101
|
Brzdąk P, Włodarczyk J, Mozrzymas JW, Wójtowicz T. Matrix Metalloprotease 3 Activity Supports Hippocampal EPSP-to-Spike Plasticity Following Patterned Neuronal Activity via the Regulation of NMDAR Function and Calcium Flux. Mol Neurobiol 2016; 54:804-816. [PMID: 27351676 PMCID: PMC5219885 DOI: 10.1007/s12035-016-9970-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteases (MMPs) comprise a family of endopeptidases that are involved in remodeling the extracellular matrix and play a critical role in learning and memory. At least 24 different MMP subtypes have been identified in the human brain, but less is known about the subtype-specific actions of MMP on neuronal plasticity. The long-term potentiation (LTP) of excitatory synaptic transmission and scaling of dendritic and somatic neuronal excitability are considered substrates of memory storage. We previously found that MMP-3 and MMP-2/9 may be differentially involved in shaping the induction and expression of excitatory postsynaptic potential (EPSP)-to-spike (E-S) potentiation in hippocampal brain slices. MMP-3 and MMP-2/9 proteolysis was previously shown to affect the integrity or mobility of synaptic N-methyl-d-aspartate receptors (NMDARs) in vitro. However, the functional outcome of such MMP-NMDAR interactions remains largely unknown. The present study investigated the role of these MMP subtypes in E-S plasticity and NMDAR function in mouse hippocampal acute brain slices. The temporal requirement for MMP-3/NMDAR activity in E-S potentiation within the CA1 field largely overlapped, and MMP-3 but not MMP-2/9 activity was crucial for the gain-of-function of NMDARs following LTP induction. Functional changes in E-S plasticity following MMP-3 inhibition largely correlated with the expression of cFos protein, a marker of activity-related gene transcription. Recombinant MMP-3 promoted a gain in NMDAR-mediated field potentials and somatodendritic Ca2+ waves. These results suggest that long-term hippocampal E-S potentiation requires transient MMP-3 activity that promotes NMDAR-mediated postsynaptic Ca2+ entry that is vital for the activation of downstream signaling cascades and gene transcription.
Collapse
Affiliation(s)
- Patrycja Brzdąk
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Chalubinskiego 3, Wroclaw, 50-368, Poland.,Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Chalubinskiego 3, Wroclaw, 50-368, Poland.,Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Chalubinskiego 3, Wroclaw, 50-368, Poland.
| |
Collapse
|
102
|
Yang Z, Santamaria F. Purkinje cell intrinsic excitability increases after synaptic long term depression. J Neurophysiol 2016; 116:1208-17. [PMID: 27306677 DOI: 10.1152/jn.00369.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 11/22/2022] Open
Abstract
Coding in cerebellar Purkinje cells not only depends on synaptic plasticity but also on their intrinsic membrane excitability. We performed whole cell patch-clamp recordings of Purkinje cells in sagittal cerebellar slices in mice. We found that inducing long-term depression (LTD) in the parallel fiber to Purkinje cell synapses results in an increase in the gain of the firing rate response. This increase in excitability is accompanied by an increase in the input resistance and a decrease in the amplitude of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated voltage sag. Application of a HCN channel blocker prevents the increase in input resistance and excitability without blocking the expression of synaptic LTD. We conclude that the induction of parallel fiber-Purkinje cell LTD is accompanied by an increase in excitability of Purkinje cells through downregulation of the HCN-mediated h current. We suggest that HCN downregulation is linked to the biochemical pathway that sustains synaptic LTD. Given the diversity of information carried by the parallel fiber system, we suggest that changes in intrinsic excitability enhance the coding capacity of the Purkinje cell to specific input sources.
Collapse
Affiliation(s)
- Zhen Yang
- UTSA Neurosciences Institute and Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Fidel Santamaria
- UTSA Neurosciences Institute and Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
103
|
Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy. J Neurosci 2016; 36:312-24. [PMID: 26758825 DOI: 10.1523/jneurosci.2845-14.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The entorhinal cortex (EC) is one of the first areas to be disrupted in neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. The responsiveness of individual neurons to electrical and environmental stimuli varies along the dorsal-ventral axis of the medial EC (mEC) in a manner that suggests this topographical organization plays a key role in neural encoding of geometric space. We examined the cellular properties of layer II mEC stellate neurons (mEC-SCs) in rTg4510 mice, a rodent model of neurodegeneration. Dorsoventral gradients in certain intrinsic membrane properties, such as membrane capacitance and afterhyperpolarizations, were flattened in rTg4510 mEC-SCs, while other cellular gradients [e.g., input resistance (Ri), action potential properties] remained intact. Specifically, the intrinsic properties of rTg4510 mEC-SCs in dorsal aspects of the mEC were preferentially affected, such that action potential firing patterns in dorsal mEC-SCs were altered, while those in ventral mEC-SCs were unaffected. We also found that neuronal oscillations in the gamma frequency band (30-80 Hz) were preferentially disrupted in the dorsal mEC of rTg4510 slices, while those in ventral regions were comparatively preserved. These alterations corresponded to a flattened dorsoventral gradient in theta-gamma cross-frequency coupling of local field potentials recorded from the mEC of freely moving rTg4510 mice. These differences were not paralleled by changes to the dorsoventral gradient in parvalbumin staining or neurodegeneration. We propose that the selective disruption to dorsal mECs, and the resultant flattening of certain dorsoventral gradients, may contribute to disturbances in spatial information processing observed in this model of dementia. SIGNIFICANCE STATEMENT The medial entorhinal cortex (mEC) plays a key role in spatial memory and is one of the first areas to express the pathological features of dementia. Neurons of the mEC are anatomically arranged to express functional dorsoventral gradients in a variety of neuronal properties, including grid cell firing field spacing, which is thought to encode geometric scale. We have investigated the effects of tau pathology on functional dorsoventral gradients in the mEC. Using electrophysiological approaches, we have shown that, in a transgenic mouse model of dementia, the functional properties of the dorsal mEC are preferentially disrupted, resulting in a flattening of some dorsoventral gradients. Our data suggest that neural signals arising in the mEC will have a reduced spatial content in dementia.
Collapse
|
104
|
Itoh M, Ishihara K, Nakashima N, Takano M. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contain multiple S-palmitoylation sites. J Physiol Sci 2016; 66:241-8. [PMID: 26546007 PMCID: PMC10717812 DOI: 10.1007/s12576-015-0420-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/18/2015] [Indexed: 11/26/2022]
Abstract
Expression of hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) on distal dendrites of neurons is suggested to modify synaptic integration in the central nervous system. However, the mechanisms of dendritic localization are not fully understood. Recent studies have revealed that S-palmitoylation plays an important role in the enrichment of various molecules at the postsynaptic membrane. Thus, we performed an acyl-biotinyl exchange assay, and found that HCN1, HCN2, and HCN4, but not HCN3, were S-palmitoylated in HEK293 cells. Mutation of multiple intracellular cysteine residues at the N-terminus of HCN2 was required for complete inhibition of S-palmitoylation. However, this mutagenesis had a minimal effect on surface expression of HCN2 proteins or electrophysiological properties of HCN2 current when expressed in HEK293 cells or in Xenopus oocytes. These findings provide insight into the physiological roles of S-palmitoylation of HCN channels in native neurons.
Collapse
Affiliation(s)
- Masayuki Itoh
- Division of Integrated Autonomic Function, Department of Physiology, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan.
| | - Keiko Ishihara
- Division of Integrated Autonomic Function, Department of Physiology, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan
| | - Noriyuki Nakashima
- Department of Physiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Makoto Takano
- Division of Integrated Autonomic Function, Department of Physiology, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
105
|
Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning. Sci Rep 2016; 6:24678. [PMID: 27094086 PMCID: PMC4837398 DOI: 10.1038/srep24678] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 11/08/2022] Open
Abstract
Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.
