101
|
Kim HS, Seol JH, Hwang HH, Lee DY. Nanoarchitectured conjugates targeting angiogenesis: investigating heparin-taurocholate acid conjugates (LHT7) as an advanced anti-angiogenic therapy for brain tumor treatment. Biomater Res 2023; 27:89. [PMID: 37723574 PMCID: PMC10506202 DOI: 10.1186/s40824-023-00420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/19/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Glioblastoma is a highly malignant brain tumor associated with poor prognosis. Conventional therapeutic approaches have limitations due to their toxic effects on normal tissue and the development of tumor cell resistance. This study aimed to explore alternative mechanisms for glioblastoma treatment by targeting angiogenesis. METHODS The study investigated the anti-angiogenic properties of heparin in glioblastoma treatment. To overcome the limitations of heparin, a heparin-taurocholate conjugate (LHT7) was synthesized by conjugating heparin to taurocholic acid. The study utilized the U87MG human glioblastoma cell line and human umbilical vein endothelial cells (HUVEC) as experimental models. Cell viability assays and sprouting assays were performed to assess the effects of LHT7. Additionally, phosphorylation of angiogenesis-related proteins, such as phospho-ERK and phospho-VEGFR2, was measured. The anti-angiogenic effects of LHT7 were further evaluated using a glioblastoma orthotopic mouse model. RESULTS Treatment with LHT7 resulted in a dose-dependent reduction in cell viability in U87MG human glioblastoma cells. The sprouting of HUVEC cells was significantly decreased upon LHT7 treatment. Furthermore, LHT7 treatment led to a decrease in the phosphorylation of angiogenesis-related proteins, including phospho-ERK and phospho-VEGFR2. In the glioblastoma orthotopic mouse model, LHT7 exhibited anti-angiogenic effects, supporting its potential as a therapeutic agent. CONCLUSIONS The conjugation of heparin and taurocholic acid to create LHT7 offers several advantages over conventional therapeutic approaches for glioblastoma. LHT7 demonstrated anti-angiogenic properties, as evidenced by the reduction in cell viability and inhibition of endothelial cell sprouting. Moreover, LHT7 modulated the phosphorylation of angiogenesis-related proteins. These findings suggest that LHT7 holds promise as a medication for glioblastoma treatment, offering potential implications for improving patient outcomes.
Collapse
Affiliation(s)
- Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jae Hak Seol
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Hae Hyun Hwang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea.
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc, Seoul, 07463, Republic of Korea.
| |
Collapse
|
102
|
Singh V, Katiyar A, Malik P, Kumar S, Mohan A, Singh H, Jain D. Identification of molecular biomarkers associated with non-small-cell lung carcinoma (NSCLC) using whole-exome sequencing. Cancer Biomark 2023:CBM220211. [PMID: 37694353 DOI: 10.3233/cbm-220211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
OBJECTIVES Significant progress has been made in the treatment of patients with pulmonary adenocarcinoma (ADCA) based on molecular profiling. However, no such molecular target exists for squamous cell carcinoma (SQCC). An exome sequence may provide new markers for personalized medicine for lung cancer patients of all subtypes. The current study aims to discover new genetic markers that can be used as universal biomarkers for non-small cell lung cancer (NSCLC). METHODS WES of 19 advanced NSCLC patients (10 ADCA and 9 SQCC) was performed using Illumina HiSeq 2000. Variant calling was performed using GATK HaplotypeCaller and then the impacts of variants on protein structure or function were predicted using SnpEff and ANNOVAR. The clinical impact of somatic variants in cancer was assessed using cancer archives. Somatic variants were further prioritized using a knowledge-driven variant interpretation approach. Sanger sequencing was used to validate functionally important variants. RESULTS We identified 24 rare single-nucleotide variants (SNVs) including 17 non-synonymous SNVs, and 7 INDELs in 18 genes possibly linked to lung carcinoma. Variants were classified as known somatic (n= 10), deleterious (n= 8), and variant of uncertain significance (n= 6). We found TBP and MPRIP genes exclusively associated with ADCA subtypes, FBOX6 with SQCC subtypes and GPRIN2, KCNJ18 and TEKT4 genes mutated in all the patients. The Sanger sequencing of 10 high-confidence somatic SNVs showed 100% concordance in 7 genes, and 80% concordance in the remaining 3 genes. CONCLUSIONS Our bioinformatics analysis identified KCNJ18, GPRIN2, TEKT4, HRNR, FOLR3, ESSRA, CTBP2, MPRIP, TBP, and FBXO6 may contribute to progression in NSCLC and could be used as new biomarkers for the treatment. The mechanism by which GPRIN2, KCNJ12, and TEKT4 contribute to tumorigenesis is unclear, but our results suggest they may play an important role in NSCLC and it is worth investigating in future.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prabhat Malik
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, Ansari Nagar, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Center, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
103
|
Dube ZF, Soremekun OS, Ntombela T, Alahmdi MI, Abo-Dya NE, Sidhom PA, Shawky AM, Shibl MF, Ibrahim MA, Soliman ME. Inherent efficacies of pyrazole-based derivatives for cancer therapy: the interface between experiment and in silico. Future Med Chem 2023; 15:1719-1738. [PMID: 37772542 DOI: 10.4155/fmc-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
There has been an increasing trend in the design of novel pyrazole derivatives for desired biological applications. For a cost-effective strategy, scientists have implemented various computational drug design tools to go hand in hand with experiments for the design and discovery of potentially effective pyrazole-based therapeutics. This review highlights the milestones of pyrazole-containing inhibitors and the use of molecular modeling techniques in conjunction with experimental studies to provide a view of the binding mechanism of these compounds. The review focuses on the established targets that play a key role in cancer therapy, including proteins involved in tubulin polymerization, carbonic anhydrase and tyrosine kinase. Overall, using both experimental and computational methods in drug design represents a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Zanele F Dube
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, South Kensington, London, SW7 2BX, UK
| | - Thandokuhle Ntombela
- Catalysis & Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Shawky
- Science & Technology Unit, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts & Sciences, Qatar University, Doha, 2713, Qatar
| | - Mahmoud Aa Ibrahim
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mahmoud Es Soliman
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
104
|
Zhang S, Zhang Y, Zheng Y, Zhu S, Sun J, Deng Y, Wang Q, Zhai Q. Dexmedetomidine attenuates sleep deprivation-induced inhibition of hippocampal neurogenesis via VEGF-VEGFR2 signaling and inhibits neuroinflammation. Biomed Pharmacother 2023; 165:115085. [PMID: 37392656 DOI: 10.1016/j.biopha.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Long periods of sleep deprivation (SD) have serious effects on health. While the α2 adrenoceptor agonist dexmedetomidine (DEX) can improve sleep quality for patients who have insomnia, the effect of DEX on cognition and mechanisms after SD remains elusive. C57BL/6 mice were subjected to 20 h SD daily for seven days. DEX (100 μg/kg) was administered intravenously twice daily (at 1:00 p.m. and 3:00 p.m.) during seven days of SD. We found that systemic administration of DEX attenuated cognitive deficits by performing the Y maze and novel object recognition tests and increased DCX+, SOX2+, Ki67+, and BrdU+NeuN+/NeuN+ cell numbers in the dentate gyrus (DG) region of SD mice by using immunofluorescence, western blotting, and BrdU staining. DEX did not reverse the decrease in DCX+, SOX2+, or Ki67+ cell numbers in SD mice after administration of the α2A-adrenoceptor antagonist BRL-44408. Furthermore, the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) expression was upregulated in SD+DEX mice compared with SD mice. Luminex analysis showed that the neurogenic effects of DEX were possibly related to the inhibition of neuroinflammation, including IL-1α, IL-2, CCL5, and CXCL1. Our results suggested that DEX alleviated the impaired learning and memory of SD mice potentially by inducing hippocampal neurogenesis via the VEGF-VEGFR2 signaling pathway and by suppressing neuroinflammation, and α2A adrenoceptors are required for the neurogenic effects of DEX after SD. This novel mechanism may add to our knowledge of DEX in the clinical treatment of impaired memory caused by SD.
Collapse
Affiliation(s)
- Shuyue Zhang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ying Zhang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yige Zheng
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Shan Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jianyu Sun
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yingying Deng
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Qian Zhai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
105
|
Gameiro SF, Flondra KM. Human Papillomavirus-Associated Tumor Extracellular Vesicles in HPV + Tumor Microenvironments. J Clin Med 2023; 12:5668. [PMID: 37685735 PMCID: PMC10488665 DOI: 10.3390/jcm12175668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Most infections with human papillomaviruses (HPVs) are self-resolving and asymptomatic. However, some infections can lead to the development of cancer at different mucosal sites, such as the cervix and the head and neck. Head and neck cancers (HNCs) are dichotomized into HPV-positive (HPV+) or HPV-negative (HPV-) based on their respective etiologies. Notably, the tumor microenvironment (TME) of the HPV+ subtype has an immune landscape characterized with increased immune infiltration, higher levels of T cell activation, and higher levels of immunoregulatory stimuli compared to their HPV- counterparts. Both enveloped and nonenveloped viruses hijack the extracellular vesicle (EV) biogenesis pathway to deploy a "trojan horse" strategy with a pseudoviral envelope to enhance infectivity and evade inflammation. EVs derived from HPV-infected tumor cells could allow for the stealth transport of viral cargo to neighboring nonmalignant cellular populations or infiltrating immune cells within the TME. Furthermore, viral cargo or altered cellular cargo from HPV-associated tumor EVs (HPV-TEVs) could alter the functional state or biological responses of the recipient cellular populations, which could shape the distinctive HPV+ TME. This review will cover the impact of EVs released from HPV-infected cells on HPV-induced carcinogenesis, their role in shaping the distinctive HPV+ tumor microenvironment, and current efforts to develop a painless EV-based liquid biopsy for HPV+ cancers.
