101
|
Zhu H, Zhang Y, Liu H, Zhang Y, Kang Y, Mao R, Yang F, Zhou D, Zhang J. Preserved Function of Circulating Invariant Natural Killer T Cells in Patients With Chronic Hepatitis B Virus Infection. Medicine (Baltimore) 2015; 94:e961. [PMID: 26091463 PMCID: PMC4616535 DOI: 10.1097/md.0000000000000961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To date, the role of invariant natural killer T (iNKT) cells in chronic hepatitis B virus (HBV) infection is not fully understood. In previous reports, iNKT cells were identified by indirect methods. However, discrepancies regarding the prevalence and function of iNKT cells during HBV infection were observed. In this study, we have devised a direct, highly specific CD1d tetramer-based methodology to test whether patients with HBV infection have associated iNKT-cell defects. In our study, a total of 93 chronic HBV-infected patients and 30 healthy individuals (as control) were enrolled. The prevalence of iNKT cells, their cytokine producing capacity, and in vitro expansion were determined by flow cytometric analysis with CD1d tetramer staining. Our observation demonstrated that there was no significant difference in circulating CD1d-tetramer positive iNKT cell numbers between HBV-infected patients and healthy controls. The capacity of iNKT cells to produce IFN-γ or IL-4 as well as their in vitro expansion was also comparable between these 2 groups. However, among chronic HBV-infected patients, a decrease in iNKT cell-number was observed in chronic hepatitis B (CHB) and cirrhosis patients in comparison to that in immune tolerant (IT) patients. These results indicated that patients with chronic HBV infection may have normal prevalence and preserved function of circulating iNKT cells. And antiviral therapy with nucleot(s)ide analogue does not alter the frequency and function of circulating iNKT cells in chronic Hepatitis B patients.
Collapse
Affiliation(s)
- Haoxiang Zhu
- From the Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China (HZ, YZ, HL, YZ, YK, RM, FY, JZ); Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA (DZ); and Key laboratory of Medical Molecular Virology of the Ministries of Education and Health (MOH&MOE), Shanghai Medical College, Fudan University, Shanghai, China (JZ)
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Van Kaer L, Parekh VV, Wu L. The Response of CD1d-Restricted Invariant NKT Cells to Microbial Pathogens and Their Products. Front Immunol 2015; 6:226. [PMID: 26029211 PMCID: PMC4429631 DOI: 10.3389/fimmu.2015.00226] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs). Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| |
Collapse
|
103
|
Abstract
The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins.
Collapse
Affiliation(s)
- Mihalis Verykokakis
- Committee on Immunology and Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
104
|
Chang CH, Chen YC, Zhang W, Leung PSC, Gershwin ME, Chuang YH. Innate immunity drives the initiation of a murine model of primary biliary cirrhosis. PLoS One 2015; 10:e0121320. [PMID: 25807531 PMCID: PMC4373957 DOI: 10.1371/journal.pone.0121320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 12/15/2022] Open
Abstract
Invariant natural killer T (iNKT) cells play complex roles in bridging innate and adaptive immunity by engaging with glycolipid antigens presented by CD1d. Our earlier work suggested that iNKT cells were involved in the initiation of the original loss of tolerance in primary biliary cirrhosis (PBC). To address this issue in more detail and, in particular, to focus on whether iNKT cells activated by a Th2-biasing agonist (2s,3s,4r)-1-O-(α-D-galactopyranosyl)-N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH), can influence the development of PBC in a xenobiotic-induced PBC murine model. Groups of mice were treated with either OCH or, as a control, α-galactosylceramide (α-GalCer) and thence serially followed for cytokine production, markers of T cell activation, liver histopathology and anti-mitochondrial antibody responses. Further, additional groups of CD1d deleted mice were similarly studied. Our data indicate that administration of OCH has a dramatic influence with exacerbation of portal inflammation and hepatic fibrosis similar to mice treated with α-GalCer. Further, iNKT cell deficient CD1d knockout mice have decreased inflammatory portal cell infiltrates and reduced anti-mitochondrial antibody responses. We submit that activation of iNKT cells can occur via overlapping and/or promiscuous pathways and highlight the critical role of innate immunity in the natural history of autoimmune cholangitis. These data have implications for humans with PBC and emphasize that therapeutic strategies must focus not only on suppressing adaptive responses, but also innate immunity.
Collapse
Affiliation(s)
- Chao-Hsuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Chun Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Weici Zhang
- Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, 95616, United States of America
| | - Patrick S. C. Leung
- Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, 95616, United States of America
| | - M. Eric Gershwin
- Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, 95616, United States of America
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
105
|
Buechel HM, Stradner MH, D'Cruz LM. Stages versus subsets: Invariant Natural Killer T cell lineage differentiation. Cytokine 2015; 72:204-9. [PMID: 25648290 DOI: 10.1016/j.cyto.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022]
Abstract
Invariant Natural Killer T (iNKT) cells represent a population of innate T lymphocytes which act as 'first-responders' to infection. While they have long been considered a versatile cell, capable of secretion of multiple cytokines upon activation, recent evidence now indicates that distinct lineages of iNKT cells with unique transcriptional and cytokine profiles exist in different peripheral tissue and as such represent 'fine-tuning' of these cells, which act as mediators between the innate and adaptive immune systems. Here we discuss the molecules regulating the differentiation of iNKT cell lineages, the transcription factors associated with their development, and the role of E protein transcription factors and their negative regulators the Id proteins, as these cells develop from immature progenitor cells to terminally differentiated cells in peripheral tissue.
Collapse
Affiliation(s)
- Heather M Buechel
- University of Pittsburgh, Department of Immunology, Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213, United States
| | - Martin H Stradner
- Division of Rheumatology and Immunology, Medical University of Graz, Graz A-8035, Austria
| | - Louise M D'Cruz
- University of Pittsburgh, Department of Immunology, Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213, United States.
| |
Collapse
|
106
|
Tyler CJ, Doherty DG, Moser B, Eberl M. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cell Immunol 2015; 296:10-21. [PMID: 25659480 DOI: 10.1016/j.cellimm.2015.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Unconventional T cells are gaining center stage as important effector and regulatory cells that orchestrate innate and adaptive immune responses. Human Vγ9/Vδ2 T cells are amongst the best understood unconventional T cells, as they are easily accessible in peripheral blood, can readily be expanded and manipulated in vitro, respond to microbial infections in vivo and can be exploited for novel tumor immunotherapies. We here review findings that suggest that Vγ9/Vδ2 T cells, and possibly other unconventional human T cells, play an important role in bridging innate and adaptive immunity by promoting the activation and differentiation of various types of antigen-presenting cells (APCs) and even turning into APCs themselves, and thereby pave the way for antigen-specific effector responses and long-term immunological memory. Although the direct physiological relevance for most of these mechanisms still needs to be demonstrated in vivo, these findings may have implications for novel therapies, diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Christopher J Tyler
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Moser
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
107
|
Fokas E, O'Neill E, Gordon-Weeks A, Mukherjee S, McKenna WG, Muschel RJ. Pancreatic ductal adenocarcinoma: From genetics to biology to radiobiology to oncoimmunology and all the way back to the clinic. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1855:61-82. [PMID: 25489989 DOI: 10.1016/j.bbcan.2014.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Despite improvements in the clinical management, the prognosis of PDAC remains dismal. In the present comprehensive review, we will examine the knowledge of PDAC genetics and the new insights into human genome sequencing and clonal evolution. Additionally, the biology and the role of the stroma in tumour progression and response to treatment will be presented. Furthermore, we will describe the evidence on tumour chemoresistance and radioresistance and will provide an overview on the recent advances in PDAC metabolism and circulating tumour cells. Next, we will explore the characteristics and merits of the different mouse models of PDAC. The inflammatory milieu and the immunosuppressive microenvironment mediate tumour initiation and treatment failure. Hence, we will also review the inflammatory and immune escaping mechanisms and the new immunotherapies tested in PDAC. A better understanding of the different mechanisms of tumour formation and progression will help us to identify the best targets for testing in future clinical studies of PDAC.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/therapeutic use
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- Humans
- Immunotherapy/methods
- Inflammation/pathology
- Mice
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Radiation Tolerance/genetics
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK.
| | - Eric O'Neill
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Somnath Mukherjee
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - W Gillies McKenna
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| |
Collapse
|
108
|
Choi SYC, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev 2014; 79-80:222-37. [PMID: 25305336 DOI: 10.1016/j.addr.2014.09.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 09/02/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
The development of novel cancer therapeutics is often plagued by discrepancies between drug efficacies obtained in preclinical studies and outcomes of clinical trials. The inconsistencies can be attributed to a lack of clinical relevance of the cancer models used for drug testing. While commonly used in vitro culture systems are advantageous for addressing specific experimental questions, they are often gross, fidelity-lacking simplifications that largely ignore the heterogeneity of cancers as well as the complexity of the tumor microenvironment. Factors such as tumor architecture, interactions among cancer cells and between cancer and stromal cells, and an acidic tumor microenvironment are critical characteristics observed in patient-derived cancer xenograft models and in the clinic. By mimicking these crucial in vivo characteristics through use of 3D cultures, co-culture systems and acidic culture conditions, an in vitro cancer model/microenvironment that is more physiologically relevant may be engineered to produce results more readily applicable to the clinic.
