101
|
Yang C, Zhang X. Research progress on vesicular trafficking in amyotrophic lateral sclerosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:380-387. [PMID: 36161717 PMCID: PMC9511476 DOI: 10.3724/zdxbyxb-2022-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
Vesicular trafficking is a basic physiological process by which vesicles transport materials between cells and environment (intercellular transport) and between different cellular compartments (intracellular trafficking). In recent years, more and more evidences have suggested that vesicular trafficking dysfunction plays a key role in pathogenesis of neurodegenerative diseases. Abnormal vesicular trafficking promotes the propagation of misfolded proteins by mechanisms involving endocytosis, endosomal-lysosomal pathway, endosomal escape and exosome release, leading to further acceleration of disease progression. Amyotrophic lateral sclerosis (ALS), as a neurodegenerative disease, is characterized by the selective death of upper and lower motor neurons. A variety of causative genes for ALS have been implicated in vesicle trafficking dysfunction, such as C9ORF72, TARDBP and SOD1. Therefore, the aggregation and propagation of misfolded proteins may be prevented through regulation of vesicle trafficking-related proteins, thus delay the progression of ALS. A more in-depth understanding of vesicular trafficking in ALS will be helpful in revealing the mechanism and clinical treatment of ALS. This review focuses on molecular mechanisms of vesicular trafficking in ALS, to provide reference for exploring new therapeutic strategies.
Collapse
|
102
|
dong Y, li F, lv Z, li S, yuan M, song N, liu J, Yang D. Lysosome Interference Enabled by Proton‐Driven Dynamic Assembly of DNA Nanoframework inside Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- yuhang dong
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - feng li
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - zhaoyue lv
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - shuai li
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - meihe yuan
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - nachuan song
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - jinqiao liu
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Dayong Yang
- Tianjin University Chemistry Department Room 328, Building 54 300350 Tianjin CHINA
| |
Collapse
|
103
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
104
|
Sattar R, Shahzad F, Ishaq T, Mukhtar R, Naz A. Nano‐Drug Carriers: A Potential Approach towards Drug Delivery Methods. ChemistrySelect 2022. [DOI: 10.1002/slct.202200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rabia Sattar
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Faisal Shahzad
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Tehmeena Ishaq
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Rubina Mukhtar
- Department of Chemistry The University of Lahore Sargodha Campus 40100 Sargodha Pakistan
| | - Asima Naz
- Department of Chemistry Mirpur University of Science & Technology (MUST) 10250 Mirpur, Azad Jammu & Kashmir Pakistan
| |
Collapse
|
105
|
AR independent anticancer potential of enza against prostate cancer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
106
|
Snead AM, Gowrishankar S. Loss of MAPK8IP3 Affects Endocytosis in Neurons. Front Cell Neurosci 2022; 16:828071. [PMID: 35711470 PMCID: PMC9196590 DOI: 10.3389/fncel.2022.828071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Perturbations in endo-lysosomal trafficking pathways are linked to many neurodevelopmental and neurodegenerative diseases. Of relevance to our current study, MAPK8IP3/JIP3, a brain enriched putative adaptor between lysosomes and motors has been previously implicated as a key regulator of axonal lysosome transport. Since de novo variants in MAPK8IP3 have recently been linked to a neurodevelopmental disorder with intellectual disability, there is a need to better understand the functioning of this protein in human neurons. To this end, using induced neurons (i3Neurons) derived from human iPSCs lacking MAPK8IP3, we demonstrate that loss of hMAPK8IP3 affects endocytic uptake in neurons but does not affect the proteolytic activity of lysosomes in neuronal cell bodies. Our findings indicate that MAPK8IP3 may be a regulator of bulk endocytosis in neurons and that altered endocytic uptake may play a role in MAPK8IP3-linked neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
107
|
Meng D, Yang Q, Jeong MH, Curukovic A, Tiwary S, Melick CH, Lama-Sherpa TD, Wang H, Huerta-Rosario M, Urquhart G, Zacharias LG, Lewis C, DeBerardinis RJ, Jewell JL. SNAT7 regulates mTORC1 via macropinocytosis. Proc Natl Acad Sci U S A 2022; 119:e2123261119. [PMID: 35561222 PMCID: PMC9171778 DOI: 10.1073/pnas.2123261119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.