Collapse
Affiliation(s)
- Steven F. Gameiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kaitlyn M. Flondra
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, London, ON N6A 5C1, Canada;
| |
Collapse
|
106
|
Bokhari SMZ, Hamar P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors. Int J Mol Sci 2023; 24:13317. [PMID: 37686121 PMCID: PMC10487419 DOI: 10.3390/ijms241713317] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the key regulators of vasculogenesis in normal and oncological development. VEGF-A is the most studied angiogenic factor secreted by malignant tumor cells under hypoxic and inflammatory stress, which made VEGF-A a rational target for anticancer therapy. However, inhibition of VEGF-A by monoclonal antibody drugs led to the upregulation of VEGF-D. VEGF-D was primarily described as a lymphangiogenic factor; however, VEGF-D's blood angiogenic potential comparable to VEGF-A has already been demonstrated in glioblastoma and colorectal carcinoma. These findings suggested a role for VEGF-D in facilitating malignant tumor growth by bypassing the anti-VEGF-A antiangiogenic therapy. Owing to its high mitogenic ability, higher affinity for VEGFR-2, and higher expression in cancer, VEGF-D might even be a stronger angiogenic driver and, hence, a better therapeutic target than VEGF-A. In this review, we summarized the angiogenic role of VEGF-D in blood vasculogenesis and its targetability as an antiangiogenic therapy in cancer.
Collapse
Affiliation(s)
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| |
Collapse
|
107
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 417] [Impact Index Per Article: 208.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
108
|
Mubtasim N, Gollahon L. Characterizing 3T3-L1 MBX Adipocyte Cell Differentiation Maintained with Fatty Acids as an In Vitro Model to Study the Effects of Obesity. Life (Basel) 2023; 13:1712. [PMID: 37629569 PMCID: PMC10455818 DOI: 10.3390/life13081712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The increasing prevalence of obesity has prompted intensive research into understanding its role in pathogenesis and designing appropriate treatments. To determine the signals generated from the interaction of fat cells with a target organ, a reliable white adipocyte model in vitro is needed. Differentiated fibroblasts are the most extensively studied using in vitro cell models of white adipocytes. However, it can be argued that differentiated fibroblasts minimally recapitulate the consequences of obesity. Here, we describe 3T3-L1 MBX cells as a culture model for studying obese adipocytes and their effects. Differentiation of 3T3-L1 MBX cells was at first optimized and then maintained in the presence of fatty acids cocktail combination to induce the obese condition. Lipid accumulation and adipokine secretion profiles were analyzed. Results showed that fatty acid-maintained, differentiated 3T3-L1 MBX cells had significantly greater accumulation of lipids and significant changes in the adipokine secretions in comparison to differentiated 3T3-L1 MBX cells maintained in medium without fatty acids. To elucidate the molecular changes associated with adipogenesis and lipid accumulation profile of 3T3-L1 MBX cells, we have also explored the expression of some of the regulatory proteins related to the development and maintenance of adipocytes from the preadipocyte lineage.
Collapse
Affiliation(s)
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA;
| |
Collapse
|
109
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
110
|
Beller NC, Wang Y, Hummon AB. Evaluating the Pharmacokinetics and Pharmacodynamics of Chemotherapeutics within a Spatial SILAC-Labeled Spheroid Model System. Anal Chem 2023; 95:11263-11272. [PMID: 37462741 PMCID: PMC10676637 DOI: 10.1021/acs.analchem.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Tumors have considerable cellular heterogeneity that is impossible to explore with simple cell cultures. Spheroid cultures contain pathophysiological and chemical gradients similar to in vivo tumors and show complex responses to therapeutics, similar to a tumor. Using pulsed isotopic labels, we demonstrate the pronounced differential response of the proteome to the drug Regorafenib, a multikinase inhibitor, in HCT 116 spheroids. Regorafenib treatment of outer spheroids inhibits proteins involved in critical pathways such as mTOR signaling, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling, and colorectal cancer metastasis signaling, resulting in decreased proliferation and cellular apoptosis. By contrast, analysis of the treated core cells shows upregulation of MAPK1 and KRAS, possibly implicating drug resistance within these late apoptotic cells. Thus, pulsed isotopic labeling enables evaluation of the distinct proteomic responses for cells residing in the different chemical microenvironments of the spheroid. This platform promises great utility in assisting researchers' predictions of pharmacodynamic therapeutic responses within complex tumors.
Collapse
Affiliation(s)
- Nicole C. Beller
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
| | - Yijia Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| |
Collapse
|
111
|
Matsumoto M, Noritake H, Yamashita M, Hanaoka T, Umemura M, Kitsugi K, Takatori S, Ohta K, Ito J, Chida T, Kawata K. A case of hepatitis B virus-infected patient with bevacizumab-related severe intratumor hemorrhage of large hepatocellular carcinoma (HCC). KANZO 2023; 64:382-392. [DOI: 10.2957/kanzo.64.382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Moe Matsumoto
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Hidenao Noritake
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Maho Yamashita
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Tomohiko Hanaoka
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Masahiro Umemura
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Kensuke Kitsugi
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Shingo Takatori
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Kazuyoshi Ohta
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Jun Ito
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| | - Takeshi Chida
- Department of Regional Medical Care Support, Hamamatsu University School of Medicine
| | - Kazuhito Kawata
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine
| |
Collapse
|
112
|
Moshe DL, Baghaie L, Leroy F, Skapinker E, Szewczuk MR. Metamorphic Effect of Angiogenic Switch in Tumor Development: Conundrum of Tumor Angiogenesis Toward Progression and Metastatic Potential. Biomedicines 2023; 11:2142. [PMID: 37626639 PMCID: PMC10452636 DOI: 10.3390/biomedicines11082142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of angiogenesis has significantly expanded over the past five decades. More recently, research has focused on this process at a more molecular level, looking at it through the signaling pathways that activate it and its non-direct downstream effects. This review discusses current findings in molecular angiogenesis, focusing on its impact on the immune system. Moreover, the impairment of this process in cancer progression and metastasis is highlighted, and current anti-angiogenic treatments and their effects on tumor growth are discussed.
Collapse
Affiliation(s)
- Daniel Leon Moshe
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Fleur Leroy
- Faculté de médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, F-67000 Strasbourg, France;
| | - Elizabeth Skapinker
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Myron R. Szewczuk
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| |
Collapse
|
113
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
114
|
Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Coord Chem Rev 2023; 487:215172. [PMID: 37305445 PMCID: PMC10249757 DOI: 10.1016/j.ccr.2023.215172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
115
|
Hou F, Yao Y, Wei Y, Wang Y, Cao Y, Liu X, Zheng L, Zhang Q, Jiao Y, Chen Y, Meng Y, Sun Y, Wu Y, Wang J, Wang J, Wu Z, Zhang K, Wei M, Yang G. Design and discovery of new selective and potent VEGF receptor 2 tyrosine kinase inhibitors. Bioorg Med Chem 2023; 91:117404. [PMID: 37429211 DOI: 10.1016/j.bmc.2023.117404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
A series of novel substituted 4-anilinoquinazolines and their related compounds were designed and prepared by 3D modeling as potential inhibitors of VEGFR-2. Evaluation of VEGFR inhibitory activities suggested that compound I10 was a more potent (IC50 = 0.11 nM) VEGFR-2 inhibitor than most of the listed drugs. Kinase panel assays demonstrated that compound I10 was the selective VEGFR-2 inhibitor. The prediction of 3D modeling unveiled a unique binding mode of this lead compound to VEGFR-2. Compound I10 exhibited remarkable anti-angiogenesis and anti-proliferation in HUVEC at low nanomolar concentrations. PK studies indicated that the lead compound possessed adequate oral bioavailability in various species. In vivo subcutaneous tumor model demonstrated that oral administration of I10 demonstrated potent efficacy in inhibiting tumor growth and angiogenesis. All these results suggested compound I10 is a potential drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Fei Hou
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yuhong Yao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yujiao Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yubo Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yangzi Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Xinqiang Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Liting Zheng
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Qingqing Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yue Jiao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yukun Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yue Meng
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yue Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yanjie Wu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China.
| | - Junfeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China.
| | - Zhou Wu
- China Resources Biopharmaceutical Co., Ltd., Beijing 100100, PR China.
