101
|
Navalta JW, Ciulei MA, Tibana RA, Voltarelli FA, Prestes J, Young JC. Global DNA methylation is stable across time and following acute exercise. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2018. [DOI: 10.23736/s0393-3660.17.03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
102
|
A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Sci Rep 2018; 8:15487. [PMID: 30341379 PMCID: PMC6195584 DOI: 10.1038/s41598-018-33959-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Although vasculo-protective effects of flavan-3-ols are widely accepted today, their impact on endothelial cell functions and molecular mechanisms of action involved is not completely understood. The aim of this study was to characterize the potential endothelium-protective effects of circulating epicatechin metabolites and to define underlying mechanisms of action by an integrated systems biology approach. Reduced leukocyte rolling over vascular endothelium was observed following epicatechin supplementation in a mouse model of inflammation. Integrative pathway analysis of transcriptome, miRNome and epigenome profiles of endothelial cells exposed to epicatechin metabolites revealed that by acting at these different levels of regulation, metabolites affect cellular pathways involved in endothelial permeability and interaction with immune cells. In-vitro experiments on endothelial cells confirmed that epicatechin metabolites reduce monocyte adhesion and their transendothelial migration. Altogether, our in-vivo and in-vitro results support the outcome of a systems biology based network analysis which suggests that epicatechin metabolites mediate their vasculoprotective effects through dynamic regulation of endothelial cell monocyte adhesion and permeability. This study illustrates complex and multimodal mechanisms of action by which epicatechin modulate endothelial cell integrity.
Collapse
|
103
|
Soltaninejad H, Asadollahi MA, Hosseinkhani S, Hosseini M, Ganjali MR. Discrimination of methylated and nonmethylated region of a colorectal cancer related promoter using fluorescence enhancement of gold nanocluster at intrastrand of a 9C-loop. Methods Appl Fluoresc 2018; 6:045009. [DOI: 10.1088/2050-6120/aae176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
104
|
Arcidiacono OA, Krejčí J, Suchánková J, Bártová E. Deacetylation of Histone H4 Accompanying Cardiomyogenesis is Weakened in HDAC1-Depleted ES Cells. Int J Mol Sci 2018; 19:ijms19082425. [PMID: 30115891 PMCID: PMC6121517 DOI: 10.3390/ijms19082425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 01/13/2023] Open
Abstract
Cell differentiation into cardiomyocytes requires activation of differentiation-specific genes and epigenetic factors that contribute to these physiological processes. This study is focused on the in vitro differentiation of mouse embryonic stem cells (mESCs) induced into cardiomyocytes. The effects of clinically promising inhibitors of histone deacetylases (HDACi) on mESC cardiomyogenesis and on explanted embryonic hearts were also analyzed. HDAC1 depletion caused early beating of cardiomyocytes compared with those of the wild-type (wt) counterpart. Moreover, the adherence of embryonic bodies (EBs) was reduced in HDAC1 double knockout (dn) mESCs. The most important finding was differentiation-specific H4 deacetylation observed during cardiomyocyte differentiation of wt mESCs, while H4 deacetylation was weakened in HDAC1-depleted cells induced to the cardiac pathway. Analysis of the effect of HDACi showed that Trichostatin A (TSA) is a strong hyperacetylating agent, especially in wt mESCs, but only SAHA reduced the size of the beating areas in EBs that originated from HDAC1 dn mESCs. Additionally, explanted embryonic hearts (e15) responded to treatment with HDACi: all of the tested HDACi (TSA, SAHA, VPA) increased the levels of H3K9ac, H4ac, H4K20ac, and pan-acetylated lysines in embryonic hearts. This observation shows that explanted tissue can be maintained in a hyperacetylation state several hours after excision, which appears to be useful information from the view of transplantation strategy and the maintenance of gene upregulation via acetylation in tissue intended for transplantation.
Collapse
Affiliation(s)
- Orazio Angelo Arcidiacono
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
- Faculty of Sciences, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Jana Suchánková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
| |
Collapse
|
105
|
Chen Y, Michalak M, Agellon LB. Importance of Nutrients and Nutrient Metabolism on Human Health. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:95-103. [PMID: 29955217 PMCID: PMC6020734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nutrition transition, which includes a change from consumption of traditional to modern diets that feature high-energy density and low nutrient diversity, is associated with acquired metabolic syndromes. The human diet is comprised of diverse components which include both nutrients, supplying the raw materials that drive multiple metabolic processes in every cell of the body, and non-nutrients. These components and their metabolites can also regulate gene expression and cellular function via a variety of mechanisms. Some of these components are beneficial while others have toxic effects. Studies have found that persistent disturbance of nutrient metabolism and/or energy homeostasis, caused by either nutrient deficiency or excess, induces cellular stress leading to metabolic dysregulation and tissue damage, and eventually to development of acquired metabolic syndromes. It is now evident that metabolism is influenced by extrinsic factors (e.g., food, xenobiotics, environment), intrinsic factors (e.g., sex, age, gene variations) as well as host/microbiota interaction, that together modify the risk for developing various acquired metabolic diseases. It is also becoming apparent that intake of diets with low-energy density but high in nutrient diversity may be the key to promoting and maintaining optimal health.
Collapse
Affiliation(s)
- Yiheng Chen
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada,To whom all correspondence should be addressed:Luis B. Agellon, McGill University, School of Human Nutrition, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9 Canada; Tel: (514) 398-7862;
| |
Collapse
|
106
|
Lyu G, Zhang C, Ling T, Liu R, Zong L, Guan Y, Huang X, Sun L, Zhang L, Li C, Nie Y, Tao W. Genome and epigenome analysis of monozygotic twins discordant for congenital heart disease. BMC Genomics 2018; 19:428. [PMID: 29866040 PMCID: PMC5987557 DOI: 10.1186/s12864-018-4814-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is the leading non-infectious cause of death in infants. Monozygotic (MZ) twins share nearly all of their genetic variants before and after birth. Nevertheless, MZ twins are sometimes discordant for common complex diseases. The goal of this study is to identify genomic and epigenomic differences between a pair of twins discordant for a form of congenital heart disease, double outlet right ventricle (DORV). RESULTS A monoamniotic monozygotic (MZ) twin pair discordant for DORV were subjected to genome-wide sequencing and methylation analysis. We identified few genomic differences but 1566 differentially methylated regions (DMRs) between the MZ twins. Twenty percent (312/1566) of the DMRs are located within 2 kb upstream of transcription start sites (TSS), containing 121 binding sites of transcription factors. Particularly, ZIC3 and NR2F2 are found to have hypermethylated promoters in both the diseased twin and additional patients suffering from DORV. CONCLUSIONS The results showed a high correlation between hypermethylated promoters at ZIC3 and NR2F2 and down-regulated gene expression levels of these two genes in patients with DORV compared to normal controls, providing new insight into the potential mechanism of this rare form of CHD.
Collapse
Affiliation(s)
- Guoliang Lyu
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Chao Zhang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Te Ling
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Rui Liu
- Department of Cardiovascular Surgery, Center for Cardiovascular Regenerative Medicine, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100871 China
| | - Le Zong
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yiting Guan
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Xiaoke Huang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Lei Sun
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Lijun Zhang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yu Nie
- Department of Cardiovascular Surgery, Center for Cardiovascular Regenerative Medicine, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100871 China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
107
|
Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol 2018; 831:52-59. [PMID: 29750914 DOI: 10.1016/j.ejphar.2018.05.003] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023]
Abstract
In the gastro-intestinal tract, short chain fatty acids (SCFAs) have protective effects on epithelial cells. However, their effects on inflammatory cytokine production by endothelial and immune cells and the recruitment of immune cells and their trans-migration across the endothelial layer remain controversial. Both cell types are associated with the initiation and development of inflammatory diseases, such as atherosclerosis and sepsis. SCFAs modulate immune and inflammatory responses via activation of free fatty acid (FFA) receptors type 2 and 3 (FFA2 and FFA3 receptors), G protein-coupled receptor 109A (GPR109A) and inhibition of histone deacetylases (HDACs). This review will focus on the effects of SCFAs on lipopolysaccharide (LPS)- or tumor necrosis factor-alpha (TNFα)-induced inflammatory response on endothelial and immune cells function, and an overview is presented on the underlying mechanisms of the effects of SCFAs on both immune and endothelial cells, including HDACs, FFA2 and FFA3 receptors and GPR109A regulation of nuclear factor-kappa B (NF-κB) activation and mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Meng Li
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research, Immunology, Utrecht, The Netherlands
| | - Gerry T M Wagenaar
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research, Immunology, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
108
|
Single nucleotide polymorphisms of microRNA in cardiovascular diseases. Clin Chim Acta 2018; 478:101-110. [DOI: 10.1016/j.cca.2017.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
|
109
|
Imam MU, Ismail M. The Impact of Traditional Food and Lifestyle Behavior on Epigenetic Burden of Chronic Disease. GLOBAL CHALLENGES (HOBOKEN, NJ) 2017; 1:1700043. [PMID: 31565292 PMCID: PMC6607231 DOI: 10.1002/gch2.201700043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/12/2017] [Indexed: 05/11/2023]
Abstract
Noncommunicable chronic diseases (NCCDs) are the leading causes of morbidity and mortality globally. The mismatch between present day diets and ancestral genome is suggested to contribute to the NCCDs burden, which is promoted by traditional risk factors like unhealthy diets, physical inactivity, alcohol and tobacco. However, epigenetic evidence now suggests that cumulatively inherited epigenetic modifications may have made humans more prone to the effects of present day lifestyle factors. Perinatal starvation was widespread in the 19th century. This together with more recent events like increasing consumption of western and low fiber diets, smoking, harmful use of alcohol, physical inactivity, and environmental pollutants may have programed the human epigenome for higher NCCDs risk. In this review, on the basis of available epigenetic data it is hypothesized that transgenerational effects of lifestyle factors may be contributing to the current global burden of NCCDs. Thus, there is a need to reconsider prevention strategies so that the subsequent generations will not have to pay for our sins and those of our ancestors.