Collapse
Affiliation(s)
- Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qianmei Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mi-Hyeon Jeong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adna Curukovic
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Shweta Tiwary
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tshering D. Lama-Sherpa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Huanyu Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mariela Huerta-Rosario
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Greg Urquhart
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lauren G. Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ralph J. DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
108
|
Ansari I, Basak R, Mukhopadhyay A. Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens 2022; 11:585. [PMID: 35631106 PMCID: PMC9143042 DOI: 10.3390/pathogens11050585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Leishmania species are causative agents of human leishmaniasis, affecting 12 million people annually. Drugs available for leishmaniasis are toxic, and no vaccine is available. Thus, the major thrust is to identify new therapeutic targets. Leishmania is an auxotroph for heme and must acquire heme from the host for its survival. Thus, the major focus has been to understand the heme acquisition process by the parasites in the last few decades. It is conceivable that the parasite is possibly obtaining heme from host hemoprotein, as free heme is not available in the host. Current understanding indicates that Leishmania internalizes hemoglobin (Hb) through a specific receptor by a clathrin-mediated endocytic process and targets it to the parasite lysosomes via the Rab5 and Rab7 regulated endocytic pathway, where it is degraded to generate intracellular heme that is used by the parasite. Subsequently, intra-lysosomal heme is initially transported to the cytosol and is finally delivered to the mitochondria via different heme transporters. Studies using different null mutant parasites showed that these receptors and transporters are essential for the survival of the parasite. Thus, the heme acquisition process in Leishmania may be exploited for the development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; (I.A.); (R.B.)
| |
Collapse
|
109
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
110
|
Zhang J, Yin X, Li C, Yin X, Xue Q, Ding L, Ju J, Ma J, Zhu Y, Du D, Reis RL, Wang Y. A Multifunctional Photoacoustic/Fluorescence Dual-Mode-Imaging Gold-Based Theranostic Nanoformulation without External Laser Limitations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110690. [PMID: 35275432 DOI: 10.1002/adma.202110690] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Theranostics is a new type of biomedical technology that organically combines the diagnosis and therapy of diseases. Among molecular imaging techniques, the integration of photoacoustic (PA) and fluorescence (FL) imaging modes with high sensitivity and imaging depth provides precise diagnostic outcomes. Gold nanorods (Au NRs) are well-known contrast agents for PA imaging and photothermal therapy. However, their high toxicity, poor biocompatibility, rapid clearance, and the need for an external laser source limit their application. Therefore, modification of Au NRs with carbon-based nanomaterials (CBNs) is done to obtain a multifunctional dual-mode gold-based nanoformulation (mdGC), which preforms dual-mode imaging of PA and FL. The results show that mdGC promotes tumor cell apoptosis and exhibits good antitumor performance through the mitochondria-mediated apoptotic pathway by increasing the production of intracellular reactive oxygen species, reducing mitochondrial membrane potential, and regulating the expression of apoptosis-related genes. The targeting rate of mdGC to tumor tissue is up to 20.71 ± 1.94% ID g-1 ; the tumor growth inhibition rate is as high as 80.44% without external laser sources. In general, mdGC is a potential multifunctional diagnostic and therapy integrated nanoformulation.