Collapse
|
106
|
Shim HG, Jang SS, Jang DC, Jin Y, Chang W, Park JM, Kim SJ. mGlu1 receptor mediates homeostatic control of intrinsic excitability through Ih in cerebellar Purkinje cells. J Neurophysiol 2016; 115:2446-55. [PMID: 26912592 DOI: 10.1152/jn.00566.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/21/2016] [Indexed: 01/14/2023] Open
Abstract
Homeostatic intrinsic plasticity is a cellular mechanism for maintaining a stable neuronal activity level in response to developmental or activity-dependent changes. Type 1 metabotropic glutamate receptor (mGlu1 receptor) has been widely known to monitor neuronal activity, which plays a role as a modulator of intrinsic and synaptic plasticity of neurons. Whether mGlu1 receptor contributes to the compensatory adjustment of Purkinje cells (PCs), the sole output of the cerebellar cortex, in response to chronic changes in excitability remains unclear. Here, we demonstrate that the mGlu1 receptor is involved in homeostatic intrinsic plasticity through the upregulation of the hyperpolarization-activated current (Ih) in cerebellar PCs. This plasticity was prevented by inhibiting the mGlu1 receptor with Bay 36-7620, an mGlu1 receptor inverse agonist, but not with CPCCOEt, a neutral antagonist. Chronic inactivation with tetrodotoxin (TTX) increased the components of Ih in the PCs, and ZD 7288, a hyperpolarization-activated cyclic nucleotide-gated channel selective inhibitor, fully restored reduction of firing rates in the deprived neurons. The homeostatic elevation of Ih was also prevented by BAY 36-7620, but not CPCCOEt. Furthermore, KT 5720, a blocker of protein kinase A (PKA), prevented the effect of TTX reducing the evoked firing rates, indicating the reduction in excitability of PCs due to PKA activation. Our study shows that both the mGlu1 receptor and the PKA pathway are involved in the homeostatic intrinsic plasticity of PCs after chronic blockade of the network activity, which provides a novel understanding on how cerebellar PCs can preserve the homeostatic state under activity-deprived conditions.
Collapse
Affiliation(s)
- Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Cheol Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Science, Seoul National University, Kwanak-gu, Seoul, Republic of Korea
| | - Yunju Jin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; and
| | - Wonseok Chang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; and
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea;
| |
Collapse
|
107
|
Zhang S, You Z, Wang S, Yang J, Yang L, Sun Y, Mi W, Yang L, McCabe MF, Shen S, Chen L, Mao J. Neuropeptide S modulates the amygdaloidal HCN activities (Ih) in rats: Implication in chronic pain. Neuropharmacology 2016; 105:420-433. [PMID: 26855147 DOI: 10.1016/j.neuropharm.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Neuropeptide S (NPS), an endogenous anxiolytic, has been shown to protect against chronic pain through interacting with its cognate NPS receptor (NPSR) in the brain. However, the cellular mechanism of this NPS action remains unclear. We report that NPS inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channel current (Ih) in the rat's amygdala through activation of NPSR. This NPS effect is mediated through ERK1/2 phosphorylation in a subset of pyramidal-like neurons located in the medial amygdala. The characters of the recorded Ih suggest a major role for HCN1 activity in this process. Inhibition of Ih by NPS stimulates the glutamatergic drive onto fast spiking intra-amygdalolidal GABAergic interneurons, which in turn facilitates GABA release onto pyramidal-like neurons. Moreover, the HCN1 expression is increased in the amygdala of rats with peripheral nerve injury and intra-amygdaloidal administration of the HCN channel inhibitor ZD7288 attenuates nociceptive behavior in these rats. These results suggest that NPS-mediated modulation of intra-amygdaloidal HCN channel activities may be an important central inhibitory mechanism for regulation of chronic pain.
Collapse
Affiliation(s)
- Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lujia Yang
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Yan Sun
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Wenli Mi
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liling Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael F McCabe
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
108
|
Underwood EL, Thompson LT. High-fat diet impairs spatial memory and hippocampal intrinsic excitability and sex-dependently alters circulating insulin and hippocampal insulin sensitivity. Biol Sex Differ 2016; 7:9. [PMID: 26823968 PMCID: PMC4730722 DOI: 10.1186/s13293-016-0060-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-fat diets promoting obesity/type-2 diabetes can impair physiology and cognitive performance, although sex-dependent comparisons of these impairments are rarely made. Transient reductions in Ca(2+)-dependent afterhyperpolarizations (AHPs) occur during memory consolidation, enhancing intrinsic excitability of hippocampal CA1 pyramidal neurons. In rats fed standard diets, insulin can enhance memory and reduce amplitude and duration of AHPs. METHODS Effects of chronic high-fat diet (HFD) on memory, circulating insulin, and neuronal physiology were compared between young adult male and female Long-Evans rats. Rats fed for 12 weeks (from weaning) a HFD or a control diet (CD) were then tested in vivo prior to in vitro recordings from CA1 pyramidal neurons. RESULTS The HFD significantly impaired spatial memory in both males and females. Significant sex differences occurred in circulating insulin and in the insulin sensitivity of hippocampal neurons. Circulating insulin significantly increased in HFD males but decreased in HFD females. While the HFD significantly reduced hippocampal intrinsic excitability in both sexes, CA1 neurons from HFD females remained insulin-sensitive but those from HFD males became insulin-insensitive. CONCLUSIONS Findings consistent with these have been characterized previously in HFD or senescent males, but the effects observed here in young females are unique. Loss of CA1 neuronal excitability, and sex-dependent loss of insulin sensitivity, can have significant cognitive consequences, over both the short term and the life span. These findings highlight needs for more research into sex-dependent differences, relating systemic and neural plasticity mechanisms in metabolic disorders.
Collapse
Affiliation(s)
- Erica L. Underwood
- Cognition & Neuroscience Program, School of Behavioral & Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 USA
| | - Lucien T. Thompson
- Cognition & Neuroscience Program, School of Behavioral & Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 USA
| |
Collapse
|
109
|
Sun MY, Izumi Y, Benz A, Zorumski CF, Mennerick S. Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. J Neurophysiol 2015; 115:1263-72. [PMID: 26745248 DOI: 10.1152/jn.00890.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candidates. Our group recently demonstrated that the major brain cholesterol metabolite, 24S-hydroxycholesterol (24S-HC), positively modulates NMDARs when exogenously administered. Here, we studied whether endogenous 24S-HC regulates NMDAR activity in hippocampal slices. In CYP46A1(-/-) (knockout; KO) slices where endogenous 24S-HC is greatly reduced, NMDAR tone, measured as NMDAR-to-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) excitatory postsynaptic current (EPSC) ratio, was reduced. This difference translated into more NMDAR-driven spiking in wild-type (WT) slices compared with KO slices. Application of SGE-301, a 24S-HC analog, had comparable potentiating effects on NMDAR EPSCs in both WT and KO slices, suggesting that endogenous 24S-HC does not saturate its NMDAR modulatory site in ex vivo slices. KO slices did not differ from WT slices in either spontaneous neurotransmission or in neuronal intrinsic excitability, and exhibited LTP indistinguishable from WT slices. However, KO slices exhibited higher resistance to persistent NMDAR-dependent depression of synaptic transmission induced by oxygen-glucose deprivation (OGD), an effect restored by SGE-301. Together, our results suggest that loss of positive NMDAR tone does not elicit compensatory changes in excitability or transmission, but it protects transmission against NMDAR-mediated dysfunction. We expect that manipulating this endogenous NMDAR modulator may offer new treatment strategies for neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Ann Benz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
110
|
Gamo NJ, Lur G, Higley MJ, Wang M, Paspalas CD, Vijayraghavan S, Yang Y, Ramos BP, Peng K, Kata A, Boven L, Lin F, Roman L, Lee D, Arnsten AF. Stress Impairs Prefrontal Cortical Function via D1 Dopamine Receptor Interactions With Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels. Biol Psychiatry 2015; 78:860-70. [PMID: 25731884 PMCID: PMC4524795 DOI: 10.1016/j.biopsych.2015.01.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Psychiatric disorders such as schizophrenia are worsened by stress, and working memory deficits are often a central feature of illness. Working memory is mediated by the persistent firing of prefrontal cortical (PFC) pyramidal neurons. Stress impairs working memory via high levels of dopamine D1 receptor (D1R) activation of cyclic adenosine monophosphate signaling, which reduces PFC neuronal firing. The current study examined whether D1R-cyclic adenosine monophosphate signaling reduces neuronal firing and impairs working memory by increasing the open state of hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels, which are concentrated on dendritic spines where PFC pyramidal neurons interconnect. METHODS A variety of methods were employed to test this hypothesis: dual immunoelectron microscopy localized D1R and HCN channels, in vitro recordings tested for D1R actions on HCN channel current, while recordings in monkeys performing a working memory task tested for D1R-HCN channel interactions in vivo. Finally, cognitive assessments following intra-PFC infusions of drugs examined D1R-HCN channel interactions on working memory performance. RESULTS Immunoelectron microscopy confirmed D1R colocalization with HCN channels near excitatory-like synapses on dendritic spines in primate PFC. Mouse PFC slice recordings demonstrated that D1R stimulation increased HCN channel current, while local HCN channel blockade in primate PFC protected task-related firing from D1R-mediated suppression. D1R stimulation in rat or monkey PFC impaired working memory performance, while HCN channel blockade in PFC prevented this impairment in rats exposed to either stress or D1R stimulation. CONCLUSIONS These findings suggest that D1R stimulation or stress weakens PFC function via opening of HCN channels at network synapses.