Collapse
Affiliation(s)
- Mustapha U. Imam
- Precision Nutrition Innovation InstituteCollege of Public HealthZhengzhou UniversityZhengzhou450001China
| | - Maznah Ismail
- Laboratory of Molecular BiomedicineInstitute of BioscienceUniversiti Putra MalaysiaSerdangSelangor43400Malaysia
| |
Collapse
|
110
|
Recchioni R, Marcheselli F, Antonicelli R, Mensà E, Lazzarini R, Procopio AD, Olivieri F. Epigenetic effects of physical activity in elderly patients with cardiovascular disease. Exp Gerontol 2017; 100:17-27. [PMID: 29074290 DOI: 10.1016/j.exger.2017.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is an important public health problem affecting especially the elderly. Over the past 20years, an increasing number of studies have examined its underlying pathophysiological mechanisms and new therapies are continually being discovered. However, despite considerable progress in CVD management, mortality and morbidity remain a major healthcare concern, and frequent hospital admissions compromise the daily life and social activities of these patients. Physical activity has emerged as an important non-pharmacological adjunctive therapy for CVD in older patients, especially for heart failure patients, exerting its beneficial effects on mortality, morbidity, and functional capacity. The mechanisms underlying the cardiovascular benefits of exercise are not wholly clear. Mounting evidence suggest that epigenetic modifications, such as DNA methylation, histone post-translational modifications (hPTMs) and non-coding RNA, especially microRNAs (miRNAs), may be induced by physical activity. Recently, a number of miRNAs have been identified as key players in gene expression modulation by exercise. MiRNAs are synthesized by living cells and actively released into the bloodstream through different shuttles. The epigenetic information, thus carried and delivered, is involved in the interplay between environmental factors, including physical activity, and individual genetic make-up. We review and discuss the effects of exercise on age-related CVDs, focusing on circulating miRNA (c-miRNAs) modulation. Epigenetic mechanisms may have clinical relevance in CVD prevention and management; since they can be modified, insights into the implications of lifestyle-related epigenetic changes in CVD etiology may help develop therapeutic protocols of exercise training that can be suitable and effective for elderly patients.
Collapse
Affiliation(s)
- Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy.
| | - Fiorella Marcheselli
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| | - Roberto Antonicelli
- Department of Cardiology, Italian National Research Center on Aging (I.N.R.C.A-IRCCS), Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
111
|
Bytautiene Prewit E, Kechichian T, Okunade D, Yin H, Stuebe AM. Effect of Normal Pregnancy Followed by Lactation on Long-Term Maternal Health in a Mouse Model. Reprod Sci 2017; 25:1186-1196. [PMID: 29017419 DOI: 10.1177/1933719117734316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although it has been widely accepted that pregnancies with complications are associated with increased maternal cardiovascular risk later in life, there is no consensus if noncomplicated pregnancy followed by lactation plays a protective role or is a risk factor. The objective of this study was to investigate the effects of normal pregnancy and lactation on long-term maternal health in a mouse model. CD-1 mice were allocated to breeding (primigravid [PG]) and nonbreeding (nulligravid [NG]) groups. The PG group proceeded through normal pregnancy and delivery. Using a telemetry system, blood pressure (BP) was analyzed in the PG group at 6 months postpartum and in age-matched NG mice. Serum analytes, gene expressions, and protein levels were determined using appropriate analysis methods. Primigravid mice had significantly lower systolic and diastolic BP and fasting glucose levels. Circulating oxytocin (OXT) levels were significantly higher in PG mice. Oxt gene expression was significantly higher in the heart and aorta and lower in visceral adipose tissue (VAT) from PG mice. The oxytocin receptor ( Oxtr) gene expression was significantly higher in the heart, aorta, and VAT from PG animals. The level of Oxtr DNA hypermethylation and the expression of mmu-miR-29a were significantly lower in the hearts of PG mice. In PG VAT, glucose transporter-4 expression was significantly higher. Our study demonstrates that a history of normal pregnancy followed by lactation was associated with lower maternal cardiovascular risk factors later in life in female mouse.
Collapse
Affiliation(s)
- Egle Bytautiene Prewit
- 1 Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Talar Kechichian
- 1 Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Deborah Okunade
- 2 Summer Undergraduate Research Program, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Huaizhi Yin
- 1 Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Alison M Stuebe
- 3 Department of Obstetrics & Gynecology, The University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
112
|
Angarica VE, Del Sol A. Bioinformatics Tools for Genome-Wide Epigenetic Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:489-512. [PMID: 28523562 DOI: 10.1007/978-3-319-53889-1_25] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of "computational epigenetics," including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how "computational epigenetics" has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.
Collapse
Affiliation(s)
- Vladimir Espinosa Angarica
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4366 Belvaux, Luxembourg.
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4366 Belvaux, Luxembourg
| |
Collapse
|
113
|
Bhuvanalakshmi G, Arfuso F, Kumar AP, Dharmarajan A, Warrier S. Epigenetic reprogramming converts human Wharton's jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators. Stem Cell Res Ther 2017; 8:185. [PMID: 28807014 PMCID: PMC5557557 DOI: 10.1186/s13287-017-0638-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Background Lineage commitment of mesenchymal stem cells (MSCs) to cardiac differentiation is controlled by transcription factors that are regulated by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Here, we studied the differentiation of human Wharton’s jelly MSCs (WJMSCs) into the cardiomyocyte lineage via epigenetic manipulations. Methods We introduced these changes using inhibitors of DNA methyl transferase and histone deacetylase, DC301, DC302, and DC303, in various combinations. We characterized for cardiogenic differentiation by assessing the expression of cardiac-specific markers by immunolocalization, quantitative RT-PCR, and flow cytometry. Cardiac functional studies were performed by FURA2AM staining and Greiss assay. The role of Wnt signaling during cardiac differentiation was analyzed by quantitative RT-PCR. In-vivo studies were performed in a doxorubicin-induced cardiotoxic mouse model by injecting cardiac progenitor cells. Promoter methylation status of the cardiac transcription factor Nkx2.5 and the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), after cardiac differentiation was studied by bisulfite sequencing. Results By induction with DC301 and DC302, WJMSCs differentiated into cardiomyocyte-like structures with an upregulation of Wnt antagonists, sFRP3 and sFRP4, and Dickkopf (Dkk)1 and Dkk3. The cardiac function enhancer, vinculin, and DDX20, a DEAD-box RNA helicase, were also upregulated in differentiated cardiomyocytes. Additionally, bisulfite sequencing revealed, for the first time in cardiogenesis, that sFRP4 is activated by promoter CpG island demethylation. In vivo, these MSC-derived cardiac progenitors could not only successfully engraft to the site of cardiac injury in mice with doxorubicin-induced cardiac injury, but also form functional cardiomyocytes and restore cardiac function. Conclusion The present study unveils a link between Wnt inhibition and epigenetic modification to initiate cardiac differentiation, which could enhance the efficacy of stem cell therapy for ischemic heart disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0638-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Bhuvanalakshmi
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia.,School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Alan Prem Kumar
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.,National University Cancer Institute, Singapore, 119074, Singapore.,Department of Biological Sciences, University of North Texas, Denton, TX, 76203-5017, USA
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India. .,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia. .,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6875, Australia.
| |
Collapse
|
114
|
Hasin T, Iakobishvili Z, Weisz G. Associated Risk of Malignancy in Patients with Cardiovascular Disease: Evidence and Possible Mechanism. Am J Med 2017; 130:780-785. [PMID: 28344133 DOI: 10.1016/j.amjmed.2017.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease and malignancy are leading causes of morbidity and mortality. Increased risk of malignancy was identified in patients with cardiovascular disease, including patients with heart failure, heart failure after myocardial infarction, patients undergoing cardiac intervention, and patients after a thrombotic event. Common risk factors and biological pathways can explain this association and are explored in this review. Further research is needed to establish the causes of malignancy in this population and direct possible intervention.