Collapse
Affiliation(s)
- Junfeng Zhang
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaofeng Yin
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chenchen Li
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Qianghua Xue
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiale Ju
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jifei Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 200444, P. R. China
| | - Ying Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 200444, P. R. China
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- 3B's Research Group, I3Bs - Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, 4805-017, Portugal
| | - Yanli Wang
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
111
|
Ginini L, Billan S, Fridman E, Gil Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells 2022; 11:1375. [PMID: 35563681 PMCID: PMC9101098 DOI: 10.3390/cells11091375] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogamous lipid bilayer-enclosed membranous structures secreted by cells. They are comprised of apoptotic bodies, microvesicles, and exosomes, and carry a range of nucleic acids and proteins that are necessary for cell-to-cell communication via interaction on the cells surface. They initiate intracellular signaling pathways or the transference of cargo molecules, which elicit pleiotropic responses in recipient cells in physiological processes, as well as pathological processes, such as cancer. It is therefore important to understand the molecular means by which EVs are taken up into cells. Accordingly, this review summarizes the underlying mechanisms involved in EV targeting and uptake. The primary method of entry by EVs appears to be endocytosis, where clathrin-mediated, caveolae-dependent, macropinocytotic, phagocytotic, and lipid raft-mediated uptake have been variously described as being prevalent. EV uptake mechanisms may depend on proteins and lipids found on the surfaces of both vesicles and target cells. As EVs have been shown to contribute to cancer growth and progression, further exploration and targeting of the gateways utilized by EVs to internalize into tumor cells may assist in the prevention or deceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Salem Billan
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
- Medical Oncology and Radiation Therapy Program, Oncology Section, Rambam Health Care Campus, HaAliya HaShniya Street 8, Haifa 3109601, Israel
| | - Eran Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
| |
Collapse
|
112
|
Francia V, Reker-Smit C, Salvati A. Mechanisms of Uptake and Membrane Curvature Generation for the Internalization of Silica Nanoparticles by Cells. NANO LETTERS 2022; 22:3118-3124. [PMID: 35377663 PMCID: PMC9011393 DOI: 10.1021/acs.nanolett.2c00537] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Indexed: 06/01/2023]
Abstract
Nanosized drug carriers enter cells via active mechanisms of endocytosis but the pathways involved are often not clarified. Cells possess several mechanisms to generate membrane curvature during uptake. However, the mechanisms of membrane curvature generation for nanoparticle uptake have not been explored so far. Here, we combined different methods to characterize how silica nanoparticles with a human serum corona enter cells. In these conditions, silica nanoparticles are internalized via the LDL receptor (LDLR). We demonstrate that despite the interaction with LDLR, uptake is not clathrin-mediated, as usually observed for this receptor. Additionally, silencing the expression of different proteins involved in clathrin-independent mechanisms and several BAR-domain proteins known to generate membrane curvature strongly reduces nanoparticle uptake. Thus, nanosized objects targeted to specific receptors, such as here LDLR, can enter cells via different mechanisms than their endogenous ligands. Additionally, nanoparticles may trigger alternative mechanisms of membrane curvature generation for their internalization.
Collapse
|
113
|
da Silva RAG, Tay WH, Ho FK, Tanoto FR, Chong KKL, Choo PY, Ludwig A, Kline KA. Enterococcus faecalis alters endo-lysosomal trafficking to replicate and persist within mammalian cells. PLoS Pathog 2022; 18:e1010434. [PMID: 35390107 PMCID: PMC9017951 DOI: 10.1371/journal.ppat.1010434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/19/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is a frequent opportunistic pathogen of wounds, whose infections are associated with biofilm formation, persistence, and recalcitrance toward treatment. We have previously shown that E. faecalis wound infection persists for at least 7 days. Here we report that viable E. faecalis are present within both immune and non-immune cells at the wound site up to 5 days after infection, raising the prospect that intracellular persistence contributes to chronic E. faecalis infection. Using in vitro keratinocyte and macrophage infection models, we show that E. faecalis becomes internalized and a subpopulation of bacteria can survive and replicate intracellularly. E. faecalis are internalized into keratinocytes primarily via macropinocytosis into single membrane-bound compartments and can persist in late endosomes up to 24 h after infection in the absence of colocalization with the lysosomal protease Cathepsin D or apparent fusion with the lysosome, suggesting that E. faecalis blocks endosomal maturation. Indeed, intracellular E. faecalis infection results in heterotypic intracellular trafficking with partial or absent labelling of E. faecalis-containing compartments with Rab5 and Rab7, small GTPases required for the endosome-lysosome trafficking. In addition, E. faecalis infection results in marked reduction of Rab5 and Rab7 protein levels which may also contribute to attenuated Rab incorporation into E. faecalis-containing compartments. Finally, we demonstrate that intracellular E. faecalis derived from infected keratinocytes are significantly more efficient in reinfecting new keratinocytes. Together, these data suggest that intracellular proliferation of E. faecalis may contribute to its persistence in the face of a robust immune response, providing a primed reservoir of bacteria for subsequent reinfection.