Collapse
Affiliation(s)
- Stephen Yiu Chuen Choi
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Yong Xu
- Department of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin, P.R. China.
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| |
Collapse
|
109
|
Corgnac S, Perret R, Zhang L, Mach JP, Romero P, Donda A. iNKT/CD1d-antitumor immunotherapy significantly increases the efficacy of therapeutic CpG/peptide-based cancer vaccine. J Immunother Cancer 2014; 2:39. [PMID: 25426294 PMCID: PMC4243737 DOI: 10.1186/s40425-014-0039-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/08/2014] [Indexed: 11/26/2022] Open
Abstract
Background Therapeutic cancer vaccines aim to boost the natural immunity against transformed cancer cells, and a series of adjuvants and co-stimulatory molecules have been proposed to enhance the immune response against weak self-antigens expressed on cancer cells. For instance, a peptide/CpG-based cancer vaccine has been evaluated in several clinical trials and was shown in pre-clinical studies to favor the expansion of effector T versus Tregs cells, resulting in a potent antitumor activity, as compared to other TLR ligands. Alternatively, the adjuvant activity of CD1d-restricted invariant NKT cells (iNKT) on the innate and adaptive immunity is well demonstrated, and several CD1d glycolipid ligands are under pre-clinical and clinical evaluation. Importantly, additive or even synergistic effects have been shown upon combined CD1d/NKT agonists and TLR ligands. The aim of the present study is to combine the activation and tumor targeting of activated iNKT, NK and T cells. Methods Activation and tumor targeting of iNKT cells via recombinant α-galactosylceramide (αGC)-loaded CD1d-anti-HER2 fusion protein (CD1d-antitumor) is combined or not with OVA peptide/CpG vaccine. Circulating and intratumoral NK and H-2Kb/OVA-specific CD8 responses are monitored, as well as the state of activation of dendritic cells (DC) with regard to activation markers and IL-12 secretion. The resulting antitumor therapy is tested against established tumor grafts of B16 melanoma cells expressing human HER2 and ovalbumin. Results The combined CD1d/iNKT antitumor therapy and CpG/peptide-based immunization leads to optimized expansion of NK and OVA-specific CD8 T cells (CTLs), likely resulting from the maturation of highly pro-inflammatory DCs as seen by a synergistic increase in serum IL-12. The enhanced innate and adaptive immune responses result in higher tumor inhibition that correlates with increased numbers of OVA-specific CTLs at the tumor site. Antibody-mediated depletion experiments further demonstrate that in this context, CTLs rather than NK cells are essential for the enhanced tumor inhibition. Conclusions Altogether, our study in mice demonstrates that αGC/CD1d-antitumor fusion protein greatly increases the efficacy of a therapeutic CpG-based cancer vaccine, first as an adjuvant during T cell priming and second, as a therapeutic agent to redirect immune responses to the tumor site. Electronic supplementary material The online version of this article (doi:10.1186/s40425-014-0039-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Corgnac
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Rachel Perret
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lianjun Zhang
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Jean-Pierre Mach
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Alena Donda
- Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
110
|
Loffredo S, Staiano RI, Granata F, Costantino V, Borriello F, Frattini A, Lepore MT, Mangoni A, Marone G, Triggiani M. Simplexide induces CD1d-dependent cytokine and chemokine production from human monocytes. PLoS One 2014; 9:e111326. [PMID: 25390653 PMCID: PMC4229102 DOI: 10.1371/journal.pone.0111326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/29/2014] [Indexed: 12/24/2022] Open
Abstract
Monocytes are major effector cells of innate immunity and recognize several endogenous and exogenous molecules due to the expression of wide spectrum of receptors. Among them, the MHC class I-like molecule CD1d interacts with glycolipids and presents them to iNKT cells, mediating their activation. Simplexide belongs to a novel class of glycolipids isolated from marine sponges and is structurally distinct from other immunologically active glycolipids. In this study we have examined the effects of simplexide on cytokine and chemokine release from human monocytes. Simplexide induces a concentration- and time-dependent release of IL-6, CXCL8, TNF-α and IL-10 and increases the expression of IL6, CXCL8 and IL10 mRNA. Cytokine and chemokine release induced by simplexide from monocytes is dependent on CD1d since: i) a CD1d antagonist, 1,2-bis (diphenylphosphino) ethane [DPPE]-polyethylene glycolmonomethylether [PEG], specifically blocks simplexide-induced activation of monocytes; ii) CD1d knockdown inhibits monocyte activation by simplexide and iii) simplexide induces cytokine production from CD1d-transfected but not parental C1R cell line. Finally, we have shown that simplexide also induces iNKT cell expansion in vitro. Our results demonstrate that simplexide, apart from activating iNKT cells, induces the production of cytokines and chemokines from human monocytes by direct interaction with CD1d.
Collapse
Affiliation(s)
- Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Rosaria I. Staiano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Valeria Costantino
- The NeaNAT group - Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Annunziata Frattini
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Teresa Lepore
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Alfonso Mangoni
- The NeaNAT group - Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- * E-mail:
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| |
Collapse
|
111
|
Singh S, Yang G, Byrareddy SN, Barry MA, Sastry KJ. Natural killer T cell and TLR9 agonists as mucosal adjuvants for sublingual vaccination with clade C HIV-1 envelope protein. Vaccine 2014; 32:6934-6940. [PMID: 25444819 DOI: 10.1016/j.vaccine.2014.10.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/22/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023]
Abstract
The vast majority of HIV-1 infections occur at mucosa during sexual contact. It may therefore be advantageous to provide mucosal barrier protection against this entry by mucosal vaccination. While a number of mucosal routes of vaccination are possible, many like enteric oral vaccines or intranasal vaccines have significant impediments that limit vaccine efficacy or pose safety risks. In contrast, immunogens applied to the sublingual region of the mouth could provide a simple route for mucosal vaccination. While sublingual immunization is appealing, this site does not always drive strong immune responses, particularly when using protein antigens. To address this issue, we have tested the ability of two mucosal adjuvants: alpha-galactosylceramide (αGalCer) that is a potent stimulator of natural killer T cells and CpG-oligodeoxynucleotide (CpG-ODN) a TLR9 agonist for their ability to amplify immune responses against clade C gp140 HIV-1 envelope protein antigen. Immunization with envelope protein alone resulted in a weak T cell and antibody responses. In contrast, CD4(+) and CD8(+) T cells responses in systemic and mucosal tissues were significantly higher in mice immunized with gp140 in the presence of either αGalCer or CpG-ODN and these responses were further augmented when the two adjuvants were used together. While both the adjuvants effectively increased gp140-specific serum IgG and vaginal IgA antibody levels, combining both significantly improved these responses. Memory T cell responses 60 days after immunization revealed αGalCer to be more potent than CpG-ODN and the combination of the αGalCer and CpG-ODN adjuvants was more effective than either alone. Serum and vaginal washes collected 60 days after immunization with gp140 with both αGalCer and CpG-ODN adjuvants had significant neutralization activity against Tier 1 and Tier 2 SHIVs. These data support the utility of the sublingual route for mucosal vaccination particularly in combination with αGalCer and CpG-ODN adjuvants.
Collapse
Affiliation(s)
- Shailbala Singh
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Guojun Yang
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Siddappa N Byrareddy
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology Program, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - K Jagannadha Sastry
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States; Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Bastrop, TX, United States.
| |
Collapse
|
112
|
Hunn MK, Hermans IF. Exploiting invariant NKT cells to promote T-cell responses to cancer vaccines. Oncoimmunology 2014; 2:e23789. [PMID: 23734325 PMCID: PMC3654595 DOI: 10.4161/onci.23789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 11/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells have the capacity to amplify adaptive immune responses by licensing antigen-presenting cells. A simple vaccine consisting of whole tumor cells pulsed with an iNKT-cell agonist efficiently delivers antigens plus adjuvants to endogenous dendritic cells and has potential for clinical applications.
