101
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
102
|
Sengupta P, Roy A, Roy L, Bose D, Halder S, Jana K, Mukherjee G, Chatterjee S. Long non-coding intergenic RNA, LINC00273 induces cancer metastasis and stemness via miRNA sponging in triple negative breast cancer. Int J Biol Macromol 2024; 274:132730. [PMID: 38857735 DOI: 10.1016/j.ijbiomac.2024.132730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
LncRNAs and miRNAs, being the master regulators of gene expression, are crucial functional mediators in cancer. Our study unveils the critical regulatory role of the metastatic long non-coding RNA LINC00273 as the master regulator of oncogenes involved in cancer metastasis, stemness, and chemoresistance via its miRNA sponging mechanism. M2 (a salt of bis-Schiff base) mediated G quadruplex (G4) stabilization at the LINC00273 gene promoter remarkably inhibits LINC00273 transcription. Therefore, low-level LINC00273 transcripts are unable to efficiently sponge the miRNAs, which subsequently become available to bind and downregulate their target oncogenes. We have observed significantly different global transcriptomic scenarios in LINC00273 upregulated and downregulated circumstances in MDA-MB-231 triple-negative breast cancer model. Additionally, we have found the G4 sequence in the LINC00273 RNA to play a critical role in miRNA sequestration. miRNAs (miR-6789-5p, miR200b, miR-125b-5p, miR-4268, miR3978) have base pairing complementarity within the G4 region of LINC00273 RNA and the 3'-UTR (untranslated region) of MAPK12, TGF-β1, and SIX-1 transcripts. We have reported TGF-β1, SIX-1, and MAPK12 to be the direct downstream targets of LINC00273. The correlation between abnormal expression of lncRNA LINC00273 and TNBC aggressiveness strongly evidenced in our study shall accelerate the development of lncRNA-based anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Satyajit Halder
- Department of Molecular Medicine, Bose Institute (Centenary campus), Kolkata, India
| | - Kuladip Jana
- Department of Molecular Medicine, Bose Institute (Centenary campus), Kolkata, India
| | | | | |
Collapse
|
103
|
Zakutansky PM, Ku L, Zhang G, Shi L, Li Y, Yao B, Bassell GJ, Read RD, Feng Y. Isoform balance of the long noncoding RNA NEAT1 is regulated by the RNA-binding protein QKI, governs the glioma transcriptome, and impacts cell migration. J Biol Chem 2024; 300:107595. [PMID: 39032650 PMCID: PMC11367543 DOI: 10.1016/j.jbc.2024.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
The long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in a variety of human cancers. Two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, are produced through mutually exclusive alternative 3' end formation. Previous studies extensively investigated NEAT1 dysregulation in tumors, but often failed to achieve distinct quantification of the two NEAT1 isoforms. Moreover, molecular mechanisms governing the biogenesis of NEAT1 isoforms and the functional impacts of their dysregulation in tumorigenesis remain poorly understood. In this study, we employed an isoform-specific quantification assay and found differential dysregulation of NEAT1 isoforms in patient-derived glioblastoma multiforme cells. We further showed usage of the NEAT1 proximal polyadenylation site (PAS) is a critical mechanism that controls glioma NEAT1 isoform production. CRISPR-Cas9-mediated PAS deletion reduced NEAT1_1 and reciprocally increased NEAT1_2, which enhanced nuclear paraspeckle formation in human glioma cells. Moreover, the utilization of the NEAT1 PAS is facilitated by the RNA-binding protein quaking (QKI), which binds to the proximal QKI recognition elements. Functionally, we identified transcriptomic changes and altered biological pathways caused by NEAT1 isoform imbalance in glioma cells, including the pathway for the regulation of cell migration. Finally, we demonstrated the forced increase of NEAT1_2 upon NEAT1 PAS deletion is responsible for driving glioma cell migration and promoting the expression of genes implicated in the regulation of cell migration. Together, our studies uncovered a novel mechanism that regulates NEAT1 isoforms and their functional impacts on the glioma transcriptome, which affects pathological pathways of glioma, represented by migration.
Collapse
Affiliation(s)
- Paul M Zakutansky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Li Ku
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guannan Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Shi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
104
|
Lei Z, Zhu Z, Yao Z, Dai X, Dong Y, Chen B, Wang S, Wang S, Bentum-Ennin L, Jin L, Gu H, Hu W. Reciprocal interactions between lncRNAs and MYC in colorectal cancer: partners in crime. Cell Death Dis 2024; 15:539. [PMID: 39075086 PMCID: PMC11286766 DOI: 10.1038/s41419-024-06918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Proto-oncogenic MYC is frequently dysregulated in colorectal cancer (CRC). In the past decades, long noncoding RNAs (lncRNAs) have emerged as important regulators in cancers, acting as scaffolds, molecular decoys, post-transcriptional regulators, and others. Interestingly, lncRNAs are able to control MYC expression both at transcriptional and post-transcriptional levels. It is suggested that the reciprocal interaction of MYC and lncRNAs often occurs in CRC. MYC can affect the cell fate by promoting or inhibiting the transcription of some lncRNAs. At the same time, some lncRNAs can also affect MYC expression or transcriptional activity, and in turn decide the cell fate. In this review we summarized the current knowledge about the MYC and lncRNA axis, focusing on its mutual regulation, roles in CRC, and proposed potential therapeutic prospects for CRC treatment.
Collapse
Affiliation(s)
- Zhen Lei
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhipu Zhu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhihui Yao
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Xiangyu Dai
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Yi Dong
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Bing Chen
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Songyu Wang
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Siyue Wang
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Lutterodt Bentum-Ennin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China
| | - Lei Jin
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China.
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China.
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230027, China.
| |
Collapse
|
105
|
Dibaj M, Haghi M, Safaralizadeh R, Saberi A. The role of EZH2 and its regulatory lncRNAs as a serum-based biomarker in Alzheimer's disease. Mol Biol Rep 2024; 51:866. [PMID: 39073683 DOI: 10.1007/s11033-024-09802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have become a hot topic in the human nervous system. Moreover, circulating lncRNAs have been suggested as possible biomarkers for central nervous system processes and neurodegenerative diseases. The present research aimed to highlight the role of plasma lncRNAs TUG1, FEZF1-AS1, and EZH2 gene as diagnostic biomarkers in Alzheimer's disease (AD). METHODS Plasma samples for the study were provided by 100 AD patients and 100 matched controls. Real-time quantitative reverse transcriptase PCR was used to determine the plasma level of the aforementioned lncRNAs. Furthermore, the plasma level of EZH2 protein in the participants' blood was determined using the ELISA technique. RESULTS In contrast to controls, down-regulation of the EZH2 gene and protein was reported in the plasma of patients with AD. Additionally, plasma samples from AD patients showed up-and-down-regulation of the lncRNAs TUG1 and FEZF1-AS1, respectively. CONCLUSION Our new findings suggest that the EZH2 gene, plasma lncRNA TUG1, and FEZF1-AS1 may contribute, as valuable biomarkers, to AD diagnosis.
Collapse
Affiliation(s)
- Mohsen Dibaj
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Alia Saberi
- Neurology Department, School of Medicine, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
106
|
Zeng J, Feng Y, Lin L, Ye H, Shen H, Sun Y. Circ_0000069 promotes the development of hepatocellular carcinoma by regulating CCL25. BMC Cancer 2024; 24:827. [PMID: 38992592 PMCID: PMC11238365 DOI: 10.1186/s12885-024-12594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, influenced by aberrant circRNA expression. Investigating circRNA-miRNA-mRNA interactions can unveil underlying mechanisms of HCC and identify potential therapeutic targets. METHODS In this study, we conducted differential analyses of mRNAs, miRNAs, and circRNAs, and established their relationships using various databases such as miRanda, miRDB, and miTarBase. Additionally, functional enrichment and immune infiltration analyses were performed to evaluate the roles of key genes. We also conducted qPCR assays and western blotting (WB) to examine the expression levels of circRNA, CCL25, and MAP2K1 in both HCC cells and clinical samples. Furthermore, we utilized overexpression and knockdown techniques for circ_0000069 and conducted wound healing, transwell invasion assays, and a tumorigenesis experiment to assess the migratory and invasive abilities of HCC cells. RESULTS Our findings revealed significant differential expression of 612 upregulated genes and 1173 downregulated genes in HCC samples compared to normal liver tissue. Additionally, 429 upregulated circRNAs and 453 downregulated circRNAs were identified. Significantly, circ_0000069 exhibited upregulation in HCC tissues and cell lines. The overexpression of circ_0000069 notably increased the invasion and migration capacity of Huh7 cells, whereas the downregulation of circ_0000069 reduced this capability in HepG2 cells. Furthermore, this effect was counteracted by CCL25 silencing or overexpression, separately. Animal studies further confirmed that the overexpression of hsa_circ_0000069 facilitated tumor growth in xenografted nude mice, while the inhibition of CCL25 attenuated this effect. CONCLUSION Circ_0000069 appears to promote HCC progression by regulating CCL25, suggesting that both circ_0000069 and CCL25 can serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Junshao Zeng
- Department of Oncology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, Guigang, Guangxi, China
| | - Yi Feng
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Liwen Lin
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Huifeng Ye
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Haoming Shen
- Department of Clinical Laboratory, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Yifan Sun
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China.