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
116
|
Namjoo M, Ghafouri H, Assareh E, Aref AR, Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S, Asghari SM. A VEGFB-Based Peptidomimetic Inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK Signaling and Elicits Apoptotic, Antiangiogenic, and Antitumor Activities. Pharmaceuticals (Basel) 2023; 16:906. [PMID: 37375853 DOI: 10.3390/ph16060906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic (VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutralizes VEGFR2. Investigation of the cyclic and linear structures of VGB3 (named C-VGB3 and L-VGB3, respectively) using receptor binding and cell proliferation assays, molecular docking, and evaluation of antiangiogenic and antitumor activities in the 4T1 mouse mammary carcinoma tumor (MCT) model showed that loop formation is essential for peptide functionality. C-VGB3 inhibited proliferation and tubulogenesis of human umbilical vein endothelial cells (HUVECs), accounting for the abrogation of VEGFR2, p-VEGFR2 and, subsequently, PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. In 4T1 MCT cells, C-VGB3 inhibited cell proliferation, VEGFR2 expression and phosphorylation, the PI3K/AKT/mTOR pathway, FAK/Paxillin, and the epithelial-to-mesenchymal transition cascade. The apoptotic effects of C-VGB3 on HUVE and 4T1 MCT cells were inferred from annexin-PI and TUNEL staining and activation of P53, caspase-3, caspase-7, and PARP1, which mechanistically occurred through the intrinsic pathway mediated by Bcl2 family members, cytochrome c, Apaf-1 and caspase-9, and extrinsic pathway via death receptors and caspase-8. These data indicate that binding regions shared by VEGF family members may be important in developing novel pan-VEGFR inhibitors that are highly relevant in the pathogenesis of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Mohadeseh Namjoo
- Department of Biology, University Campus II, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Elham Assareh
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Hamrahi Mohsen
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran P.O. Box 1841, Iran
| | - Sylvain Broussy
- CiTCoM, UMR CNRS 8038, U1268 INSERM, UFR de Pharmacie, Faculté de Santé, Université Paris Cité, 75006 Paris, France
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| |
Collapse
|
117
|
Pezzella F, Qian CN. Editorial: Vascular co-option and beyond for cancer biology. Front Oncol 2023; 13:1227540. [PMID: 37456261 PMCID: PMC10338838 DOI: 10.3389/fonc.2023.1227540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Francesco Pezzella
- Nuffield Division of Clinical Laboratory Science-Radcliffe Department of Medicine (NDCLS-RDM) John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Chao-Nan Qian
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, China
- Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
118
|
Ren MY, Shi YJ, Lu W, Fan SS, Tao XH, Ding Y. Facial Merkel cell carcinoma in a patient with diabetes and hepatitis B: A case report. World J Clin Cases 2023; 11:4179-4186. [PMID: 37388796 PMCID: PMC10303596 DOI: 10.12998/wjcc.v11.i17.4179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Patients with chronic inflammatory disorders are at a higher risk of developing aggressive Merkel cell carcinoma (MCC). Diabetes is a common chronic inflammatory disease that is possibly associated with MCC; however, there are still no reports on the association between hepatitis B virus (HBV) infection and MCC. Whether there is an association between these three diseases and the specific mechanisms behind their effects is worth further research in the future.
CASE SUMMARY We herein report a rare case of MCC with extracutaneous and nodal invasion in an Asian individual with type 2 diabetes mellitus and chronic HBV infection, but no immunosuppression or other malignancies. Such cases are uncommon and have rarely been reported in the literature. A 56-year-old Asian male presented with a significant mass on his right cheek and underwent extensive resection combined with parotidectomy, neck lymphadenectomy, and split-thickness skin grafting. Based on the histopathological findings, a diagnosis of MCC involving the adipose tissue, muscle, nerve, and parotid gland with lymphovascular invasion was made. Subsequently, he received radiotherapy with no adverse reactions.
CONCLUSION MCC is a rare, aggressive skin cancer with frequent local recurrence, nodal invasion, and metastasis, which usually arises in older people of the white race. Patients with chronic inflammatory disorders are at a higher risk of developing aggressive MCC. The diagnosis can be confirmed with histology and immunohistochemistry. For localized MCC, surgery is the preferred treatment option. However, for advanced MCC, radiotherapy and chemotherapy have proven to be effective. In cases where chemotherapy is not effective or in the advanced stages of MCC, immune therapy plays an important role in treatment. As with any rare disease, the management of MCC remains an enormous challenge for clinicians; thus, follow-up should be individualized and future progress needs multidisciplinary collaborative efforts. Furthermore, physicians should include MCC in their list of possible diagnoses when they come across painless, rapidly growing lesions, particularly in patients with chronic HBV infection or diabetes, as these patients are more susceptible to the development of this condition and it tends to be more aggressive in them.
Collapse
Affiliation(s)
- Ming-Yang Ren
- School of Medicine, Graduate School of Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Yun-Juan Shi
- School of Medicine, Graduate School of Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Wei Lu
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Sha-Sha Fan
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Xiao-Hua Tao
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Yang Ding
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
119
|
Tu J, Liang H, Li C, Huang Y, Wang Z, Chen X, Yuan X. The application and research progress of anti-angiogenesis therapy in tumor immunotherapy. Front Immunol 2023; 14:1198972. [PMID: 37334350 PMCID: PMC10272381 DOI: 10.3389/fimmu.2023.1198972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Tumor immunotherapy, as the focus of scientific research and clinical tumor treatment in recent years, has received extensive attention. Due to its remarkable curative effect and fewer side effects than traditional treatments, it has significant clinical benefits for the treatment of various advanced cancers and can improve cancer patient survival in the long term. Currently, most patients cannot benefit from immunotherapy, and some patients may experience tumor recurrence and drug resistance even if they achieve remission overcome. Numerous studies have shown that the abnormal angiogenesis state of tumors can lead to immunosuppressive tumor microenvironment, which affects the efficacy of immunotherapy. Actually, to improve the efficacy of immunotherapy, the application of anti-angiogenesis drugs to normalize abnormal tumor vessel has been widely confirmed in basic and clinical research. This review not only discusses the risk factors, mechanisms, and effects of abnormal and normalized tumor angiogenesis state on the immune environment, but summarizes the latest progress of immunotherapy combined with anti-angiogenic therapy. We hope this review provides an applied reference for anti-angiogenesis drugs and synergistic immunotherapy therapy.
Collapse
Affiliation(s)
- Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
120
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
121
|
Bormann D, Gugerell A, Ankersmit HJ, Mildner M. Therapeutic Application of Cell Secretomes in Cutaneous Wound Healing. J Invest Dermatol 2023; 143:893-912. [PMID: 37211377 DOI: 10.1016/j.jid.2023.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 05/23/2023]
Abstract
Although the application of stem cells to chronic wounds emerged as a candidate therapy in the previous century, the mechanism of action remains unclear. Recent evidence has implicated secreted paracrine factors in the regenerative properties of cell-based therapies. In the last two decades, considerable research advances involving the therapeutic potential of stem cell secretomes have expanded the scope of secretome-based therapies beyond stem cell populations. In this study, we review the modes of action of cell secretomes in wound healing, important preconditioning strategies for enhancing their therapeutic efficacy, and clinical trials on secretome-based wound healing.
Collapse
Affiliation(s)
- Daniel Bormann
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Alfred Gugerell
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
122
|
Sorrentino C, Di Carlo E. Molecular Targeted Therapies in Metastatic Prostate Cancer: Recent Advances and Future Challenges. Cancers (Basel) 2023; 15:2885. [PMID: 37296848 PMCID: PMC10251915 DOI: 10.3390/cancers15112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the most frequent malignant tumor in men, and, despite the great improvements in survival in patients with localized cancer, the prognosis for metastatic disease remains poor. Novel molecular targeted therapies, which block specific molecules or signaling pathways in tumor cells or in their microenvironment, have shown encouraging results in metastatic castration-resistant prostate cancer. Among these therapeutic approaches, prostate-specific membrane antigen-targeted radionuclide therapies and DNA repair inhibitors represent the most promising ones, with some therapeutic protocols already approved by the FDA, whereas therapies targeting tumor neovascularization and immune checkpoint inhibitors have not yet demonstrated clear clinical benefits. In this review, the most relevant studies and clinical trials on this topic are illustrated and discussed, together with future research directions and challenges.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
123
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 295] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
124
|
Zhang L, Zhang Y, Li X, Gao H, Chen X, Li P. CircRNA-miRNA-VEGFA: an important pathway to regulate cancer pathogenesis. Front Pharmacol 2023; 14:1049742. [PMID: 37234708 PMCID: PMC10206052 DOI: 10.3389/fphar.2023.1049742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Cancers, especially malignant tumors, contribute to high global mortality rates, resulting in great economic burden to society. Many factors are associated with cancer pathogenesis, including vascular endothelial growth factor-A (VEGFA) and circular RNAs (circRNA). VEGFA is a pivotal regulator of vascular development such as angiogenesis, which is an important process in cancer development. CircRNAs have covalently closed structures, making them highly stable. CircRNAs are widely distributed and participate in many physiological and pathological processes, including modulating cancer pathogenesis. CircRNAs act as transcriptional regulators of parental genes, microRNA (miRNA)/RNA binding protein (RBP) sponges, protein templates. CircRNAs mainly function via binding to miRNAs. CircRNAs have been shown to influence different diseases such as coronary artery diseases and cancers by regulating VEGFA levels via binding to miRNAs. In this paper, we explored the origin and functional pathways of VEGFA, reviewed the current understanding of circRNA properties and action mechanisms, and summarized the role of circRNAs in regulating VEGFA during cancer pathogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- *Correspondence: Lei Zhang, ; Peifeng Li,
| | | | | | | | | | - Peifeng Li
- *Correspondence: Lei Zhang, ; Peifeng Li,
| |
Collapse
|
125
|
Wang M, Wisniewski CA, Xiong C, Chhoy P, Goel HL, Kumar A, Zhu LJ, Li R, St Louis PA, Ferreira LM, Pakula H, Xu Z, Loda M, Jiang Z, Brehm MA, Mercurio AM. Therapeutic blocking of VEGF binding to neuropilin-2 diminishes PD-L1 expression to activate antitumor immunity in prostate cancer. Sci Transl Med 2023; 15:eade5855. [PMID: 37134151 DOI: 10.1126/scitranslmed.ade5855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Prostate cancers are largely unresponsive to immune checkpoint inhibitors (ICIs), and there is strong evidence that programmed death-ligand 1 (PD-L1) expression itself must be inhibited to activate antitumor immunity. Here, we report that neuropilin-2 (NRP2), which functions as a vascular endothelial growth factor (VEGF) receptor on tumor cells, is an attractive target to activate antitumor immunity in prostate cancer because VEGF-NRP2 signaling sustains PD-L1 expression. NRP2 depletion increased T cell activation in vitro. In a syngeneic model of prostate cancer that is resistant to ICI, inhibition of the binding of VEGF to NRP2 using a mouse-specific anti-NRP2 monoclonal antibody (mAb) resulted in necrosis and tumor regression compared with both an anti-PD-L1 mAb and control immunoglobulin G. This therapy also decreased tumor PD-L1 expression and increased immune cell infiltration. We observed that the NRP2, VEGFA, and VEGFC genes are amplified in metastatic castration-resistant and neuroendocrine prostate cancer. We also found that individuals with NRP2High PD-L1High metastatic tumors had lower androgen receptor expression and higher neuroendocrine prostate cancer scores than other individuals with prostate cancer. In organoids derived from patients with neuroendocrine prostate cancer, therapeutic inhibition of VEGF binding to NRP2 using a high-affinity humanized mAb suitable for clinical use also diminished PD-L1 expression and caused a substantial increase in immune-mediated tumor cell killing, consistent with the animal studies. These findings provide justification for the initiation of clinical trials using this function-blocking NRP2 mAb in prostate cancer, especially for patients with aggressive disease.