Collapse
Affiliation(s)
- Martin K Hunn
- Malaghan Institute of Medical Research; Wellington, New Zealand ; School of Biological Sciences; Victoria University of Wellington; Wellington, New Zealand
| | | |
Collapse
|
113
|
Cavallari M, Stallforth P, Kalinichenko A, Rathwell DCK, Gronewold TMA, Adibekian A, Mori L, Landmann R, Seeberger PH, De Libero G. A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice. Nat Chem Biol 2014; 10:950-6. [DOI: 10.1038/nchembio.1650] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/28/2014] [Indexed: 01/25/2023]
|
114
|
Kumar V, Delovitch TL. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 2014; 142:321-36. [PMID: 24428389 DOI: 10.1111/imm.12247] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid-CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes.
Collapse
Affiliation(s)
- Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | | |
Collapse
|
115
|
Xu X, Hegazy WAH, Guo L, Gao X, Courtney AN, Kurbanov S, Liu D, Tian G, Manuel ER, Diamond DJ, Hensel M, Metelitsa LS. Effective cancer vaccine platform based on attenuated salmonella and a type III secretion system. Cancer Res 2014; 74:6260-70. [PMID: 25213323 DOI: 10.1158/0008-5472.can-14-1169] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vaccines explored for cancer therapy have been based generally on injectable vector systems used to control foreign infectious pathogens, to which the immune system evolved to respond naturally. However, these vectors may not be effective at presenting tumor-associated antigens (TAA) to the immune system in a manner that is sufficient to engender antitumor responses. We addressed this issue with a novel orally administered Salmonella-based vector that exploits a type III secretion system to deliver selected TAA in the cytosol of professional antigen-presenting cells in situ. A systematic comparison of candidate genes from the Salmonella Pathogenicity Island 2 (SPI2) locus was conducted in the vaccine design, using model antigens and a codon-optimized form of the human TAA survivin (coSVN), an oncoprotein that is overexpressed in most human cancers. In a screen of 20 SPI2 promoter:effector combinations, a PsifB::sseJ combination exhibited maximal potency for antigen translocation into the APC cytosol, presentation to CD8 T cells, and murine immunogenicity. In the CT26 mouse model of colon carcinoma, therapeutic vaccination with a lead PsifB::sseJ-coSVN construct (p8032) produced CXCR3-dependent infiltration of tumors by CD8 T cells, reversed the CD8:Treg ratio at the tumor site, and triggered potent antitumor activity. Vaccine immunogenicity and antitumor potency were enhanced by coadministration of the natural killer T-cell ligand 7DW8-5, which heightened the production of IL12 and IFNγ. Furthermore, combined treatment with p8032 and 7DW8-5 resulted in complete tumor regression in A20 lymphoma-bearing mice, where protective memory was demonstrated. Taken together, our results demonstrate how antigen delivery using an oral Salmonella vector can provide an effective platform for the development of cancer vaccines.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Wael A H Hegazy
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Linjie Guo
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Xiuhua Gao
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Amy N Courtney
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Suhrab Kurbanov
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Daofeng Liu
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Gengwen Tian
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Edwin R Manuel
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Leonid S Metelitsa
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
116
|
Harnessing the antibacterial and immunological properties of mucosal-associated invariant T cells in the development of novel oral vaccines against enteric infections. Biochem Pharmacol 2014; 92:173-83. [PMID: 25173989 DOI: 10.1016/j.bcp.2014.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 01/02/2023]
Abstract
Enteric infections are a major cause of mortality and morbidity with significant social and economic implications worldwide and particularly in developing countries. An attractive approach to minimizing the impact of these diseases is via the development of oral vaccination strategies. However, oral vaccination is challenging due to the tolerogenic and hyporesponsive nature of antigen presenting cells resident in the gastrointestinal tract. The inclusion of adjuvants in oral vaccine formulations has the potential to overcome this challenge. To date no oral adjuvants have been licenced for human use and thus oral adjuvant discovery remains a key goal in improving the potential for oral vaccine development. Mucosal-associated invariant T (MAIT) cells are a recently discovered population of unconventional T cells characterized by an evolutionarily conserved αβ T cell receptor (TCR) that recognizes antigens presented by major histocompatibility complex (MHC) class I-related (MR1) molecule. MAIT cells are selected intra-thymically by MR1 expressing double positive thymocytes and enter the circulation with a naïve phenotype. In the circulation they develop a memory phenotype and are programmed to home to mucosal tissues and the liver. Once resident in these tissues, MAIT cells respond to bacterial and yeast infections through the production of chemokines and cytokines that aid in the induction of an adaptive immune response. Their abundance in the gastrointestinal tract and ability to promote adaptive immunity suggests that MAIT cell activators may represent attractive novel adjuvants for use in oral vaccination.
Collapse
|
117
|
Kim MK, Lee A, Hwang YK, Kang CY, Ha SJ. Enhancing T Cell Immune Responses by B Cell-based Therapeutic Vaccine Against Chronic Virus Infection. Immune Netw 2014; 14:207-18. [PMID: 25177253 PMCID: PMC4148491 DOI: 10.4110/in.2014.14.4.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 12/01/2022] Open
Abstract
Chronic virus infection leads to the functional impairment of dendritic cells (DCs) as well as T cells, limiting the clinical usefulness of DC-based therapeutic vaccine against chronic virus infection. Meanwhile, B cells have been known to maintain the ability to differentiate plasma cells producing antibodies even during chronic virus infection. Previously, α-galactosylceramide (αGC) and cognate peptide-loaded B cells were comparable to DCs in priming peptide-specific CD8(+) T cells as antigen presenting cells (APCs). Here, we investigated whether B cells activated by αGC can improve virus-specific T cell immune responses instead of DCs during chronic virus infection. We found that comparable to B cells isolated from naïve mice, chronic B cells isolated from chronically infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) after αGC-loading could activate CD1d-restricted invariant natural killer T (iNKT) cells to produce effector cytokines and upregulate co-stimulatory molecules in both naïve and chronically infected mice. Similar to naïve B cells, chronic B cells efficiently primed LCMV glycoprotein (GP) 33-41-specific P14 CD8(+) T cells in vivo, thereby allowing the proliferation of functional CD8(+) T cells. Importantly, when αGC and cognate epitope-loaded chronic B cells were transferred into chronically infected mice, the mice showed a significant increase in the population of epitope-specific CD8(+) T cells and the accelerated control of viremia. Therefore, our studies demonstrate that reciprocal activation between αGC-loaded chronic B cells and iNKT cells can strengthen virus-specific T cell immune responses, providing an effective regimen of autologous B cell-based therapeutic vaccine to treat chronic virus infection.
Collapse
Affiliation(s)
- Min Ki Kim
- System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ara Lee
- System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Yu Kyeong Hwang
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin 446-799, Korea
| | - Chang-Yuil Kang
- College of Pharmacy, Seoul National University, Seoul 110-799, Korea
| | - Sang-Jun Ha
- System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
118
|
Nur H, Rao L, Frassanito MA, De Raeve H, Ribatti D, Mfopou JK, Van Valckenborgh E, De Bruyne E, Vacca A, Vanderkerken K, Menu E. Stimulation of invariant natural killer T cells by α-Galactosylceramide activates the JAK-STAT pathway in endothelial cells and reduces angiogenesis in the 5T33 multiple myeloma model. Br J Haematol 2014; 167:651-63. [PMID: 25142285 DOI: 10.1111/bjh.13092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022]
Abstract
Tumour pathogenesis in multiple myeloma (MM) correlates with a high vascular index. Therefore, targeting angiogenesis is an important therapeutic tool to reduce MM progression. This study aimed to investigate the role of invariant natural killer T (iNKT) cells in angiogenesis and the mechanisms behind the stimulation by α-Galactosylceramide (α-GalCer). We have previously found that α-GalCer could increase the survival of 5T33MM mice and here we demonstrate that α-GalCer reduces the microvessel density. We performed both in vivo and in vitro angiogenic assays to confirm this observation. We found that conditioned medium of α-GalCer stimulated iNKT cells reduced neovascularization in the chick chorioallantoic membrane and in matrigel plug assays. Moreover, we observed a reduction in proliferation, migration and network formation and an induction of apoptosis upon exposure of murine endothelial cell lines to this conditioned medium. We furthermore observed that the JAK-STAT signaling pathway was highly activated in endothelial cells in response to stimulated iNKT cells, indicating the possible role of IFN-γ in the anti-angiogenic process. In conclusion, these results highlight the possibility of recruiting iNKT cells to target MM and angiogenesis. This gives a rationale for combining immunotherapy with conventional anti-tumour treatments in view of increasing their therapeutic potential.