Collapse
Affiliation(s)
- Nao J. Gamo
- Department of Neurobiology, Yale University, New Haven, CT
| | - Gyorgy Lur
- Department of Neurobiology, Yale University, New Haven, CT,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT
| | - Michael J. Higley
- Department of Neurobiology, Yale University, New Haven, CT,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT
| | - Min Wang
- Department of Neurobiology, Yale University, New Haven, CT
| | | | | | - Yang Yang
- Department of Neurobiology, Yale University, New Haven, CT
| | - Brian P. Ramos
- Department of Neurobiology, Yale University, New Haven, CT
| | - Kathy Peng
- Department of Neurobiology, Yale University, New Haven, CT
| | - Anna Kata
- Department of Neurobiology, Yale University, New Haven, CT
| | - Lindsay Boven
- Department of Neurobiology, Yale University, New Haven, CT
| | - Faith Lin
- Department of Neurobiology, Yale University, New Haven, CT
| | - Lisette Roman
- Department of Neurobiology, Yale University, New Haven, CT
| | - Daeyeol Lee
- Department of Neurobiology, Yale University, New Haven, CT
| | | |
Collapse
|
111
|
Cell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome. eNeuro 2015; 2:eN-NWR-0114-15. [PMID: 26601124 PMCID: PMC4647062 DOI: 10.1523/eneuro.0114-15.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/14/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by transcriptional silencing of the fmr1 gene resulting in the loss of fragile X mental retardation protein (FMRP) expression. FXS patients display several behavioral phenotypes associated with prefrontal cortex (PFC) dysfunction. Voltage-gated ion channels, some of which are regulated by FMRP, heavily influence PFC neuron function. Although there is evidence for brain region-specific alterations to the function a single type of ion channel in FXS, it is unclear whether subtypes of principal neurons within a brain region are affected uniformly. We tested for alterations to ion channels critical in regulating neural excitability in two subtypes of prefrontal L5 pyramidal neurons. Using somatic and dendritic patch-clamp recordings, we provide evidence that the functional expression of h-channels (Ih) is down-regulated, whereas A-type K+ channel function is up-regulated in pyramidal tract-projecting (PT) neurons in the fmr1-/y mouse PFC. This is the opposite pattern of results from published findings from hippocampus where Ih is up-regulated and A-type K+ channel function is down-regulated. Additionally, we find that somatic Kv1-mediated current is down-regulated, resulting in increased excitability of fmr1-/y PT neurons. Importantly, these h- and K+ channel differences do not extend to neighboring intratelencephalic-projecting neurons. Thus, the absence of FMRP has divergent effects on the function of individual types of ion channels not only between brain regions, but also variable effects across cell types within the same brain region. Given the importance of ion channels in regulating neural circuits, these results suggest cell-type-specific phenotypes for the disease.
Collapse
|
112
|
Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, Gutmann DH, Levelt CN, Smit AB, Silva AJ, Kushner SA, Elgersma Y. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol Psychiatry 2015; 20:1311-21. [PMID: 25917366 PMCID: PMC5603719 DOI: 10.1038/mp.2015.48] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Cognitive impairments are a major clinical feature of the common neurogenetic disease neurofibromatosis type 1 (NF1). Previous studies have demonstrated that increased neuronal inhibition underlies the learning deficits in NF1, however, the molecular mechanism underlying this cell-type specificity has remained unknown. Here, we identify an interneuron-specific attenuation of hyperpolarization-activated cyclic nucleotide-gated (HCN) current as the cause for increased inhibition in Nf1 mutants. Mechanistically, we demonstrate that HCN1 is a novel NF1-interacting protein for which loss of NF1 results in a concomitant increase of interneuron excitability. Furthermore, the HCN channel agonist lamotrigine rescued the electrophysiological and cognitive deficits in two independent Nf1 mouse models, thereby establishing the importance of HCN channel dysfunction in NF1. Together, our results provide detailed mechanistic insights into the pathophysiology of NF1-associated cognitive defects, and identify a novel target for clinical drug development.
Collapse
Affiliation(s)
- A Omrani
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T van der Vaart
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - E Mientjes
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - GM van Woerden
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - MR Hojjati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Physiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - KW Li
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - DH Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - CN Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - AB Smit
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - AJ Silva
- Department of Neurobiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - SA Kushner
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Y Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
113
|
Gasselin C, Inglebert Y, Debanne D. Homeostatic regulation of h-conductance controls intrinsic excitability and stabilizes the threshold for synaptic modification in CA1 neurons. J Physiol 2015; 593:4855-69. [PMID: 26316265 DOI: 10.1113/jp271369] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/15/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We determined the contribution of the hyperpolarization-activated cationic (h) current (Ih ) to the homeostatic regulation of CA1 pyramidal cells in vitro using chronic treatments (48 h) that either increase (picrotoxin) or decrease (kynurenate) neuronal activity. The h-conductance was found to be up- or down-regulated following chronic activity enhancement or activity deprivation, respectively. This bidirectional plasticity of Ih was found to subsequently alter both apparent input resistance and intrinsic neuronal excitability. Bidirectional homeostatic plasticity of Ih also determined EPSP waveform and EPSP summation tested at 5-30 Hz. Long-term synaptic modification induced by repetitive stimulation of the Schaffer collaterals was found to be constant across treatments in the presence of Ih but not when Ih was blocked pharmacologically. Thus, bidirectional homeostatic regulation of Ih stabilizes induction of long-term synaptic modification in CA1 pyramidal neurons that depends on EPSP summation. ABSTRACT The hyperpolarization-activated cationic (h) current is a voltage-shock absorber, highly expressed in the dendrites of CA1 pyramidal neurons. Up-regulation of Ih has been reported following episodes of intense network activity but the effect of activity deprivation on Ih and the functional consequence of homeostatic regulation of Ih remain unclear. We determined here the contribution of Ih to the homeostatic regulation of CA1 pyramidal cell excitability. Intrinsic neuronal excitability was decreased in neurons treated for 2-3 days with the GABAA channel blocker picrotoxin (PiTx) but increased in neurons treated (2-3 days) with the glutamate receptor antagonist kynurenate (Kyn). Membrane capacitance remained unchanged after treatment but the apparent input resistance was reduced for PiTx-treated neurons and enhanced for Kyn-treated neurons. Maximal Ih conductance was up-regulated after chronic hyperactivity but down-regulated following chronic hypoactivity. Up-regulation of Ih in PiTx-treated cultures was found to accelerate EPSP kinetics and reduce temporal summation of EPSPs whereas opposite effects were observed in Kyn-treated cultures, indicating that homeostatic regulation of Ih may control the induction of synaptic modification depending on EPSP summation. In fact, stimulation of the Schaffer collaterals at 3-10 Hz induced differential levels of plasticity in PiTx-treated and Kyn-treated neurons when Ih was blocked pharmacologically but not in control conditions. These data indicate that homeostatic regulation of Ih normalizes the threshold for long-term synaptic modification that depends on EPSP summation. In conclusion, bidirectional homeostatic regulation of Ih not only controls spiking activity but also stabilizes the threshold for long-term potentiation induced in CA1 pyramidal neurons by repetitive stimulation.