Collapse
Affiliation(s)
- Mengdie Wang
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Christi A Wisniewski
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Choua Xiong
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Peter Chhoy
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Ayush Kumar
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Rui Li
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Pamela A St Louis
- Department of Neurology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Lindsay M Ferreira
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Hubert Pakula
- Department of Pathology, Cornell Weill School of Medicine, New York, NY 10065, USA
| | - Zhiwen Xu
- aTyr Pharma Inc., San Diego CA, 92121, USA
| | - Massimo Loda
- Department of Pathology, Cornell Weill School of Medicine, New York, NY 10065, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute (DFCI) and Harvard Medical School, Boston, MA 02215, USA
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan School of Medicine, Worcester, MA 01605, USA
| |
Collapse
|
126
|
Xu Z, Goel HL, Burkart C, Burman L, Chong YE, Barber AG, Geng Y, Zhai L, Wang M, Kumar A, Menefee A, Polizzi C, Eide L, Rauch K, Rahman J, Hamel K, Fogassy Z, Klopp-Savino S, Paz S, Zhang M, Cubitt A, Nangle LA, Mercurio AM. Inhibition of VEGF binding to neuropilin-2 enhances chemosensitivity and inhibits metastasis in triple-negative breast cancer. Sci Transl Med 2023; 15:eadf1128. [PMID: 37134152 PMCID: PMC10583499 DOI: 10.1126/scitranslmed.adf1128] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Although blocking the binding of vascular endothelial growth factor (VEGF) to neuropilin-2 (NRP2) on tumor cells is a potential strategy to treat aggressive carcinomas, a lack of effective reagents that can be used clinically has hampered this potential therapy. Here, we describe the generation of a fully humanized, high-affinity monoclonal antibody (aNRP2-10) that specifically inhibits the binding of VEGF to NRP2, conferring antitumor activity without causing toxicity. Using triple-negative breast cancer as a model, we demonstrated that aNRP2-10 could be used to isolate cancer stem cells (CSCs) from heterogeneous tumor populations and inhibit CSC function and epithelial-to-mesenchymal transition. aNRP2-10 sensitized cell lines, organoids, and xenografts to chemotherapy and inhibited metastasis by promoting the differentiation of CSCs to a state that is more responsive to chemotherapy and less prone to metastasis. These data provide justification for the initiation of clinical trials designed to improve the response of patients with aggressive tumors to chemotherapy using this monoclonal antibody.
Collapse
Affiliation(s)
- Zhiwen Xu
- aTyr Pharma, San Diego, CA 92121, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | | | | | | | - Yanyan Geng
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, 26th Floor, Three Exchange Square, 8 Connaught Place, Central, Hong Kong, China
| | - Liting Zhai
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, 26th Floor, Three Exchange Square, 8 Connaught Place, Central, Hong Kong, China
| | - Mengdie Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | | | - Lisa Eide
- aTyr Pharma, San Diego, CA 92121, USA
| | | | | | | | | | | | | | - Mingjie Zhang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | - Arthur M. Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
127
|
Bychkov I, Topchu I, Makhov P, Kudinov A, Patel JD, Boumber Y. Regulation of VEGFR2 and AKT Signaling by Musashi-2 in Lung Cancer. Cancers (Basel) 2023; 15:2529. [PMID: 37173995 PMCID: PMC10177017 DOI: 10.3390/cancers15092529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer is the most frequently diagnosed cancer type and the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents most of the diagnoses of lung cancer. Vascular endothelial growth factor receptor-2 (VEGFR2) is a member of the VEGF family of receptor tyrosine kinase proteins, which are expressed on both endothelial and tumor cells, are one of the key proteins contributing to cancer development, and are involved in drug resistance. We previously showed that Musashi-2 (MSI2) RNA-binding protein is associated with NSCLC progression by regulating several signaling pathways relevant to NSCLC. In this study, we performed Reverse Protein Phase Array (RPPA) analysis of murine lung cancer, which suggests that VEGFR2 protein is strongly positively regulated by MSI2. Next, we validated VEGFR2 protein regulation by MSI2 in several human lung adenocarcinoma cell line models. Additionally, we found that MSI2 affected AKT signaling via negative PTEN mRNA translation regulation. In silico prediction analysis suggested that both VEGFR2 and PTEN mRNAs have predicted binding sites for MSI2. We next performed RNA immunoprecipitation coupled with quantitative PCR, which confirmed that MSI2 directly binds to VEGFR2 and PTEN mRNAs, suggesting a direct regulation mechanism. Finally, MSI2 expression positively correlated with VEGFR2 and VEGF-A protein levels in human lung adenocarcinoma samples. We conclude that the MSI2/VEGFR2 axis contributes to lung adenocarcinoma progression and is worth further investigations and therapeutic targeting.
Collapse
Affiliation(s)
- Igor Bychkov
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Iuliia Topchu
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Petr Makhov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexander Kudinov
- Cardiology Department, University of Illinois in Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | - Jyoti D. Patel
- Division of Hematology/Oncology, Section of Thoracic Head and Neck Medical Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yanis Boumber
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology/Oncology, Section of Thoracic Head and Neck Medical Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
128
|
Alsabbagh R, Ahmed M, Alqudah MAY, Hamoudi R, Harati R. Insights into the Molecular Mechanisms Mediating Extravasation in Brain Metastasis of Breast Cancer, Melanoma, and Lung Cancer. Cancers (Basel) 2023; 15:cancers15082258. [PMID: 37190188 DOI: 10.3390/cancers15082258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Brain metastasis is an incurable end-stage of systemic cancer associated with poor prognosis, and its incidence is increasing. Brain metastasis occurs through a multi-step cascade where cancer cells spread from the primary tumor site to the brain. The extravasation of tumor cells through the blood-brain barrier (BBB) is a critical step in brain metastasis. During extravasation, circulating cancer cells roll along the brain endothelium (BE), adhere to it, then induce alterations in the endothelial barrier to transmigrate through the BBB and enter the brain. Rolling and adhesion are generally mediated by selectins and adhesion molecules induced by inflammatory mediators, while alterations in the endothelial barrier are mediated by proteolytic enzymes, including matrix metalloproteinase, and the transmigration step mediated by factors, including chemokines. However, the molecular mechanisms mediating extravasation are not yet fully understood. A better understanding of these mechanisms is essential as it may serve as the basis for the development of therapeutic strategies for the prevention or treatment of brain metastases. In this review, we summarize the molecular events that occur during the extravasation of cancer cells through the blood-brain barrier in three types of cancer most likely to develop brain metastasis: breast cancer, melanoma, and lung cancer. Common molecular mechanisms driving extravasation in these different tumors are discussed.
Collapse
Affiliation(s)
- Rama Alsabbagh
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
129
|
Franco PIR, Pereira JX, Ferreira HH, de Menezes LB, Miguel MP. Low-grade mammary gland tumours in dogs have greater VEGF-A and BMP2 immunostaining and higher CD31 blood vessel density. Top Companion Anim Med 2023; 53-54:100778. [PMID: 37011834 DOI: 10.1016/j.tcam.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Tumor angiogenesis is an important process in tumor growth, and different molecules are involved in its regulation including VEGF-A, BMP2, and CD31, which can be considered possible prognostic markers. The aim of this study was to verify whether the VEGF-A and BMP2 immunostaining area, and microvascular density (MVD) might be associated with the degree of malignancy in malignant mammary neoplasms of dogs. For this purpose, samples of mammary malignancies from female dogs embedded in wax were used and separated into four main histomorphological types: tubulopapillary carcinomas, solid, complex, and carcinosarcoma, which were separated based on high and low degrees of malignancy. Immunohistochemical analysis was performed on tissue microarray blocks using anti-CD31 antibodies for evaluation of MVD and vascular lumen area, and with anti-VEGF-A and anti-BMP2 to determine the immunostaining area using the DAKO EnVision™ FLEX+ kit. MVD and vascular lumen area were higher in tubulopapillary carcinomas as were the areas stained by VEGF-A and BMP2. Immunostaining for CD31 was higher in low-grade carcinomas as well as in areas immunostained by VEGF-A and BMP2. There was a positive correlation between VEGF and BMP2 in high (r = 0.556, p < 0.0001) and low-grade (r = 0.287, p<0.0001) carcinomas and between MVD and VEGF-A in low-grade carcinomas (r = 0.267, p = 0.0064). Thus, the markers evaluated showed greater immunostaining in canine mammary tumors with a lower degree of malignancy.