Collapse
Affiliation(s)
- Haneen Nur
- Department of Haematology and Immunology, Myeloma Centre Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Biology, Faculty of Science and Technology, Hebron University, Hebron, Palestine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Immunological memory has been regarded as a unique feature of the adaptive immune response mediated in an antigen-specific manner by T and B lymphocytes. However, natural killer (NK) cells and γδT cells, which traditionally are classified as innate immune cells, have been shown in recent studies to have hallmark features of memory cells. Invariant NKT cell (iNKT cell)-mediated antitumor effects indicate that iNKT cells are activated in vivo by vaccination with iNKT cell ligand-loaded CD1d(+) cells, but not by vaccination with unbound NKT cell ligand. In such models, it previously was thought that the numbers of IFN-γ-producing cells in the spleen returned to the basal level around 1 wk after the vaccination. In the current study, we demonstrate the surprising presence of effector memory-like iNKT cells in the lung. We found long-term antitumor activity in the lungs of mice was enhanced after vaccination with iNKT cell ligand-loaded dendritic cells. Further analyses showed that the KLRG1(+) (Killer cell lectin-like receptor subfamily G, member 1-positive) iNKT cells coexpressing CD49d and granzyme A persisted for several months and displayed a potent secondary response to cognate antigen. Finally, analyses of CDR3β by RNA deep sequencing demonstrated that some particular KLRG1(+) iNKT-cell clones accumulated, suggesting the selection of certain T-cell receptor repertoires by an antigen. The current findings identifying effector memory-like KLRG1(+) iNKT cells in the lung could result in a paradigm shift regarding the basis of newly developed extrathymic iNKT cells and could contribute to the future development of antitumor immunotherapy by uniquely energizing iNKT cells.
Collapse
|
120
|
Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 2014; 124:3725-40. [PMID: 25061873 DOI: 10.1172/jci72308] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/05/2014] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after activation, thereby impacting a wide variety of different immune reactions. However, strong activation of iNKT cells with α-galactosylceramide (αGalCer) reportedly induces a hyporeactive state that resembles anergy. In contrast, we determined here that iNKT cells from mice pretreated with αGalCer retain cytotoxic activity and maintain the ability to respond to TCR-dependent as well as TCR-independent cytokine-mediated stimulation. Additionally, αGalCer-pretreated iNKT cells acquired characteristics of regulatory cells, including production and secretion of the immunomodulatory cytokine IL-10. Through the production of IL-10, αGalCer-pretreated iNKT cells impaired antitumor responses and reduced disease in experimental autoimmune encephalomyelitis, a mouse model of autoimmune disease. Furthermore, a subset of iNKT cells with a similar inhibitory phenotype and function were present in mice not exposed to αGalCer and were enriched in mouse adipose tissue and detectable in human PBMCs. These data demonstrate that IL-10-producing iNKT cells with regulatory potential (NKT10 cells) represent a distinct iNKT cell subset.
Collapse
|
121
|
Lepore M, de Lalla C, Gundimeda SR, Gsellinger H, Consonni M, Garavaglia C, Sansano S, Piccolo F, Scelfo A, Häussinger D, Montagna D, Locatelli F, Bonini C, Bondanza A, Forcina A, Li Z, Ni G, Ciceri F, Jenö P, Xia C, Mori L, Dellabona P, Casorati G, De Libero G. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. ACTA ACUST UNITED AC 2014; 211:1363-77. [PMID: 24935257 PMCID: PMC4076585 DOI: 10.1084/jem.20140410] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c(+) acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c(+) human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - S Ramanjaneyulu Gundimeda
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Heiko Gsellinger
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Garavaglia
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sebastiano Sansano
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Francesco Piccolo
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Scelfo
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniel Häussinger
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Daniela Montagna
- Laboratorio di Immunologia, Dipartimento di Pediatria, Università di Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Hospital, 00165 Rome, Italy
| | - Chiara Bonini
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Attilio Bondanza
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Forcina
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Zhiyuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guanghui Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Fabio Ciceri
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paul Jenö
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland
| | - Chengfeng Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore 138648
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel; Nuclear Magnetic Resonance Laboratory, Department of Chemistry; and Department of Biochemistry, Biozentrum; University of Basel, 4056 Basel, Switzerland Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore 138648
| |
Collapse
|
122
|
Macho-Fernandez E, Cruz LJ, Ghinnagow R, Fontaine J, Bialecki E, Frisch B, Trottein F, Faveeuw C. Targeted delivery of α-galactosylceramide to CD8α+ dendritic cells optimizes type I NKT cell-based antitumor responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:961-9. [PMID: 24913977 DOI: 10.4049/jimmunol.1303029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunotherapy aiming at enhancing innate and acquired host immunity is a promising approach for cancer treatment. The invariant NKT (iNKT) cell ligand α-galactosylceramide (α-GalCer) holds great promise in cancer therapy, although several concerns limit its use in clinics, including the uncontrolled response it promotes when delivered in a nonvectorized form. Therefore, development of delivery systems to in vivo target immune cells might be a valuable option to optimize iNKT cell-based antitumor responses. Using dendritic cell (DC)-depleted mice, DC transfer experiments, and in vivo active cell targeting, we show that presentation of α-GalCer by DCs not only triggers optimal primary iNKT cell stimulation, but also maintains secondary iNKT cell activation after challenge. Furthermore, targeted delivery of α-GalCer to CD8α(+) DCs, by means of anti-DEC205 decorated nanoparticles, enhances iNKT cell-based transactivation of NK cells, DCs, and γδ T cells. We report that codelivery of α-GalCer and protein Ag to CD8α(+) DCs triggers optimal Ag-specific Ab and cytotoxic CD8(+) T cell responses. Finally, we show that targeting nanoparticles containing α-GalCer and Ag to CD8α(+) DCs promotes potent antitumor responses, both in prophylactic and in therapeutic settings. Our data may have important implications in tumor immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Elodie Macho-Fernandez
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Luis Javier Cruz
- Department of Endocrinology, Leiden University Medical Center, 2333 Leiden, The Netherlands; and
| | - Reem Ghinnagow
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Josette Fontaine
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Emilie Bialecki
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Benoit Frisch
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Université de Strasbourg, F-67401 Illkirch Cedex, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France;
| | - Christelle Faveeuw
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| |
Collapse
|
123
|
Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol 2014; 92:578-90. [PMID: 24777308 DOI: 10.1038/icb.2014.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 12/19/2022]
Abstract
Natural killer T (NKT) cells bridge across innate and adaptive immune responses and have an important role in chronic viral infections such as human immunodeficiency virus (HIV). NKT cells are depleted during chronic HIV infection, but the timing, drivers and implications of this NKT cell depletion are poorly understood. We studied human peripheral blood NKT cell levels, phenotype and function in 31 HIV-infected subjects not on antiretroviral treatment from a mean of 4 months to 2 years after HIV infection. We found that peripheral CD4(+) NKT cells were substantially depleted and dysfunctional by 4 months after HIV infection. The depletion of CD4(+) NKT cells was more marked than the depletion of total CD4(+) T cells. Further, the early depletion of NKT cells correlated with CD4(+) T-cell decline, but not HIV viral levels. Levels of activated CD4(+) T cells correlated with the loss of NKT cells. Our studies suggest that the early loss of NKT cells is associated with subsequent immune destruction during HIV infection.
Collapse
Affiliation(s)
- Caroline S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony D Kelleher
- 1] Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia [2] St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Robert Finlayson
- Taylor Square Private Clinic, Darlinghurst, New South Wales, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
124
|
Chow MT, Duret H, Andrews DM, Faveeuw C, Möller A, Smyth MJ, Paget C. Type I NKT-cell-mediated TNF-α is a positive regulator of NLRP3 inflammasome priming. Eur J Immunol 2014; 44:2111-20. [PMID: 24687687 DOI: 10.1002/eji.201344329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/23/2014] [Accepted: 03/26/2014] [Indexed: 11/09/2022]
Abstract
The NLRP3 inflammasome plays a crucial role in the innate immune response to pathogens and exogenous or endogenous danger signals. Its activity must be precisely and tightly regulated to generate tailored immune responses. However, the immune cell subsets and cytokines controlling NLRP3 inflammasome activity are still poorly understood. Here, we have shown a link between NKT-cell-mediated TNF-α and NLRP3 inflammasome activity. The NLRP3 inflammasome in APCs was critical to potentiate NKT-cell-mediated immune responses, since C57BL/6 NLRP3 inflammasome-deficient mice exhibited reduced responsiveness to α-galactosylceramide. Importantly, NKT cells were found to act as regulators of NLRP3 inflammasome signaling, as NKT-cell-derived TNF-α was required for optimal IL-1β and IL-18 production by myeloid cells in response to α-galactosylceramide, by acting on the NLRP3 inflammasome priming step. Thus, NKT cells play a role in the positive regulation of NLRP3 inflammasome priming by mediating the production of TNF-α, thus demonstrating another means by which NKT cells control early inflammation.
