [PMID: 29551440 DOI: 10.1016/j.pharmthera.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although potent effects of psychoactive drugs on circadian rhythms were first described over 30 years ago, research into the reciprocal relationship between the reward system and the circadian system - and the impact of this relationship on addiction - has only become a focus in the last decade. Nonetheless, great progress has been made in that short time toward understanding how drugs of abuse impact the molecular and physiological circadian clocks, as well as how disruption of normal circadian rhythm biology may contribute to addiction and ameliorate the efficacy of treatments for addiction. In particular, data have emerged demonstrating that disrupted circadian rhythms, such as those observed in shift workers and adolescents, increase susceptibility to addiction. Furthermore, circadian rhythms and addiction impact one another longitudinally - specifically from adolescence to the elderly. In this review, the current understanding of how the circadian clock interacts with substances of abuse within the context of age-dependent changes in rhythmicity, including the potential existence of a drug-sensitive clock, the correlation between chronotype and addiction vulnerability, and the importance of rhythmicity in the mesocorticolimbic dopamine system, is discussed. The primary focus is on alcohol addiction, as the preponderance of research is in this area, with references to other addictions as warranted. The implications of clock-drug interactions for the treatment of addiction will also be reviewed, and the potential of therapeutics that reset the circadian rhythm will be highlighted.
Collapse
Affiliation(s)
- Danielle Gulick
- Byrd Alzheimer's Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Joshua J Gamsby
- Byrd Alzheimer's Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
148
|
Afzali MH, Oleary-Barrett M, Séguin JR, Conrod P. Effect of depressive symptoms on the evolution of neuropsychological functions over the course of adolescence. J Affect Disord 2018; 229:328-333. [PMID: 29331690 DOI: 10.1016/j.jad.2017.11.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/02/2017] [Accepted: 11/12/2017] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Comprehensive understanding of the association between depression and neuropsychological functioning over the course of adolescence requires developmentally sensitive assessment through longitudinal data. The aim of current study is to examine the concurrent and subsequent effects of depressive symptoms on the initial level and evolution of four neuropsychological functioning domains (i.e., spatial working memory, delayed recall memory, perceptual reasoning, and inhibitory control). METHOD Depressive symptoms and neuropsychological functioning were assessed over the course of four years in a sample of 3826 Canadian adolescents. A series of multilevel models estimated the between-person, within-person, and lagged within-person effects of depressive symptoms on each domain of neuropsychological functioning. RESULTS Findings suggest that current year and past year depressive symptoms were associated with poorer performance in delayed recall memory and perceptual reasoning tasks. Likewise, past year depressive symptoms were associated with poorer spatial working memory performance. These detrimental effects were stronger in early adolescence. LIMITATIONS The current study examined the presence of sub-clinical depressive symptoms but not clinical depression. Moreover, although depressive symptoms and neuropsychological functions were assessed using widely used, valid, and reliable computer-based instruments, the results may not match the accuracy of clinician-based assessments. CONCLUSIONS Our results underline the necessity of early intervention for young adolescents to decrease the harms associated with depression. The effect of early-onset depression on the underlying neural substrates of neuropsychological functioning merits further investigation.
Collapse
Affiliation(s)
| | | | - Jean R Séguin
- Department of Psychiatry, University of Montreal, Canada.
| | | |
Collapse
|
149
|
Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, Orr CA, Wager TD, Banich MT, Speer NK, Sutherland MT, Riedel MC, Dick AS, Bjork JM, Thomas KM, Chaarani B, Mejia MH, Hagler DJ, Daniela Cornejo M, Sicat CS, Harms MP, Dosenbach NUF, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni JR, Kuperman JM, Fair DA, Dale AM. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci 2018; 32:43-54. [PMID: 29567376 PMCID: PMC5999559 DOI: 10.1016/j.dcn.2018.03.001] [Citation(s) in RCA: 1038] [Impact Index Per Article: 173.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/29/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022] Open
Abstract
The ABCD study is recruiting and following the brain development and health of over 10,000 9–10 year olds through adolescence. The imaging component of the study was developed by the ABCD Data Analysis and Informatics Center (DAIC) and the ABCD Imaging Acquisition Workgroup. Imaging methods and assessments were selected, optimized and harmonized across all 21 sites to measure brain structure and function relevant to adolescent development and addiction. This article provides an overview of the imaging procedures of the ABCD study, the basis for their selection and preliminary quality assurance and results that provide evidence for the feasibility and age-appropriateness of procedures and generalizability of findings to the existent literature.