Collapse
|
130
|
Bychkov I, Topchu I, Makhov P, Kudinov A, Patel JD, Boumber Y. Regulation of VEGFR2 and AKT signaling by Musashi-2 in lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534783. [PMID: 37034813 PMCID: PMC10081235 DOI: 10.1101/2023.03.29.534783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lung cancer is the most frequently diagnosed cancer type and the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents most of the lung cancer. Vascular endothelial growth factor receptor-2 (VEGFR2) is a member of the VEGF family of receptor tyrosine kinase proteins, expressed on both endothelial and tumor cells which is one of the key proteins contributing to cancer development and involved in drug resistance. We previously showed that Musashi-2 (MSI2) RNA-binding protein is associated with NSCLC progression by regulating several signaling pathways relevant to NSCLC. In this study, we performed Reverse Protein Phase Array (RPPA) analysis of murine lung cancer which nominated VEGFR2 protein as strongly positively regulated by MSI2. Next, we validated VEGFR2 protein regulation by MSI2 in several human NSCLC cell line models. Additionally, we found that MSI2 affected AKT signaling via negative PTEN mRNA translation regulation. In silico prediction analysis suggested that both VEGFR2 and PTEN mRNAs have predicted binding sites for MSI2. We next performed RNA immunoprecipitation coupled with quantitative PCR which confirmed that MSI2 directly binds to VEGFR2 and PTEN mRNAs, suggesting direct regulation mechanism. Finally, MSI2 expression positively correlated with VEGFR2 and VEGF-A protein levels in human NSCLC samples. We conclude that MSI2/VEGFR2 axis contributes to NSCLC progression and is worth further investigations and therapeutic targeting.
Collapse
Affiliation(s)
- Igor Bychkov
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - Iuliia Topchu
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - Petr Makhov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Alexander Kudinov
- Cardiology Department, University of Illinois in Chicago; address - 840 S. Wood Street Chicago, IL, 60612
| | - Jyoti D. Patel
- Division of Hematology/Oncology, Section of Thoracic Head and Neck Medical Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yanis Boumber
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- Division of Hematology/Oncology, Section of Thoracic Head and Neck Medical Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
131
|
Wang H, Xing R, Li M, Zhang M, Wei C, Zhang G, Niu Y, Ma Z, Yan X. Clinical efficacy and prognosis analysis of treatment regimens for EGFR mutant non-small cell lung cancer and brain metastasis: a retrospective study. BMC Cancer 2023; 23:289. [PMID: 36997925 PMCID: PMC10061743 DOI: 10.1186/s12885-023-10744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The aims of the study were to evaluate potential differences among first-line treatment for EGFR mutant (m+) non-small cell lung cancer (NSCLC) patients with brain metastasis in China and to identify the factors influencing survival outcomes. METHODS In this retrospective study, 172 EGFRm + patients with advanced NSCLC who received a 1st generation EGFR tyrosine kinase inhibitor (TKI) were divided into 4 groups: A, EGFR-TKI (n = 84); B, EGFR-TKI + pemetrexed + cisplatin/carboplatin chemotherapy (CT) (n = 55); C, EGFR-TKI + bevacizumab (n = 15); and D, EGFR-TKI + pemetrexed + cisplatin/carboplatin CT + bevacizumab (n = 18). Intracranial and extracranial progression-free survival (PFS), the overall survival (OS), objective remission rates (ORRs) and adverse events were analyzed. RESULTS Intracranial PFS of groups C + D was longer than for groups A + B (18.9 m vs. 11.0 m, P = 0.027). Extracranial PFS were longer in group B in comparison with group A (13.0 m vs. 11.5 m, P = 0.039) and in groups C + D compared to groups A + B (18.9 m vs. 11.9 m, P = 0.008). Median OS in groups A and B were 27.9 m and 24.4 m, respectively, while groups C and D have not yet achieved median OS. Significant difference was found in intracranial ORR between groups A + B vs. C + D (31.0% vs. 65.2%, P = 0.002). Most patients suffered grade 1-2 treatment-related adverse events, which were relieved soon after symptomatic treatment. CONCLUSIONS First-generation EGFR-TKI + bevacizumab treatment outperformed other regimens in EGFRm + NSCLC patients with brain metastasis. The therapy improved the control and delayed progression of intracranial lesions and prolonged survival times.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China.
| | - Ruyue Xing
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Mengmeng Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Mina Zhang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Chunhua Wei
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Guowei Zhang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Yuanyuan Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Zhiyong Ma
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Xiangtao Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| |
Collapse
|
132
|
CAR T-Cell Therapy in Children with Solid Tumors. J Clin Med 2023; 12:jcm12062326. [PMID: 36983330 PMCID: PMC10051963 DOI: 10.3390/jcm12062326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The limited efficacy of traditional cancer treatments, including chemotherapy, radiotherapy, and surgery, emphasize the significance of employing innovative methods. CAR (Chimeric Antigen Receptor) T-cell therapy remains the most revolutionizing treatment of pediatric hematological malignancies and solid tumors. Patient’s own lymphocytes are modified ex-vivo using gene transfer techniques and programmed to recognize and destroy specific tumor cells regardless of MHC receptor, which probably makes CAR-T the most personalized therapy for the patient. With continued refinement and optimization, CAR-T cell therapy has the potential to significantly improve outcomes and quality of life for children with limited treatment options. It has shown remarkable success in treating hematological malignancies, such as acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL). However, its effectiveness in treating solid tumors is still being investigated and remains an area of active research. In this review we focus on solid tumors and explain the concept of CAR modified T cells, and discuss some novel CAR designs that are being considered to enhance the safety of CAR T-cell therapy in under-mentioned cancers. Furthermore, we summarize the most crucial recent reports concerning the solid tumors treatment in children. In the end we provide a short summary of many challenges that limit the therapeutic efficacy of CAR-T in solid tumors, such as antigen escape, immunosuppressive microenvironment, poor trafficking, and tumor infiltration, on-target off-tumor effects and general toxicity.
Collapse
|
133
|
Deldadeh N, Haghighat S, Omidi Z, Sarrami-Foroushani R, Ansari AM, Sanati H, Azizi A, Zayeri F, Forouzesh F, Geijtenbeek TBH, Javidi MA. Anti-cancer effect of COVID-19 vaccines in 4T1 mice models. Life Sci 2023; 325:121569. [PMID: 36907328 PMCID: PMC10007716 DOI: 10.1016/j.lfs.2023.121569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
AIMS Without any doubt, vaccination was the best choice for Coronavirus disease 2019 (COVID-19) pandemic control. According to the American Society of Clinical Oncology (ASCO) and European Society for Medical Oncology (ESMO), people with cancer or a history of cancer have a higher risk of dying from Covid-19 than ordinary people; hence, they should be considered a high-priority group for vaccination. On the other hand, the effect of the Covid-19 vaccination on cancer is not transparent enough. This study is one of the first in vivo studies that try to show the impact of Sinopharm (S) and AstraZeneca (A) vaccines on breast cancer, the most common cancer among women worldwide. MATERIALS AND METHODS Vaccination was performed with one and two doses of Sinopharm (S1/S2) or AstraZeneca (A1/A2) on the 4T1 triple-negative breast cancer (TNBC) mice model. The tumor size and body weight of mice were monitored every two days. After one month, mice were euthanized, and the existence of Tumor-infiltrating lymphocytes (TILs) and expression of the important markers in the tumor site was assessed. Metastasis in the vital organs was also investigated. KEY FINDINGS Strikingly, all of the vaccinated mice showed a decrease in tumor size and this decrease was highest after two vaccinations. Moreover, we observed more TILs in the tumor after vaccination. Vaccinated mice demonstrated a decrease in the expression of tumor markers (VEGF, Ki-67, MMP-2/9), CD4/CD8 ratio, and metastasis to the vital organs. SIGNIFICANCE Our results strongly suggest that COVID-19 vaccinations decrease tumor growth and metastasis.
Collapse
Affiliation(s)
- Negar Deldadeh
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahpar Haghighat
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Omidi
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hassan Sanati
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Azadeh Azizi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Farid Zayeri
- Proteomics Research Center and Department of Biostatistics, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam institute for Infection and Immunity, Amsterdam, the Netherlands.
| | - Mohammad Amin Javidi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
134
|
Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol 2023; 949:175586. [PMID: 36906141 DOI: 10.1016/j.ejphar.2023.175586] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Angiogenesis is a double-edged sword; it is a mechanism that defines the boundary between health and disease. In spite of its central role in physiological homeostasis, it provides the oxygen and nutrition needed by tumor cells to proceed from dormancy if pro-angiogenic factors tip the balance in favor of tumor angiogenesis. Among pro-angiogenic factors, vascular endothelial growth factor (VEGF) is a prominent target in therapeutic methods due to its strategic involvement in the formation of anomalous tumor vasculature. In addition, VEGF exhibits immune-regulatory properties which suppress immune cell antitumor activity. VEGF signaling through its receptors is an integral part of tumoral angiogenic approaches. A wide variety of medicines have been designed to target the ligands and receptors of this pro-angiogenic superfamily. Herein, we summarize the direct and indirect molecular mechanisms of VEGF to demonstrate its versatile role in the context of cancer angiogenesis and current transformative VEGF-targeted strategies interfering with tumor growth.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | | | |
Collapse
|
135
|
NOTCH Signaling in Osteosarcoma. Curr Issues Mol Biol 2023; 45:2266-2283. [PMID: 36975516 PMCID: PMC10047431 DOI: 10.3390/cimb45030146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The combination of neoadjuvant chemotherapy and surgery has been promoted for the treatment of osteosarcoma; however, the local recurrence and lung metastasis rates remain high. Therefore, it is crucial to explore new therapeutic targets and strategies that are more effective. The NOTCH pathway is not only involved in normal embryonic development but also plays an important role in the development of cancers. The expression level and signaling functional status of the NOTCH pathway vary in different histological types of cancer as well as in the same type of cancer from different patients, reflecting the distinct roles of the Notch pathway in tumorigenesis. Studies have reported abnormal activation of the NOTCH signaling pathway in most clinical specimens of osteosarcoma, which is closely related to a poor prognosis. Similarly, studies have reported that NOTCH signaling affected the biological behavior of osteosarcoma through various molecular mechanisms. NOTCH-targeted therapy has shown potential for the treatment of osteosarcoma in clinical research. After the introduction of the composition and biological functions of the NOTCH signaling pathway, the review paper discussed the clinical significance of dysfunction in osteosarcoma. Then the paper reviewed the recent relevant research progress made both in the cell lines and in the animal models of osteosarcoma. Finally, the paper explored the potential of the clinical application of NOTCH-targeted therapy for the treatment of osteosarcoma.