Collapse
Affiliation(s)
- Melvyn T Chow
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia; Department of Pathology, University of Melbourne, Parkville, Australia; Immunology in Infection and Cancer Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
125
|
Raftery MJ, Wolter E, Fillatreau S, Meisel H, Kaufmann SHE, Schönrich G. NKT Cells Determine Titer and Subtype Profile of Virus-Specific IgG Antibodies during Herpes Simplex Virus Infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:4294-302. [DOI: 10.4049/jimmunol.1300148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
126
|
Human metapneumovirus virus-like particles induce protective B and T cell responses in a mouse model. J Virol 2014; 88:6368-79. [PMID: 24672031 DOI: 10.1128/jvi.00332-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Human metapneumovirus (HMPV) is a leading cause of respiratory disease in infants, children, and the elderly worldwide, yet no licensed vaccines exist. Live-attenuated vaccines present safety challenges, and protein subunit vaccines induce primarily antibody responses. Virus-like particles (VLPs) are an attractive alternative vaccine approach because of reduced safety concerns compared with live vaccines. We generated HMPV VLPs by expressing viral proteins in suspension-adapted human embryonic kidney epithelial (293-F) cells and found that the viral matrix (M) and fusion (F) proteins were sufficient to form VLPs. We previously reported that the VLPs resemble virus morphology and incorporate fusion-competent F protein (R. G. Cox, S. B. Livesay, M. Johnson, M. D. Ohi, and J. V. Williams, J. Virol. 86:12148-12160, 2012), which we hypothesized would elicit F-specific antibody and T cell responses. In this study, we tested whether VLP immunization could induce protective immunity to HMPV by using a mouse model. C57BL/6 mice were injected twice intraperitoneally with VLPs alone or with adjuvant and subsequently challenged with HMPV. Mice were euthanized 5 days postinfection, and virus titers, levels of neutralizing antibodies, and numbers of CD3(+) T cells were quantified. Mice immunized with VLPs mounted an F-specific antibody response and generated CD8(+) T cells recognizing an F protein-derived epitope. VLP immunization induced a neutralizing-antibody response that was enhanced by the addition of either TiterMax Gold or α-galactosylceramide adjuvant, though adjuvant reduced cellular immune responses. Two doses of VLPs conferred complete protection from HMPV replication in the lungs of mice and were not associated with a Th2-skewed cytokine response. These results suggest that nonreplicating VLPs are a promising vaccine candidate for HMPV. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of acute respiratory infection in infants, children, and the elderly worldwide, yet no licensed vaccines exist. Live-attenuated vaccines present safety challenges, and protein subunit vaccines induce primarily antibody responses. Virus-like particles (VLPs) are an attractive alternative vaccine approach. We generated HMPV VLPs by expressing the viral matrix (M) and fusion (F) proteins in mammalian cells. We found that mice immunized with VLPs mounted an F-specific antibody response and generated CD8(+) T cells recognizing an F protein-derived epitope. VLP immunization induced a neutralizing-antibody response that was enhanced by the addition of either TiterMax Gold or α-galactosylceramide adjuvant. Two doses of VLPs conferred complete protection against HMPV replication in the lungs of mice and were not associated with a Th2-skewed cytokine response. These results suggest that nonreplicating VLPs are a promising vaccine candidate for HMPV.
Collapse
|
127
|
Connelley TK, Longhi C, Burrells A, Degnan K, Hope J, Allan AJ, Hammond JA, Storset AK, Morrison WI. NKp46+ CD3+ cells: a novel nonconventional T cell subset in cattle exhibiting both NK cell and T cell features. THE JOURNAL OF IMMUNOLOGY 2014; 192:3868-80. [PMID: 24639352 DOI: 10.4049/jimmunol.1302464] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The NKp46 receptor demonstrates a high degree of lineage specificity, being expressed almost exclusively in NK cells. Previous studies have demonstrated NKp46 expression by T cells, but NKp46+ CD3+ cells are rare and almost universally associated with NKp46 acquisition by T cells following stimulation. In this study we demonstrate the existence of a population of NKp46+ CD3+ cells resident in normal bovine PBMCs that includes cells of both the αβ TCR+ and γδ TCR+ lineages and is present at a frequency of 0.1-1.7%. NKp46+ CD3+ cells express transcripts for a broad repertoire of both NKRs and TCRs and also the CD3ζ, DAP10, and FcεR1γ but not DAP12 adaptor proteins. In vitro functional analysis of NKp46+ CD3+ cells confirm that NKp46, CD16, and CD3 signaling pathways are all functionally competent and capable of mediating/redirecting cytolysis. However, only CD3 cross-ligation elicits IFN-γ release. NKp46+ CD3+ cells exhibit cytotoxic activity against autologous Theileria parva-infected cells in vitro, and during in vivo challenge with this parasite an expansion of NKp46+ CD3+ cells was observed in some animals, indicating the cells have the potential to act as an anti-pathogen effector population. The results in this study identify and describe a novel nonconventional NKp46+ CD3+ T cell subset that is phenotypically and functionally distinct from conventional NK and T cells. The ability to exploit both NKRs and TCRs suggests these cells may fill a functional niche at the interface of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Timothy K Connelley
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Wu J, Shin J, Xie D, Wang H, Gao J, Zhong XP. Tuberous sclerosis 1 promotes invariant NKT cell anergy and inhibits invariant NKT cell-mediated antitumor immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:2643-50. [PMID: 24532578 PMCID: PMC3965184 DOI: 10.4049/jimmunol.1302076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of effective immune therapies for cancer patients requires better understanding of hurdles that prevent the generation of effective antitumor immune responses. Administration of α-galactosylceramide (α-GalCer) in animals enhances antitumor immunity via activation of the invariant NKT (iNKT) cells. However, repeated injections of α-GalCer result in long-term unresponsiveness or anergy of iNKT cells, severely limiting its efficacy in tumor eradication. The mechanisms leading to iNKT cell anergy remain poorly understood. We report in this study that the tuberous sclerosis 1 (TSC1), a negative regulator of mTOR signaling, plays a crucial role in iNKT cell anergy. Deficiency of TSC1 in iNKT cells results in resistance to α-GalCer-induced anergy, manifested by increased expansion of and cytokine production by iNKT cells in response to secondary Ag stimulation. It is correlated with impaired upregulation of programmed death-1, Egr2, and Grail. Moreover, TSC1-deficient iNKT cells display enhanced antitumor immunity in a melanoma lung metastasis model. Our data suggest targeting TSC1/2 as a strategy for boosting antitumor immune therapy.
Collapse
Affiliation(s)
- Jinhong Wu
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Division of Pediatric Pulmonology, Department of Internal Medicine, Shanghai Children’s Medical Center affiliated with Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Jinwook Shin
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Danli Xie
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongxia Wang
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiao-Ping Zhong
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
129
|
Faveeuw C, Trottein F. Optimization of natural killer T cell-mediated immunotherapy in cancer using cell-based and nanovector vaccines. Cancer Res 2014; 74:1632-8. [PMID: 24599135 DOI: 10.1158/0008-5472.can-13-3504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
α-Galactosylceramide (α-GalCer) represents a new class of immune stimulators and vaccine adjuvants that activate type I natural killer T (NKT) cells to swiftly release cytokines and to exert helper functions for acquired immune responses. This unique property prompted clinicians to exploit the antitumor potential of NKT cells. Here, we review the effects of α-GalCer in (pre)clinics and discuss current and future strategies that aim to optimize NKT cell-mediated antitumor therapy, with a particular focus on cell-based and nanovector vaccines.
Collapse
Affiliation(s)
- C Faveeuw
- Authors' Affiliations: Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille; Institut National de la Santé et de la Recherche Médicale; Centre National de la Recherche Scientifique, UMR 8204; Université Lille Nord de France; Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
130
|
Subramanian M, Kini R, Madasu M, Ohta A, Nowak M, Exley M, Sitkovsky M, Ohta A. Extracellular adenosine controls NKT-cell-dependent hepatitis induction. Eur J Immunol 2014; 44:1119-29. [PMID: 24448964 DOI: 10.1002/eji.201343866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/19/2013] [Accepted: 01/17/2014] [Indexed: 01/18/2023]
Abstract
Extracellular adenosine regulates inflammatory responses via the A2A adenosine receptor (A2AR). A2AR deficiency results in much exaggerated acute hepatitis, indicating nonredundancy of adenosine-A2AR pathway in inhibiting immune activation. To identify a critical target of immunoregulatory effect of extracellular adenosine, we focused on NKT cells, which play an indispensable role in hepatitis. An A2AR agonist abolished NKT-cell-dependent induction of acute hepatitis by concanavalin A (Con A) or α-galactosylceramide in mice, corresponding to downregulation of activation markers and cytokines in NKT cells and of NK-cell co-activation. These results show that A2AR signaling can downregulate NKT-cell activation and suppress NKT-cell-triggered inflammatory responses. Next, we hypothesized that NKT cells might be under physiological control of the adenosine-A2AR pathway. Indeed, both Con A and α-galactosylceramide induced more severe hepatitis in A2AR-deficient mice than in WT controls. Transfer of A2AR-deficient NKT cells into A2AR-expressing recipients resulted in exaggeration of Con A-induced liver damage, suggesting that NKT-cell activation is controlled by endogenous adenosine via A2AR, and this physiological regulatory mechanism of NKT cells is critical in the control of tissue-damaging inflammation. The current study suggests the possibility to manipulate NKT-cell activity in inflammatory disorders through intervention to the adenosine-A2AR pathway.