Collapse
Affiliation(s)
- Célia Gasselin
- INSERM, U-1072, Marseille, France.,Aix-Marseille University, Marseille, France.,Neurobiology of ion channels (UNIS), Marseille, France
| | - Yanis Inglebert
- INSERM, U-1072, Marseille, France.,Aix-Marseille University, Marseille, France.,Neurobiology of ion channels (UNIS), Marseille, France
| | - Dominique Debanne
- INSERM, U-1072, Marseille, France.,Aix-Marseille University, Marseille, France.,Neurobiology of ion channels (UNIS), Marseille, France
| |
Collapse
|
114
|
Czesnik D, Howells J, Negro F, Wagenknecht M, Hanner S, Farina D, Burke D, Paulus W. Increased HCN channel driven inward rectification in benign cramp fasciculation syndrome. Brain 2015; 138:3168-79. [DOI: 10.1093/brain/awv254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
|
115
|
Variability in State-Dependent Plasticity of Intrinsic Properties during Cell-Autonomous Self-Regulation of Calcium Homeostasis in Hippocampal Model Neurons. eNeuro 2015; 2:eN-NWR-0053-15. [PMID: 26464994 PMCID: PMC4596012 DOI: 10.1523/eneuro.0053-15.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/20/2015] [Accepted: 08/03/2015] [Indexed: 01/06/2023] Open
Abstract
How do neurons reconcile the maintenance of calcium homeostasis with perpetual switches in patterns of afferent activity? Here, we assessed state-dependent evolution of calcium homeostasis in a population of hippocampal pyramidal neuron models, through an adaptation of a recent study on stomatogastric ganglion neurons. Calcium homeostasis was set to emerge through cell-autonomous updates to 12 ionic conductances, responding to different types of synaptically driven afferent activity. We first assessed the impact of theta-frequency inputs on the evolution of ionic conductances toward maintenance of calcium homeostasis. Although calcium homeostasis emerged efficaciously across all models in the population, disparate changes in ionic conductances that mediated this emergence resulted in variable plasticity to several intrinsic properties, also manifesting as significant differences in firing responses across models. Assessing the sensitivity of this form of plasticity, we noted that intrinsic neuronal properties and the firing response were sensitive to the target calcium concentration and to the strength and frequency of afferent activity. Next, we studied the evolution of calcium homeostasis when afferent activity was switched, in different temporal sequences, between two behaviorally distinct types of activity: theta-frequency inputs and sharp-wave ripples riding on largely silent periods. We found that the conductance values, intrinsic properties, and firing response of neurons exhibited differential robustness to an intervening switch in the type of afferent activity. These results unveil critical dissociations between different forms of homeostasis, and call for a systematic evaluation of the impact of state-dependent switches in afferent activity on neuronal intrinsic properties during neural coding and homeostasis.
Collapse
|
116
|
Li S, Kalappa BI, Tzounopoulos T. Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus. eLife 2015; 4. [PMID: 26312501 PMCID: PMC4592936 DOI: 10.7554/elife.07242] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus.
Collapse
Affiliation(s)
- Shuang Li
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Bopanna I Kalappa
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Thanos Tzounopoulos
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
117
|
Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. eLife 2015; 4:e06414. [PMID: 26247712 PMCID: PMC4576155 DOI: 10.7554/elife.06414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity.
Collapse
Affiliation(s)
- Yujin Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
118
|
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 2015; 6:168. [PMID: 26124723 PMCID: PMC4467176 DOI: 10.3389/fphys.2015.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies.
Collapse
Affiliation(s)
- Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| | - Debora Laker
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
119
|
HCN channels enhance spike phase coherence and regulate the phase of spikes and LFPs in the theta-frequency range. Proc Natl Acad Sci U S A 2015; 112:E2207-16. [PMID: 25870302 DOI: 10.1073/pnas.1419017112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
What are the implications for the existence of subthreshold ion channels, their localization profiles, and plasticity on local field potentials (LFPs)? Here, we assessed the role of hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in altering hippocampal theta-frequency LFPs and the associated spike phase. We presented spatiotemporally randomized, balanced theta-modulated excitatory and inhibitory inputs to somatically aligned, morphologically realistic pyramidal neuron models spread across a cylindrical neuropil. We computed LFPs from seven electrode sites and found that the insertion of an experimentally constrained HCN-conductance gradient into these neurons introduced a location-dependent lead in the LFP phase without significantly altering its amplitude. Further, neurons fired action potentials at a specific theta phase of the LFP, and the insertion of HCN channels introduced large lags in this spike phase and a striking enhancement in neuronal spike-phase coherence. Importantly, graded changes in either HCN conductance or its half-maximal activation voltage resulted in graded changes in LFP and spike phases. Our conclusions on the impact of HCN channels on LFPs and spike phase were invariant to changes in neuropil size, to morphological heterogeneity, to excitatory or inhibitory synaptic scaling, and to shifts in the onset phase of inhibitory inputs. Finally, we selectively abolished the inductive lead in the impedance phase introduced by HCN channels without altering neuronal excitability and found that this inductive phase lead contributed significantly to changes in LFP and spike phase. Our results uncover specific roles for HCN channels and their plasticity in phase-coding schemas and in the formation and dynamic reconfiguration of neuronal cell assemblies.
Collapse
|
120
|
Santello M, Nevian T. Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron 2015; 86:233-46. [PMID: 25819610 DOI: 10.1016/j.neuron.2015.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/27/2015] [Accepted: 02/20/2015] [Indexed: 12/31/2022]
Abstract
Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.
Collapse
Affiliation(s)
- Mirko Santello
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland; Center for Cognition, Learning and Memory, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| |
Collapse
|
121
|
Artinian J, Peret A, Mircheva Y, Marti G, Crépel V. Impaired neuronal operation through aberrant intrinsic plasticity in epilepsy. Ann Neurol 2015; 77:592-606. [PMID: 25583290 DOI: 10.1002/ana.24348] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/30/2014] [Accepted: 12/10/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Patients with temporal lobe epilepsy often display cognitive comorbidity with recurrent seizures. However, the cellular mechanisms underlying the impairment of neuronal information processing remain poorly understood in temporal lobe epilepsy. Within the hippocampal formation neuronal networks undergo major reorganization, including the sprouting of mossy fibers in the dentate gyrus; they establish aberrant recurrent synapses between dentate granule cells and operate via postsynaptic kainate receptors. In this report, we tested the hypothesis that this aberrant local circuit alters information processing of perforant path inputs constituting the major excitatory afferent pathway from entorhinal cortex to dentate granule cells. METHODS Experiments were performed in dentate granule cells from control rats and rats with temporal lobe epilepsy induced by pilocarpine hydrochloride treatment. Neurons were recorded in patch clamp in whole cell configuration in hippocampal slices. RESULTS Our present data revealed that an aberrant readout of synaptic inputs by kainate receptors triggered a long-lasting impairment of the perforant path input-output operation in epileptic dentate granule cells. We demonstrated that this is due to the aberrant activity-dependent potentiation of the persistent sodium current altering intrinsic firing properties of dentate granule cells. INTERPRETATION We propose that this aberrant activity-dependent intrinsic plasticity, which lastingly impairs the information processing of cortical inputs in dentate gyrus, may participate in hippocampal-related cognitive deficits, such as those reported in patients with epilepsy.
Collapse
Affiliation(s)
- Julien Artinian
- Mediterranean Institute of Neurobiology, National Institute of Health and Medical Research, Marseille, France; Aix-Marseille University, Marseille, France
| | | | | | | | | |
Collapse
|
122
|
Krenz WDC, Rodgers EW, Baro DJ. Tonic 5nM DA stabilizes neuronal output by enabling bidirectional activity-dependent regulation of the hyperpolarization activated current via PKA and calcineurin. PLoS One 2015; 10:e0117965. [PMID: 25692473 PMCID: PMC4333293 DOI: 10.1371/journal.pone.0117965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/05/2015] [Indexed: 01/11/2023] Open
Abstract
Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA) at type 1 DA receptors (D1Rs) are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h). In the presence but not absence of 5nM DA, I h maximal conductance (G max) was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP), which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation). Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP’s first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.
Collapse
Affiliation(s)
- Wulf-Dieter C. Krenz
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Edmund W. Rodgers
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Deborah J. Baro
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
123
|
Sokolova IV, Schneider CJ, Bezaire M, Soltesz I, Vlkolinsky R, Nelson GA. Proton Radiation Alters Intrinsic and Synaptic Properties of CA1 Pyramidal Neurons of the Mouse Hippocampus. Radiat Res 2015; 183:208-18. [DOI: 10.1667/rr13785.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Irina V. Sokolova
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| | - Calvin J. Schneider
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Marianne Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Roman Vlkolinsky
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| | - Gregory A. Nelson
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
124
|
Springer SJ, Burkett BJ, Schrader LA. Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus. Front Cell Neurosci 2015; 8:451. [PMID: 25628536 PMCID: PMC4292769 DOI: 10.3389/fncel.2014.00451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/13/2014] [Indexed: 11/15/2022] Open
Abstract
Memory acquisition and synaptic plasticity are accompanied by changes in the intrinsic excitability of CA1 pyramidal neurons. These activity-dependent changes in excitability are mediated by modulation of intrinsic currents which alters the responsiveness of the cell to synaptic inputs. The afterhyperpolarization (AHP), a major contributor to the regulation of neuronal excitability, is reduced in animals that have acquired several types of hippocampus-dependent memory tasks and also following synaptic potentiation by high frequency stimulation. BK channels underlie the fast AHP and contribute to spike repolarization, and this AHP is reduced in animals that successfully acquired trace-eyeblink conditioning. This suggests that BK channel function is activity-dependent, but the mechanisms are unknown. In this study, we found that blockade of BK channels with paxilline (10 μM) decreased IAHP amplitude and increased spike half-width and instantaneous frequency in response to a +100 pA depolarization. In addition, induction of long term potentiation (LTP) by theta burst stimulation (TBS) in CA1 pyramidal neurons reduced BK channel’s contribution to IAHP, spike repolarization, and instantaneous frequency. This result indicates that BK channel activity is decreased following synaptic potentiation. Interestingly, blockade of mammalian target of rapamycin (MTORC1) with rapamycin (400 nM) following synaptic potentiation restored BK channel function, suggesting a role for protein translation in signaling events which decreased postsynaptic BK channel activity following synaptic potentiation.