| |
Collapse
|
107
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
108
|
Song B, Luo T, Fan Y, Li M, Qiu Z, Tian Y, Shang Y, Ma C, Liu C, Cao Q, Peng Y, Xu P, Krishnan HB, Wang Z, Zhang S, Liu S. Generation of New β-Conglycinin-Deficient Soybean Lines by Editing the lincRNA lincCG1 Using the CRISPR/Cas9 System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15013-15026. [PMID: 38907729 DOI: 10.1021/acs.jafc.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Soybean β-conglycinin is a major allergen that adversely affects the nutritional properties of soybean. Soybean deficient in β-conglycinin is associated with low allergenicity and high nutritional value. Long intergenic noncoding RNAs (lincRNAs) regulate gene expression and are considered important regulators of essential biological processes. Despite increasing knowledge of the functions of lincRNAs, relatively little is known about the effects of lincRNAs on the accumulation of soybean β-conglycinin. The current study presents the identification of a lincRNA lincCG1 that was mapped to the intergenic noncoding region of the β-conglycinin α-subunit locus. The full-length lincCG1 sequence was cloned and found to regulate the expression of soybean seed storage protein (SSP) genes via both cis- and trans-acting regulatory mechanisms. Loss-of-function lincCG1 mutations generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system led to the deficiency of the allergenic α'-, α-, and β-subunits of soybean β-conglycinin as well as higher content of proteins, sulfur-containing amino acids, and free arginine. The dominant null allele LincCG1, and consequently, the β-conglycinin-deficient phenotype associated with the lincCG1-gene-edited line was stably inherited by the progenies in a Mendelian fashion. The dominant null allele LincCG1 may therefore be exploited for engineering/developing novel hypoallergenic soybean varieties. Furthermore, Cas9-free and β-conglycinin-deficient homozygous mutant lines were obtained in the T1 generation. This study is the first to employ the CRISPR/Cas9 technology for editing a lincRNA gene associated with the soybean allergenic protein β-conglycinin. Moreover, this study reveals that lincCG1 plays a crucial role in regulating the expression of the β-conglycinin subunit gene cluster, besides highlighting the efficiency of employing the CRISPR/Cas9 system for modulating lincRNAs, and thereby regulating soybean seed components.
Collapse
Affiliation(s)
- Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
- Key Laboratory of Molecular and Cytogenetics, College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Tingting Luo
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuanhang Fan
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Ming Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Zhendong Qiu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yusu Tian
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuzhuo Shang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Chongxuan Ma
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Chang Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Qingqian Cao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuhan Peng
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Hari B Krishnan
- Plant Genetics Research, USDA Agricultural Research Service, Columbia, Missouri 65211, United States
- Plant Science Division, University of Missouri, Columbia, Missouri 65201, United States
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| |
Collapse
|
109
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
110
|
Zhang J, Zhang Z, Shen D. Upregulated LncRNA-LINC00659 expression by H. pylori infection promoted the progression of gastritis to cancer by regulating PTBP1 expression. INDIAN J PATHOL MICR 2024; 67:510-517. [PMID: 38394397 DOI: 10.4103/ijpm.ijpm_48_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/23/2023] [Indexed: 02/25/2024] Open
Abstract
CONTEXT Helicobacter pylori ( H. pylori ), a spiral-shaped bacterium, is closely associated with chronic, progressive gastric mucosal damage, gastric atrophy, and even gastric cancer (GC). An increasing number of studies have addressed the correlation between long noncoding RNAs (lncRNAs) and H. pylori pathogenicity in GC. OBJECTIVE In this study, we found that the expression level of LINC00659 gradually increased in the progression from atrophic gastritis, intestinal metaplasia, and dysplasia to GC in H. pylori -infected patients. Thus, we aimed to further explore the function of LINC00659 in the progression of gastritis to cancer under H. pylori infection. MATERIALS AND METHODS StarBase predictions, ribonucleic acid (RNA)-binding protein immunoprecipitation assays, and gene ontology functional annotation (GO)/Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed to identify the RNA-binding proteins of LINC00659; moreover, qRT‒PCR, western blotting, RNA interference, and immunofluorescence assays were used to investigate the function of LINC00659. RESULTS LINC00659 bound directly to the RNA-binding protein polypyrimidine tract-binding protein (PTBP1). Importantly, qRT‒PCR and western blot assays demonstrated that PTBP1 expression increased in the progression from inflammation to cancer in the stomach of H. pylori -infected patients and H. pylori -infected GES-1 cells. However, LINC00659 knockdown downregulated PTBP1 expression and inhibited PTBP1 binding under H. pylori infection. Finally, LINC00659 knockdown significantly reduced H. pylori -induced human gastric epithelial cell senescence and suppressed interleukin (IL)-6 and IL-8 secretion by reducing the phosphorylation level of NF-κB p65. CONCLUSIONS This study indicated that LINC00659 may have the potential to be a novel promising prognostic and therapeutic marker for H. pylori -associated gastric diseases.
Collapse
Affiliation(s)
- Jiani Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhengbo Zhang
- Department of Gastroenterology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, P. R. China
| | - Danlei Shen
- Department of Gastroenterology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
111
|
da Silva Duarte AJ, Sanabani SS. Deciphering epigenetic regulations in the inflammatory pathways of atopic dermatitis. Life Sci 2024; 348:122713. [PMID: 38735367 DOI: 10.1016/j.lfs.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Atopic dermatitis, commonly referred to as atopic eczema, is a persistent inflammatory skin disorder that predominantly manifests in children but may endure into adulthood. Its clinical management poses challenges due to the absence of a definitive cure, and its prevalence varies across ethnicities, genders, and geographic locations. The epigenetic landscape of AD includes changes in DNA methylation, changes in histone acetylation and methylation, and regulation by non-coding RNAs. These changes affect inflammatory and immune mechanisms, and research has identified AD-specific variations in DNA methylation, particularly in the affected epidermis. Histone modifications, including acetylation, have been associated with the disruption of skin barrier function in AD, suggesting the potential therapeutic benefit of histone deacetylase inhibitors such as belinostat. Furthermore, non-coding RNAs, particularly microRNAs and long non-coding RNAs (lncRNAs), have been implicated in modulating various cellular processes central to AD pathogenesis. Therapeutic implications in AD include the potential use of DNA methylation inhibitors and histone deacetylase inhibitors to correct aberrant methylation patterns and modulate gene expression related to immune responses and skin barrier functions. Additionally, the emerging role of lncRNAs suggests the possibility of using small interfering RNAs or antisense oligonucleotides to inhibit lncRNAs and adjust their regulatory impact on gene expression. In conclusion, the importance of epigenetic elements in AD is becoming increasingly clear as studies highlight the contribution of DNA methylation, histone modifications and, control by non-coding RNAs to the onset and progression of the disease. Understanding these epigenetic changes provides valuable insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil.
| |
Collapse
|
112
|
Huang J, Yu Y, Pang D, Li C, Wei Q, Cheng Y, Cui Y, Ou R, Shang H. Lnc-HIBADH-4 Regulates Autophagy-Lysosome Pathway in Amyotrophic Lateral Sclerosis by Targeting Cathepsin D. Mol Neurobiol 2024; 61:4768-4782. [PMID: 38135852 PMCID: PMC11236912 DOI: 10.1007/s12035-023-03835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent and lethal class of severe motor neuron diseases (MND) with no efficacious treatment. The pathogenic mechanisms underlying ALS remain unclear. Nearly 90% of patients exhibit sporadic onset (sALS). Therefore, elucidating the pathophysiology of ALS is imperative. Long non-coding RNA (lncRNA) is a large class of non-coding RNAs that regulate transcription, translation, and post-translational processes. LncRNAs contribute to the pathogenesis of diverse neurodegenerative disorders and hold promise as targets for interference in the realm of neurodegeneration. However, the mechanisms of which lncRNAs are involved in ALS have not been thoroughly investigated. We identified and validated a downregulated lncRNA, lnc-HIBADH-4, in ALS which correlated with disease severity and overall survival. Lnc-HIBADH-4 acted as a "molecular sponge" regulating lysosomal function through the lnc-HIBADH-4/miR-326/CTSD pathway, thereby impacting autophagy-lysosome dynamics and the levels of cell proliferation and apoptosis. Therefore, this study discovered and revealed the role of lnc-HIBADH-4 in the pathogenesis of ALS. With further research, lnc-HIBADH-4 is expected to provide a new biomarker in the diagnosis and treatment of ALS.