Collapse
Affiliation(s)
- Meenakshi Subramanian
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Chan AC, Neeson P, Leeansyah E, Tainton K, Quach H, Prince HM, Harrison SJ, Godfrey DI, Ritchie D, Berzins SP. Natural killer T cell defects in multiple myeloma and the impact of lenalidomide therapy. Clin Exp Immunol 2014; 175:49-58. [PMID: 24032527 DOI: 10.1111/cei.12196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 12/29/2022] Open
Abstract
The causes of multiple myeloma (MM) remain obscure and there are few known risk factors; however, natural killer T (NKT) cell abnormalities have been reported in patients with MM, and therapeutic targeting of NKT cells is promoted as a potential treatment. We characterized NKT cell defects in treated and untreated patients with MM and determined the impact of lenalidomide therapy on the NKT cell pool. Lenalidomide is an immunomodulatory drug with co-stimulatory effects on NKT cells in vitro and is an approved treatment for MM, although its mode of action in that context is not well defined. We find that patients with relapsed/progressive MM had a marked deficiency in NKT cell numbers. In contrast, newly diagnosed patients had relatively normal NKT cell frequency and function prior to treatment, although a specific NKT cell deficiency emerged after high-dose melphalan and autologous stem cell transplantation (ASCT) regimen. This also impacted NK cells and conventional T cells, but the recovery of NKT cells was considerably delayed, resulting in a prolonged, treatment-induced NKT cell deficit. Longitudinal analysis of individual patients revealed that lenalidomide therapy had no in-vivo impact on NKT cell numbers or cytokine production, either as induction therapy, or as maintenance therapy following ASCT, indicating that its clinical benefits in this setting are independent of NKT cell modulation.
Collapse
Affiliation(s)
- A C Chan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Guabiraba R, Ryffel B. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 2014; 141:143-56. [PMID: 24182427 PMCID: PMC3904235 DOI: 10.1111/imm.12188] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
Dengue viruses (DENV), a group of four serologically distinct but related flaviviruses, are responsible for one of the most important emerging viral diseases. This mosquito-borne disease has a great impact in tropical and subtropical areas of the world in terms of illness, mortality and economic costs, mainly due to the lack of approved vaccine or antiviral drugs. Infections with one of the four serotypes of DENV (DENV-1-4) result in symptoms ranging from an acute, self-limiting febrile illness, dengue fever, to severe dengue haemorrhagic fever or dengue shock syndrome. We reviewed the existing mouse models of infection, including the DENV-2-adapted strain P23085. The role of CC chemokines, interleukin-17 (IL-17), IL-22 and invariant natural killer T cells in mediating the exacerbation of disease in immune-competent mice is highlighted. Investigations in both immune-deficient and immune-competent mouse models of DENV infection may help to identify key host–pathogen factors and devise novel therapies to restrain the systemic and local inflammatory responses associated with severe DENV infection.
Collapse
Affiliation(s)
- Rodrigo Guabiraba
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
- Université d’Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and NeurogeneticsOrléans, France
| | - Bernhard Ryffel
- Université d’Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and NeurogeneticsOrléans, France
- IIDMM, UCTCape Town, South Africa
- Artimmune SASOrléans, France
| |
Collapse
|
133
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
134
|
Singh AK, Gaur P, Das SN. Natural killer T cell anergy, co-stimulatory molecules and immunotherapeutic interventions. Hum Immunol 2013; 75:250-60. [PMID: 24373798 DOI: 10.1016/j.humimm.2013.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/28/2013] [Accepted: 12/15/2013] [Indexed: 01/05/2023]
Abstract
Natural killer T (NKT) cells are a unique subset of glycolipid-reactive T lymphocytes that share properties with natural killer (NK) cells. These lymphocytes can produce array of cytokines and chemokines that modulate the immune response, and play a pivotal role in cancer, autoimmunity, infection and inflammation. Owing to these properties, NKT cells have gained attentions for its potential use in antitumor immunotherapies. To date several NKT cell-based clinical trials have been performed in patients with cancer using its potent ligand α-galactosylceramide (α-GalCer). However, inconsistent therapeutic benefit, and inevitable health risks associated with drug dose and NKT cell activation have been observed. α-GalCer-activated NKT cells become anergic and produce both Th1 and Th2 cytokines that may function antagonistically, limiting the desired effector functions. Besides, various co-stimulatory and signaling molecules such as programmed death-1 (PD-1; CD279), casitas B-cell lymphoma-b (Cbl-b) and CARMA1 have been shown to be implicated in the induction of NKT cell anergy. In this review, we discuss the role of such key regulators and their functional mechanisms that may facilitate the development of improved approaches to overcome NKT cell anergy. In addition, we describe the evidences indicating that tailored-ligands can optimally activate NKT cells to obtain desired immune responses.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| | - Poonam Gaur
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| | - Satya N Das
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| |
Collapse
|
135
|
Anderson BL, Teyton L, Bendelac A, Savage PB. Stimulation of natural killer T cells by glycolipids. Molecules 2013; 18:15662-88. [PMID: 24352021 PMCID: PMC4018217 DOI: 10.3390/molecules181215662] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 01/31/2023] Open
Abstract
Natural killer T (NKT) cells are a subset of T cells that recognize glycolipid antigens presented by the CD1d protein. The initial discovery of immunostimulatory glycolipids from a marine sponge and the T cells that respond to the compounds has led to extensive research by chemists and immunologists to understand how glycolipids are recognized, possible responses by NKT cells, and the structural features of glycolipids necessary for stimulatory activity. The presence of this cell type in humans and most mammals suggests that it plays critical roles in antigen recognition and the interface between innate and adaptive immunity. Both endogenous and exogenous natural antigens for NKT cells have been identified, and it is likely that glycolipid antigens remain to be discovered. Multiple series of structurally varied glycolipids have been synthesized and tested for stimulatory activity. The structural features of glycolipids necessary for NKT cell stimulation are moderately well understood, and designed compounds have proven to be much more potent antigens than their natural counterparts. Nevertheless, control over NKT cell responses by designed glycolipids has not been optimized, and further research will be required to fully reveal the therapeutic potential of this cell type.
Collapse
Affiliation(s)
| | | | | | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
136
|
Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation. Proc Natl Acad Sci U S A 2013; 110:E4753-61. [PMID: 24248359 DOI: 10.1073/pnas.1310050110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a "lipid editor," capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity.
Collapse
|
137
|
Ghazarian L, Diana J, Beaudoin L, Larsson PG, Puri RK, van Rooijen N, Flodström-Tullberg M, Lehuen A. Protection against type 1 diabetes upon Coxsackievirus B4 infection and iNKT-cell stimulation: role of suppressive macrophages. Diabetes 2013; 62:3785-96. [PMID: 23894189 PMCID: PMC3806597 DOI: 10.2337/db12-0958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2-deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Liana Ghazarian
- INSERM U1016, Hospital Cochin/St. Vincent de Paul, Paris, France
- Université Paris Descartes and Laboratoire d’Excellence INFLAMEX, Sorbonne Paris Cité, Paris, France
| | - Julien Diana
- INSERM U1016, Hospital Cochin/St. Vincent de Paul, Paris, France
- Université Paris Descartes and Laboratoire d’Excellence INFLAMEX, Sorbonne Paris Cité, Paris, France
| | - Lucie Beaudoin
- INSERM U1016, Hospital Cochin/St. Vincent de Paul, Paris, France
- Université Paris Descartes and Laboratoire d’Excellence INFLAMEX, Sorbonne Paris Cité, Paris, France
| | - Pär G. Larsson
- Center for Infectious Medicine, Department of Medicine, the Karolinska Institute, Stockholm, Sweden
| | - Raj K. Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland
| | - Nico van Rooijen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, the Karolinska Institute, Stockholm, Sweden
| | - Agnès Lehuen
- INSERM U1016, Hospital Cochin/St. Vincent de Paul, Paris, France
- Université Paris Descartes and Laboratoire d’Excellence INFLAMEX, Sorbonne Paris Cité, Paris, France
- Corresponding author: Agnès Lehuen,
| |
Collapse
|
138
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
139
|
Fernandez CS, Jegaskanda S, Godfrey DI, Kent SJ. In-vivo stimulation of macaque natural killer T cells with α-galactosylceramide. Clin Exp Immunol 2013; 173:480-92. [PMID: 23656283 DOI: 10.1111/cei.12132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 12/14/2022] Open
Abstract
Natural killer T cells are a potent mediator of anti-viral immunity in mice, but little is known about the effects of manipulating NKT cells in non-human primates. We evaluated the delivery of the NKT cell ligand, α-galactosylceramide (α-GalCer), in 27 macaques by studying the effects of different dosing (1-100 μg), and delivery modes [directly intravenously (i.v.) or pulsed onto blood or peripheral blood mononuclear cells]. We found that peripheral NKT cells were depleted transiently from the periphery following α-GalCer administration across all delivery modes, particularly in doses of ≥10 μg. Furthermore, NKT cell numbers frequently remained depressed at i.v. α-GalCer doses of >10 μg. Levels of cytokine expression were also not enhanced after α-GalCer delivery to macaques. To evaluate the effects of α-GalCer administration on anti-viral immunity, we administered α-GalCer either together with live attenuated influenza virus infection or prior to simian immunodeficiency virus (SIV) infection of two macaques. There was no clear enhancement of influenza-specific T or B cell immunity following α-GalCer delivery. Further, there was no modulation of pathogenic SIVmac251 infection following α-GalCer delivery to a further two macaques in a pilot study. Accordingly, although macaque peripheral NKT cells are modulated by α-GalCer in vivo, at least for the dosing regimens tested in this study, this does not appear to have a significant impact on anti-viral immunity in macaque models.