Collapse
Affiliation(s)
| | - Brian J Burkett
- Neuroscience Program, Tulane University New Orleans, LA, USA
| | - Laura A Schrader
- Neuroscience Program, Tulane University New Orleans, LA, USA ; Department of Cell and Molecular Biology, Tulane University New Orleans, LA, USA
| |
Collapse
|
125
|
Shimba K, Sakai K, Isomura T, Kotani K, Jimbo Y. Axonal conduction slowing induced by spontaneous bursting activity in cortical neurons cultured in a microtunnel device. Integr Biol (Camb) 2015; 7:64-72. [DOI: 10.1039/c4ib00223g] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrated that spontaneous bursting activity can decrease the axonal conduction velocity of cortical neurons cultured in a microtunnel device.
Collapse
Affiliation(s)
- Kenta Shimba
- Department of Human and Engineered Environmental Studies
- Graduate School of Frontier Sciences
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Koji Sakai
- Department of Human and Engineered Environmental Studies
- Graduate School of Frontier Sciences
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takuya Isomura
- Department of Human and Engineered Environmental Studies
- Graduate School of Frontier Sciences
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Tokyo
- Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
126
|
Mishra P, Narayanan R. High-conductance states and A-type K+ channels are potential regulators of the conductance-current balance triggered by HCN channels. J Neurophysiol 2015; 113:23-43. [DOI: 10.1152/jn.00601.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K+ conductance, but not in M-type K+ conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance ( Rin) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, Rin, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
127
|
Ashhad S, Johnston D, Narayanan R. Activation of InsP₃ receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons. J Neurophysiol 2014; 113:2002-13. [PMID: 25552640 DOI: 10.1152/jn.00833.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/29/2014] [Indexed: 11/22/2022] Open
Abstract
The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; and
| | - Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; and
| |
Collapse
|
128
|
Dasgupta D, Sikdar SK. Calcium permeable AMPA receptor-dependent long lasting plasticity of intrinsic excitability in fast spiking interneurons of the dentate gyrus decreases inhibition in the granule cell layer. Hippocampus 2014; 25:269-85. [DOI: 10.1002/hipo.22371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Debanjan Dasgupta
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore Karnataka India 560012
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore Karnataka India 560012
| |
Collapse
|
129
|
Sosanya NM, Brager DH, Wolfe S, Niere F, Raab-Graham KF. Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis. Neurobiol Dis 2014; 73:96-105. [PMID: 25270294 DOI: 10.1016/j.nbd.2014.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/11/2014] [Accepted: 09/21/2014] [Indexed: 01/12/2023] Open
Abstract
Changes in ion channel expression are implicated in the etiology of epilepsy. However, the molecular leading to long-term aberrant expression of ion channels are not well understood. The mechanistic/mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates activity-dependent protein synthesis in neurons. mTOR is overactive in epilepsy, suggesting that excessive protein synthesis may contribute to the neuronal pathology. In contrast, we found that mTOR activity and the microRNA miR-129-5p reduce the expression of the voltage-gated potassium channel Kv1.1 in an animal model of temporal lobe epilepsy (TLE). When mTOR activity is low, Kv1.1 expression is high and the frequency of behavioral seizures is low. However, as behavioral seizure activity rises, mTOR activity increases and Kv1.1 protein levels drop. In CA1 pyramidal neurons, the reduction in Kv1.1 lowers the threshold for action potential firing. Interestingly, blocking mTOR activity with rapamycin reduces behavioral seizures and temporarily keeps Kv1.1 levels elevated. Overtime, seizure activity increases and Kv1.1 protein decreases in all animals, even those treated with rapamycin. Notably, the concentration of miR-129-5p, the negative regulator of Kv1.1 mRNA translation, increases by 21days post-status epilepticus (SE), sustaining Kv1.1 mRNA translational repression. Our results suggest that following kainic-acid induced status epilepticus there are two phases of Kv1.1 repression: (1) an initial mTOR-dependent repression of Kv1.1 that is followed by (2) a miR-129-5p persistent reduction of Kv1.1.
Collapse
Affiliation(s)
- Natasha M Sosanya
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, USA
| | - Darrin H Brager
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA
| | - Sarah Wolfe
- Institute for Cell and Molecular Biology, University of Texas at Austin, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin University Station C7000, Austin, TX 78712, USA
| | - Farr Niere
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin University Station C7000, Austin, TX 78712, USA.
| |
Collapse
|
130
|
Ciranna L, Catania MV. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders. Front Cell Neurosci 2014; 8:250. [PMID: 25221471 PMCID: PMC4145633 DOI: 10.3389/fncel.2014.00250] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD.
Collapse
Affiliation(s)
- Lucia Ciranna
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, the National Research Council of Italy (CNR) Catania, Italy ; Laboratory of Neurobiology, IRCCS Oasi Maria SS Troina, Italy
| |
Collapse
|
131
|
Shah MM. Cortical HCN channels: function, trafficking and plasticity. J Physiol 2014; 592:2711-9. [PMID: 24756635 PMCID: PMC4104471 DOI: 10.1113/jphysiol.2013.270058] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/15/2014] [Indexed: 12/26/2022] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated potassium ion channels. They are, however, activated by hyperpolarizing potentials and are permeable to cations. Four HCN subunits have been cloned, of which HCN1 and HCN2 subunits are predominantly expressed in the cortex. These subunits are principally located in pyramidal cell dendrites, although they are also found at lower concentrations in the somata of pyramidal neurons as well as other neuron subtypes. HCN channels are actively trafficked to dendrites by binding to the chaperone protein TRIP8b. Somato-dendritic HCN channels in pyramidal neurons modulate spike firing and synaptic potential integration by influencing the membrane resistance and resting membrane potential. Intriguingly, HCN channels are present in certain cortical axons and synaptic terminals too. Here, they regulate synaptic transmission but the underlying mechanisms appear to vary considerably amongst different synaptic terminals. In conclusion, HCN channels are expressed in multiple neuronal subcellular compartments in the cortex, where they have a diverse and complex effect on neuronal excitability.
Collapse
Affiliation(s)
- Mala M Shah
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| |
Collapse
|
132
|
Ocker GK, Doiron B. Kv7 channels regulate pairwise spiking covariability in health and disease. J Neurophysiol 2014; 112:340-52. [PMID: 24790164 DOI: 10.1152/jn.00084.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Low-threshold M currents are mediated by the Kv7 family of potassium channels. Kv7 channels are important regulators of spiking activity, having a direct influence on the firing rate, spike time variability, and filter properties of neurons. How Kv7 channels affect the joint spiking activity of populations of neurons is an important and open area of study. Using a combination of computational simulations and analytic calculations, we show that the activation of Kv7 conductances reduces the covariability between spike trains of pairs of neurons driven by common inputs. This reduction is beyond that explained by the lowering of firing rates and involves an active cancellation of common fluctuations in the membrane potentials of the cell pair. Our theory shows that the excess covariance reduction is due to a Kv7-induced shift from low-pass to band-pass filtering of the single neuron spike train response. Dysfunction of Kv7 conductances is related to a number of neurological diseases characterized by both elevated firing rates and increased network-wide correlations. We show how changes in the activation or strength of Kv7 conductances give rise to excess correlations that cannot be compensated for by synaptic scaling or homeostatic modulation of passive membrane properties. In contrast, modulation of Kv7 activation parameters consistent with pharmacological treatments for certain hyperactivity disorders can restore normal firing rates and spiking correlations. Our results provide key insights into how regulation of a ubiquitous potassium channel class can control the coordination of population spiking activity.