Collapse
Affiliation(s)
- Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yujiao Yu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
113
|
Zhang X, Han X. Targeting cuproptosis for cancer therapy: Focus on the anti-tumor immune system. CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
114
|
Zhuang L, Jin G, Wang Q, Ge X, Pei X. Long Non-coding RNA ZFAS1 Regulates Fibrosis and Scortosis in the Cell Model of Diabetic Nephropathy Through miR-525-5p/SGK1 Axis. Appl Biochem Biotechnol 2024; 196:3731-3746. [PMID: 37768477 DOI: 10.1007/s12010-023-04721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Diabetic nephropathy (DN) is a common clinical syndrome in diabetic patients. Functional characterization of non-coding (ncRNAs) involved in the progression of DN can provide insights into the diagnosis and therapeutic management of DN. Human kidney proximal tubular epithelial cells (HK-2) were challenged by high glucose (HG, 50 mM) as a cell model of DN. The expression level of long non-coding RNA (lncRNA) ZFAS1 was quantified by qRT-PCR. The proteins and cytokines related to fibrosis and scortosis in DN (NLRP3, GSDMD-N, IL-1β and Caspase 1, fibronectin, collagen I, collagen III, IL-1β, and IL-18) were examined by western blot or ELISA. RNA precipitation and luciferase reporter activity experiments were conducted to assess the molecular associations. ZFAS1 and SGK1 were highly induced in HK-2 cells challenged with HG, while miR-525-5p downregulated upon HG treatment. ZFAS1 knockdown attenuated HG-induced fibrosis and scortosis in HK-2 cells by reducing the levels of NLRP3, GSDMD-N, Caspase 1, fibronectin, collagen I/III, IL-1β, and IL-18. Mechanically, ZFAS1 knockdown protected HK-2 cells from HG-induced injury by upregulating miR-525-5p and repressing SGK1 expression. Overall, our results suggest that knocking down ZFAS1 may be formulated as a protective strategy in ameliorating DN progression through regulating miR-525-5p/SGK1 pathway. Targeting ZFAS1 could be further explored as a potential approach for the management of DN.
Collapse
Affiliation(s)
- Langen Zhuang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China.
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Qiong Wang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Xiaoxu Ge
- Department of Endocrinology Tongren Hospital Affiliated to Jiaotong University, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| |
Collapse
|
115
|
Das S, Zea Rojas MP, Tran EJ. Novel insights on the positive correlation between sense and antisense pairs on gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1864. [PMID: 39087253 PMCID: PMC11626863 DOI: 10.1002/wrna.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| | | | - Elizabeth J. Tran
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
116
|
Shi W, Song J, Weiner JM, Chopra A, Dommisch H, Beule D, Schaefer AS. lncRNA CDKN2B-AS1 regulates collagen expression. Hum Genet 2024; 143:907-919. [PMID: 38833008 PMCID: PMC11294485 DOI: 10.1007/s00439-024-02674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/27/2024] [Indexed: 06/06/2024]
Abstract
The long noncoding RNA CDKN2B-AS1 harbors a major coronary artery disease risk haplotype, which is also associated with progressive forms of the oral inflammatory disease periodontitis as well as myocardial infarction (MI). Despite extensive research, there is currently no broad consensus on the function of CDKN2B-AS1 that would explain a common molecular role of this lncRNA in these diseases. Our aim was to investigate the role of CDKN2B-AS1 in gingival cells to better understand the molecular mechanisms underlying the increased risk of progressive periodontitis. We downregulated CDKN2B-AS1 transcript levels in primary gingival fibroblasts with LNA GapmeRs. Following RNA-sequencing, we performed differential expression, gene set enrichment analyses and Western Blotting. Putative causal alleles were searched by analyzing associated DNA sequence variants for changes of predicted transcription factor binding sites. We functionally characterized putative functional alleles using luciferase-reporter and antibody electrophoretic mobility shift assays in gingival fibroblasts and HeLa cells. Of all gene sets analysed, collagen biosynthesis was most significantly upregulated (Padj=9.7 × 10- 5 (AUC > 0.65) with the CAD and MI risk gene COL4A1 showing strongest upregulation of the enriched gene sets (Fold change = 12.13, Padj = 4.9 × 10- 25). The inflammatory "TNFA signaling via NFKB" gene set was downregulated the most (Padj=1 × 10- 5 (AUC = 0.60). On the single gene level, CAPNS2, involved in extracellular matrix organization, was the top upregulated protein coding gene (Fold change = 48.5, P < 9 × 10- 24). The risk variant rs10757278 altered a binding site of the pathogen responsive transcription factor STAT1 (P = 5.8 × 10- 6). rs10757278-G allele reduced STAT1 binding 14.4% and rs10757278-A decreased luciferase activity in gingival fibroblasts 41.2% (P = 0.0056), corresponding with GTEx data. CDKN2B-AS1 represses collagen gene expression in gingival fibroblasts. Dysregulated collagen biosynthesis through allele-specific CDKN2B-AS1 expression in response to inflammatory factors may affect collagen synthesis, and in consequence tissue barrier and atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Weiwei Shi
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Jiahui Song
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - January Mikolaj Weiner
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Avneesh Chopra
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Henrik Dommisch
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Arne S Schaefer
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
117
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
118
|
Zhang J, Tian Z, Qin C, Momeni MR. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell 2024; 37:887-903. [PMID: 38587596 DOI: 10.1007/s13577-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.
Collapse
Affiliation(s)
- Junxiong Zhang
- Xiamen Academy of Art and Design, Fuzhou University, Xiamen, 361024, Fujian, China.
| | - Zhongxin Tian
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Chao Qin
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | | |
Collapse
|
119
|
Shojaporian S, Mahmoudian-Sani MR, Khodadadi A, Dehcheshmeh MG, Amari A. Effect of Priming With Toll-Like Receptor 3 Agonist on Expression of Long Noncoding RNAs in Human Wharton Jelly Mesenchymal Stem Cells. EXP CLIN TRANSPLANT 2024; 22:551-558. [PMID: 39223813 DOI: 10.6002/ect.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Mesenchymal stem cells are gaining attention in medicine because of their anti-inflammatory and immunosuppressive properties. Inflammatory conditions can modulate immune responses in mesenchymal stem cells.We investigated the expression of long noncoding RNAs (RMRP, MALT1, NKILA,THRIL, and Linc-MAF-4) in humanWharton jelly mesenchymal stem cells primed with polyinosinicpolycytidylic acid. MATERIALS AND METHODS Mesenchymal stem cells were isolated from human Wharton jelly by the explant method. To determine the stem nature of the cells, we performed a differentiation test on bone and fat cells. We used flow cytometry analysis to determine surface markers. Umbilical cord mesenchymal stem cells (1 × 105) were cultured in T75 culture flasks in Dulbecco's modified Eagle medium containing 10% fetal bovine serum. After cells reached approximately 80% confluency, cells were exposed to 50 µg/mL of polyinosinic-polycytidylic acid, a Toll-like receptor 3 ligand, for 24, 48, and 72 hours. The control group were cells not exposed to polyinosinic-polycytidylic acid. Real-time polymerase chain reaction evaluated RMRP, MALAT1, NKILA, THRIL, and Linc-MAF-4 long noncoding RNAs. RESULTS We observed significantly increased expression of NKILA inWharton jelly mesenchymal stem cells stimulated with polyinosinic-polycytidylic acid at 72 hours compared with expression level in the control group (P < .001). CONCLUSIONS Results indicated that a potential mechanism by which the Toll-like receptor 3 ligand improves immunosuppression of mesenchymal stem cells can be attributed to the regulatory role of long noncoding RNAs, possibly through increased expression of anti-inflammatory long noncoding RNAs such as NKILA.