Collapse
Affiliation(s)
- Tal Hasin
- Department of Cardiology, Shaare Zedek Medical Center, Jerusalem, Israel.
| | - Zaza Iakobishvili
- Department of Cardiology, Rabin Medical Center, Petach Tiqwa, Israel
| | - Giora Weisz
- Department of Cardiology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
115
|
Allen SC, Mamotte CDS. Pleiotropic and Adverse Effects of Statins-Do Epigenetics Play a Role? J Pharmacol Exp Ther 2017; 362:319-326. [PMID: 28576976 DOI: 10.1124/jpet.117.242081] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Statins are widely used to prevent major cardiovascular events by lowering serum cholesterol. There is evidence that statins have pleiotropic effects-that is, cholesterol-independent effects-that may also confer protection from cardiovascular disease and potentially numerous other pathologies, including cancer. Statins also have a number of well described adverse effects, including myopathy, rhabdomyolysis, liver damage, and type 2 diabetes. This paper examines the evidence of epigenetic modifications as a contributory factor to the pleiotropic and adverse effects of statins. In vitro and animal studies have shown that statins can inhibit histone deacetylase activity and increase histone acetylation. Similarly, there is evidence that statins may inhibit both histone and DNA methyltransferases and subsequently demethylate histone residues and DNA, respectively. These changes have been shown to alter expression of various genes, including tumor suppressor genes and genes thought to have anti-atherosclerotic actions. Statins have also been shown to influence the expression of numerous microRNAs that suppress the translation of proteins involved in tumorigenesis and vascular function. Whether the adverse effects of statins may also have an epigenetic component has been less widely studied, although there is evidence that microRNA expression may be altered in statin-induced muscle and liver damage. As epigenetics and microRNAs influence gene expression, these changes could contribute to the pleiotropic and adverse effects of statins and have long-lasting effects on the health of statin users.
Collapse
Affiliation(s)
- Stephanie C Allen
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia
| | - Cyril D S Mamotte
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia
| |
Collapse
|
116
|
Taniguchi I, Iwaya C, Ohnaka K, Shibata H, Yamamoto K. Genome-wide DNA methylation analysis reveals hypomethylation in the low-CpG promoter regions in lymphoblastoid cell lines. Hum Genomics 2017; 11:8. [PMID: 28499412 PMCID: PMC5429538 DOI: 10.1186/s40246-017-0106-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies of DNA methylation profiles may uncover the molecular mechanisms through which genetic and environmental factors contribute to the risk of multifactorial diseases. There are two types of commonly used DNA bioresources, peripheral blood cells (PBCs) and EBV-transformed lymphoblastoid cell lines (LCLs), which are available for genetic epidemiological studies. Therefore, to extend our knowledge of the difference in DNA methylation status between LCLs and PBCs is important in human population studies that use these DNA sources to elucidate the epigenetic risks for multifactorial diseases. We analyzed the methylation status of the autosomes for 192 and 92 DNA samples that were obtained from PBCs and LCLs, respectively, using a human methylation 450 K array. After excluding SNP-associated methylation sites and low-call sites, 400,240 sites were subjected to analysis using a generalized linear model with cell type, sex, and age as the independent variables. RESULTS We found that the large proportion of sites showed lower methylation levels in LCLs compared with PBCs, which is consistent with previous reports. We also found that significantly different methylation sites tend to be located on the outside of the CpG island and in a region relatively far from the transcription start site. Additionally, we observed that the methylation change of the sites in the low-CpG promoter region was remarkable. Finally, it was shown that the correlation between the chronological age and ageing-associated methylation sites in ELOVL2 and FHL2 in the LCLs was weaker than that in the PBCs. CONCLUSIONS The methylation levels of highly methylated sites of the low-CpG-density promoters in PBCs decreased in the LCLs, suggesting that the methylation sites located in low-CpG-density promoters could be sensitive to demethylation in LCLs. Despite being generated from a single cell type, LCLs may not always be a proxy for DNA from PBCs in studies of epigenome-wide analysis attempting to elucidate the role of epigenetic change in disease risks.
Collapse
Affiliation(s)
- Itsuki Taniguchi
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chihiro Iwaya
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keizo Ohnaka
- Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
117
|
Chen Z, Li S, Subramaniam S, Shyy JYJ, Chien S. Epigenetic Regulation: A New Frontier for Biomedical Engineers. Annu Rev Biomed Eng 2017; 19:195-219. [PMID: 28301736 DOI: 10.1146/annurev-bioeng-071516-044720] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gene expression in mammalian cells depends on the epigenetic status of the chromatin, including DNA methylation, histone modifications, promoter-enhancer interactions, and noncoding RNA-mediated regulation. The coordinated actions of these multifaceted regulations determine cell development, cell cycle regulation, cell state and fate, and the ultimate responses in health and disease. Therefore, studies of epigenetic modulations are critical for our understanding of gene regulation mechanisms at the molecular, cellular, tissue, and organ levels. The aim of this review is to provide biomedical engineers with an overview of the principles of epigenetics, methods of study, recent findings in epigenetic regulation in health and disease, and computational and sequencing tools for epigenetics analysis, with an emphasis on the cardiovascular system. This review concludes with the perspectives of the application of bioengineering to advance epigenetics and the utilization of epigenetics to translate bioengineering research into clinical medicine.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91016; .,Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shuai Li
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shankar Subramaniam
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - John Y-J Shyy
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shu Chien
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; , .,Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, California 92093; ,
| |
Collapse
|
118
|
Admixture mapping in two Mexican samples identifies significant associations of locus ancestry with triglyceride levels in the BUD13/ZNF259/APOA5 region and fine mapping points to rs964184 as the main driver of the association signal. PLoS One 2017; 12:e0172880. [PMID: 28245265 PMCID: PMC5330487 DOI: 10.1371/journal.pone.0172880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/11/2017] [Indexed: 11/29/2022] Open
Abstract
We carried out an admixture mapping study of lipid traits in two samples from Mexico City. Native American locus ancestry was significantly associated with triglyceride levels in a broad region of chromosome 11 overlapping the BUD13, ZNF259 and APOA5 genes. In our fine-mapping analysis of this region using dense genome-wide data, rs964184 is the only marker included in the 99% credible set of SNPs, providing strong support for rs964184 as the causal variant within this region. The frequency of the allele associated with increased triglyceride concentrations (rs964184-G) is between 30–40% higher in Native American populations from Mexico than in European populations. The evidence currently available for this variant indicates that it may be exerting its effect through three potential mechanisms: 1) modification of enhancer activity, 2) regulation of the expression of several genes in cis and/or trans, or 3) modification of the methylation patterns of the promoter of the APOA5 gene.
Collapse
|
119
|
Long-term consequences of disrupting adenosine signaling during embryonic development. Mol Aspects Med 2017; 55:110-117. [PMID: 28202385 DOI: 10.1016/j.mam.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
There is growing evidence that disruption in the prenatal environment can have long-lasting effects on an individual's health in adulthood. Research on the fetal programming of adult diseases, including cardiovascular disease, focuses on epi-mutations, which alter the normal pattern of epigenetic factors such as DNA methylation, miRNA expression, or chromatin modification, rather than traditional genetic alteration. Thus, understanding how in utero chemical exposures alter epigenetics and lead to adult disease is of considerable public health concern. Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists including the methlyxanthines caffeine and theophylline are widely consumed during pregnancy. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). We examined the long-term effects of in utero disruption of adenosine signaling on cardiac gene expression, morphology, and function in adult offspring. One substance that fetuses are frequently exposed to is caffeine, which is a non-selective adenosine receptor antagonist. Over the past several years, we examined the role of adenosine signaling during embryogenesis and cardiac development. We discovered that in utero alteration in adenosine action leads to adverse effects on embryonic and adult murine hearts. We find that cardiac A1ARs protect the embryo from in utero hypoxic stress, a condition that causes an increase in adenosine levels. After birth in mice, we observed that in utero caffeine exposure leads to abnormal cardiac function and morphology in adults, including an impaired response to β-adrenergic stimulation. Recently, we observed that in utero caffeine exposure induces transgenerational effects on cardiac morphology, function, and gene expression. Our findings indicate that the effects of altered adenosine signaling are dependent on signaling through the A1ARs and timing of disruption. In addition, the long-term effects of altered adenosine signaling appear to be mediated by alterations in DNA methylation, an epigenetic process critical for normal development.