Collapse
Affiliation(s)
- Gabriel Koch Ocker
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania; and Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
133
|
Sánchez-Aguilera A, Sánchez-Alonso JL, Vicente-Torres MA, Colino A. A novel short-term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells. J Physiol 2014; 592:2845-64. [PMID: 24756640 DOI: 10.1113/jphysiol.2014.273185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in neuronal activity often trigger compensatory mechanisms aimed at regulating network activity homeostatically. Here we have identified and characterized a novel form of compensatory short-term plasticity of membrane excitability, which develops early after the eye-opening period in rats (P16-19 days) but not before that developmental stage (P9-12 days old). Holding the membrane potential of CA1 neurons right below the firing threshold from 15 s to several minutes induced a potentiation of the repolarizing phase of the action potentials that contributed to a decrease in the firing rate of CA1 pyramidal neurons in vitro. Furthermore, the mechanism for inducing this plasticity required the action of intracellular Ca(2+) entering through T-type Ca(2+) channels. This increase in Ca(2+) subsequently activated the Ca(2+) sensor K(+) channel interacting protein 3, which led to the increase of an A-type K(+) current. These results suggest that Ca(2+) modulation of somatic A-current represents a new form of homeostatic regulation that provides CA1 pyramidal neurons with the ability to preserve their firing abilities in response to membrane potential variations on a scale from tens of seconds to several minutes.
Collapse
Affiliation(s)
- A Sánchez-Aguilera
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| | - J L Sánchez-Alonso
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| | - M A Vicente-Torres
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| | - A Colino
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain
| |
Collapse
|
134
|
Homeostasis of functional maps in active dendrites emerges in the absence of individual channelostasis. Proc Natl Acad Sci U S A 2014; 111:E1787-96. [PMID: 24711394 DOI: 10.1073/pnas.1316599111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The maintenance of ion channel homeostasis, or channelostasis, is a complex puzzle in neurons with extensive dendritic arborization, encompassing a combinatorial diversity of proteins that encode these channels and their auxiliary subunits, their localization profiles, and associated signaling machinery. Despite this, neurons exhibit amazingly stereotypic, topographically continuous maps of several functional properties along their active dendritic arbor. Here, we asked whether the membrane composition of neurons, at the level of individual ion channels, is constrained by this structural requirement of sustaining several functional maps along the same topograph. We performed global sensitivity analysis on morphologically realistic conductance-based models of hippocampal pyramidal neurons that coexpressed six well-characterized functional maps along their trunk. We generated randomized models by varying 32 underlying parameters and constrained these models with quantitative experimental measurements from the soma and dendrites of hippocampal pyramidal neurons. Analyzing valid models that satisfied experimental constraints on all six functional maps, we found topographically analogous functional maps to emerge from disparate model parameters with weak pairwise correlations between parameters. Finally, we derived a methodology to assess the contribution of individual channel conductances to the various functional measurements, using virtual knockout simulations on the valid model population. We found that the virtual knockout of individual channels resulted in variable, measurement- and location-specific impacts across the population. Our results suggest collective channelostasis as a mechanism behind the robust emergence of analogous functional maps and have significant ramifications for the localization and targeting of ion channels and enzymes that regulate neural coding and homeostasis.
Collapse
|
135
|
Active dendrites regulate spectral selectivity in location-dependent spike initiation dynamics of hippocampal model neurons. J Neurosci 2014; 34:1195-211. [PMID: 24453312 DOI: 10.1523/jneurosci.3203-13.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How does the presence of plastic active dendrites in a pyramidal neuron alter its spike initiation dynamics? To answer this question, we measured the spike-triggered average (STA) from experimentally constrained, conductance-based hippocampal neuronal models of various morphological complexities. We transformed the STA computed from these models to the spectral and the spectrotemporal domains and found that the spike initiation dynamics exhibited temporally localized selectivity to a characteristic frequency. In the presence of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the STA characteristic frequency strongly correlated with the subthreshold resonance frequency in the theta frequency range. Increases in HCN channel density or in input variance increased the STA characteristic frequency and its selectivity strength. In the absence of HCN channels, the STA exhibited weak delta frequency selectivity and the characteristic frequency was related to the repolarization dynamics of the action potentials and the recovery kinetics of sodium channels from inactivation. Comparison of STA obtained with inputs at various dendritic locations revealed that nonspiking and spiking dendrites increased and reduced the spectrotemporal integration window of the STA with increasing distance from the soma as direct consequences of passive filtering and dendritic spike initiation, respectively. Finally, the presence of HCN channels set the STA characteristic frequency in the theta range across the somatodendritic arbor and specific STA measurements were strongly related to equivalent transfer-impedance-related measurements. Our results identify explicit roles for plastic active dendrites in neural coding and strongly recommend a dynamically reconfigurable multi-STA model to characterize location-dependent input feature selectivity in pyramidal neurons.
Collapse
|
136
|
Noam Y, Ehrengruber MU, Koh A, Feyen P, Manders EMM, Abbott GW, Wadman WJ, Baram TZ. Filamin A promotes dynamin-dependent internalization of hyperpolarization-activated cyclic nucleotide-gated type 1 (HCN1) channels and restricts Ih in hippocampal neurons. J Biol Chem 2014; 289:5889-903. [PMID: 24403084 PMCID: PMC3937658 DOI: 10.1074/jbc.m113.522060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/27/2013] [Indexed: 11/06/2022] Open
Abstract
The actin-binding protein filamin A (FLNa) regulates neuronal migration during development, yet its roles in the mature brain remain largely obscure. Here, we probed the effects of FLNa on the regulation of ion channels that influence neuronal properties. We focused on the HCN1 channels that conduct Ih, a hyperpolarization-activated current crucial for shaping intrinsic neuronal properties. Whereas regulation of HCN1 channels by FLNa has been observed in melanoma cell lines, its physiological relevance to neuronal function and the underlying cellular pathways that govern this regulation remain unknown. Using a combination of mutational, pharmacological, and imaging approaches, we find here that FLNa facilitates a selective and reversible dynamin-dependent internalization of HCN1 channels in HEK293 cells. This internalization is accompanied by a redistribution of HCN1 channels on the cell surface, by accumulation of the channels in endosomal compartments, and by reduced Ih density. In hippocampal neurons, expression of a truncated dominant-negative FLNa enhances the expression of native HCN1. Furthermore, acute abrogation of HCN1-FLNa interaction in neurons, with the use of decoy peptides that mimic the FLNa-binding domain of HCN1, abolishes the punctate distribution of HCN1 channels in neuronal cell bodies, augments endogenous Ih, and enhances the rebound-response ("voltage-sag") of the neuronal membrane to transient hyperpolarizing events. Together, these results support a major function of FLNa in modulating ion channel abundance and membrane trafficking in neurons, thereby shaping their biophysical properties and function.
Collapse
Affiliation(s)
- Yoav Noam
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| | | | - Annie Koh
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| | | | - Erik M. M. Manders
- van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Geoffrey W. Abbott
- Pharmacology, University of California at Irvine, Irvine, California 92697-4475 and
| | | | - Tallie Z. Baram
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| |
Collapse
|
137
|
Yang YS, Kim KD, Eun SY, Jung SC. Roles of somatic A-type K(+) channels in the synaptic plasticity of hippocampal neurons. Neurosci Bull 2014; 30:505-14. [PMID: 24526657 DOI: 10.1007/s12264-013-1399-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
In the mammalian brain, information encoding and storage have been explained by revealing the cellular and molecular mechanisms of synaptic plasticity at various levels in the central nervous system, including the hippocampus and the cerebral cortices. The modulatory mechanisms of synaptic excitability that are correlated with neuronal tasks are fundamental factors for synaptic plasticity, and they are dependent on intracellular Ca(2+)-mediated signaling. In the present review, the A-type K(+) (IA) channel, one of the voltage-dependent cation channels, is considered as a key player in the modulation of Ca(2+) influx through synaptic NMDA receptors and their correlated signaling pathways. The cellular functions of IA channels indicate that they possibly play as integral parts of synaptic and somatic complexes, completing the initiation and stabilization of memory.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Department of Physiology, School of Medicine, Jeju National University, Jeju, 690756, Republic of Korea
| | | | | | | |
Collapse
|
138
|
Brager DH, Johnston D. Channelopathies and dendritic dysfunction in fragile X syndrome. Brain Res Bull 2014; 103:11-7. [PMID: 24462643 DOI: 10.1016/j.brainresbull.2014.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 11/17/2022]
Abstract
Dendritic spine abnormalities and the metabotropic glutamate receptor theory put the focus squarely on synapses and protein synthesis as the cellular locus of fragile X syndrome. Synapses however, are only partly responsible for information processing in neuronal networks. Neurotransmitter triggered excitatory postsynaptic potentials (EPSPs) are shaped and integrated by dendritic voltage-gated ion channels. These EPSPs, and in some cases the resultant dendritic spikes, are further modified by dendritic voltage-gated ion channels as they propagate to the soma. If the resultant somatic depolarization is large enough, action potential(s) will be triggered and propagate both orthodromically down the axon, where it may trigger neurotransmitter release, and antidromically back into the dendritic tree, where it can activate and modify dendritic voltage-gated and receptor activated ion channels. Several channelopathies, both soma-dendritic (L-type calcium channels, Slack potassium channels, h-channels, A-type potassium channels) and axo-somatic (BK channels and delayed rectifier potassium channels) were identified in the fmr1-/y mouse model of fragile X syndrome. Pathological function of these channels will strongly influence the excitability of individual neurons as well as overall network function. In this chapter we discuss the role of voltage-gated ion channels in neuronal processing and describe how identified channelopathies in models of fragile X syndrome may play a role in dendritic pathophysiology.