Collapse
Affiliation(s)
- Samira Shojaporian
- >From the Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | | | | |
Collapse
|
120
|
Mensah IK, Gowher H. Epigenetic Regulation of Mammalian Cardiomyocyte Development. EPIGENOMES 2024; 8:25. [PMID: 39051183 PMCID: PMC11270418 DOI: 10.3390/epigenomes8030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
121
|
Wang H, Zhou F, Wan J, Yu H, Wang J. Long noncoding RNA TMPO-AS1 upregulates BCAT1 expression to promote cell proliferation in nasopharyngeal carcinoma via microRNA let-7c-5p. Genes Environ 2024; 46:14. [PMID: 38937856 PMCID: PMC11210057 DOI: 10.1186/s41021-024-00308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) is a group of RNA transcripts that contribute to tumor development by post-transcriptionally regulating cancer-related genes. Nasopharyngeal carcinoma (NPC) is an epithelial tumor that occurs in the nasopharynx and is common in North Africa and Southeast Asia. The study investigated the functions of lncRNA TMPO-AS1 in NPC cell proliferation and apoptosis as well as its related competing endogenous RNA (ceRNA) mechanism. METHODS Candidate microRNA and genes that may regulated by TMPO-AS1 were predicted with the bioinformatic tool starBase. TMPO-AS1 expression in NPC tissue, cells, nuclear part, and cytoplasmic part was measured by RT-qPCR. MTT assay, EdU assay, and flow cytometry analysis were carried out to evaluate NPC cell viability, proliferation, and apoptosis, respectively. RNA immunoprecipitation assay and luciferase reporter assay were conducted to detect the binding between TMPO-AS1 and let-7c-5p or that between let-7c-5p and BCAT1. RESULTS TMPO-AS1 and BCAT1 showed high expression in NPC tissue and cells, while let-7c-5p was downregulated in NPC. The silencing of TMPO-AS1 suppressed NPC cell proliferation while promoting cell apoptosis. Moreover, TMPO-AS1 interacted with let-7c-5p and negatively regulated let-7c-5p expression. BCAT1 was a target of let-7c-5p and was inversely regulated by let-7c-5p in NPC cells. The repressive impact of TMPO-AS1 knockdown on NPC cell growth was countervailed by overexpressed BCAT1. CONCLUSION TMPO-AS1 accelerates NPC cell proliferation and represses cell apoptosis by interacting with let-7c-5p to regulate BCAT1 expression.
Collapse
Affiliation(s)
- Huan Wang
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Fuming Zhou
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Jia Wan
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Hong Yu
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Jin Wang
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China.
| |
Collapse
|
122
|
Wang S, Shi Y, Zhou Y, Hu W, Liu F. Full-length transcriptome sequencing of Arabidopsis plants provided new insights into the autophagic regulation of photosynthesis. Sci Rep 2024; 14:14588. [PMID: 38918488 PMCID: PMC11199623 DOI: 10.1038/s41598-024-65555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Autophagy is a highly conserved eukaryotic pathway and plays a crucial role in cell survival under stress conditions. Here, we applied a full-length transcriptome approach to study an Arabidopsis autophagy mutant (atg5-1) subjected to nitrogen-starvation, using Oxford Nanopore Technologies. A total of 39,033 transcripts were identified, including 11,356 new transcripts. In addition, alternative splicing (AS) events and lncRNAs were also detected between Col-0 (WT) and atg5-1. Differentially expressed transcript enrichment showed that autophagy upregulates the expression of many stress-responsive genes and inhibits the transcription of photosynthesis-associated genes. The qRT-PCR results showed that the expression patterns of photosynthesis-related genes in the atg5-1 differed under the conditions of nitrogen starvation and carbon starvation. Under nitrogen starvation treatment, many genes related to photosynthesis also exhibited AS. Chlorophyll fluorescence images revealed that the Fv/Fm and ΦPSII of old atg5-1 leaves were significantly reduced after nitrogen starvation treatment, but the Y(NPQ) indices were significantly increased compared to those of the WT plants. The results of qRT-PCR suggest that autophagy appears to be involved in the degradation of genes related to photodamage repair in PSII. Taken together, the full-length transcriptiome sequencing provide new insights into how new transcripts, lncRNAs and alternative splicing (AS) are involved in plant autophagy through full-length transcriptome sequencing and suggest a new potential link between autophagy and photosynthesis.
Collapse
Affiliation(s)
- Song Wang
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
| | - Yunfeng Shi
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
| | - Yanhui Zhou
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
- College of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China.
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China.
| |
Collapse
|
123
|
Lin C, Lin K, Li P, Yuan H, Lin X, Dai Y, Zhang Y, Xie Z, Liu T, Wei C. A genomic instability-associated lncRNA signature for predicting prognosis and biomarkers in lung adenocarcinoma. Sci Rep 2024; 14:14460. [PMID: 38914679 PMCID: PMC11196711 DOI: 10.1038/s41598-024-65327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Genomic instability (GI) was associated with tumorigenesis. However, GI-related lncRNA signature (GILncSig) in lung adenocarcinoma (LUAD) is still unknown. In this study, the lncRNA expression data, somatic mutation information and clinical survival information of LUAD were downloaded from The Cancer Genome Atlas (TCGA) and performed differential analysis. Functional and prognosis analysis revealed that multiple GI-related pathways were enriched. By using univariate and multivariate Cox regression analysis, 5 GI-associated lncRNAs (AC012085.2, FAM83A-AS1, MIR223HG, MIR193BHG, LINC01116) were identified and used to construct a GILncSig model. Mutation burden analysis indicated that the high-risk GI group had much higher somatic mutation count and the risk score constructed by the 5 GI-associated lncRNAs was an independent predictor for overall survival (OS) (P < 0.05). Overall, our study provides valuable insights into the involvement of GI-associated lncRNAs in LUAD and highlights their potential as therapeutic targets.
Collapse
Affiliation(s)
- Chunxuan Lin
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, 528200, People's Republic of China
| | - Kunpeng Lin
- Department of Abdominal Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Pan Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hai Yuan
- Department of Cardio-Thoracic Surgery, Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Xiaochun Lin
- Department of Medical Examination Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Yong Dai
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, 528200, People's Republic of China
| | - Yingying Zhang
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Zhijun Xie
- Department of Radiology Department, The Second People's Hospital of Jiangmen, Jiangmen, Guangdong, People's Republic of China
| | - Taisheng Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China.
| | - Chenggong Wei
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, 528200, People's Republic of China.
| |
Collapse
|
124
|
Wang J, Ye J, Dang Y, Xu S. LncRNA PGM5-AS1 inhibits non-small cell lung cancer progression by targeting miRNA-423-5p/SLIT2 axis. Cancer Cell Int 2024; 24:216. [PMID: 38902704 PMCID: PMC11191156 DOI: 10.1186/s12935-024-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common and aggressive primary malignancy worldwide. Dysregulation of long non-coding RNAs (lncRNAs) has been shown to play an essential regulatory role in multiple cancers. However, the role of PGM5-AS1 in NSCLC remains unclear. Here, we found that PGM5-AS1 was down-regulated in NSCLC tissues and cells. Furthermore, reduced PGM5-AS1 expression levels were associated with larger tumor size, positive lymph node metastasis, advanced TNM stage and worse prognosis. We found that overexpression of PGM5-AS1 inhibited cell proliferation and metastasis, and induced apoptosis and G0/G1 cell cycle arrest in NSCLC cell lines. Using dual luciferase gene reporter and RNA immunoprecipitation assays, we confirmed that miR-423-5p interacted with PGM5-AS1, and that their expression levels were negatively correlated in NSCLC tissues. miR-423-5p was also found to reverse PGM5-AS1-induced malignant biological behavior. Moreover, we identified slit guidance ligand 2 (SLIT2) as a target gene of miR-423-5p. Using a dual luciferase gene reporter assay, we confirmed the regulatory relationship between SLIT2 and miR-423-5p and demonstrated that their expression levels were negatively correlated. Our rescue experiments showed that SLIT2 knockdown reversed miR-423-5p-mediated effects. Overall, this study identifies PGM5-AS1 as a potential prognostic biomarker for NSCLC and shows that PGM5-AS1 suppresses NSCLC development by regulating the miR-423-5p/SLIT2 axis.
Collapse
Affiliation(s)
- Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jun Ye
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Yuxue Dang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
125
|
Yuan R, Xu ZJ, Zhang SK, Cao XY, Dai AG, Song L. New evidence for a role of DANCR in cancers: a comprehensive review. J Transl Med 2024; 22:569. [PMID: 38877534 PMCID: PMC11177382 DOI: 10.1186/s12967-024-05246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/28/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer remains a leading cause of mortality and poses a substantial threat to public health. Studies have revealed that Long noncoding RNA DANCR is a cytoplasmic lncRNA whose aberrant expression plays a pivotal role in various cancer types. Within tumour biology, DANCR exerts regulatory control over crucial processes such as proliferation, invasion, metastasis, angiogenesis, inflammatory responses, cellular energy metabolism reprogramming, and apoptosis. By acting as a competitive endogenous RNA for miRNAs and by interacting with proteins and mRNAs at the molecular level, DANCR contributes significantly to cancer progression. Elevated DANCR levels have also been linked to heightened resistance to anticancer drugs. Moreover, the detection of circulating DANCR holds promise as a valuable biomarker for aiding in the clinical differentiation of different cancer types. This article offers a comprehensive review and elucidation of the primary functions and molecular mechanisms through which DANCR influences tumours.
Collapse
Affiliation(s)
- Rong Yuan
- School of Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
| | - Zhao-Jun Xu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Sheng-Kang Zhang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Xian-Ya Cao
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ai-Guo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| | - Lan Song
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
126
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
127
|
Pang Y, Zheng K, Min Q, Wang Y, Xue X, Li W, Zhao H, Qiao F, Han S. Long Noncoding RNAs in Response to Hyperosmolarity Stress, but Not Salt Stress, Were Mainly Enriched in the Rice Roots. Int J Mol Sci 2024; 25:6226. [PMID: 38892412 PMCID: PMC11172603 DOI: 10.3390/ijms25116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.