Collapse
|
120
|
Zaiou M, El Amri H. Cardiovascular pharmacogenetics: a promise for genomically‐guided therapy and personalized medicine. Clin Genet 2016; 91:355-370. [DOI: 10.1111/cge.12881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Affiliation(s)
- M. Zaiou
- Faculté de PharmacieUniversité de Lorraine Nancy France
| | - H. El Amri
- Laboratoire de Génétique de la Gendarmerie RoyaleAvenue Ibn Sina Rabat Maroc
| |
Collapse
|
121
|
Abstract
PURPOSE OF REVIEW This review provides a brief synopsis of sexual dimorphism in atherosclerosis with an emphasis on genetic studies aimed to better understand the atherosclerotic process and clinical outcomes in women. Such studies are warranted because development of atherosclerosis, impact of several traditional risk factors, and burden of coronary heart disease (CHD) differ between women and men. RECENT FINDINGS While most candidate gene studies pool women and men and adjust for sex, some sex-specific studies provide evidence of association between candidate genes and prevalent and incident CHD in women. So far, most genome-wide association studies (GWAS) also failed to consider sex-specific associations. The few GWAS focused on women tended to have small sample sizes and insufficient power to reject the null hypothesis of no association even if associations exist. Few studies consider that sex can modify the effect of gene variants on CHD. Sufficiently large-scale genetic studies in women of different race/ethnic groups, taking into account possible gene-gene and gene-environment interactions as well as hormone-mediated epigenetic mechanisms, are needed. Using the same disease definition for women and men might not be appropriate. Accurate phenotyping and inclusion of relevant outcomes in women, together with targeting the entire spectrum of atherosclerosis, could help address the contribution of genes to sexual dimorphism in atherosclerosis. Discovered genetic loci should be taken forward for replication and functional studies to elucidate the plausible underlying biological mechanisms. A better understanding of the etiology of atherosclerosis in women would facilitate future prevention efforts and interventions.
Collapse
Affiliation(s)
- Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
122
|
Ramos RB, Fabris V, Lecke SB, Maturana MA, Spritzer PM. Association between global leukocyte DNA methylation and cardiovascular risk in postmenopausal women. BMC MEDICAL GENETICS 2016; 17:71. [PMID: 27724854 PMCID: PMC5057492 DOI: 10.1186/s12881-016-0335-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 10/05/2016] [Indexed: 11/10/2022]
Abstract
Background Genetic studies to date have not provided satisfactory evidence regarding risk polymorphisms for cardiovascular disease (CVD). Conversely, epigenetic mechanisms, including DNA methylation, seem to influence the risk of CVD and related conditions. Because postmenopausal women experience an increase in CVD, we set out to determine whether global DNA methylation was associated with cardiovascular risk in this population. Methods In this cross sectional study carried out in a university hospital, 90 postmenopausal women without prior CVD diagnosis (55.5 ± 4.9 years, 5.8 [3.0–10.0] years since menopause) were enrolled. DNA was extracted from peripheral leukocytes and global DNA methylation levels were obtained with an ELISA kit. Cardiovascular risk was estimated by the Framingham General Cardiovascular Risk Score (10-year risk) (FRS). Clinical and laboratory variables were assessed. Patients were stratified into two CVD risk groups: low (FRS: <10 %, n = 69) and intermediate/high risk (FRS ≥10 %, n = 21). Results Age, time since menopause, blood pressure, total cholesterol, and LDL-c levels were higher in FRS ≥10 % group vs. FRS <10 % group. BMI, triglycerides, HDL-c, HOMA-IR, glucose and hsC-reactive protein levels were similar in the two groups. Global DNA methylation (% 5mC) in the overall sample was 26.5 % (23.6–36.9). The FRS ≥10 % group presented lower global methylation levels compared with the FRS <10 % group: 23.9 % (20.6–29.1) vs. 28.8 % (24.3–39.6), p = 0.02. This analysis remained significant even after adjustment for time since menopause (p = 0.02). Conclusions Our results indicate that lower global DNA methylation is associated with higher cardiovascular risk in postmenopausal women.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil
| | - Vitor Fabris
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil
| | - Sheila Bunecker Lecke
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Department of Diagnostic Methods, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Maria Augusta Maturana
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Present addresses: Institute of Cardiology of Rio Grande do Sul, Cardiology University Foundation, Avenida Princesa Isabel, 395, Porto Alegre, RS, 90040-371, Brazil.,Unisinos University, Av. Unisinos, 950, São Leopoldo, RS, 93022-000, Brazil
| | - Poli Mara Spritzer
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Laboratory of Molecular Endocrinology, Department of Physiology, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
123
|
Fang X, Poulsen RR, Rivkees SA, Wendler CC. In Utero Caffeine Exposure Induces Transgenerational Effects on the Adult Heart. Sci Rep 2016; 6:34106. [PMID: 27677355 PMCID: PMC5039698 DOI: 10.1038/srep34106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/01/2016] [Indexed: 12/28/2022] Open
Abstract
Each year millions of pregnant woman are exposed to caffeine, which acts to antagonize adenosine action. The long-term consequences of this exposure on the developing fetus are largely unknown, although in animal models we have found adverse effects on cardiac function. To assess if these effects are transmitted transgenerationally, we exposed pregnant mice to caffeine equivalent to 2–4 cups of coffee at two embryonic stages. Embryos (F1 generation) exposed to caffeine early from embryonic (E) day 6.5–9.5 developed a phenotype similar to dilated cardiomyopathy by 1 year of age. Embryos exposed to caffeine later (E10.5–13.5) were not affected. We next examined the F2 generation and F3 generation of mice exposed to caffeine from E10.5–13.5, as this coincides with germ cell development. These F2 generation adult mice developed a cardiac phenotype similar to hypertrophic cardiomyopathy. The F3 generation exhibited morphological changes in adult hearts, including increased mass. This report shows that in utero caffeine exposure has long-term effects into adulthood and that prenatal caffeine exposure can exert adverse transgenerational effects on adult cardiac function.
Collapse
Affiliation(s)
- Xiefan Fang
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ryan R Poulsen
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Scott A Rivkees
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christopher C Wendler
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
124
|
Kyrou I, Kollia N, Panagiotakos D, Georgousopoulou E, Chrysohoou C, Tsigos C, Randeva HS, Yannakoulia M, Stefanadis C, Papageorgiou C, Pitsavos C. Association of depression and anxiety status with 10-year cardiovascular disease incidence among apparently healthy Greek adults: The ATTICA Study. Eur J Prev Cardiol 2016; 24:145-152. [DOI: 10.1177/2047487316670918] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ioannis Kyrou
- Department of Science of Dietetics and Nutrition, Harokopio University, Greece
- Aston Medical Research Institute, Aston University, UK
- Translational and Experimental Medicine, Division of Biomedical Sciences, University of Warwick, UK
- WISDEM, University Hospitals Coventry and Warwickshire NHS Trust, UK
| | - Natasa Kollia
- Department of Science of Dietetics and Nutrition, Harokopio University, Greece
| | | | | | | | - Constantine Tsigos
- Department of Science of Dietetics and Nutrition, Harokopio University, Greece
| | - Harpal S Randeva
- Aston Medical Research Institute, Aston University, UK
- Translational and Experimental Medicine, Division of Biomedical Sciences, University of Warwick, UK
- WISDEM, University Hospitals Coventry and Warwickshire NHS Trust, UK
| | - Mary Yannakoulia
- Department of Science of Dietetics and Nutrition, Harokopio University, Greece
| | | | | | | | | |
Collapse
|
125
|
Tang H, Gao C. Comment on The Look AHEAD Research Group. Prospective Association of GLUL rs10911021 With Cardiovascular Morbidity and Mortality Among Individuals With Type 2 Diabetes: The Look AHEAD Study. Diabetes 2016;65:297-302. Diabetes 2016; 65:e29. [PMID: 27555578 DOI: 10.2337/db16-0410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Haiyu Tang
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
126
|
Bogsrud MP, Ulven SM, Holven KB. Does intrauterine exposure to hypercholesterolemia adversely affect familial hypercholesterolemia phenotype? Curr Opin Lipidol 2016; 27:382-7. [PMID: 27070077 DOI: 10.1097/mol.0000000000000299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW There is currently limited information as to whether maternally or paternally inherited familial hypercholesterolemia confers different phenotype risk to offspring. Knowledge about the differences in risk conferred by inheritance could be important with respect to follow-up and more individually targeted treatment of subjects with familial hypercholesterolemia. RECENT FINDINGS Few studies have, with inconsistent results so far, investigated the significance of familial hypercholesterolemia inheritance on cardiovascular risk markers in offspring. Maternal inheritance of familial hypercholesterolemia includes hypercholesterolemic in-utero conditions for the offspring. How this may influence later risk is briefly discussed in the article. SUMMARY Current data suggest that the dominating factor of the familial hypercholesterolemia (FH) phenotype is the mutation and not the inheritance, however, maternal inheritance of FH has been reported to adversely affect FH phenotype in terms of increased mortality. More knowledge about how intrauterine hypercholesterolemia during pregnancy influences epigenetic modifications and later cardiovascular disease risk in offspring is needed and this may open up new avenues of treatment of pregnant women with familial hypercholesterolemia.