Collapse
Affiliation(s)
- Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, United States.
| | - Daniel Johnston
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
139
|
Arnsten AFT, Jin LE. Molecular influences on working memory circuits in dorsolateral prefrontal cortex. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:211-31. [PMID: 24484703 DOI: 10.1016/b978-0-12-420170-5.00008-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The working memory circuits of the primate dorsolateral prefrontal cortex (dlPFC) are modulated in a unique manner, often opposite to the molecular mechanisms needed for long-term memory consolidation. Working memory, our "mental sketch pad" is an ephemeral process, whereby transient, mental representations form the foundation for abstract thought. The microcircuits that generate mental representations are found in deep layer III of the dlPFC, where pyramidal cells excite each other to keep information "in mind" through NMDA receptor synapses on spines. The catecholaminergic and cholinergic arousal systems have rapid and flexible influences on the strength of these connections, thus allowing coordination between arousal and cognitive states. These modulators can rapidly weaken connectivity, for example, as occurs during uncontrollable stress, via feedforward calcium-cAMP signaling opening potassium (K(+)) channels near synapses on spines. Lower levels of calcium-cAMP-K(+) channel signaling provide negative feedback within recurrent excitatory circuits, and help to gate inputs to shape the contents of working memory. There are also explicit mechanisms to inhibit calcium-cAMP signaling and strengthen connectivity, for example, postsynaptic α2A-adrenoceptors on spines. This work has led to the development of the α2A agonist, guanfacine, for the treatment of a variety of dlPFC disorders. In mental illness, there are a variety of genetic insults to the molecules that normally serve to inhibit calcium-cAMP signaling in spines, thus explaining why so many genetic insults can lead to the same phenotype of impaired dlPFC cognitive function. Thus, the molecular mechanisms that provide mental flexibility may also confer vulnerability when dysregulated in cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lu E Jin
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
140
|
He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog Neurobiol 2014; 112:1-23. [DOI: 10.1016/j.pneurobio.2013.10.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/18/2022]
|
141
|
Wlodarczyk AI, Xu C, Song I, Doronin M, Wu YW, Walker MC, Semyanov A. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons. Front Neural Circuits 2013; 7:205. [PMID: 24399937 PMCID: PMC3872325 DOI: 10.3389/fncir.2013.00205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/11/2013] [Indexed: 11/21/2022] Open
Abstract
Because of a complex dendritic structure, pyramidal neurons have a large membrane surface relative to other cells and so a large electrical capacitance and a large membrane time constant (τm). This results in slow depolarizations in response to excitatory synaptic inputs, and consequently increased and variable action potential latencies, which may be computationally undesirable. Tonic activation of GABAA receptors increases membrane conductance and thus regulates neuronal excitability by shunting inhibition. In addition, tonic increases in membrane conductance decrease the membrane time constant (τm), and improve the temporal fidelity of neuronal firing. Here we performed whole-cell current clamp recordings from hippocampal CA1 pyramidal neurons and found that bath application of 10μM GABA indeed decreases τm in these cells. GABA also decreased first spike latency and jitter (standard deviation of the latency) produced by current injection of 2 rheobases (500 ms). However, when larger current injections (3–6 rheobases) were used, GABA produced no significant effect on spike jitter, which was low. Using mathematical modeling we demonstrate that the tonic GABAA conductance decreases rise time, decay time and half-width of EPSPs in pyramidal neurons. A similar effect was observed on EPSP/IPSP pairs produced by stimulation of Schaffer collaterals: the EPSP part of the response became shorter after application of GABA. Consistent with the current injection data, a significant decrease in spike latency and jitter was obtained in cell attached recordings only at near-threshold stimulation (50% success rate, S50). When stimulation was increased to 2- or 3- times S50, GABA significantly affected neither spike latency nor spike jitter. Our results suggest that a decrease in τm associated with elevations in ambient GABA can improve EPSP-spike precision at near-threshold synaptic inputs.
Collapse
Affiliation(s)
| | - Chun Xu
- RIKEN Brain Science Institute Wako-shi, Japan
| | - Inseon Song
- RIKEN Brain Science Institute Wako-shi, Japan
| | - Maxim Doronin
- RIKEN Brain Science Institute Wako-shi, Japan ; Department of Neurodynamics and Neurobiology, University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Yu-Wei Wu
- RIKEN Brain Science Institute Wako-shi, Japan
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology London, UK
| | - Alexey Semyanov
- RIKEN Brain Science Institute Wako-shi, Japan ; Department of Neurodynamics and Neurobiology, University of Nizhny Novgorod Nizhny Novgorod, Russia
| |
Collapse
|
142
|
Kirchheim F, Tinnes S, Haas CA, Stegen M, Wolfart J. Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy. Front Cell Neurosci 2013; 7:248. [PMID: 24367293 PMCID: PMC3852106 DOI: 10.3389/fncel.2013.00248] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/20/2013] [Indexed: 11/13/2022] Open
Abstract
Action potential (AP) responses of dentate gyrus granule (DG) cells have to be tightly regulated to maintain hippocampal function. However, which ion channels control the response delay of DG cells is not known. In some neuron types, spike latency is influenced by a dendrotoxin (DTX)-sensitive delay current (ID) mediated by unidentified combinations of voltage-gated K(+) (Kv) channels of the Kv1 family Kv1.1-6. In DG cells, the ID has not been characterized and its molecular basis is unknown. The response phenotype of mature DG cells is usually considered homogenous but intrinsic plasticity likely occurs in particular in conditions of hyperexcitability, for example during temporal lobe epilepsy (TLE). In this study, we examined response delays of DG cells and underlying ion channel molecules by employing a combination of gramicidin-perforated patch-clamp recordings in acute brain slices and single-cell reverse transcriptase quantitative polymerase chain reaction (SC RT-qPCR) experiments. An in vivo mouse model of TLE consisting of intrahippocampal kainate (KA) injection was used to examine epilepsy-related plasticity. Response delays of DG cells were DTX-sensitive and strongly increased in KA-injected hippocampi; Kv1.1 mRNA was elevated 10-fold, and the response delays correlated with Kv1.1 mRNA abundance on the single cell level. Other Kv1 subunits did not show overt changes in mRNA levels. Kv1.1 immunolabeling was enhanced in KA DG cells. The biophysical properties of ID and a delay heterogeneity within the DG cell population was characterized. Using organotypic hippocampal slice cultures (OHCs), where KA incubation also induced ID upregulation, the homeostatic reversibility and neuroprotective potential for DG cells were tested. In summary, the AP timing of DG cells is effectively controlled via scaling of Kv1.1 subunit transcription. With this antiepileptic mechanism, DG cells delay their responses during hyperexcitation.