Collapse
Affiliation(s)
- Yanrong Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Qinyue Min
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
128
|
Deng K, Li Z, Huang T, Huang J. Noncoding RNAs in regulation of plant secondary metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108718. [PMID: 38733939 DOI: 10.1016/j.plaphy.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.
Collapse
Affiliation(s)
- Keyin Deng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jianzi Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
129
|
Elmasri RA, Rashwan AA, Gaber SH, Rostom MM, Karousi P, Yasser MB, Kontos CK, Youness RA. Puzzling out the role of MIAT LncRNA in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:547-559. [PMID: 38515792 PMCID: PMC10955557 DOI: 10.1016/j.ncrna.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024] Open
Abstract
A non-negligible part of our DNA has been proven to be transcribed into non-protein coding RNA and its intricate involvement in several physiological processes has been highly evidenced. The significant biological role of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) has been variously reported. In the current review, the authors highlight the multifaceted role of myocardial infarction-associated transcript (MIAT), a well-known lncRNA, in hepatocellular carcinoma (HCC). Since its discovery, MIAT has been described as a regulator of carcinogenesis in several malignant tumors and its overexpression predicts poor prognosis in most of them. At the molecular level, MIAT is closely linked to the initiation of metastasis, invasion, cellular migration, and proliferation, as evidenced by several in-vitro and in-vivo models. Thus, MIAT is considered a possible theranostic agent and therapeutic target in several malignancies. In this review, the authors provide a comprehensive overview of the underlying molecular mechanisms of MIAT in terms of its downstream target genes, interaction with other classes of ncRNAs, and potential clinical implications as a diagnostic and/or prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Rawan Amr Elmasri
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Alaa A. Rashwan
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Sarah Hany Gaber
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Monica Mosaad Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), 11835, Cairo, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| |
Collapse
|
130
|
Tsung K, Liu KQ, Han JS, Deshpande K, Doan T, Loh YHE, Ding L, Yang W, Neman J, Dou Y, Attenello FJ. CRISPRi screen of long non-coding RNAs identifies LINC03045 regulating glioblastoma invasion. PLoS Genet 2024; 20:e1011314. [PMID: 38857306 PMCID: PMC11192328 DOI: 10.1371/journal.pgen.1011314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION Glioblastoma (GBM) invasion studies have focused on coding genes, while few studies evaluate long non-coding RNAs (lncRNAs), transcripts without protein-coding potential, for role in GBM invasion. We leveraged CRISPR-interference (CRISPRi) to evaluate invasive function of GBM-associated lncRNAs in an unbiased functional screen, characterizing and exploring the mechanism of identified candidates. METHODS We implemented a CRISPRi lncRNA loss-of-function screen evaluating association of lncRNA knockdown (KD) with invasion capacity in Matrigel. Top screen candidates were validated using CRISPRi and oligonucleotide(ASO)-mediated knockdown in three tumor lines. Clinical relevance of candidates was assessed via The Cancer Genome Atlas(TCGA) and Genotype-Tissue Expression(GTEx) survival analysis. Mediators of lncRNA effect were identified via differential expression analysis following lncRNA KD and assessed for tumor invasion using knockdown and rescue experiments. RESULTS Forty-eight lncRNAs were significantly associated with 33-83% decrease in invasion (p<0.01) upon knockdown. The top candidate, LINC03045, identified from effect size and p-value, demonstrated 82.7% decrease in tumor cell invasion upon knockdown, while LINC03045 expression was significantly associated with patient survival and tumor grade(p<0.0001). RNAseq analysis of LINC03045 knockdown revealed that WASF3, previously implicated in tumor invasion studies, was highly correlated with lncRNA expression, while WASF3 KD was associated with significant decrease in invasion. Finally, WASF3 overexpression demonstrated rescue of invasive function lost with LINC03045 KD. CONCLUSION CRISPRi screening identified LINC03045, a previously unannotated lncRNA, as critical to GBM invasion. Gene expression is significantly associated with tumor grade and survival. RNA-seq and mechanistic studies suggest that this novel lncRNA may regulate invasion via WASF3.
Collapse
Affiliation(s)
- Kathleen Tsung
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kristie Q. Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jane S. Han
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Tammy Doan
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yong-Hwee Eddie Loh
- USC Libraries Bioinformatics Services, University of Southern California, Los Angeles, California, United States of America
| | - Li Ding
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Wentao Yang
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Josh Neman
- Department of Neurological Surgery, Physiology and Neuroscience, USC Brain Tumor Center, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yali Dou
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Frank J. Attenello
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
131
|
Gu J, Zhou D. Long non-coding RNA MEG3 knockdown represses airway smooth muscle cells proliferation and migration via sponging miR-143-3p/FGF9 in asthma. J Cardiothorac Surg 2024; 19:314. [PMID: 38824534 PMCID: PMC11143653 DOI: 10.1186/s13019-024-02798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and mechanism of lncRNA MEG3 in asthma. METHODS We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. MTT, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of proliferation-related marker PCNA in HASMCs. RESULTS The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating FGF9. CONCLUSION LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.
Collapse
Affiliation(s)
- Jiaying Gu
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China
| | - Dengfeng Zhou
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China.
| |
Collapse
|
132
|
Sun DZ, Sun ZL, Liu M, Yong SH. LPI-SKMSC: Predicting LncRNA-Protein Interactions with Segmented k-mer Frequencies and Multi-space Clustering. Interdiscip Sci 2024; 16:378-391. [PMID: 38206558 DOI: 10.1007/s12539-023-00598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Long noncoding RNAs (lncRNAs) have significant regulatory roles in gene expression. Interactions with proteins are one of the ways lncRNAs play their roles. Since experiments to determine lncRNA-protein interactions (LPIs) are expensive and time-consuming, many computational methods for predicting LPIs have been proposed as alternatives. In the LPIs prediction problem, there commonly exists the imbalance in the distribution of positive and negative samples. However, there are few existing methods that give specific consideration to this problem. In this paper, we proposed a new clustering-based LPIs prediction method using segmented k-mer frequencies and multi-space clustering (LPI-SKMSC). It was dedicated to handling the imbalance of positive and negative samples. We constructed segmented k-mer frequencies to obtain global and local features of lncRNA and protein sequences. Then, the multi-space clustering was applied to LPI-SKMSC. The convolutional neural network (CNN)-based encoders were used to map different features of a sample to different spaces. It used multiple spaces to jointly constrain the classification of samples. Finally, the distances between the output features of the encoder and the cluster center in each space were calculated. The sum of distances in all spaces was compared with the cluster radius to predict the LPIs. We performed cross-validation on 3 public datasets and LPI-SKMSC showed the best performance compared to other existing methods. Experimental results showed that LPI-SKMSC could predict LPIs more effectively when faced with imbalanced positive and negative samples. In addition, we illustrated that our model was better at uncovering potential lncRNA-protein interaction pairs.
Collapse
Affiliation(s)
- Dian-Zheng Sun
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China
| | - Zhan-Li Sun
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China.