Collapse
Affiliation(s)
- Martin P Bogsrud
- aDepartment of Endocrinology, Morbid Obesity, and Preventive Medicine, Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital bDepartment of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
127
|
Barnes MD, Heaton TL, Goates MC, Packer JM. Intersystem Implications of the Developmental Origins of Health and Disease: Advancing Health Promotion in the 21st Century. Healthcare (Basel) 2016; 4:healthcare4030045. [PMID: 27417633 PMCID: PMC5041046 DOI: 10.3390/healthcare4030045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022] Open
Abstract
The developmental origins of health and disease (DOHaD) theory and life course theory (LCT) are emerging fields of research that have significant implications for the public health and health promotion professions. Using a DOHaD/LCT perspective, social determinants of health (SDH) take on new critical meaning by which health promotion professionals can implement DOHaD/LCT guided interventions, including recommended policies. Through these interventions, public health could further address the sources of worldwide chronic disease epidemics and reduce such disease rates substantially if related policy, programs, and interdisciplinary and multi-sector collaboration are emphasized. Additional characteristics of the most effective interventions involve context-specific adaptation and societal structures that impact upstream, early life environments on a broad scale, influencing multiple locations and/or diseases.
Collapse
Affiliation(s)
- Michael D Barnes
- Department of Health Science, Brigham Young University, Provo, UT 84602, USA.
| | - Thomas L Heaton
- Department of Health Science, Brigham Young University, Provo, UT 84602, USA.
| | - Michael C Goates
- Harold B. Lee Library, Brigham Young University, Provo, UT 84602, USA.
| | - Justin M Packer
- Department of Health Science, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
128
|
Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, van Pelt AMM. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update 2016; 22:561-73. [PMID: 27240817 PMCID: PMC5001497 DOI: 10.1093/humupd/dmw017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer treatment. Similarly, SSCT could be used to restore fertility in sterile adult cancer survivors. In vitro propagation of SSCs might also be employed to enhance spermatogenesis in oligozoospermic men and in azoospermic men who still have functional SSCs albeit in insufficient numbers. The combination of SSCT with genomic editing techniques could potentially rectify defects in spermatogenesis caused by genomic mutations or, more broadly, prevent transmission of genomic diseases to the offspring. In spite of the promising prospects, SSCT and germline genomic editing are not yet clinically applicable and both techniques require optimization at various levels. WIDER IMPLICATIONS SSCT with or without genomic editing could potentially be used to restore fertility in cancer survivors to treat couples with a severe male factor and to prevent the paternal transmission of diseases. This will potentially allow these couples to have their own biological children. Technical development is progressing rapidly, and ethical reflection and societal debate on the use of SSCT with or without genomic editing is pressing.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sabrina Z Jan
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Robert B Struijk
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
129
|
Abstract
With the impressive advancement in high-throughput 'omics' technologies over the past two decades, epigenetic mechanisms have emerged as the regulatory interface between the genome and environmental factors. These mechanisms include DNA methylation, histone modifications, ATP-dependent chromatin remodeling and RNA-based mechanisms. Their highly interdependent and coordinated action modulates the chromatin structure controlling access of the transcription machinery and thereby regulating expression of target genes. Given the rather limited proliferative capability of human cardiomyocytes, epigenetic regulation appears to play a particularly important role in the myocardium. The highly dynamic nature of the epigenome allows the heart to adapt to environmental challenges and to respond quickly and properly to cardiac stress. It is now becoming evident that histone-modifying and chromatin-remodeling enzymes as well as numerous non-coding RNAs play critical roles in cardiac development and function, while their dysregulation contributes to the onset and development of pathological cardiac remodeling culminating in HF. This review focuses on up-to-date knowledge about the epigenetic mechanisms and highlights their emerging role in the healthy and failing heart. Uncovering the determinants of epigenetic regulation holds great promise to accelerate the development of successful new diagnostic and therapeutic strategies in human cardiac disease.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA,
| | | |
Collapse
|
130
|
Programación epigenética placentaria en restricción del crecimiento intrauterino. ACTA ACUST UNITED AC 2016; 87:154-61. [DOI: 10.1016/j.rchipe.2016.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 01/28/2023]
|
131
|
Virzì GM, Clementi A, Brocca A, de Cal M, Ronco C. Molecular and Genetic Mechanisms Involved in the Pathogenesis of Cardiorenal Cross Talk. Pathobiology 2016; 83:201-10. [DOI: 10.1159/000444502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
|
132
|
Gore MO, McGuire DK, Lingvay I, Rosenstock J. Predicting cardiovascular risk in type 2 diabetes: the heterogeneity challenges. Curr Cardiol Rep 2016; 17:607. [PMID: 26031671 DOI: 10.1007/s11886-015-0607-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus has reached epidemic proportions around the world, and the increase in cardiovascular risk attributable to diabetes estimated to range from 2- to 4-fold poses grave public health concern. Though in some contexts type 2 diabetes has been equated with coronary heart disease equivalent risk, there is considerable evidence that incremental cardiovascular risk does not uniformly affect all people with type 2 diabetes. This heterogeneity in cardiovascular risk is multifactorial and only partially understood but is a key consideration for our understanding of the nexus of diabetes and cardiovascular disease and for the development of optimal and individualized cardiovascular risk reduction strategies. This review provides a brief synopsis of the concept of cardiovascular risk heterogeneity in diabetes, including epidemiologic evidence, discussion of established and potential determinants of heterogeneity, and clinical, research, and regulatory implications.
Collapse
Affiliation(s)
- M Odette Gore
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,
| | | | | | | |
Collapse
|
133
|
Contrasting effects of prenatal life stress on blood pressure and body mass index in young adults. J Hypertens 2016; 33:711-9; discussion 719. [PMID: 25915875 DOI: 10.1097/hjh.0000000000000476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Various environmental stressors in pregnancy have been reported to affect high blood pressure (BP) in adult offspring. However, few studies have examined the effect of prenatal maternal psychological stress on offspring BP and BMI in early adulthood. METHOD In 957 Raine cohort participants, regression analyses were used to examine the association between the count of maternal life stress events experienced during pregnancy and offspring BP and BMI at age 20. RESULTS Prenatal life stress associated positively with offspring BMI but inversely with SBP. After adjustment for confounders each additional prenatal life stress event reduced offspring SBP by 0.66 mmHg (P = 0.013) in those with an average BMI and lowered the odds of systolic (pre)hypertension by 17% (odds ratio = 0.83; P = 0.008). The inverse relationship between prenatal life stress and adult SBP was stronger in offspring with higher BMI. On the contrary, each unit increase in prenatal life stress score predicted a BMI increase of 0.37 kg/m (P = 0.022). Longitudinal analysis showed similar effects of prenatal life stress for offspring BMI from age 8 and SBP from age 14. CONCLUSION This study has shown that maternal stress in pregnancy significantly associated with BMI from early childhood, but contrary to our hypothesis predicted lower resting SBP and lower odds of systolic (pre)hypertension in young adult offspring. The effect of prenatal life stress on BP was accentuated by a higher BMI. Fetal programming events as a result of prenatal stress may underpin some of these relationships.