Collapse
Affiliation(s)
- Florian Kirchheim
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Faculty of Biology, University of Freiburg Freiburg, Germany
| | - Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Michael Stegen
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Department of Biomedicine, Institute of Physiology, University of Basel Basel, Switzerland
| | - Jakob Wolfart
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
143
|
Nakamura Y, Shi X, Numata T, Mori Y, Inoue R, Lossin C, Baram TZ, Hirose S. Novel HCN2 mutation contributes to febrile seizures by shifting the channel's kinetics in a temperature-dependent manner. PLoS One 2013; 8:e80376. [PMID: 24324597 PMCID: PMC3851455 DOI: 10.1371/journal.pone.0080376] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/02/2013] [Indexed: 12/27/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated currents, known as I h, are involved in the control of rhythmic activity in neuronal circuits and in determining neuronal properties including the resting membrane potential. Recent studies have shown that HCN channels play a role in seizure susceptibility and in absence and limbic epilepsy including temporal lobe epilepsy following long febrile seizures (FS). This study focused on the potential contributions of abnormalities in the HCN2 isoform and their role in FS. A novel heterozygous missense mutation in HCN2 exon 1 leading to p.S126L was identified in two unrelated patients with FS. The mutation was inherited from the mother who had suffered from FS in a pedigree. To determine the effect of this substitution we conducted whole-cell patch clamp electrophysiology. We found that mutant channels had elevated sensitivity to temperature. More specifically, they displayed faster kinetics at higher temperature. Kinetic shift by change of temperature sensitivity rather than the shift of voltage dependence led to increased availability of I h in conditions promoting FS. Responses to cyclic AMP did not differ between wildtype and mutant channels. Thus, mutant HCN2 channels cause significant cAMP-independent enhanced availability of I h during high temperatures, which may contribute to hyperthermia-induced neuronal hyperexcitability in some individuals with FS.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- The Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Xiuyu Shi
- The Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Tomohiro Numata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ryuji Inoue
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Christoph Lossin
- Department of Neurology, School of Medicine University of California Davis, Sacramento, California, United States of America
| | - Tallie Z. Baram
- Departments of Anatomy & Neurobiology, Pediatrics, and Neurology, University of California Irvine, Irvine, California, United States of America
| | - Shinichi Hirose
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- The Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
144
|
Hulme SR, Jones OD, Raymond CR, Sah P, Abraham WC. Mechanisms of heterosynaptic metaplasticity. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130148. [PMID: 24298150 DOI: 10.1098/rstb.2013.0148] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Synaptic plasticity is fundamental to the neural processes underlying learning and memory. Interestingly, synaptic plasticity itself can be dynamically regulated by prior activity, in a process termed 'metaplasticity', which can be expressed both homosynaptically and heterosynaptically. Here, we focus on heterosynaptic metaplasticity, particularly long-range interactions between synapses spread across dendritic compartments, and review evidence for intracellular versus intercellular signalling pathways leading to this effect. Of particular interest is our previously reported finding that priming stimulation in stratum oriens of area CA1 in the hippocampal slice heterosynaptically inhibits subsequent long-term potentiation and facilitates long-term depression in stratum radiatum. As we have excluded the most likely intracellular signalling pathways that might mediate this long-range heterosynaptic effect, we consider the hypothesis that intercellular communication may be critically involved. This hypothesis is supported by the finding that extracellular ATP hydrolysis, and activation of adenosine A2 receptors are required to induce the metaplastic state. Moreover, delivery of the priming stimulation in stratum oriens elicited astrocytic calcium responses in stratum radiatum. Both the astrocytic responses and the metaplasticity were blocked by gap junction inhibitors. Taken together, these findings support a novel intercellular communication system, possibly involving astrocytes, being required for this type of heterosynaptic metaplasticity.
Collapse
Affiliation(s)
- Sarah R Hulme
- Department of Psychology and Brain Health Research Centre, University of Otago, , PO Box 56, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
145
|
Williams SR. Synchrony and the single neuron. Nat Neurosci 2013; 16:1714-5. [PMID: 24270270 DOI: 10.1038/nn.3586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen R Williams
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
146
|
Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks. J Neurosci 2013; 33:15032-43. [PMID: 24048833 DOI: 10.1523/jneurosci.0870-13.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks.
Collapse
|
147
|
Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons. Nat Neurosci 2013; 16:1812-20. [PMID: 24185428 PMCID: PMC3958963 DOI: 10.1038/nn.3562] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/26/2013] [Indexed: 11/13/2022]
Abstract
Timing is a crucial aspect of synaptic integration. For pyramidal neurons that integrate thousands of synaptic inputs spread across hundreds of microns, it is thus a challenge to maintain the timing of incoming inputs at the axo-somatic integration site. Here we show that pyramidal neurons in the rodent hippocampus use a gradient of inductance in the form of HCN channels as an active mechanism to counteract location-dependent temporal differences of dendritic inputs at the soma. Using simultaneous multi-site whole cell recordings complemented by computational modeling, we find that this intrinsic biophysical mechanism produces temporal synchrony of rhythmic inputs in the theta and gamma frequency ranges across wide regions of the dendritic tree. While gamma and theta oscillations are known to synchronize activity across space in neuronal networks, our results identify a novel mechanism by which this synchrony extends to activity within single pyramidal neurons with complex dendritic arbors.
Collapse
|
148
|
Brager DH, Lewis AS, Chetkovich DM, Johnston D. Short- and long-term plasticity in CA1 neurons from mice lacking h-channel auxiliary subunit TRIP8b. J Neurophysiol 2013; 110:2350-7. [PMID: 23966674 PMCID: PMC3841871 DOI: 10.1152/jn.00218.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated nonselective cation channels (HCN or h-channels) are important regulators of neuronal physiology contributing to passive membrane properties, such as resting membrane potential and input resistance (R(N)), and to intrinsic oscillatory activity and synaptic integration. The correct membrane targeting of h-channels is regulated in part by the auxiliary h-channel protein TRIP8b. The genetic deletion of TRIP8b results in a loss of functional h-channels, which affects the postsynaptic integrative properties of neurons. We investigated the impact of TRIP8b deletion on long-term potentiation (LTP) at the two major excitatory inputs to CA1 pyramidal neurons: Schaffer collateral (SC) and perforant path (PP). We found that SC LTP was not significantly different between neurons from wild-type and TRIP8b-knockout mice. There was, however, significantly more short-term potentiation in knockout neurons. We also found that the persistent increase in h-current (I(h)) that normally occurs after LTP induction was absent in knockout neurons. The lack of I(h) plasticity was not restricted to activity-dependent induction, because the depletion of intracellular calcium stores also failed to produce the expected increase in I(h). Interestingly, pairing of SC and PP inputs resulted in a form of LTP in knockout neurons that did not occur in wild-type neurons. These results suggest that the physiological impact of TRIP8b deletion is not restricted to the integrative properties of neurons but also includes both synaptic and intrinsic plasticity.
Collapse
Affiliation(s)
- Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas
| | | | | | | |
Collapse
|
149
|
Good CH, Wang H, Chen YH, Mejias-Aponte CA, Hoffman AF, Lupica CR. Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms. J Neurosci 2013; 33:16853-64. [PMID: 24155292 PMCID: PMC3807019 DOI: 10.1523/jneurosci.1844-13.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/15/2013] [Accepted: 09/05/2013] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic lateral habenula (LHb) output communicates negative motivational valence to ventral tegmental area (VTA) dopamine (DA) neurons via activation of the rostromedial tegmental nucleus (RMTg). However, the LHb also receives a poorly understood DA input from the VTA, which we hypothesized constitutes an important feedback loop regulating DA responses to stimuli. Using whole-cell electrophysiology in rat brain slices, we find that DA initiates a depolarizing inward current (I(DAi)) and increases spontaneous firing in 32% of LHb neurons. I(DAi) was also observed upon application of amphetamine or the DA uptake blockers cocaine or GBR12935, indicating involvement of endogenous DA. I(DAi) was blocked by D4 receptor (D4R) antagonists (L745,870 or L741,742), and mimicked by a selective D4R agonist (A412997). I(DAi) was associated with increased whole-cell conductance and was blocked by Cs+ or a selective blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel, ZD7288. I(DAi) was also associated with a depolarizing shift in half-activation voltage for the hyperpolarization-activated cation current (Ih) mediated by HCN channels. Recordings from LHb neurons containing fluorescent retrograde tracers revealed that I(DAi) was observed only in cells projecting to the RMTg and not the VTA. In parallel with direct depolarization, DA also strongly increased synaptic glutamate release and reduced synaptic GABA release onto LHb cells. These results demonstrate that DA can excite glutamatergic LHb output to RMTg via multiple cellular mechanisms. Since the RMTg strongly inhibits midbrain DA neurons, activation of LHb output to RMTg by DA represents a negative feedback loop that may dampen DA neuron output following activation.
Collapse
Affiliation(s)
- Cameron H. Good
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| | - Huikun Wang
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| | - Yuan-Hao Chen
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Carlos A. Mejias-Aponte
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland 21224, and
| | | | - Carl R. Lupica
- Cellular Neurobiology Research Branch
- Electrophysiology Research Section, and
| |
Collapse
|
150
|
Carlson AE, Rosenbaum JC, Brelidze TI, Klevit RE, Zagotta WN. Flavonoid regulation of HCN2 channels. J Biol Chem 2013; 288:33136-45. [PMID: 24085296 DOI: 10.1074/jbc.m113.501759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μM. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.
Collapse
|