| | - Mengya Liu
- School of Computer Science and Technology, Anhui University, Hefei, 230601, China
| | - Shuang-Hao Yong
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China
| |
Collapse
|
133
|
Kim T, Kim TK. Regulatory RNA: from molecular insights to therapeutic frontiers. Exp Mol Med 2024; 56:1233-1234. [PMID: 38871813 PMCID: PMC11263535 DOI: 10.1038/s12276-024-01267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- TaeSoo Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
134
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
135
|
Alammari F, Al-Hujaily EM, Alshareeda A, Albarakati N, Al-Sowayan BS. Hidden regulators: the emerging roles of lncRNAs in brain development and disease. Front Neurosci 2024; 18:1392688. [PMID: 38841098 PMCID: PMC11150811 DOI: 10.3389/fnins.2024.1392688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ensaf M. Al-Hujaily
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Alshareeda
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Saudi Biobank Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Batla S. Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
136
|
Zhang B, Zhang C, Zhang J, Lu S, Zhao H, Jiang Y, Ma W. Regulatory roles of long non-coding RNAs in short-term heat stress in adult worker bees. BMC Genomics 2024; 25:506. [PMID: 38778290 PMCID: PMC11110378 DOI: 10.1186/s12864-024-10399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial modulators of post-transcriptional gene expression regulation, cell fate determination, and disease development. However, lncRNA functions during short-term heat stress in adult worker bees are poorly understood. Here, we performed deep sequencing and bioinformatic analyses of honeybee lncRNAs. RNA interference was performed by using siRNA targeting the most highly expressed lncRNA. The silencing effect on lncRNA and the relative expression levels of seven heat shock protein (HSP) genes, were subsequently examined. Overall, 7,842 lncRNAs and 115 differentially expressed lncRNAs (DELs) were identified in adult worker bees following heat stress exposure. Structural analysis revealed that the overall expression abundance, length of transcripts, exon number, and open reading frames of lncRNAs were lower than those of mRNAs. GO analysis revealed that the target genes were mainly involved in "metabolism," "protein folding," "response to stress," and "signal transduction" pathways. KEGG analysis indicated that the "protein processing in endoplasmic reticulum" and "longevity regulating pathway-multiple species" pathways were most enriched. Quantitative real-time polymerase chain reaction (qRT-PCR) detection of the selected DELs confirmed the reliability of the sequencing data. Moreover, the siRNA experiment indicated that feeding siRNA yielded a silencing efficiency of 77.51% for lncRNA MSTRG.9645.5. Upon silencing this lncRNA, the expression levels of three HSP genes were significantly downregulated (p < 0.05), whereas those of three other HSP genes were significantly upregulated (p < 0.05). Our results provide a new perspective for understanding the regulatory mechanisms of lncRNAs in adult worker bees under short-term heat stress.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chaoying Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiangchao Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Surong Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
137
|
Zeng Y, Yang Z, Yang Y, Wang P. LncRNA NUTM2A-AS1 silencing inhibits glioma via miR-376a-3p/YAP1 axis. Cell Div 2024; 19:17. [PMID: 38730506 PMCID: PMC11088135 DOI: 10.1186/s13008-024-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The lncRNA NUTM2A-AS1 has been shown to be dysregulated in gastric cancer, while the roles in glioma is unclear. The aim of this study was to investigate the roles and potential mechanisms of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of glioma cells. The StarBase software and dual luciferase reporter assay were used to identify the relationship between lncRNA NUTM2A-AS1 and miR-376a-3p, and miR-376a-3p and YAP1. The expression of lncRNA NUTM2A-AS1, miR-376a-3p, and YAP1 in human glioma cell lines was detected by qRT-PCR. MTT and flow cytometry were used to detect the effects of lncRNA NUTM2A-AS1 or miR-376a-3p on the proliferation and apoptosis of U251 and A172 cells, respectively. In addition, changes of Bax and Bcl-2 expression in glioma cells were further verified by western blotting and qRT-PCR. The results showed that the expression of lncRNA NUTM2A-AS1 was elevated in glioma cell lines, while miR-376a-3p was decreased. LncRNA NUTM2A-AS1 was negatively correlated with miR-376a-3p. Silencing of lncRNA NUTM2A-AS1 enhanced the levels of miR-376a-3p, leading to reduced cell proliferation and increased apoptosis in glioma cells. YAP1 was a direct target of miR-376a-3p, and it was negatively regulated by miR-376a-3p in U251 and A172 cells. Further mechanistic studies suggested that miR-376a-3p reduced glioma cell proliferation and increased apoptosis by inhibiting YAP1 expression. In addition, lncRNA NUTM2A-AS1 positively regulated of YAP1 expression in glioma cells. In conclusion, silencing of lncRNA NUTM2A-AS1 inhibited proliferation and induced apoptosis in human glioma cells via the miR-376a-3p/YAP1 axis.
Collapse
Affiliation(s)
- Yuecheng Zeng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Zhenyu Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Yang Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| | - Peng Wang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| |
Collapse
|
138
|
Tomikawa J. Potential roles of inter-chromosomal interactions in cell fate determination. Front Cell Dev Biol 2024; 12:1397807. [PMID: 38774644 PMCID: PMC11106443 DOI: 10.3389/fcell.2024.1397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Mammalian genomic DNA is packed in a small nucleus, and its folding and organization in the nucleus are critical for gene regulation and cell fate determination. In interphase, chromosomes are compartmentalized into certain nuclear spaces and territories that are considered incompatible with each other. The regulation of gene expression is influenced by the epigenetic characteristics of topologically associated domains and A/B compartments within chromosomes (intrachromosomal). Previously, interactions among chromosomes detected via chromosome conformation capture-based methods were considered noise or artificial errors. However, recent studies based on newly developed ligation-independent methods have shown that inter-chromosomal interactions play important roles in gene regulation. This review summarizes the recent understanding of spatial genomic organization in mammalian interphase nuclei and discusses the potential mechanisms that determine cell identity. In addition, this review highlights the potential role of inter-chromosomal interactions in early mouse development.
Collapse
Affiliation(s)
- Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
139
|
Heydari R, Fayazzadeh S, Shahrokh S, Shekari F, Farsad F, Meyfour A. Plasma Extracellular Vesicle LncRNA H19 as a Potential Diagnostic Biomarker for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2024; 30:795-807. [PMID: 37855715 DOI: 10.1093/ibd/izad219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a complex gastrointestinal disease with 2 main subtypes of Crohn's disease (CD) and ulcerative colitis (UC), whose diagnosis mainly depends on the medical history, clinical symptoms, endoscopic, histologic, radiological, and serological findings. Extracellular vesicles (EVs) are now considered an additional mechanism for intercellular communication, allowing cells to exchange biomolecules. Long noncoding RNAs (lncRNAs) that are enriched in EVs have been defined as an ideal diagnostic biomarker for diseases. In this study, we investigated the expression differences of 5 lncRNAs in tissue and plasma EVs of active IBD patients compared with patients in the remission phase and healthy controls to introduce an EV-lncRNA as a noninvasive IBD diagnostic biomarker. METHODS Twenty-two active IBD patients, 14 patients in the remission phase, 10 active rheumatoid arthritis (RA) patients, 14 irritable bowel syndrome (IBS) patients, and 22 healthy individuals were recruited in the discovery cohort. In addition, 16 patients with active IBD, 16 healthy controls, 10 inactive IBD patients, 12 active RA patients, and 14 IBS patients were also included in the validation cohort. The expression levels of 5 lncRNAs in tissue and EV-plasma were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) . Machine learning and receiver operating characteristic (ROC) curve analysis were performed to investigate the distinguishing ability of the candidate biomarkers. RESULTS While the expression levels of lncRNAs CDKN2B-AS1, GAS5, and TUG1 were significantly downregulated, lncRNAs H19 and CRNDE were overexpressed in active IBD lesions. Expression of H19 was detected in plasma EVs whose isolation had been confirmed via dynamic light scattering, microscopy images, and western blotting. The classification results demonstrated the excellent ability of H19 in distinguishing IBD/active from IBD/remission, healthy control, RA, and IBS (area under the ROC curve = 0.95, 0.97,1, and 0.97 respectively). CONCLUSIONS Our study suggests that circulating EV-lncRNA H19 exhibited promising potential for the diagnosis of active IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faraneh Farsad
- Department of Adult Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
140
|
Cui P, Zhang Y, Wang C, Xiao B, Wang Q, Zhang L, Li H, Wu C, Tian W. Crucial role of lncRNA NONHSAG037054.2 and GABPA, and their related functional networks, in ankylosing spondylitis. Exp Ther Med 2024; 27:237. [PMID: 38628657 PMCID: PMC11019654 DOI: 10.3892/etm.2024.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been previously researched in ankylosing spondylitis (AS). Nevertheless, there are few studies of lncRNAs and mRNAs associated with the pathogenesis of AS. Differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) between AS and normal samples were assessed using the R limma package. DOSE packages and 'clusterProfiler' were exploited for gene enrichment analysis. The functional association of proteins and protein interactions was assessed using the STRING database. To investigate the important genes and subnetworks in the protein-protein interaction network, the MCODE plug-in in the Cytoscape software was utilized. The gene mRNA was examined via reverse transcription-quantitative PCR. In total, 152 DEmRNAs and 204 DElncRNAs were observed between normal and AS samples. A total of 68 candidate genes related to DElncRNA were identified. These candidate genes were enriched in 30 cellular component terms, 22 molecular functions, 83 biological processes, 9 Kyoto Encyclopedia of Genes and Genomes, and 36 disease ontology pathways. NONHSAG037054.2 was the most related lncRNA to genes, and GABPA was the most connected gene to lncRNA in AS. The NCBI/GenBank accession number of the lncRNA NONHSAG037054.2 was not found because it is not included in NCBI. The information of lncRNA NONHSAG037054.2 can be found at the website (http://www.noncode.org/show_gene.php?id=NONHSAG037054 and https://www.genecards.org/cgi-bin/carddisp.pl?gene=ACAP2-IT1). In total, 13 microRNAs (miRNAs) and 46 miRNAs associated with NONHSAG037054.2 and GABPA, respectively, were found. A total of 173 RNA-binding protein genes were associated with both NONHSAG037054.2 and GABPA. In addition, GABPA was downregulated in AS samples, suggesting it may have diagnostic value in AS. In conclusion, NONHSAG037054.2 and GABPA are associated with AS. GABPA was downregulated in AS, and it could serve as a novel diagnostic factor for AS.