Collapse
|
136
|
Park JA, Espinosa-Cotton M, Guo HF, Monette S, Cheung NKV. Targeting tumor vasculature to improve antitumor activity of T cells armed ex vivo with T cell engaging bispecific antibody. J Immunother Cancer 2023; 11:jitc-2023-006680. [PMID: 36990507 PMCID: PMC10069597 DOI: 10.1136/jitc-2023-006680] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Success of T cell immunotherapy hinges on the tumor microenvironment (TME), and abnormal tumor vasculature is a hallmark of most solid tumors and associated with immune evasion. The efficacy of T cell engaging bispecific antibody (BsAb) treatment relies on the successful trafficking and cytolytic activity of T cells in solid tumors. Normalization of tumor vasculature using vascular endothelial growth factor (VEGF) blockades could improve efficacy of BsAb-based T cell immunotherapy. METHODS Anti-human VEGF (bevacizumab, BVZ) or anti-mouse VEGFR2 antibody (DC101) was used as VEGF blockade, and ex vivo armed T cells (EATs) carrying anti-GD2, anti-HER2, or anti-glypican3 (GPC3) IgG-(L)-scFv platformed BsAb were used. BsAb-driven intratumoral T cell infiltration and in vivo antitumor response were evaluated using cancer cell line-derived xenografts (CDXs) or patient-derived xenografts (PDXs) carried out in BALB-Rag2 -/-IL-2R-γc-KO (BRG) mice. VEGF expression on human cancer cell lines was analyzed by flow cytometry, and VEGF levels in mouse serum were measured using VEGF Quantikine ELISA Kit. Tumor infiltrating lymphocytes (TILs) were evaluated using flow cytometry and by bioluminescence; both TILs and tumor vasculature were studied using immunohistochemistry. RESULTS VEGF expression on cancer cell lines increased with seeding density in vitro. BVZ significantly reduced serum VEGF levels in mice. BVZ or DC101 increased high endothelial venules (HEVs) in the TME and substantially enhanced (2.1-8.1 fold) BsAb-driven T cell infiltration into neuroblastoma and osteosarcoma xenografts, which was preferential for CD8(+) TILs versus CD4(+) TILs, leading to superior antitumor effects in multiple CDX and PDX tumor models without added toxicities. CONCLUSIONS VEGF blockade using specific antibodies against VEGF or VEGFR2 increased HEVs in the TME and cytotoxic CD8(+) TILs, significantly improving the therapeutic efficacy of EAT strategies in preclinical models, supporting the clinical investigation of VEGF blockades to further enhance BsAb-based T cell immunotherapies.
Collapse
Affiliation(s)
- Jeong A Park
- Pediatrics, Inha University Hospital, Incheon, Korea (the Republic of)
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Hong-Fen Guo
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Nai-Kong V Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
137
|
Liu J, Yang F, Waheed Y, Li S, Liu K, Zhou X. The role of roxadustat in chronic kidney disease patients complicated with anemia. Korean J Intern Med 2023; 38:147-156. [PMID: 36588451 PMCID: PMC9993099 DOI: 10.3904/kjim.2022.318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
The incidence of chronic kidney disease (CKD) is increasing worldwide and the current prevalence rate is 13.4%. There are > 120 million CKD patients in China and this number is expected to increase. One of the main abnormalities in patients with CKD and kidney impairment is decreased synthesis of erythropoietin (EPO), which causes anemia and affects iron metabolism. The probability of developing is higher in anemia patients with CKD than in the general population, and the incidence increases as kidney function decreases. Deficient EPO production by the kidney is the most important cause of renal anemia. Notably, anemia in patients with CKD has multiple causes, such as bleeding caused by platelet dysfunction, iron deficiency due to digestive and absorption disorders of the gastrointestinal tract, and shorter red blood cell life. Anemia is also a leading cause of hospitalization in patients with CKD. A new oral medication to treat renal anemia, the hypoxia-inducible factor prolyl hydroxylase inhibitor called roxadustat (FG-4592), regulates iron metabolism and promotes erythropoiesis. This drug has a therapeutic effect on patients with CKD. Roxadustat showed advantages over EPO in clinical experiments. This review summarizes the mechanisms of action, clinical applications, effectiveness, and safety of roxadustat.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
| | - Fan Yang
- Department of Nephrology, Beijing Aerospace General Hospital, Beijing,
China
| | - Yousuf Waheed
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
| | - Kun Liu
- Department of Nephrology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
| | - Xinglei Zhou
- Department of Nephrology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
| |
Collapse
|
138
|
Li YT, Yuan WZ, Jin WL. Vagus innervation in the gastrointestinal tumor: Current understanding and challenges. Biochim Biophys Acta Rev Cancer 2023; 1878:188884. [PMID: 36990250 DOI: 10.1016/j.bbcan.2023.188884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
The vagus nerve (VN) is the main parasympathetic nerve of the autonomic nervous system. It is widely distributed in the gastrointestinal tract and maintains gastrointestinal homeostasis with the sympathetic nerve under physiological conditions. The VN communicates with various components of the tumor microenvironment to positively and dynamically affect the progression of gastrointestinal tumors (GITs). The intervention in vagus innervation delays GIT progression. Developments in adeno-associated virus vectors, nanotechnology, and in vivo neurobiological techniques have enabled the creation of precisely regulated "tumor neurotherapies". Furthermore, the combination of neurobiological techniques and single cell sequencing may reveal more insights into VN and GIT. The present review aimed to summarize the mechanisms of communication between the VN and the gastrointestinal TME and to explore the potential and challenges of VN-based tumor neurotherapy in GITs.
Collapse
|
139
|
Lin K, Huang L, Zhang Y, Chen M, Li Z, Yung KKL, Lv S, Pan Q, Zhang W, Fu J, Li W, Deng Q. The Antiangiogenic and Antitumor Effects of Scoparasin B in Non-Small-Cell Lung Cancer. JOURNAL OF NATURAL PRODUCTS 2023; 86:368-379. [PMID: 36692021 DOI: 10.1021/acs.jnatprod.2c00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Angiogenesis and vasculogenic mimicry (VM) are crucial for the growth and metastasis of non-small-cell lung cancer (NSCLC). Most tumor angiogenesis inhibitors mainly target endothelial cell-mediated angiogenesis, ignoring tumor-cell-mediated VM and frequently leading to tumor recurrence and metastasis. Thus, development of bioactive molecules interfering with both tumor angiogenesis and VM is necessary. Identifying novel angiogenesis inhibitors from natural products is a promising strategy. Scoparasin B, a pimarane diterpene extracted from a marine-derived fungus, Eutypella sp. F0219, has an antibacterial effect. However, its effect on angiogenesis and VM remains unexplored. In this study, we first certified that scoparasin B showed a strong inhibition effect on angiogenesis and the VM process in vitro and ex vivo. Moreover, scoparasin B prominently impeded tumor growth, angiogenesis, and VM in an NCI-H1299 xenograft model. Further study revealed that scoparasin B restrained tumor angiogenesis and VM by reducing the VEGF-A level and suppressing the VEGF-A/VEGFR2 signaling pathway. This study first demonstrated scoparasin B inhibited tumor angiogenesis, VM, and tumor growth of NSCLC and revealed its underlying mechanism. These new findings further support the potential of scoparasin B as a novel angiogenesis inhibitor and give a hint for further exploring potential angiogenesis inhibitors from natural products.