Collapse
|
134
|
Abstract
A complex interplay between genetic and environmental factors is involved in the pathogenesis of cardiovascular diseases (CVDs). Environmental factors have crucial effects on the epigenetic trait of genes, which refers to a stably heritable phenotype resulting from changes in the chromosomes without alteration of the DNA sequence, but has profound effects on the cellular repertoire. Among the epigenetic patterns, DNA methylation is of great interest. DNA methylation occurs at both global and specific gene promoter levels and relates to atherosclerosis. Aberrant DNA methylation affects the transcription and expression of critical regulatory genes and induces a proatherogenic cellular phenotype, which plays key roles in endothelia cell dysfunction, abnormal vascular smooth muscle cell proliferation, extracellular matrix formation, and inflammation in CVDs. This review focuses on the contribution of DNA methylation in the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Ye Zhang
- a Department of Cardiology, Daping Hospital , The Third Military Medical University , Chongqing , P.R. China.,b Chongqing Institute of Cardiology , Chongqing , P.R. China
| | - Chunyu Zeng
- a Department of Cardiology, Daping Hospital , The Third Military Medical University , Chongqing , P.R. China.,b Chongqing Institute of Cardiology , Chongqing , P.R. China
| |
Collapse
|
135
|
Nguyen A, Duquette N, Mamarbachi M, Thorin E. Epigenetic Regulatory Effect of Exercise on Glutathione Peroxidase 1 Expression in the Skeletal Muscle of Severely Dyslipidemic Mice. PLoS One 2016; 11:e0151526. [PMID: 27010651 PMCID: PMC4806847 DOI: 10.1371/journal.pone.0151526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/28/2016] [Indexed: 11/19/2022] Open
Abstract
Exercise is an effective approach for primary and secondary prevention of cardiovascular diseases (CVD) and loss of muscular mass and function. Its benefits are widely documented but incompletely characterized. It has been reported that exercise can induce changes in the expression of antioxidant enzymes including Sod2, Trx1, Prdx3 and Gpx1 and limits the rise in oxidative stress commonly associated with CVD. These enzymes can be subjected to epigenetic regulation, such as DNA methylation, in response to environmental cues. The aim of our study was to determine whether in the early stages of atherogenesis, in young severely dyslipidemic mice lacking LDL receptors and overexpressing human ApoB100 (LDLR-/-; hApoB+/+), exercise regulates differentially the expression of antioxidant enzymes by DNA methylation in the skeletal muscles that consume high levels of oxygen and thus generate high levels of reactive oxygen species. Expression of Sod2, Txr1, Prdx3 and Gpx1 was altered by 3 months of exercise and/or severe dyslipidemia in 6-mo dyslipidemic mice. Of these genes, only Gpx1 exhibited changes in DNA methylation associated with dyslipidemia and exercise: we observed both increased DNA methylation with dyslipidemia and a transient decrease in DNA methylation with exercise. These epigenetic alterations are found in the second exon of the Gpx1 gene and occur alongside with inverse changes in mRNA expression. Inhibition of expression by methylation of this specific locus was confirmed in vitro. In conclusion, Gpx1 expression in the mouse skeletal muscle can be altered by both exercise and dyslipidemia through changes in DNA methylation, leading to a fine regulation of free radical metabolism.
Collapse
Affiliation(s)
- Albert Nguyen
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Natacha Duquette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Maya Mamarbachi
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Eric Thorin
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
136
|
Oudejans C, Poutsma A, Michel O, Mulders J, Visser A, van Dijk M, Nauta T, Bokslag A, Paulus W, de Haas A, Koolwijk P, de Groot CJM. Genome-Wide Identification of Epigenetic Hotspots Potentially Related to Cardiovascular Risk in Adult Women after a Complicated Pregnancy. PLoS One 2016; 11:e0148313. [PMID: 26870946 PMCID: PMC4752476 DOI: 10.1371/journal.pone.0148313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/15/2016] [Indexed: 11/18/2022] Open
Abstract
Background The physiological demands of pregnancy on the maternal cardiovascular system can catapult women into a metabolic syndrome that predisposes to atherosclerosis in later life. We sought to identify the nature of the epigenomic changes associated with the increased cardiovascular disease (CVD) risk in adult women following pre-eclampsia. Findings We assessed the genome wide epigenetic profile by methyl-C sequencing of monozygotic parous twin sister pairs discordant for a severe variant of pre-eclampsia. In the adult twin sisters at risk for CVD as a consequence of a complicated pregnancy, a set of 12 differentially methylated regions with at least 50% difference in methylation percentage and the same directional change was found to be shared between the affected twin sisters and significantly different compared to their unaffected monozygous sisters. Conclusion The current epigenetic marker set will permit targeted analysis of differentially methylated regions potentially related to CVD risk in large cohorts of adult women following complicated pregnancies.
Collapse
Affiliation(s)
- Cees Oudejans
- Department of Clinical Chemistry and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- * E-mail:
| | - Ankie Poutsma
- Department of Clinical Chemistry and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Omar Michel
- Department of Clinical Chemistry and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Joyce Mulders
- Department of Clinical Chemistry and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Allerdien Visser
- Department of Clinical Chemistry and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marie van Dijk
- Department of Clinical Chemistry and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tessa Nauta
- Department of Physiology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- A-Skin BV, Amsterdam, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Anouk Bokslag
- Department of Obstetrics/Gynaecology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Walter Paulus
- Department of Physiology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Andreas de Haas
- Department of Physiology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Christianne J. M. de Groot
- Department of Obstetrics/Gynaecology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
137
|
Zhong J, Agha G, Baccarelli AA. The Role of DNA Methylation in Cardiovascular Risk and Disease: Methodological Aspects, Study Design, and Data Analysis for Epidemiological Studies. Circ Res 2016; 118:119-131. [PMID: 26837743 DOI: 10.1161/circresaha.115.305206] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/01/2015] [Indexed: 01/14/2023]
Abstract
Epidemiological studies have demonstrated that genetic, environmental, behavioral, and clinical factors contribute to cardiovascular disease development. How these risk factors interact at the cellular level to cause cardiovascular disease is not well known. Epigenetic epidemiology enables researchers to explore critical links between genomic coding, modifiable exposures, and manifestation of disease phenotype. One epigenetic link, DNA methylation, is potentially an important mechanism underlying these associations. In the past decade, there has been a significant increase in the number of epidemiological studies investigating cardiovascular risk factors and outcomes in relation to DNA methylation, but many gaps remain in our understanding of the underlying cause and biological implications. In this review, we provide a brief overview of the biology and mechanisms of DNA methylation and its role in cardiovascular disease. In addition, we summarize the current evidence base in epigenetic epidemiology studies relevant to cardiovascular health and disease and discuss the limitations, challenges, and future directions of the field. Finally, we provide guidelines for well-designed epigenetic epidemiology studies, with particular focus on methodological aspects, study design, and analytical challenges.
Collapse
Affiliation(s)
- Jia Zhong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Golareh Agha
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
138
|
Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci 2016; 1363:91-8. [PMID: 26647078 PMCID: PMC4801744 DOI: 10.1111/nyas.12956] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023]
Abstract
One-carbon metabolism is a metabolic network that integrates nutrient status from the environment to yield multiple biological functions. The folate and methionine cycles generate S-adenosylmethionine (SAM), which is the universal methyl donor for methylation reactions, including histone and DNA methylation. Histone methylation is a crucial part of the epigenetic code and plays diverse roles in the establishment of chromatin states that mediate the regulation of gene expression. The activities of histone methyltransferases (HMTs) are dependent on intracellular levels of SAM, which fluctuate based on cellular nutrient availability, providing a link between cell metabolism and histone methylation. Here we discuss the biochemical properties of HMTs, their role in gene regulation, and the connection to cellular metabolism. Our emphasis is on understanding the specificity of this intriguing link.
Collapse
Affiliation(s)
- Samantha J. Mentch
- Field of Biochemistry, Molecular, and Cell Biology, Department of Molecular Biology and Genetics, Cornell University
| | - Jason W Locasale
- Field of Biochemistry, Molecular, and Cell Biology, Department of Molecular Biology and Genetics, Cornell University
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham NC 27708
- Duke Cancer Institute, Duke University Medical School, Durham NC
- Duke Molecular Physiology Institute, Duke University Medical School, Durham NC
| |
Collapse
|
139
|
Hara J, Shankle WR, Barrentine LW, Curole MV. Novel Therapy of Hyperhomocysteinemia in Mild Cognitive Impairment, Alzheimer's Disease, and Other Dementing Disorders. J Nutr Health Aging 2016; 20:825-834. [PMID: 27709231 DOI: 10.1007/s12603-016-0688-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Studies have produced conflicting results assessing hyperhomocysteinemia (HYH) treatment with B vitamins in patients with normal cognition, Alzheimer's disease and related disorders (ADRD). This study examined the effect of HYH management with L-methylfolate (LMF), methylcobalamin (MeCbl; B12), and N-acetyl-cysteine (CFLN: Cerefolin®/Cerefolin-NAC®) on cognitive decline. DESIGN Prospective, case-control study of subjects followed longitudinally. SETTING Outpatient clinic for cognitive disorders. PARTICIPANTS 116 ADRD patients (34 with HYH, 82 with No-HYH) met inclusion and exclusion criteria to participate. No study participant took B vitamins. INTERVENTION HYH patients received CFLN, and No-HYH patients did not. MEASUREMENTS Cognitive outcome measures included MCI Screen (memory), CERAD Drawings (constructional praxis), Ishihara Number Naming (object recognition), Trails A and B (executive function), and F-A-S test (verbal fluency). Dependent or predictor measures included demographics, functional severity, CFLN and no CFLN treatment duration, ADRD diagnosis, memantine and cholinesterase inhibitor treatment. Linear mixed effects models with covariate adjustment were used to evaluate rate of change on cognitive outcomes. RESULTS The duration of CFLN treatment, compared to an equivalent duration without CFLN treatment, significantly slowed decline in learning and memory, constructional praxis, and visual-spatial executive function (Trails B). CFLN treatment slowed cognitive decline significantly more for patients with milder baseline severity. CFLN treatment effect increased as baseline functional severity decreased. The analytical model showed that treatment duration must exceed some minimum period of at least one year to slow the rate of cognitive decline. CONCLUSION After covariate adjustment, HYH+CFLN significantly slowed cognitive decline compared to No-HYH+No-CFLN. Longer CFLN treatment duration, milder baseline severity, and magnitude of homocysteine reduction from baseline were all significant predictors. There are a number of factors that could account for disagreement with other clinical trials of B vitamin treatment of HYH. Moreover, CFLN is chemically distinct from commonly used B vitamins as both LMF and MeCbl are the fully reduced and bioactive functional forms; CLFN also contains the glutathione precursor, N-acetyl-cysteine. The findings of other B vitamin trials of HYH can, therefore, only partly account for treatment effects of CFLN. These findings warrant further evaluation with a randomized, placebo-controlled trial.