Collapse
Affiliation(s)
- C S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
140
|
Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 2013; 43:444-72. [PMID: 24100581 DOI: 10.1039/c3cs60299k] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of nanotechnology has revolutionized drug delivery in terms of improving drug efficacy and safety. Both polymer-based and lipid-based drug-loaded nanocarriers have demonstrated clinical benefit to date. However, to address the multifaceted drug delivery challenges ahead and further expand the spectrum of therapeutic applications, hybrid lipid-polymer nanocomposites have been designed to merge the beneficial features of both polymeric drug delivery systems and liposomes in a single nanocarrier. This review focuses on different classes of nanohybrids characterized by a drug-loaded polymeric matrix core enclosed in a lipid shell. Various nanoengineering approaches to obtain lipid-polymer nanocomposites with a core-shell nanoarchitecture will be discussed as well as their predominant applications in drug delivery.
Collapse
Affiliation(s)
- Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
141
|
CD1d-lipid antigen recognition by the γδ TCR. Nat Immunol 2013; 14:1137-45. [DOI: 10.1038/ni.2713] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 02/08/2023]
|
142
|
The nanoparticulation by octaarginine-modified liposome improves α-galactosylceramide-mediated antitumor therapy via systemic administration. J Control Release 2013; 171:216-24. [PMID: 23860186 DOI: 10.1016/j.jconrel.2013.07.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/30/2013] [Accepted: 07/07/2013] [Indexed: 11/21/2022]
Abstract
Alpha-galactosylceramide (αGC), a lipid antigen present on CD1d molecules, is predicted to have clinical applications as a new class of adjuvant, because αGC strongly activates natural killer T (NKT) cells which produce large amounts of IFN-γ. Here, we incorporated αGC into stearylated octaarginine-modified liposomes (R8-Lip), our original delivery system developed for vaccines, and investigated the effect of nanoparticulation. Unexpectedly, the systemic administered R8-Lip incorporating αGC (αGC/R8-Lip) failed to improve the immune responses mediated by αGC compared with soluble αGC in vivo, although αGC/R8-Lip drastically enhanced αGC presentation on CD1d in antigen presenting cells in vitro. Thus, we optimized the αGC/R8-Lip in vivo to overcome this inverse correlation. In optimization in vivo, we found that size control of liposome and R8-modification were critical for enhancing the production of IFN-γ. The optimization led to the accumulation of αGC/R8-Lip in the spleen and a positive therapeutic effect against highly malignant B16 melanoma cells. The optimized αGC/R8-Lip also enhanced αGC presentation on CD1d in antigen presenting cells and resulted in an expansion in the population of NKT cells. Herein, we show that R8-Lip is a potent delivery system, and size control and R8-modification in liposomal construction are promising techniques for achieving systemic αGC therapy.
Collapse
|
143
|
Zeng SG, Ghnewa YG, O'Reilly VP, Lyons VG, Atzberger A, Hogan AE, Exley MA, Doherty DG. Human invariant NKT cell subsets differentially promote differentiation, antibody production, and T cell stimulation by B cells in vitro. THE JOURNAL OF IMMUNOLOGY 2013; 191:1666-76. [PMID: 23851681 DOI: 10.4049/jimmunol.1202223] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NK T (iNKT) cells can provide help for B cell activation and Ab production. Because B cells are also capable of cytokine production, Ag presentation, and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of coculturing expanded human CD4(+), CD8α(+), and CD4(-)CD8α(-) double-negative (DN) iNKT cells with autologous peripheral B cells in vitro. All iNKT cell subsets induced IgM, IgA, and IgG release by B cells without needing the iNKT cell agonist ligand α-galactosylceramide. Additionally, CD4(+) iNKT cells induced expansions of cells with phenotypes of regulatory B cells. When cocultured with α-galactosylceramide-pulsed B cells, CD4(+) and DN iNKT cells secreted Th1 and Th2 cytokines but at 10-1000-fold lower levels than when cultured with dendritic cells. CD4(+) iNKT cells reciprocally induced IL-4 and IL-10 production by B cells. DN iNKT cells expressed the cytotoxic degranulation marker CD107a upon exposure to B cells. Remarkably, whereas iNKT cell subsets could induce CD40 and CD86 expression by B cells, iNKT cell-matured B cells were unable to drive proliferation of autologous and alloreactive conventional T cells, as seen with B cells cultured in the absence of iNKT cells. Therefore, human CD4(+), CD8α(+), and DN iNKT cells can differentially promote and regulate the induction of Ab and T cell responses by B cells.
Collapse
Affiliation(s)
- Shijuan Grace Zeng
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Nur H, Fostier K, Aspeslagh S, Renmans W, Bertrand E, Leleu X, Favreau M, Breckpot K, Schots R, De Waele M, Van Valckenborgh E, De Bruyne E, Facon T, Elewaut D, Vanderkerken K, Menu E. Preclinical evaluation of invariant natural killer T cells in the 5T33 multiple myeloma model. PLoS One 2013; 8:e65075. [PMID: 23741460 PMCID: PMC3669090 DOI: 10.1371/journal.pone.0065075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/21/2013] [Indexed: 11/27/2022] Open
Abstract
Immunomodulators have been used in recent years to reactivate host anti-tumor immunity in several hematological malignancies. This report describes the effect of activating natural killer T (NKT) cells by α-Galactosylceramide (α-GalCer) in the 5T33MM model of multiple myeloma (MM). NKT cells are T lymphocytes, co-expressing T and NK receptors, while invariant NKT cells (iNKTs) also express a unique semi-invariant TCR α-chain. We followed iNKT numbers during the development of the disease in both 5T33MM mice and MM patients and found that their numbers dropped dramatically at the end stage of the disease, leading to a loss of total IFN-γ secretion. We furthermore observed that α-GalCer treatment significantly increased the survival of 5T33MM diseased mice. Taken together, our data demonstrate for the first time the possibility of using a preclinical murine MM model to study the effects of α-GalCer and show promising results of α-GalCer treatment in a low tumor burden setting.
Collapse
Affiliation(s)
- Haneen Nur
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Biology, Faculty of Science and Technology, Hebron University, Hebron, Palestine
| | - Karel Fostier
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sandrine Aspeslagh
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University, Ghent, Belgium
| | - Wim Renmans
- Department of Laboratory Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - Xavier Leleu
- Service des maladies du sang, Hôpital Huriez, CHRU, Lille, France
| | - Mérédis Favreau
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University, Ghent, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rik Schots
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Marc De Waele
- Department of Laboratory Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Thierry Facon
- Service des maladies du sang, Hôpital Huriez, CHRU, Lille, France
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University, Ghent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- * E-mail:
| |
Collapse
|
145
|
Abstract
CD1d-restricted natural killer T (NKT) cells are a distinct subset of T cells that rapidly produce an array of cytokines on activation and play a critical role in regulating various immune responses. NKT cells are classified into 2 groups based on differences in T-cell receptor usage. Type I NKT cells have an invariant T-cell receptor α-chain and are readily detectable by α-galactosylceramide (α-GalCer)-loaded CD1d tetramers. Type II NKT cells have a more diverse T-cell receptor repertoire and cannot be directly identified. Both types of NKT cells and multiple CD1d-expressing cell types are present in the intestine, and their interactions are likely to be modulated by pathogenic and commensal microbes, which in turn contribute to the intestinal immune responses in health and disease. Indeed, in several animal models of inflammatory bowel disease, type I NKT cells have been shown to make both protective and pathogenic contributions to disease. In contrast, in patients with ulcerative colitis, and a mouse model in which both CD1d expression and the frequency of type II NKT cells are increased, type II NKT cells seem to promote intestinal inflammation. In this review, we summarize the present knowledge on the antigen recognition, activation, and function of NKT cells with a particular focus on their role in inflammatory bowel disease and discuss factors that may influence the functional outcome of NKT cell responses in intestinal inflammation.