Collapse
Affiliation(s)
- Ronni A. G. da Silva
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Frederick Reinhart Tanoto
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
114
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
115
|
Al-Harthi HF, Baker A, Elgorban AM, Bahkali AH, Shaikh AM, Kovács B, Khan MS, Syed A. Novel Bioengineered Antibacterial and Anticancer ZnO Nanoparticles. J Biomed Nanotechnol 2022; 18:1106-1120. [PMID: 35854447 DOI: 10.1166/jbn.2022.3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transition metal oxide NPs have delivered wide applications in various fields. Therefore, in this study, a novel fungus, Alternaria sp. (NCBI Accession No: MT982648) was isolated and characterized from the vicinity of medicinal plants. Eventually, in this method extracted proteins from isolated fungus were utilized to synthesize highly biocompatible zinc nanoparticles (ZnO NPs). The various physical techniques including UV-visible spectroscopy, TEM, HR-TEM, XRD, DLS, zeta potential, and FTIR were used to characterize particles. The UV-visible absorption (λMax) and binding energy for the as-synthesized particles were found to be 329 nm and 3.91 eV, respectively. Further, the polydispersed particles were revealed to have regular crystallinity with hexagonal wurtzite phase of ZnO with the spacing of ~2.46 Å under XRD and HR-TEM. The average size of a particle under TEM was found to be ~18 nm. The evaluation of various surface functional groups of particles was done by FTIR. The average hydrodynamic diameter of particles was found to be ~57 d. nm with 0.44 particle distribution index whereas the nanoemulsion stability was explained by Zeta potential (-9.47 mV). These particles were found to exhibit potential antibacterial and anticancer activities. They were found to be bactericidal against S. abony (MIC 5.73 μg/mL); B. pumilis (MIC 6.64 μg/mL); K. pneumonia (MIC 14.4 μg/mL); E. coli (MIC 8.7 μg/mL); B. subtilis (MIC 5.63 μg/mL) and S. aureus (MIC 12.04 μg/mL). Further, they are also found to be concentration-dependent anticancer and inhibited the growth of A549 cells (IC50-65.3 μg/mL) whereas they were found to demonstrate no any cytotoxicity against NRK normal kidney cell line. The internalization of particles into the nucleus (i.e., nuclear fragmentation and DNA damage) was confirmed by DAPI staining. The intracellular particles were found to generate excessive ROS. Further, the anticancer potential was also estimated by noticing a hike in oxidative stress parameters, cell viability, cell morphology, and change in mitochondrial membrane potential. We effectively synthesized potentially potent antibacterial and anticancer novel bioengineered ZnO NPs.
Collapse
Affiliation(s)
- Helal F Al-Harthi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ayaz Mukarram Shaikh
- Institute of Food Science, University of Debrecen, Boszormeny str. 138, 4032, Hungary
| | - Béla Kovács
- Institute of Food Science, University of Debrecen, Boszormeny str. 138, 4032, Hungary
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
116
|
Petroušková P, Hudáková N, Maloveská M, Humeník F, Cizkova D. Non-Exosomal and Exosome-Derived miRNAs as Promising Biomarkers in Canine Mammary Cancer. Life (Basel) 2022; 12:life12040524. [PMID: 35455015 PMCID: PMC9032658 DOI: 10.3390/life12040524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Canine mammary cancer (CMC), similar to human breast cancer (HBC) in many aspects, is the most common neoplasm associated with significant mortality in female dogs. Due to the limited therapy options, biomarkers are highly desirable for early clinical diagnosis or cancer progression monitoring. Since the discovery of microRNAs (miRNAs or miRs) as post-transcriptional gene regulators, they have become attractive biomarkers in oncological research. Except for intracellular miRNAs and cell-free miRNAs, exosome-derived miRNAs (exomiRs) have drawn much attention in recent years as biomarkers for cancer detection. Analysis of exosomes represents a non-invasive, pain-free, time- and money-saving alternative to conventional tissue biopsy. The purpose of this review is to provide a summary of miRNAs that come from non-exosomal sources (canine mammary tumor, mammary tumor cell lines or canine blood serum) and from exosomes as promising biomarkers of CMC based on the current literature. As is discussed, some of the miRNAs postulated as diagnostic or prognostic biomarkers in CMC were also altered in HBC (such as miR-21, miR-29b, miR-141, miR-429, miR-200c, miR-497, miR-210, miR-96, miR-18a, miR19b, miR-20b, miR-93, miR-101, miR-105a, miR-130a, miR-200c, miR-340, miR-486), which may be considered as potential disease-specific biomarkers in both CMC and HBC.