Collapse
Affiliation(s)
- B J Casey
- Department of Psychology, Yale University, United States; Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States.
| | | | - May I Conley
- Department of Psychology, Yale University, United States; Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Alexandra O Cohen
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Deanna M Barch
- Departments of Psychological & Brain Sciences and Psychiatry, Washington University, St. Louis, United States
| | - Mary M Heitzeg
- Department of Psychiatry, University of Michigan, United States
| | - Mary E Soules
- Department of Psychiatry, University of Michigan, United States
| | - Theresa Teslovich
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Danielle V Dellarco
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Hugh Garavan
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Catherine A Orr
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Tor D Wager
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Marie T Banich
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Nicole K Speer
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Matthew T Sutherland
- Departments of Physics and Psychology, Florida International University, United States
| | - Michael C Riedel
- Departments of Physics and Psychology, Florida International University, United States
| | - Anthony S Dick
- Departments of Physics and Psychology, Florida International University, United States
| | - James M Bjork
- Department of Psychiatry, Virginia Commonwealth University, United States
| | - Kathleen M Thomas
- Institute of Child Development, University of Minnesota, United States
| | - Bader Chaarani
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Margie H Mejia
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Donald J Hagler
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - M Daniela Cornejo
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Chelsea S Sicat
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Michael P Harms
- Department of Psychiatry, Washington University, St. Louis, United States
| | - Nico U F Dosenbach
- Department of Pediatric Neurology, Washington University, St. Louis, United States
| | | | - Eric Earl
- Behavioral Neuroscience and Psychiatry, Oregon Health State University, United States
| | - Hauke Bartsch
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Richard Watts
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, United States
| | - Joshua M Kuperman
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Damien A Fair
- Behavioral Neuroscience and Psychiatry, Oregon Health State University, United States
| | - Anders M Dale
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | | |
Collapse
|
150
|
Gonzalez DA, Jia T, Pinzón JH, Acevedo SF, Ojelade SA, Xu B, Tay N, Desrivières S, Hernandez JL, Banaschewski T, Büchel C, Bokde AL, Conrod PJ, Flor H, Frouin V, Gallinat J, Garavan H, Gowland PA, Heinz A, Ittermann B, Lathrop M, Martinot JL, Paus T, Smolka MN, Rodan AR, Schumann G, Rothenfluh A. The Arf6 activator Efa6/PSD3 confers regional specificity and modulates ethanol consumption in Drosophila and humans. Mol Psychiatry 2018; 23:621-628. [PMID: 28607459 PMCID: PMC5729071 DOI: 10.1038/mp.2017.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitously expressed genes have been implicated in a variety of specific behaviors, including responses to ethanol. However, the mechanisms that confer this behavioral specificity have remained elusive. Previously, we showed that the ubiquitously expressed small GTPase Arf6 is required for normal ethanol-induced sedation in adult Drosophila. Here, we show that this behavioral response also requires Efa6, one of (at least) three Drosophila Arf6 guanine exchange factors. Ethanol-naive Arf6 and Efa6 mutants were sensitive to ethanol-induced sedation and lacked rapid tolerance upon re-exposure to ethanol, when compared with wild-type flies. In contrast to wild-type flies, both Arf6 and Efa6 mutants preferred alcohol-containing food without prior ethanol experience. An analysis of the human ortholog of Arf6 and orthologs of Efa6 (PSD1-4) revealed that the minor G allele of single nucleotide polymorphism (SNP) rs13265422 in PSD3, as well as a haplotype containing rs13265422, was associated with an increased frequency of drinking and binge drinking episodes in adolescents. The same haplotype was also associated with increased alcohol dependence in an independent European cohort. Unlike the ubiquitously expressed human Arf6 GTPase, PSD3 localization is restricted to the brain, particularly the prefrontal cortex (PFC). Functional magnetic resonance imaging revealed that the same PSD3 haplotype was also associated with a differential functional magnetic resonance imaging signal in the PFC during a Go/No-Go task, which engages PFC-mediated executive control. Our translational analysis, therefore, suggests that PSD3 confers regional specificity to ubiquitous Arf6 in the PFC to modulate human alcohol-drinking behaviors.
Collapse
Affiliation(s)
- Dante A. Gonzalez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tianye Jia
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Jorge H. Pinzón
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Summer F. Acevedo
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shamsideen A. Ojelade
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bing Xu
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Nicole Tay
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Sylvane Desrivières
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Jeannie L. Hernandez
- Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City
| | - Tobias Banaschewski
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - Arun L.W. Bokde
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Patricia J. Conrod
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom,Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Canada
| | - Herta Flor
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l’Energie Atomique, Gif-sur-Yvette, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Germany
| | - Hugh Garavan
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Departments of Psychiatry and Psychology, University of Vermont, Burlington, USA
| | - Penny A. Gowland
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Ontario, Canada
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM CEA Unit 1000 “Imaging & Psychiatry”, University Paris Sud, Orsay, and AP-HP Department of Adolescent Psychopathology and Medicine, Maison de Solenn, University Paris Descartes, Paris, France
| | - Tomás Paus
- School of Psychology, University of Nottingham, United Kingdom,Rotman Research Institute, University of Toronto, Toronto, Canada,Montreal Neurological Institute, McGill University, Canada
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Germany,Neuroimaging Center, Department of Psychology, Technische Universität Dresden, Germany
| | | | - Aylin R. Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX,Department of Internal Medicine, Division of Nephrology, Molecular Medicine Program, University of Utah, Salt Lake City
| | - Gunter Schumann
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX,Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City
| |
Collapse
|