Collapse
Affiliation(s)
- J Hara
- Junko Hara, Ph.D. Shankle Clinic, 3900 W Coast Hwy, Ste 310, Newport Beach, CA 92663, Phone: +1-949-478-8858 ex222, Fax: +1-949-242-2465,
| | | | | | | |
Collapse
|
140
|
Dupras C, Ravitsky V. Epigenetics in the Neoliberal "Regime of Truth": A Biopolitical Perspective on Knowledge Translation. Hastings Cent Rep 2015; 46:26-35. [PMID: 26659400 DOI: 10.1002/hast.522] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent findings in epigenetics have been attracting much attention from social scientists and bioethicists because they reveal the molecular mechanisms by which exposure to socioenvironmental factors, such as pollutants and social adversity, can influence the expression of genes throughout life. Most surprisingly, some epigenetic modifications may also be heritable via germ cells across generations. Epigenetics may be the missing molecular evidence of the importance of using preventive strategies at the policy level to reduce the incidence and prevalence of common diseases. But while this "policy translation" of epigenetics introduces new arguments in favor of public health strategies and policy-making, a more "clinical translation" of epigenetics is also emerging. It focuses on the biochemical mechanisms and epigenetic variants at the origin of disease, leading to novel biomedical means of assessing epigenetic susceptibility and reversing detrimental epigenetic variants. In this paper, we argue that the impetus to create new biomedical interventions to manipulate and reverse epigenetic variants is likely to garner more attention than effective social and public health interventions and therefore also to garner a greater share of limited public resources. This is likely to happen because of the current biopolitical context in which scientific findings are translated. This contemporary neoliberal "regime of truth," to use a term from Michel Foucault, greatly influences the ways in which knowledge is being interpreted and implemented. Building on sociologist Thomas Lemke's Foucauldian "analytics of biopolitics" and on literature from the field of science and technology studies, we present two sociological trends that may impede the policy translation of epigenetics: molecularization and biomedicalization. These trends, we argue, are likely to favor the clinical translation of epigenetics-in other words, the development of new clinical tools fostering what has been called "personalized" or "precision" medicine. In addition, we argue that an overemphasized clinical translation of epigenetics may further reinforce this biopolitical landscape through four processes closely related to neoliberal pathways of thinking: the internalization and isolation (aspects of liberal individualism) of socioenvironmental determinants of health and increased opportunities for commodification and technologicalization (aspects of economic liberalism) of health care interventions.
Collapse
|
141
|
Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8589318. [PMID: 26770659 PMCID: PMC4684888 DOI: 10.1155/2016/8589318] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/28/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS) has received extensive attention in the last two decades, because of the discovery that abnormal oxidation status was related to patients with chronic diseases, such as diabetes, cardiovascular, polycystic ovary syndrome (PCOS), cancer, and neurological diseases. OS is considered as a potential inducing factor in the pathogenesis of PCOS, which is one of the most common complex endocrine disorders and a leading cause of female infertility, affecting 4%–12% of women in the world, as OS has close interactions with PCOS characteristics, just as insulin resistance (IR), hyperandrogenemia, and chronic inflammation. It has also been shown that DNA mutations and alterations induced by OS are involved in cancer pathogenesis, tumor cell survival, proliferation, invasion, angiogenesis, and so on. Furthermore, recent studies show that the females with PCOS are reported to have an increasing risk of cancers. As a result, the more serious OS in PCOS is regarded as an important potential incentive for the increasing risk of cancers, and this study aims to analyze the possibility and potential pathogenic mechanism of the above process, providing insightful thoughts and evidences for preventing cancer potentially caused by PCOS in clinic.
Collapse
|
142
|
Abdul KSM, Jayasinghe SS, Chandana EPS, Jayasumana C, De Silva PMCS. Arsenic and human health effects: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:828-46. [PMID: 26476885 DOI: 10.1016/j.etap.2015.09.016] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 05/18/2023]
Abstract
Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed.
Collapse
Affiliation(s)
| | | | | | - Channa Jayasumana
- Department of Pharmacology, Faculty of Medicine, Rajarata University, Anuradhapura 50008, Sri Lanka
| | - P Mangala C S De Silva
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka
| |
Collapse
|
143
|
KUNEŠ J, VANĚČKOVÁ I, MIKULÁŠKOVÁ B, BEHULIAK M, MALETÍNSKÁ L, ZICHA J. Epigenetics and a New Look on Metabolic Syndrome. Physiol Res 2015; 64:611-20. [DOI: 10.33549/physiolres.933174] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of metabolic syndrome increases in the developed countries, therefore biomedical research is focused on the understanding of its etiology. The study of exact mechanisms is very complicated because both genetic and environmental factors contribute to this complex disease. The ability of environmental factors to promote phenotype changes by epigenetic DNA modifications (i.e. DNA methylation, histone modifications) was demonstrated to play an important role in the development and predisposition to particular symptoms of metabolic syndrome. There is no doubt that the early life, such as the fetal and perinatal periods, is critical for metabolic syndrome development and therefore critical for prevention of this disease. Moreover, these changes are visible not only in individuals exposed to environmental factors but also in the subsequent progeny for multiple generations and this phenomenon is called transgenerational inheritance. The knowledge of molecular mechanisms, by which early minor environmental stimuli modify the expression of genetic information, might be the desired key for the understanding of mechanisms leading to the change of phenotype in adulthood. This review provides a short overview of metabolic syndrome epigenetics.
Collapse
Affiliation(s)
- J. KUNEŠ
- Institute of Physiology CAS, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
144
|
Chen KC, Liao YC, Wang JY, Lin YC, Chen CH, Juo SHH. Oxidized low-density lipoprotein is a common risk factor for cardiovascular diseases and gastroenterological cancers via epigenomical regulation of microRNA-210. Oncotarget 2015; 6:24105-18. [PMID: 26254226 PMCID: PMC4695173 DOI: 10.18632/oncotarget.4152] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/21/2015] [Indexed: 01/11/2023] Open
Abstract
Hyperlipidemia, including the oxidized low-density lipoprotein (oxLDL) accumulation, is a risk and highly associated with the development of cancers and cardiovascular diseases. microRNA-210 (miR-210), a hypoxia-responsive microRNA regulated by HIF-1α, has been implicated in cancer and cardiovascular disease formation. Furthermore, Bioinformatics analysis revealed that the promoter of the miR-210 gene contains CpG-rich regions. It is unclear whether miR-210 expression could be epigenetically regulated in these disease progresses. The study aimed to explore the relationships between lipid and miR-210 in the context of cardiovascular disease and gastrointestinal cancer. We demonstrated oxLDL can decrease methylation in the miR-210 promoter to up-regulate miR-210. HIF-1α can bind to miR-210 promoter, but this HIF-1α binding site can be blocked by methylation. We showed that subjects of carotid atherosclerosis, stroke patients and cancer patients had hypomethylation in the miR-210 promoter, especially the HIF-1α binding site. Furthermore, miR-210 can directly inhibit sprouty-related EVH1 domain 2 (SPRED2) expressions, and SPRED2 reduces cell migration via ERK/c-Fos/MMPs pathways. Increased miR-210 and reduced SPRED2 levels were found in aorta of mice under high-fat diet and tumor tissues, which implied that miR-210 can be an underlying mechanism to explain oxLDL as a common risk factor for cardiovascular disease and gastrointestinal cancer.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
145
|
Lee-Son K, Jetton JG. AKI and Genetics: Evolving Concepts in the Genetics of Acute Kidney Injury: Implications for Pediatric AKI. J Pediatr Genet 2015; 5:61-8. [PMID: 27617143 DOI: 10.1055/s-0035-1557112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
In spite of recent advances in the field of acute kidney injury (AKI) research, morbidity and mortality remain high for AKI sufferers. The study of genetic influences in AKI pathways is an evolving field with potential for improving outcomes through the identification of risk and protective factors at the individual level that may in turn allow for the development of rational therapeutic interventions. Studies of single nucleotide polymorphisms, individual susceptibility to nephrotoxic medications, and epigenetic factors comprise a growing body of research in this area. While promising, this field is still only emerging, with a small number of studies in humans and very little data in pediatric patients.