Collapse
Affiliation(s)
- Patrícia Petroušková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Nikola Hudáková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Marcela Maloveská
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Filip Humeník
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 10 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-918-752-157
| |
Collapse
|
117
|
Zhou Q, Li J, Ge C, Chen J, Tian W, Tian H. SNX5 suppresses clear cell renal cell carcinoma progression by inducing CD44 internalization and epithelial-to-mesenchymal transition. Mol Ther Oncolytics 2022; 24:87-100. [PMID: 35024436 PMCID: PMC8717386 DOI: 10.1016/j.omto.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/04/2021] [Indexed: 01/06/2023] Open
Abstract
Aberrant expression of SNX5 can contribute to tumorigenesis, invasion, and metastasis of several human cancers. However, the clinicopathological and biological significance of SNX5 in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, we found that SNX5 expression was downregulated and negatively correlated with tumor size, American Joint Committee on Cancer stage, tumor thrombus of inferior vena cava, and poor prognosis in human ccRCC. Ectopic expression of SNX5 inhibited ccRCC cell proliferation and metastasis, whereas knockdown of SNX5 increased these activities both in vitro and in vivo. Mechanistically, overexpression of SNX5 blocked internalization and intracellular trafficking of CD44 in ccRCC cells. Knockdown of SNX5 was associated with epithelial-to-mesenchymal transition (EMT) in ccRCC cells. Overexpression of SNX5 inhibited TGF-β-induced migration, invasion, and EMT in ccRCC cells. KLF9 directly bound to the SNX5 promoter and increased SNX5 transcription. Moreover, we found that the combination of SNX5 and CD44 or E-cadherin or KLF9 was a more powerful predictor of poor prognosis than either parameter alone. Collectively, our data reveal a mechanism that KLF9-mediated SNX5 expression was associated with poor prognosis via trafficking of CD44 and promoting EMT in ccRCC. SNX5 may be a potential prognostic biomarker and therapeutic target for patients with ccRCC.
Collapse
Affiliation(s)
- Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsi Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
118
|
Internalization of Polymeric Bacterial Peptidoglycan Occurs through Either Actin or Dynamin Dependent Pathways. Microorganisms 2022; 10:microorganisms10030552. [PMID: 35336127 PMCID: PMC8951193 DOI: 10.3390/microorganisms10030552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Peptidoglycan (PGN), a polymeric glycan macromolecule, is a major constituent of the bacterial cell wall and a conserved pathogen-associated molecular pattern (PAMP) that triggers immune responses through cytosolic sensors. Immune cells encounter both PGN polymers and hydrolyzed muropeptides during infections, and primary human innate immune cells respond better to polymeric PGN than the minimal bioactive subunit muramyl dipeptide (MDP). While MDP is internalized through macropinocytosis and/or clathrin-mediated endocytosis, the internalization of particulate polymeric PGN is unresolved. We show here that PGN macromolecules isolated from Bacillus anthracis display a broad range of sizes, making them amenable for multiple internalization pathways. Pharmacologic inhibition indicates that PGN primarily, but not exclusively, is internalized by actin-dependent endocytosis. An alternate clathrin-independent but dynamin dependent pathway supports 20–30% of PGN uptake. In primary monocytes, this alternate pathway does not require activities of RhoA, Cdc42 or Arf6 small GTPases. Selective inhibition of PGN uptake shows that phagolysosomal trafficking, processing and downstream immune responses are drastically affected by actin depolymerization, while dynamin inhibition has a smaller effect. Overall, we show that polymeric PGN internalization occurs through two endocytic pathways with distinct potentials to trigger immune responses.