Collapse
Affiliation(s)
- Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
- Golden Meditech Center for Neuro Regeneration Sciences, HKBU, Kowloon Tong, Hong Kong 999077, China
| | - Lijuan Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Minshan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhan Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ken Kin Lam Yung
- Department of Biology & Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong, China
| | - Sha Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qianrong Pan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Weisong Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jijun Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wanshan Li
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
140
|
Yang Q, He Y, Tian L, Zhang Z, Qiu L, Tao X, Wei H. Anti-tumor effect of infant-derived Enterococcus via the inhibition of proliferation and inflammation as well as the promotion of apoptosis. Food Funct 2023; 14:2223-2238. [PMID: 36757840 DOI: 10.1039/d2fo03045d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Probiotic Enterococcus hirae WEHI01 and Enterococcus faecium WEFA23 from infants were previously found to effectively inhibit the development of melanoma. In this study, their immunomodulatory and antitumor mechanisms were systemically studied. In vitro assay showed that E. hirae WEHI01 and E. faecium WEFA23 achieved biphasic immune regulation, which was revealed by the activation of resting spleen lymphocytes and RAW264.7 macrophages, as well as the anti-inflammation effect when immune cells were treated with LPS. The antitumor effects of E. hirae WEHI01 and E. faecium WEFA23 in vitro and vivo were then investigated. CCK8 and the cell scratch assay showed that the conditioned media, which were co-incubated with Enterococcus and spleen lymphocytes, significantly inhibited the proliferation and migration of B16F10, HepG-2 and HT-29 cells. The results of the tumor-bearing mice model experiment showed that E. faecium WEFA23 inhibition of the growth of tumors in mice, and the anti-tumor mechanism involved three aspects, namely tumor proliferation (decreasing expressions of LDHA, VEGF, MMP2, MMP9 and HIF-1α), inhibition of the pro-inflammation state (decreasing expressions of IL-6, TGF-β and IL-17) and the promotion of apoptosis (increasing expression of Bax/Bcl-2, caspase-3 and p53). The results suggest that the two strains of Enterococcus could be promising candidates for treating melanoma with a highly inhibitory effect.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Yao He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Linlin Tian
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, P. R. China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| |
Collapse
|
141
|
Chen C, Liu Y, Liu L, Si C, Xu Y, Wu X, Wang C, Sun Z, Kang Q. Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating Akt signaling pathway. J Exp Clin Cancer Res 2023; 42:46. [PMID: 36793126 PMCID: PMC9930311 DOI: 10.1186/s13046-023-02619-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Exosome is crucial mediator and play an important role in tumor angiogenesis. Tip cell formation is a prerequisite for persistent tumor angiogenesis which causes tumor metastasis. However, the functions and underlying mechanisms of tumor cell-derived exosomes in angiogenesis and tip cell formation remain less understood. METHODS Exosomes derived from serum of colorectal cancer (CRC) patients with metastasis/non-metastasis and CRC cells were isolated by ultracentrifugation. CircRNAs in these exosomes were analyzed by circRNA microarray. Then, exosomal circTUBGCP4 was identified and verified by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Loss- and gain-of-function assays were performed to explore the effect of exosomal circTUBGCP4 on vascular endothelial cell tipping and colorectal cancer metastasis in vitro and in vivo. Mechanically, bioinformatics analysis, biotin-labeled circTUBGCP4/ miR-146b-3p RNA pulldown, RNA immunoprecipitation (RIP), and luciferase reporter assay were used to confirm the interaction among circTUBGCP4, miR-146b-3p, and PDK2. RESULTS Here, we showed that exosomes derived from CRC cells enhanced vascular endothelial cell migration and tube formation via inducing filopodia formation and endothelial cell tipping. We further screened the upregulated circTUBGCP4 in serum of CRC patients with metastasis compared to non-metastasis. Silencing circTUBGCP4 expression in CRC cell-derived exosomes (CRC-CDEs) inhibited endothelial cell migration, tube formation, tip cell formation, and CRC metastasis. Overexpression of circTUBGCP4 had opposite results in vitro and in vivo. Mechanically, circTUBGCP4 upregulated PDK2 to activate Akt signaling pathway by sponging miR-146b-3p. Moreover, we found that miR-146b-3p could be a key regulator for vascular endothelial cell dysfunction. Exosomal circTUBGCP4 promoted tip cell formation and activated the Akt signaling pathway by inhibiting miR-146b-3p. CONCLUSIONS Our results suggest that colorectal cancer cells generate exosomal circTUBGCP4, which causes vascular endothelial cell tipping to promote angiogenesis and tumor metastasis by activating Akt signaling pathway.
Collapse
Affiliation(s)
- Chen Chen
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chaohua Si
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
142
|
Scandium-44 Radiolabeled Peptide and Peptidomimetic Conjugates Targeting Neuropilin-1 Co-Receptor as Potential Tools for Cancer Diagnosis and Anti-Angiogenic Therapy. Biomedicines 2023; 11:biomedicines11020564. [PMID: 36831099 PMCID: PMC9953004 DOI: 10.3390/biomedicines11020564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Pathological angiogenesis, resulting from an imbalance between anti- and pro-angiogenic factors, plays a pivotal role in tumor growth, development and metastasis. The inhibition of the angiogenesis process by the VEGF/VEGFR-2/NRP-1 pathway raises interest in the search for such interaction inhibitors for the purpose of the early diagnosis and treatment of angiogenesis-dependent diseases. In this work we designed and tested peptide-based radiocompounds that selectively bind to the neuropilin-1 co-receptor and prevent the formation of the pro-angiogenic VEGF-A165/NRP-1 complex. Three biomolecules, A7R and retro-inverso DR7A peptides, and the branched peptidomimetic Lys(hArg)-Dab-Pro-Arg (K4R), conjugated with macrocyclic chelator through two linkers' types, were labeled with theranostic scandium-44 radionuclide, and studied in vitro as potential targeted radiopharmaceuticals. ELISA (enzyme-linked immunosorbent assay) studies showed no negative effect of the introduced biomolecules' changes and high NRP-1 affinity in the case of A7R- and K4R-radiocompounds and a lack affinity for DR7A-radiocompounds. All radiopeptides showed a hydrophilic nature as well as high stability against ligand exchange reactions in cysteine/histidine solutions. Unfortunately, all radiocompounds showed unsatisfactory nano-scale stability in human serum, especially for use as therapeutic radioagents. Further work is ongoing and focused on the search for angiogenesis inhibitors that are more human serum stable.
Collapse
|
143
|
Gao X, Jiang P, Wei X, Zhang W, Zheng J, Sun S, Yao H, Liu X, Zhang Q. Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity. BMC Cancer 2023; 23:154. [PMID: 36793021 PMCID: PMC9930235 DOI: 10.1186/s12885-023-10608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Galectin-3 (Gal-3), the only chimeric β-galactosides-binding lectin, consists of Gal-3N (N-terminal regulatory peptide) and Gal-3C (C-terminal carbohydrate-recognition domain). Interestingly, Gal-3C could specifically inhibit endogenous full-length Gal-3 to exhibit anti-tumor activity. Here, we aimed to further improve the anti-tumor activity of Gal-3C via developing novel fusion proteins. METHODS PK5 (the fifth kringle domain of plasminogen) was introduced to the N-terminus of Gal-3C via rigid linker (RL) to generate novel fusion protein PK5-RL-Gal-3C. Then, we investigated the anti-tumor activity of PK5-RL-Gal-3C in vivo and in vitro by using several experiments, and figured out their molecular mechanisms in anti-angiogenesis and cytotoxicity to hepatocellular carcinoma (HCC). RESULTS Our results show that PK5-RL-Gal-3C can inhibit HCC both in vivo and in vitro without obvious toxicity, and also significantly prolong the survival time of tumor-bearing mice. Mechanically, we find that PK5-RL-Gal-3C inhibits angiogenesis and show cytotoxicity to HCC. In detail, HUVEC-related and matrigel plug assays indicate that PK5-RL-Gal-3C plays an important role in inhibiting angiogenesis by regulating HIF1α/VEGF and Ang-2 both in vivo and in vitro. Moreover, PK5-RL-Gal-3C induces cell cycle arrest at G1 phase and apoptosis with inhibition of Cyclin D1, Cyclin D3, CDK4, and Bcl-2, but activation of p27, p21, caspase-3, -8 and -9. CONCLUSION Novel fusion protein PK5-RL-Gal-3C is potent therapeutic agent by inhibiting tumor angiogenesis in HCC and potential antagonist of Gal-3, which provides new strategy for exploring novel antagonist of Gal-3 and promotes their application in clinical treatment.
Collapse
Affiliation(s)
- Xiaoge Gao
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Pin Jiang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Medical Oncology of Huangmei People’s Hospital, Huanggang, Hubei Province 435500 People’s Republic of China
| | - Xiaohuan Wei
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Wei Zhang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Jiwei Zheng
- grid.417303.20000 0000 9927 0537Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
| | - Shishuo Sun
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, People's Republic of China.
| | - Xiangye Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
144
|
Molecular Signature of Biological Aggressiveness in Clear Cell Sarcoma of the Kidney (CCSK). Int J Mol Sci 2023; 24:ijms24043743. [PMID: 36835166 PMCID: PMC9964999 DOI: 10.3390/ijms24043743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases.
Collapse
|
145
|
Tanaka K, Kondo T, Narita M, Muta T, Yoshida S, Sato D, Suda Y, Hamada Y, Shimizu T, Kuzumaki N, Narita M. Cancer aggravation due to persistent pain signals with the increased expression of pain-related mediators in sensory neurons of tumor-bearing mice. Mol Brain 2023; 16:19. [PMID: 36737827 PMCID: PMC9896755 DOI: 10.1186/s13041-023-01001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer patients. In the present study, we evaluated whether chronic pain stimuli could directly affect cancer pathology using tumor-bearing mice. For this purpose, we used two different models of chronic pain in mice, neuropathic pain and persistent postsurgical pain, with Lewis lung carcinoma (LLC) as tumor cells. We found that tumor growth was dramatically promoted in these pain models. As well as these pain models, tumor growth of LLC, severe osteosarcoma (AXT) and B16 melanoma cells was significantly promoted by concomitant activation of sensory neurons in AAV6-hM3Dq-injected mice treated with the designer drug clozapine-N-oxide (CNO). Significant increases in mRNA levels of vascular endothelial growth factor-A (Vegfa), tachykinin precursor 1 (Tac1) and calcitonin-related polypeptide alpha (Calca) in the ipsilateral side of dorsal root ganglion of AAV6-hM3Dq-injected mice were observed by concomitant activation of sensory neurons due to CNO administration. Moreover, in a model of bone cancer pain in which mice were implanted with AXT cells into the right femoral bone marrow cavity, the survival period was significantly prolonged by repeated inhibition of sensory neurons of AAV6-hM4Di-injected mice by CNO administration. These findings suggest that persistent pain signals may promote tumor growth by the increased expression of sensory-located peptides and growth factors, and controlling cancer pain may prolong cancer survival.
Collapse
Affiliation(s)
- Kenichi Tanaka
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takashige Kondo
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Michiko Narita
- grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takeru Muta
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Sara Yoshida
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Daisuke Sato
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Yukari Suda
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yusuke Hamada
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takatsune Shimizu
- grid.412239.f0000 0004 1770 141XDepartment of Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
146
|
Xie X, Bao S, Zhao H, Li L, Fu X. Efficacy and Safety of Bevacizumab for Treating Glioblastoma: A Systematic Review and Meta-Analysis of Phase II and III Randomized Controlled Trials. Cancer Invest 2023; 41:1-13. [PMID: 36705341 DOI: 10.1080/07357907.2023.2174261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To fully investigate the efficacy and safety of bevacizumab for glioblastoma. METHODS Databases were searched for phase II/III randomized controlled trials treated with bevacizumab. RESULTS Bevacizumab significantly improved the PFS in glioblastoma patients, but did not prolong OS. PFS was significantly prolonged in both first-line and second-line treatment. Bevacizumab plus temozolomide was correlated with improved PFS for patients with different MGMT methylation status. Bevacizumab could increase the risk of hypertension, proteinuria, thromboembolic, and infection. Hypertension should be well concerned. CONCLUSIONS Bevacizumab-containing regimen can significantly improve PFS, but did not prolong OS.