Collapse
Affiliation(s)
- Kathy Lee-Son
- Division of Pediatric Nephrology, Dialysis, and Transplantation, University of Iowa Children's Hospital, Iowa City, Iowa, United States
| | - Jennifer G Jetton
- Division of Pediatric Nephrology, Dialysis, and Transplantation, University of Iowa Children's Hospital, Iowa City, Iowa, United States
| |
Collapse
|
146
|
Lopez JP, Diallo A, Cruceanu C, Fiori LM, Laboissiere S, Guillet I, Fontaine J, Ragoussis J, Benes V, Turecki G, Ernst C. Biomarker discovery: quantification of microRNAs and other small non-coding RNAs using next generation sequencing. BMC Med Genomics 2015; 8:35. [PMID: 26130076 PMCID: PMC4487992 DOI: 10.1186/s12920-015-0109-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/16/2015] [Indexed: 02/08/2023] Open
Abstract
Background Small ncRNAs (sncRNAs) offer great hope as biomarkers of disease and response to treatment. This has been highlighted in the context of several medical conditions such as cancer, liver disease, cardiovascular disease, and central nervous system disorders, among many others. Here we assessed several steps involved in the development of an ncRNA biomarker discovery pipeline, ranging from sample preparation to bioinformatic processing of small RNA sequencing data. Methods A total of 45 biological samples were included in the present study. All libraries were prepared using the Illumina TruSeq Small RNA protocol and sequenced using the HiSeq2500 or MiSeq Illumina sequencers. Small RNA sequencing data was validated using qRT-PCR. At each stage, we evaluated the pros and cons of different techniques that may be suitable for different experimental designs. Evaluation methods included quality of data output in relation to hands-on laboratory time, cost, and efficiency of processing. Results Our results show that good quality sequencing libraries can be prepared from small amounts of total RNA and that varying degradation levels in the samples do not have a significant effect on the overall quantification of sncRNAs via NGS. In addition, we describe the strengths and limitations of three commercially available library preparation methods: (1) Novex TBE PAGE gel; (2) Pippin Prep automated gel system; and (3) AMPure XP beads. We describe our bioinformatics pipeline, provide recommendations for sequencing coverage, and describe in detail the expression and distribution of all sncRNAs in four human tissues: whole-blood, brain, heart and liver. Conclusions Ultimately this study provides tools and outcome metrics that will aid researchers and clinicians in choosing an appropriate and effective high-throughput sequencing quantification method for various study designs, and overall generating valuable information that can contribute to our understanding of small ncRNAs as potential biomarkers and mediators of biological functions and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0109-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Pablo Lopez
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Alpha Diallo
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada.
| | - Cristiana Cruceanu
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Laura M Fiori
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada.
| | - Sylvie Laboissiere
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.
| | - Isabelle Guillet
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.
| | - Joelle Fontaine
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany.
| | - Gustavo Turecki
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Carl Ernst
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
147
|
Parets SE, Conneely KN, Kilaru V, Menon R, Smith AK. DNA methylation provides insight into intergenerational risk for preterm birth in African Americans. Epigenetics 2015; 10:784-92. [PMID: 26090903 DOI: 10.1080/15592294.2015.1062964] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
African Americans are at increased risk for spontaneous preterm birth (PTB). Though PTB is heritable, genetic studies have not identified variants that account for its intergenerational risk, prompting the hypothesis that epigenetic factors may also contribute. The objective of this study was to evaluate DNA methylation from maternal leukocytes to identify patterns specific to PTB and its intergenerational risk. DNA from peripheral leukocytes from African American women that delivered preterm (24-34 weeks; N = 16) or at term (39-41 weeks; N = 24) was assessed for DNA methylation using the HumanMethylation450 BeadChip. In maternal samples, 17,829 CpG sites associated with PTB, but no CpG site remained associated after correction for multiple comparisons. Examination of paired maternal-fetal samples identified 5,171 CpG sites in which methylation of maternal samples correlated with methylation of her respective fetus (FDR < 0.05). These correlated sites were enriched for association with PTB in maternal leukocytes. The majority of correlated CpG sites could be attributed to one or more genetic variants. They were also significantly more likely to be in genes involved in metabolic, cardiovascular, and immune pathways, suggesting a role for genetic and environmental contributions to PTB risk and chronic disease. The results of this study may provide insight into the factors underlying intergenerational risk for PTB and its consequences.
Collapse
Affiliation(s)
- Sasha E Parets
- a Genetics and Molecular Biology Program; Emory University ; Atlanta , GA USA
| | | | | | | | | |
Collapse
|
148
|
[Epigenetics in atherosclerosis]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2015; 28:102-19. [PMID: 26088002 DOI: 10.1016/j.arteri.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
The association studies based on candidate genes carried on for decades have helped in visualizing the influence of the genetic component in complex diseases such as atherosclerosis, also showing the interaction between different genes and environmental factors. Even with all the knowledge accumulated, there is still some way to go to decipher the individual predisposition to disease, and if we consider the great influence that environmental factors play in the development and progression of atherosclerosis, epigenetics is presented as a key element in trying to expand our knowledge on individual predisposition to atherosclerosis and cardiovascular disease. Epigenetics can be described as the discipline that studies the mechanisms of transcriptional regulation, independent of changes in the sequence of DNA, and mostly induced by environmental factors. This review aims to describe what epigenetics is and how epigenetic mechanisms are involved in atherosclerosis.
Collapse
|
149
|
Chromatin methylation and cardiovascular aging. J Mol Cell Cardiol 2015; 83:21-31. [DOI: 10.1016/j.yjmcc.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 12/26/2022]
|
150
|
Greißel A, Culmes M, Napieralski R, Wagner E, Gebhard H, Schmitt M, Zimmermann A, Eckstein HH, Zernecke A, Pelisek J. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques. Thromb Haemost 2015; 114:390-402. [PMID: 25993995 DOI: 10.1160/th14-10-0852] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/25/2015] [Indexed: 01/08/2023]
Abstract
Little is known about epigenetics and its possible role in atherosclerosis. We here analysed histone and DNA methylation and the expression of corresponding methyltransferases in early and advanced human atherosclerotic carotid lesions in comparison to healthy carotid arteries. Western Blotting was performed on carotid plaques from our biobank with early (n=60) or advanced (n=60) stages of atherosclerosis and healthy carotid arteries (n=12) to analyse di-methylation patterns of histone H3 at positions K4, K9 and K27. In atherosclerotic lesions, di-methylation of H3K4 was unaltered and that of H3K9 and H3K27 significantly decreased compared to control arteries. Immunohistochemistry revealed an increased appearance of di-methylated H3K4 in smooth muscle cells (SMCs), a decreased expression of di-methylated H3K9 in SMCs and inflammatory cells, and reduced di-methylated H3K27 in inflammatory cells in advanced versus early atherosclerosis. Expression of corresponding histone methyltransferases MLL2 and G9a was increased in advanced versus early atherosclerosis. Genomic DNA hypomethylation, as determined by PCR for methylated LINE1 and SAT-alpha, was observed in early and advanced plaques compared to control arteries and in cell-free serum of patients with high-grade carotid stenosis compared to healthy volunteers. In contrast, no differences in DNA methylation were observed in blood cells. Expression of DNA-methyltransferase DNMT1 was reduced in atherosclerotic plaques versus controls, DNMT3A was undetectable, and DNMT3B not altered. DNA-demethylase TET1 was increased in atherosclerosisc plaques. The extent of histone and DNA methylation and expression of some corresponding methyltransferases are significantly altered in atherosclerosis, suggesting a possible contribution of epigenetics in disease development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - A Zernecke
- Alma Zernecke, MD, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Ismaninger Str. 22, D-81675 Munich, Germany, Phone: 0049-89-4140-5168, Fax: 0049-89-4140-4861, E-mail:
| | - J Pelisek
- Jaroslav Pelisek, PhD, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Ismaninger Str. 22, D-81675 Munich, Germany, Phone: 0049-89-4140-5168, Fax: 0049-89-4140-4861, E-mail:
| |
Collapse
|