Collapse
Affiliation(s)
- Penglei Cui
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| | - Yanzhuo Zhang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| | - Chao Wang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| | - Bin Xiao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| | - Qianqian Wang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| | - Liang Zhang
- Department of Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| | - Hongchao Li
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| | - Wei Tian
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, P.R. China
| |
Collapse
|
141
|
Chen B, Shi B, Zhou Z, Cui Y, Zeng G, Cheng L, Zhang X, Luo K, Li C, Zhu Z, Zhang Z, Zheng J, He X. Targeting a cardiac abundant and fibroblasts-specific piRNA (CFRPi) to attenuate and reverse cardiac fibrosis in pressure-overloaded heart failure. Transl Res 2024; 267:10-24. [PMID: 38302394 DOI: 10.1016/j.trsl.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Cardiac fibrosis under chronic pressure overload is an end-stage adverse remodeling of heart. However, current heart failure treatments barely focus on anti-fibrosis and the effects are limited. We aimed to seek for a cardiac abundant and cardiac fibrosis specific piRNA, exploring its underlying mechanism and therapeutic potential. Whole transcriptome sequencing and the following verification experiments identified a highly upregulated piRNA (piRNA-000691) in transverse aortic constriction (TAC) mice, TAC pig, and heart failure human samples, which was abundant in heart and specifically expressed in cardiac fibroblasts. CFRPi was gradually increased along with the progression of heart failure, which was illustrated to promote cardiac fibrosis by gain- and loss-of-function experiments in vitro and in vivo. Knockdown of CFRPi in mice alleviated cardiac fibrosis, reversed decline of systolic and diastolic functions from TAC 6 weeks to 8 weeks. Mechanistically, CFRPi inhibited APLN, a protective peptide that increased in early response and became exhausted at late stage. Knockdown of APLN in vitro notably aggravated cardiac fibroblasts activation and proliferation. In vitro and in vivo evidence both indicated Pi3k-AKT-mTOR as the downstream effector pathway of CFRPi-APLN interaction. Collectively, we here identified CFPPi as a heart abundant and cardiac fibrosis specific piRNA. Targeting CFRPi resulted in a sustainable increase of APLN and showed promising therapeutical prospect to alleviate fibrosis, rescue late-stage cardiac dysfunction, and prevent heart failure.
Collapse
Affiliation(s)
- Bo Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Zijie Zhou
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Yue Cui
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Guowei Zeng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Lingyan Cheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaoyang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Kai Luo
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China; Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Zhifang Zhang
- Department of Cardiology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China.
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China; Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China.
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China; Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China.
| |
Collapse
|
142
|
Ding Z, Wu L, Sun Y, Zhu Y, Zuo Q, Yuan L, Wang C, Sun L, Xu Y, Zhang Y. Downregulated PDIA3P1 lncRNA Impairs Trophoblast Phenotype by Regulating Snail and SFRP1 in PE. Anal Cell Pathol (Amst) 2024; 2024:8972022. [PMID: 38715918 PMCID: PMC11074859 DOI: 10.1155/2024/8972022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2024] [Accepted: 03/02/2024] [Indexed: 06/04/2024] Open
Abstract
Preeclampsia (PE) manifests as a pregnancy-specific complication arising from compromised placentation characterized by inadequate trophoblast invasion. A growing body of evidence underscores the pivotal involvement of pseudogenes, a subset of long noncoding RNAs, in the pathological processes of PE. This study presents a novel finding, demonstrating a significant downregulation of the pseudogene PDIA3P1 in PE placental tissues compared to normal tissues. In vitro functional assays revealed that suppressing PDIA3P1 hindered trophoblast proliferation, invasion, and migration, concurrently upregulating the expression of secreted frizzled-related protein 1 (SFRP1). Further exploration of the regulatory role of PDIA3P1 in PE, utilizing human trophoblasts, established that PDIA3P1 exerts its function by binding to HuR, thereby enhancing the stability of Snail expression in trophoblasts. Overall, our findings suggest a crucial role for PDIA3P1 in regulating trophoblast properties and contributing to the pathogenesis of PE, offering potential targets for prognosis and therapeutic intervention.
Collapse
Affiliation(s)
- Zhengzheng Ding
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women' s Hospital of Nanjing Medical University, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing 210004, Jiangsu, China
| | - Liuxin Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yue Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yuanyuan Zhu
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women' s Hospital of Nanjing Medical University, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing 210004, Jiangsu, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Li Yuan
- Department of Obstetrics and Gynecology, Taizhou Maternity Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu, China
| | - Cong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
143
|
DeSouza NR, Jarboe T, Carnazza M, Quaranto D, Islam HK, Tiwari RK, Geliebter J. Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. BIOLOGY 2024; 13:304. [PMID: 38785786 PMCID: PMC11118935 DOI: 10.3390/biology13050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Thyroid Cancer (TC) is the most common endocrine malignancy, with increasing incidence globally. Papillary thyroid cancer (PTC), a differentiated form of TC, accounts for approximately 90% of TC and occurs predominantly in women of childbearing age. Although responsive to current treatments, recurrence of PTC by middle age is common and is much more refractive to treatment. Undifferentiated TC, particularly anaplastic thyroid cancer (ATC), is the most aggressive TC subtype, characterized by it being resistant and unresponsive to all therapeutic and surgical interventions. Further, ATC is one of the most aggressive and lethal malignancies across all cancer types. Despite the differences in therapeutic needs in differentiated vs. undifferentiated TC subtypes, there is a critical unmet need for the identification of molecular biomarkers that can aid in early diagnosis, prognosis, and actionable therapeutic targets for intervention. Advances in the field of cancer genomics have enabled for the elucidation of differential gene expression patterns between tumors and healthy tissue. A novel category of molecules, known as non-coding RNAs, can themselves be differentially expressed, and extensively contribute to the up- and downregulation of protein coding genes, serving as master orchestrators of regulated and dysregulated gene expression patterns. These non-coding RNAs have been identified for their roles in driving carcinogenic patterns at various stages of tumor development and have become attractive targets for study. The identification of specific genes that are differentially expressed can give insight into mechanisms that drive carcinogenic patterns, filling the gaps of deciphering molecular and cellular processes that modulate TC subtypes, outside of well-known driver mutations.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
144
|
Chen W, Liao C, Xiang X, Li H, Wu Q, Li W, Ma Q, Chen N, Chen B, Li G. A novel tumor mutation-related long non-coding RNA signature for predicting overall survival and immunotherapy response in lung adenocarcinoma. Heliyon 2024; 10:e28670. [PMID: 38586420 PMCID: PMC10998135 DOI: 10.1016/j.heliyon.2024.e28670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Background Immunotherapy has changed the treatment landscape for lung cancer. This study aims to construct a tumor mutation-related model that combines long non-coding RNA (lncRNA) expression levels and tumor mutation levels in tumor genomes to detect the possibilities of the lncRNA signature as an indicator for predicting the prognosis and response to immunotherapy in lung adenocarcinoma (LUAD). Methods We downloaded the tumor mutation profiles and RNA-seq expression database of LUAD from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were extracted based on the cumulative number of mutations. Cox regression analyses were used to identify the prognostic lncRNA signature, and the prognostic value of the five selected lncRNAs was validated by using survival analysis and the receiver operating characteristic (ROC) curve. We used qPCR to validate the expression of five selected lncRNAs between human lung epithelial and human lung adenocarcinoma cell lines. The ImmuCellAI, immunophenoscore (IPS) scores and Tumor Immune Dysfunction and Exclusion (TIDE) analyses were used to predict the response to immunotherapy for this mutation related lncRNA signature. Results A total of 162 lncRNAs were detected among the differentially expressed lncRNAs between the Tumor mutational burden (TMB)-high group and the TMB-low group. Then, five lncRNAs (PLAC4, LINC01116, LINC02163, MIR223HG, FAM83A-AS1) were identified as tumor mutation-related candidates for constructing the prognostic prediction model. Kaplan‒Meier curves showed that the overall survival of the low-risk group was significantly better than that of the high-risk group, and the results of the GSE50081 set were consistent. The expression levels of PD1, PD-L1 and CTLA4 in the low-risk group were higher than those in the high-risk group. The IPS scores and TIDE scores of patients in the low-risk group were significantly higher than those in the high-risk group. Conclusion Our findings demonstrated that the five lncRNAs (PLAC4, LINC01116, LINC02163, MIR223HG, FAM83A-AS1) were identified as candidates for constructing the tumor mutation-related model which may serve as an indicator of tumor mutation levels and have important implications for predicting the response to immunotherapy in LUAD.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Chen Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xudong Xiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Heng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Qiang Wu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qianli Ma
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Nan Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Benchao Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Gaofeng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
145
|
Tian W, Tan S, Wang J, Shen P, Qin Q, Zi D. Immune-related LncRNAs scores predicts chemotherapeutic responses and prognosis in cervical cancer patients. Discov Oncol 2024; 15:119. [PMID: 38615287 PMCID: PMC11016529 DOI: 10.1007/s12672-024-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) regulating the immune microenvironment of cancer is a hot spot. But little is known about the influence of the immune-related lncRNA (IRlncRs) on the chemotherapeutic responses and prognosis of cervical cancer (CC) patients. The purpose of the study was to identify an immune-related lncRNAs (IRlncRs)-based model for the prospective prediction of clinical outcomes in CC patients. METHODS CC patients' relevant data was acquired from The Cancer Genome Atlas (TCGA). Correlation analysis and Cox regression analyses were applied. A risk score formula was formulated. Prognostic factors were combined into a nomogram, while sensitivity for chemotherapy drugs was analyzed using the OncoPredict algorithm. RESULTS Eight optimal IRlncRs(ATP2A1-AS1, LINC01943, AL158166.1, LINC00963, AC009065.8, LIPE-AS1, AC105277.1, AC098613.1.) were incorporated in the IRlncRs model. The overall survival (OS) of the high-risk group of the model was inferior to those in the low-risk group. Further analysis demonstrated this eight-IRlncRs model as a useful prognostic marker. The Nomogram had a concordance index of survival prediction of 0.763(95% CI 0.746-0.780) and more robust predictive accuracy. Furthermore, patients in the low-risk group were found to be more sensitive to chemotherapy, including Paclitaxel, Rapamycin, Epirubicin, Vincristine, Docetaxel and Vinorelbine. CONCLUSIONS An eight-IRlncRs-based prediction model was identified that has the potential to be an important tool to predict chemotherapeutic responses and prognosis for CC patients.