Collapse
|
119
|
Multifunctional building elements for the construction of peptide drug conjugates. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
120
|
Chen GH, Song CC, Zhao T, Hogstrand C, Wei XL, Lv WH, Song YF, Luo Z. Mitochondria-Dependent Oxidative Stress Mediates ZnO Nanoparticle (ZnO NP)-Induced Mitophagy and Lipotoxicity in Freshwater Teleost Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2407-2420. [PMID: 35107266 DOI: 10.1021/acs.est.1c07198] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to many special characteristics, zinc oxide nanoparticles (ZnO NPs) are widely used all over the world, leading to their wide distribution in the environment. However, the toxicities and mechanisms of environmental ZnO NP-induced changes of physiological processes and metabolism remain largely unknown. Here, we found that addition of dietary ZnO NPs disturbed hepatic Zn metabolism, increased hepatic Zn and lipid accumulation, downregulated lipolysis, induced oxidative stress, and activated mitophagy; N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, Zn2+ ions chelator) alleviated high ZnO NP-induced Zn and lipid accumulation, oxidative stress, and mitophagy. Mechanistically, the suppression of mitochondrial oxidative stress attenuated ZnO NP-activated mitophagy and ZnO NP-induced lipotoxicity. Taken together, our study elucidated that mitochondrial oxidative stress mediated ZnO NP-induced mitophagy and lipotoxicity; ZnO NPs could be dissociated to free Zn2+ ions, which partially contributed to ZnO NP-induced changes in oxidative stress, mitophagy, and lipid metabolism. Our study provides novel insights into the impacts and mechanism of ZnO NPs as harmful substances inducing lipotoxicity of aquatic organisms, and accordingly, metabolism-relevant parameters will be useful for the risk assessment of nanoparticle materials in the environment.
Collapse
Affiliation(s)
- Guang-Hui Chen
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London WC2R 2LS, U.K
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
121
|
Xing Y, Sun X, Dou Y, Wang M, Zhao Y, Yang Q, Zhao Y. The Immuno-Modulation Effect of Macrophage-Derived Extracellular Vesicles in Chronic Inflammatory Diseases. Front Immunol 2022; 12:785728. [PMID: 34975877 PMCID: PMC8716390 DOI: 10.3389/fimmu.2021.785728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
As natural nanocarriers and intercellular messengers, extracellular vesicles (EVs) control communication among cells. Under physiological and pathological conditions, EVs deliver generic information including proteins and nucleic acids to recipient cells and exert regulatory effects. Macrophages help mediate immune responses, and macrophage-derived EVs may play immunomodulatory roles in the progression of chronic inflammatory diseases. Furthermore, EVs derived from various macrophage phenotypes have different biological functions. In this review, we describe the pathophysiological significance of macrophage-derived extracellular vesicles in the development of chronic inflammatory diseases, including diabetes, cancer, cardiovascular disease, pulmonary disease, and gastrointestinal disease, and the potential applications of these EVs.
Collapse
Affiliation(s)
- Yi Xing
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Min Wang
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yanhong Zhao
- Department of Orthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
122
|
Nazere K, Takahashi T, Hara N, Muguruma K, Nakamori M, Yamazaki Y, Morino H, Maruyama H. Amyloid Beta Is Internalized via Macropinocytosis, an HSPG- and Lipid Raft-Dependent and Rac1-Mediated Process. Front Mol Neurosci 2022; 15:804702. [PMID: 36187354 PMCID: PMC9524458 DOI: 10.3389/fnmol.2022.804702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Intracellular amyloid β peptide (Aβ) accumulation has drawn attention in relation to the pathophysiology of Alzheimer’s disease in addition to its extracellular deposition as senile plaque. Cellular uptake of extracellular Aβ is one of the possible mechanisms by which intracellular Aβ deposits form. Given the relevance of Aβ inside cells, it is important to understand the mechanism by which it is taken up by them. In this study, we elucidated that Neuro2A and SH-SY5Y cells internalize specifically oligomerized Aβ in a time- and dose-dependent manner. The depletion of plasma membrane cholesterol with methyl-β-cyclodextrin or treatment with trypsin diminished the internalization of oAβ, suggesting that the oAβ uptake might be both a lipid raft-dependent and heparan sulfate proteoglycan-mediated process. Treatment with a macropinocytosis inhibitor (ethylisopropyl amiloride and wortmannin) also drastically reduced the uptake of oligomer-Aβ (oAβ). oAβ-treated cells exhibited an increase in Rac1 activity, indicating that macropinocytosis induced by oAβ is regulated by these small GTPases. These findings suggest that macropinocytosis is a major endocytic route through which oAβ42 enters cells.