Collapse
Affiliation(s)
- Xiaohong Xie
- Respiratory Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shangyi Bao
- Hematology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Zhao
- Hematology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuying Li
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Zigong City, Zigong, Sichuan, P. R. China
| | - Xiaojun Fu
- Respiratory Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| |
Collapse
|
147
|
Jeon H, Byun J, Kang H, Kim K, Lee E, Kim JH, Hong CK, Song SW, Kim YH, Chong S, Kim JH, Nam SJ, Park JE, Lee S. Proteomic analysis predicts anti-angiogenic resistance in recurred glioblastoma. J Transl Med 2023; 21:69. [PMID: 36732815 PMCID: PMC9893563 DOI: 10.1186/s12967-023-03936-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recurrence is common in glioblastoma multiforme (GBM) because of the infiltrative, residual cells in the tumor margin. Standard therapy for GBM consists of surgical resection followed by chemotherapy and radiotherapy, but the median survival of GBM patients remains poor (~ 1.5 years). For recurrent GBM, anti-angiogenic treatment is one of the common treatment approaches. However, current anti-angiogenic treatment modalities are not satisfactory because of the resistance to anti-angiogenic agents in some patients. Therefore, we sought to identify novel prognostic biomarkers that can predict the therapeutic response to anti-angiogenic agents in patients with recurrent glioblastoma. METHODS We selected patients with recurrent GBM who were treated with anti-angiogenic agents and classified them into responders and non-responders to anti-angiogenic therapy. Then, we performed proteomic analysis using liquid-chromatography mass spectrometry (LC-MS) with formalin-fixed paraffin-embedded (FFPE) tissues obtained from surgical specimens. We conducted a gene-ontology (GO) analysis based on protein abundance in the responder and non-responder groups. Based on the LC-MS and GO analysis results, we identified potential predictive biomarkers for anti-angiogenic therapy and validated them in recurrent glioblastoma patients. RESULTS In the mass spectrometry-based approach, 4957 unique proteins were quantified with high confidence across clinical parameters. Unsupervised clustering analysis highlighted distinct proteomic patterns (n = 269 proteins) between responders and non-responders. The GO term enrichment analysis revealed a cluster of genes related to immune cell-related pathways (e.g., TMEM173, FADD, CD99) in the responder group, whereas the non-responder group had a high expression of genes related to nuclear replisome (POLD) and damaged DNA binding (ERCC2). Immunohistochemistry of these biomarkers showed that the expression levels of TMEM173 and FADD were significantly associated with the overall survival and progression-free survival of patients with recurrent GBM. CONCLUSIONS The candidate biomarkers identified in our protein analysis may be useful for predicting the clinical response to anti-angiogenic agents in patients with recurred GBM.
Collapse
Affiliation(s)
- Hanwool Jeon
- grid.413967.e0000 0001 0842 2126Translational Biomedical Research Group, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joonho Byun
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Hayeong Kang
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Kyunggon Kim
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Eunyeup Lee
- grid.413967.e0000 0001 0842 2126Translational Biomedical Research Group, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Hoon Kim
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Chang Ki Hong
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Sang Woo Song
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Young-Hoon Kim
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Sangjoon Chong
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Jae Hyun Kim
- grid.267370.70000 0004 0533 4667Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Soo Jeong Nam
- grid.267370.70000 0004 0533 4667Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Park
- grid.267370.70000 0004 0533 4667Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seungjoo Lee
- Translational Biomedical Research Group, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea. .,Department of Neurological Surgery, Brain Tumor Center, Asan Medical Center, University of Ulsan College of Medicine 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea. .,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
148
|
Patasova K, Lundberg IE, Holmqvist M. Genetic Influences in Cancer-Associated Myositis. Arthritis Rheumatol 2023; 75:153-163. [PMID: 36053262 PMCID: PMC10107284 DOI: 10.1002/art.42345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 02/02/2023]
Abstract
Idiopathic inflammatory myopathies (IIMs) comprise a heterogeneous group of rare immune-mediated disorders that primarily affect muscles but also lead to dysfunction in other organs. Five different clinical subphenotypes of IIM have been distinguished: dermatomyositis, polymyositis, inclusion body myositis, antisynthetase syndrome, and immune-mediated necrotizing myopathy. Excess mortality and morbidity associated with IIM are largely attributed to comorbidities, particularly cancer. The risk of malignancy is not equally distributed among IIM groups and is particularly high among patients with dermatomyositis. The cancer risk peaks around 3 years on either side of the IIM diagnosis and remains elevated even 10 years after the onset of the disease. Lung, colorectal, and ovarian neoplasms typically arise before the onset of IIM, whereas melanoma, cervical, oropharyngeal, and nonmelanoma skin cancers usually develop after IIM diagnosis. Given the close temporal proximity between IIM diagnosis and the emergence of malignancy, it has been proposed that IIM could be a consequence rather than a cause of cancer, a process known as a paramalignant phenomenon. Thus, a separate group of IIMs related to paramalignant phenomenon has been distinguished, known as cancer-associated myositis (CAM). Although the relationship between IIM and cancer is widely recognized, the pathophysiology of CAM remains elusive. Given that genetic factors play a role in the development of IIM, dissection of the molecular mechanisms shared between IIM and cancer presents an opportunity to examine the role of autoimmunity in cancer development and progression. In this review, the evidence supporting the contribution of genetics to CAM will be discussed.
Collapse
Affiliation(s)
- Karina Patasova
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid E Lundberg
- Rheumatology Division, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Holmqvist
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
149
|
Hsu J, Chong C, Serrill J, Goon L, Balayan J, Johnson EN, Lorenzana G, Wu S, Leong KG, Yun TJ, Wang Y, Jiang F, Bannen L, Lamb P, Xu W, Yu P. Preclinical Characterization of XL092, a Novel Receptor Tyrosine Kinase Inhibitor of MET, VEGFR2, AXL, and MER. Mol Cancer Ther 2023; 22:179-191. [PMID: 36399631 PMCID: PMC9890135 DOI: 10.1158/1535-7163.mct-22-0262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
The multi-receptor tyrosine kinase inhibitor XL092 has been developed to inhibit the activity of oncogenic targets, including MET, VEGFR2, and the TAM family of kinases TYRO3, AXL and MER. Presented here is a preclinical evaluation of XL092. XL092 causes a significant decrease in tumor MET and AXL phosphorylation (P < 0.01) in murine Hs 746T xenograft models relative to vehicle, and a 96% inhibition of VEGFR2 phosphorylation in murine lungs. Dose-dependent tumor growth inhibition with XL092 was observed in various murine xenograft models, with dose-dependent tumor regression seen in the NCI-H441 model. Tumor growth inhibition was enhanced with the combination of XL092 with anti-PD-1, anti-programmed death ligand-1 (PD-L1), or anti-CTLA-4 compared with any of these agents alone in the MC38 murine syngeneic model and with anti-PD-1 in the CT26 colorectal cancer survival model. In vivo, XL092 promoted a decrease in the tumor microvasculature and significant increases of peripheral CD4+ T cells and B cells and decreases in myeloid cells versus vehicle. Significant increases in CD8+ T cells were also observed with XL092 plus anti-PD-1 or anti-PD-L1 versus vehicle. In addition, XL092 promoted M2 to M1 repolarization of macrophages in vitro and inhibited primary human macrophage efferocytosis in a dose-dependent manner. In summary, XL092 was shown to have significant antitumor and immunomodulatory activity in animal models both alone and in combination with immune checkpoint inhibitors, supporting its evaluation in clinical trials.
Collapse
Affiliation(s)
- Jeff Hsu
- Exelixis, Inc., Alameda, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wei Xu
- Exelixis, Inc., Alameda, California
| | | |
Collapse
|
150
|
Chen M, Qi Z, Meng X, Wang S, Zheng X, Hu M, Liu X, Song Y, Deng Y. Blockade of neutrophil recruitment to tumor sites based on sialic acid-modified nanoplatforms enhances the efficacy of checkpoint blockade immunotherapy. Asian J Pharm Sci 2023; 18:100784. [PMID: 36968653 PMCID: PMC10034569 DOI: 10.1016/j.ajps.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Checkpoint inhibitors are designed to rejuvenate depleted or suppressed T cells in the tumor microenvironment, relying on the immune system to control and kill tumors. However, accumulating evidence indicates that tumor-infiltrating neutrophils impede the proliferation and activation of T cells and determine the resistance to checkpoint blockade and chemotherapy. In this study, sialic acid ligand-modified colchicine derivative phospholipid complexes specifically targeted tumor-associated neutrophils in the peripheral blood, blocked neutrophil accumulation in tumors, and attenuated the inhibitory effect of infiltrating neutrophils on T cells. Neutrophil blocking therapy enhanced the immunotherapy effect of the PD-L1 antibody in S180 advanced tumors and 4T1 breast cancer. Our study found that PD-L1 antibody monotherapy increased the tumor infiltration of immunosuppressive neutrophils. Combination therapy with neutrophil blocking can greatly reduce tumor-infiltrating neutrophils and increase the proliferation of cytotoxic CD8+ T lymphocytes in the tumor. The combination therapy significantly improved the survival rate of mice with advanced S180 tumors and increased the sensitivity of immune checkpoint inhibitors to 4T1 cold tumors.
Collapse
|