Collapse
Affiliation(s)
- Weijie Tian
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Songsong Tan
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Jun Wang
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Ping Shen
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Qingfen Qin
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
146
|
Song Y, Chen B, Jiao H, Yi L. Long noncoding RNA UNC5B-AS1 suppresses cell proliferation by sponging miR-24-3p in glioblastoma multiforme. BMC Med Genomics 2024; 17:83. [PMID: 38594690 PMCID: PMC11003007 DOI: 10.1186/s12920-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary CNS tumor, characterized by high mortality and heterogeneity. However, the related lncRNA signatures and their target microRNA (miRNA) for GBM are still mostly unknown. Therefore, it is critical that we discover lncRNA markers in GBM and their biological activities. MATERIALS AND METHODS GBM-related RNA-seq data were obtained from the Cancer Genome Atlas (TCGA) database. The "edger" R package was used for differently expressed lncRNAs (DELs) identification. Then, we forecasted prospective miRNAs that might bind to lncRNAs by Cytoscape software. Survival analysis of those miRNAs was examined by the starBase database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the miRNAs' target genes was conducted by the Gene Set Enrichment Analysis (GSEA) database and R software. Moreover, the proliferative ability of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) cells was evaluated by Cell Counting Kit-8 (CCK-8) analysis. Mechanistically, the regulatory interaction between UNC5B-AS1 and miRNA in GBM biological processes was studied using CCK-8 analysis. RESULTS Our results indicated that overexpression of UNC5B-AS1 has been shown to suppress GBM cell growth. Mechanistically, miR-24-3p in GBM was able to alleviate the anti-oncogenic effects of UNC5B-AS1 on cell proliferation. CONCLUSION The discovery of the novel UNC5B-AS1-miR-24-3p network suggests possible lncRNA and miRNA roles in the development of GBM, which may have significant ramifications for the analysis of clinical prognosis and the development of GBM medications.
Collapse
Affiliation(s)
- Ying Song
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Huili Jiao
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
147
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
148
|
Forabosco P, Pala M, Crobu F, Diana MA, Marongiu M, Cusano R, Angius A, Steri M, Orrù V, Schlessinger D, Fiorillo E, Devoto M, Cucca F. Transcriptome organization of white blood cells through gene co-expression network analysis in a large RNA-seq dataset. Front Immunol 2024; 15:1350111. [PMID: 38629067 PMCID: PMC11018966 DOI: 10.3389/fimmu.2024.1350111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Gene co-expression network analysis enables identification of biologically meaningful clusters of co-regulated genes (modules) in an unsupervised manner. We present here the largest study conducted thus far of co-expression networks in white blood cells (WBC) based on RNA-seq data from 624 individuals. We identify 41 modules, 13 of them related to specific immune-related functions and cell types (e.g. neutrophils, B and T cells, NK cells, and plasmacytoid dendritic cells); we highlight biologically relevant lncRNAs for each annotated module of co-expressed genes. We further characterize with unprecedented resolution the modules in T cell sub-types, through the availability of 95 immune phenotypes obtained by flow cytometry in the same individuals. This study provides novel insights into the transcriptional architecture of human leukocytes, showing how network analysis can advance our understanding of coding and non-coding gene interactions in immune system cells.
Collapse
Affiliation(s)
- Paola Forabosco
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Mauro Pala
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Francesca Crobu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maria Antonietta Diana
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Roberto Cusano
- CRS4-Next Generation Sequencing (NGS) Core, Parco POLARIS, Cagliari, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MA, United States
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Marcella Devoto
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
- Dipartimento di Medicina Traslazionale e di Precisione, Università Sapienza, Roma, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
149
|
Elsakka EGE, Elshafei A, Elkady MA, Yehia AM, Abulsoud AI, Shahin RK, Abdelmaksoud NM, Elkhawaga SY, Ismail A, Mokhtar MM, Elrebehy MA, Hegazy M, Elballal MS, Mohammed OA, Abdel-Reheim MA, El-Dakroury WA, Abdel Mageed SS, El-Mahdy HA, Doghish AS. From diagnosis to resistance: a symphony of miRNAs in pheochromocytoma progression and treatment response. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1957-1969. [PMID: 37801146 DOI: 10.1007/s00210-023-02759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Pheochromocytoma (PCC) is a neuroendocrine tumor that produces and secretes catecholamine from either the adrenal medulla or extra-adrenal locations. MicroRNAs (miRNAs, miR) can be used as biomarkers to detect cancer or the return of a previously treated disease. Blood-borne miRNAs might be envisioned as noninvasive markers of malignancy or prognosis, and new studies demonstrate that microRNAs are released in body fluids as well as tissues. MiRNAs have the potential to be therapeutic targets, which would greatly increase the restricted therapy options for adrenal tumors. This article aims to consolidate and synthesize the most recent studies on miRNAs in PCC, discussing their potential clinical utility as diagnostic and prognostic biomarkers while also addressing their limitations.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
150
|
Tian XC, Chen ZY, Nie S, Shi TL, Yan XM, Bao YT, Li ZC, Ma HY, Jia KH, Zhao W, Mao JF. Plant-LncPipe: a computational pipeline providing significant improvement in plant lncRNA identification. HORTICULTURE RESEARCH 2024; 11:uhae041. [PMID: 38638682 PMCID: PMC11024640 DOI: 10.1093/hr/uhae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/02/2024] [Indexed: 04/20/2024]
Abstract
Long non-coding RNAs (lncRNAs) play essential roles in various biological processes, such as chromatin remodeling, post-transcriptional regulation, and epigenetic modifications. Despite their critical functions in regulating plant growth, root development, and seed dormancy, the identification of plant lncRNAs remains a challenge due to the scarcity of specific and extensively tested identification methods. Most mainstream machine learning-based methods used for plant lncRNA identification were initially developed using human or other animal datasets, and their accuracy and effectiveness in predicting plant lncRNAs have not been fully evaluated or exploited. To overcome this limitation, we retrained several models, including CPAT, PLEK, and LncFinder, using plant datasets and compared their performance with mainstream lncRNA prediction tools such as CPC2, CNCI, RNAplonc, and LncADeep. Retraining these models significantly improved their performance, and two of the retrained models, LncFinder-plant and CPAT-plant, alongside their ensemble, emerged as the most suitable tools for plant lncRNA identification. This underscores the importance of model retraining in tackling the challenges associated with plant lncRNA identification. Finally, we developed a pipeline (Plant-LncPipe) that incorporates an ensemble of the two best-performing models and covers the entire data analysis process, including reads mapping, transcript assembly, lncRNA identification, classification, and origin, for the efficient identification of lncRNAs in plants. The pipeline, Plant-LncPipe, is available at: https://github.com/xuechantian/Plant-LncRNA-pipline.
Collapse
Affiliation(s)
- Xue-Chan Tian
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhao-Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
| | - Tian-Le Shi
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xue-Mei Yan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu-Tao Bao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Chao Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai-Yao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wei Zhao
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå 90187, Sweden
| | - Jian-Feng Mao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå 90187, Sweden
| |
Collapse
|