Collapse
|
146
|
Gilchuk P, Spencer CT, Conant SB, Hill T, Gray JJ, Niu X, Zheng M, Erickson JJ, Boyd KL, McAfee KJ, Oseroff C, Hadrup SR, Bennink JR, Hildebrand W, Edwards KM, Crowe JE, Williams JV, Buus S, Sette A, Schumacher TNM, Link AJ, Joyce S. Discovering naturally processed antigenic determinants that confer protective T cell immunity. J Clin Invest 2013; 123:1976-87. [PMID: 23543059 DOI: 10.1172/jci67388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/07/2013] [Indexed: 12/15/2022] Open
Abstract
CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection - information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I-transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Wang XF, Lei Y, Chen M, Chen CB, Ren H, Shi TD. PD-1/PDL1 and CD28/CD80 pathways modulate natural killer T cell function to inhibit hepatitis B virus replication. J Viral Hepat 2013; 20 Suppl 1:27-39. [PMID: 23458522 DOI: 10.1111/jvh.12061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 12/08/2012] [Indexed: 12/31/2022]
Abstract
α-Galactosylceramide (α-GalCer)-activated natural killer T (NKT) cells have antiviral properties against hepatitis B virus (HBV). However, α-GalCer activation of NKT cells can induce anergy. We hypothesized that this effect may be overcome by a treatment strategy that includes manipulation of CD28/CD80 costimulatory and PD-1/PDL1 coinhibitory signals of NKT cells, thereby enhancing the anti-HBV effect of α-GalCer. We established a transgenic mouse model of chronic HBV infection and investigated hepatic NKT cell frequencies, functions and expression of immunomodulatory factors. Our results showed that compared with uninfected control mice, hepatic NKT cells from HBV transgenic mice displayed lower frequencies (7.91% vs 16.74%, P < 0.05), impaired capabilities to produce interferon (IFN)-γ (5.6% vs 1.4%, P < 0.05) and interleukin (IL)-4 (6.8% vs 0.3%, P < 0.05), higher expression of PD-1 (9.64% vs 6.36%, P < 0.05) and lower expression of CD28 (5.05% vs 28.88%, P < 0.05). However, when hepatic mononuclear cells (MNCs) were isolated from HBV transgenic mice, α-GalCer exposure in culture remarkably upregulated both PD-1(+) NKT cells (P < 0.05) and CD28(+) NKT cells (P < 0.05). Furthermore, when HBV transgenic mice were treated with combination therapies consisting of α-GalCer and anti-PDL1 monoclonal antibody (mAb) and/or anti-CD80/anti-CD28 mAbs, IFN-γ(+) NKT cell frequency was selectively increased (P < 0.05) and HBV replication was suppressed; these effects were accompanied by varying degrees and types of liver damage. Surprisingly, activating CD28/CD80 signal in HBV transgenic mice was more effective but caused less liver injury than blocking PD-1/PDL1 signal in modulating αGalCer-activated NKT cell function to inhibit HBV infection. Our findings also show that combined therapy with blocking PD-1/PDL1 and activating CD28/CD80 signal in the presence of aGalCer cannot superimpose the effect of antivirus. α-GalCer combination therapy that modulates the CD28/CD80 pathways of NKT cells may represent a promising approach to inhibit HBV replication in chronically infected patients.
Collapse
Affiliation(s)
- X F Wang
- Institute of Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Second Affiliated Hospital, Chongqing, China
| | | | | | | | | | | |
Collapse
|
148
|
Lariou MS, Dikalioti SK, Dessypris N, Baka M, Polychronopoulou S, Athanasiadou-Piperopoulou F, Kalmanti M, Fragandrea I, Moschovi M, Germenis AE, Petridou ET. Allergy and risk of acute lymphoblastic leukemia among children: a nationwide case control study in Greece. Cancer Epidemiol 2013; 37:146-151. [PMID: 23182223 DOI: 10.1016/j.canep.2012.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND Several reports point to inverse associations between allergies and ALL; yet, no study has explored this link using both self-reported-data on allergic history and biomarkers of atopic sensitization. METHODS Clinical information for the variables of interest was available for 252 out of 292 cases of childhood (0-14 years) ALL, newly diagnosed across Greece over a 4.5 year period as well as for 294 hospital controls. Allergen-specific-IgEs, as markers of allergic predisposition, against 24 most prevalent respiratory and food allergens, were determined, using an enzyme immunoassay procedure for 199 children with ALL and 113 controls. Cases were compared with controls through frequency distributions and unconditional multiple logistic regression models to estimate odds ratios (ORs) and 95% confidence-intervals (CIs) regarding associations of allergy with childhood ALL. RESULTS Self-reported-allergic history overall (OR: 0.49, 95% CI: 0.34-0.72) and practically each one of its main components (respiratory, food, any other clinical allergy) were strongly and inversely associated with ALL. Likewise, the serum IgE inverse association was of the same magnitude (OR: 0.43, 95% CI: 0.22-0.84) mainly contributed by food IgE (OR: 0.39, 95% CI: 0.18-0.83). CONCLUSION Beyond the already established inverse association of allergic history with childhood ALL, a same magnitude association is evident when serologic markers of allergic predisposition are used as an alternative measure of allergy. Further research with more appropriate study designs is needed to better understand possible associations between prior allergy and childhood ALL risk.
Collapse
Affiliation(s)
- Maria-Stella Lariou
- Department of Hygiene, Epidemiology and Medical Statistics, Athens University Medical School, 11527 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Lack of PD-L1 expression by iNKT cells improves the course of influenza A infection. PLoS One 2013; 8:e59599. [PMID: 23555047 PMCID: PMC3598698 DOI: 10.1371/journal.pone.0059599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 02/19/2013] [Indexed: 01/12/2023] Open
Abstract
There is evidence indicating that invariant Natural Killer T (iNKT) cells play an important role in defense against influenza A virus (IAV). However, the effect of inhibitory receptor, programmed death-1 (PD-1), and its ligands, programmed death ligand (PD-L) 1 and 2 on iNKT cells in protection against IAV remains to be elucidated. Here we investigated the effects of these co-stimulatory molecules on iNKT cells in the response to influenza. We discovered that compare to the wild type, PD-L1 deficient mice show reduced sensitivity to IAV infection as evident by reduced weight loss, decreased pulmonary inflammation and cellular infiltration. In contrast, PD-L2 deficient mice showed augmented weight loss, pulmonary inflammation and cellular infiltration compare to the wild type mice after influenza infection. Adoptive transfer of iNKT cells from wild type, PD-L1 or PD-L2 deficient mice into iNKT cell deficient mice recapitulated these findings. Interestingly, in our transfer system PD-L1−/−-derived iNKT cells produced high levels of interferon-gamma whereas PD-L2−/−-derived iNKT cells produced high amounts of interleukin-4 and 13 suggesting a role for these cytokines in sensitivity to influenza. We identified that PD-L1 negatively regulates the frequency of iNKT cell subsets in the lungs of IAV infected mice. Altogether, these results demonstrate that lack of PD-L1 expression by iNKT cells reduces the sensitivity to IAV and that the presence of PD-L2 is important for dampening the deleterious inflammatory responses after IAV infection. Our findings potentially have clinical implications for developing new therapies for influenza.
Collapse
|
150
|
Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013; 13:101-17. [PMID: 23334244 DOI: 10.1038/nri3369] [Citation(s) in RCA: 647] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invariant natural killer T (iNKT) cells exist in a 'poised effector' state, which enables them to rapidly produce cytokines following activation. Using a nearly monospecific T cell receptor, they recognize self and foreign lipid antigens presented by CD1d in a conserved manner, but their activation can catalyse a spectrum of polarized immune responses. In this Review, we discuss recent advances in our understanding of the innate-like mechanisms underlying iNKT cell activation and describe how lipid antigens, the inflammatory milieu and interactions with other immune cell subsets regulate the functions of iNKT cells in health and disease.
Collapse
Affiliation(s)
- Patrick J Brennan
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|