Collapse
Affiliation(s)
- Keyoumu Nazere
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
- *Correspondence: Tetsuya Takahashi
| | - Naoyuki Hara
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuki Muguruma
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
123
|
Anastasiadis SH, Chrissopoulou K, Stratakis E, Kavatzikidou P, Kaklamani G, Ranella A. How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:552. [PMID: 35159897 PMCID: PMC8840392 DOI: 10.3390/nano12030552] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
The growth in novel synthesis methods and in the range of possible applications has led to the development of a large variety of manufactured nanomaterials (MNMs), which can, in principle, come into close contact with humans and be dispersed in the environment. The nanomaterials interact with the surrounding environment, this being either the proteins and/or cells in a biological medium or the matrix constituent in a dispersion or composite, and an interface is formed whose properties depend on the physicochemical interactions and on colloidal forces. The development of predictive relationships between the characteristics of individual MNMs and their potential practical use critically depends on how the key parameters of MNMs, such as the size, shape, surface chemistry, surface charge, surface coating, etc., affect the behavior in a test medium. This relationship between the biophysicochemical properties of the MNMs and their practical use is defined as their functionality; understanding this relationship is very important for the safe use of these nanomaterials. In this mini review, we attempt to identify the key parameters of nanomaterials and establish a relationship between these and the main MNM functionalities, which would play an important role in the safe design of MNMs; thus, reducing the possible health and environmental risks early on in the innovation process, when the functionality of a nanomaterial and its toxicity/safety will be taken into account in an integrated way. This review aims to contribute to a decision tree strategy for the optimum design of safe nanomaterials, by going beyond the compromise between functionality and safety.
Collapse
Affiliation(s)
- Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
- Department of Chemistry, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
- Department of Physics, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Paraskevi Kavatzikidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Georgia Kaklamani
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| |
Collapse
|
124
|
Sun Y, Lau SY, Lim ZW, Chang SC, Ghadessy F, Partridge A, Miserez A. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat Chem 2022; 14:274-283. [PMID: 35115657 DOI: 10.1038/s41557-021-00854-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
Biomacromolecules are highly promising therapeutic modalities to treat various diseases. However, they suffer from poor cellular membrane permeability, limiting their access to intracellular targets. Strategies to overcome this challenge often employ nanoscale carriers that can get trapped in endosomal compartments. Here we report conjugated peptides that form pH- and redox-responsive coacervate microdroplets by liquid-liquid phase separation that readily cross the cell membrane. A wide range of macromolecules can be quickly recruited within the microdroplets, including small peptides, enzymes as large as 430 kDa and messenger RNAs (mRNAs). The therapeutic-loaded coacervates bypass classical endocytic pathways to enter the cytosol, where they undergo glutathione-mediated release of payload, the bioactivity of which is retained in the cell, while mRNAs exhibit a high transfection efficiency. These peptide coacervates represent a promising platform for the intracellular delivery of a large palette of macromolecular therapeutics that have potential for treating various pathologies (for example, cancers and metabolic diseases) or as carriers for mRNA-based vaccines.
Collapse
Affiliation(s)
- Yue Sun
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore, Singapore
| | - Sze Yi Lau
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), Neuros/Immunos, Singapore, Singapore
| | - Zhi Wei Lim
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore, Singapore
| | - Shi Chieh Chang
- Translation Medicine Research Centre, MSD International, Singapore, Singapore
| | - Farid Ghadessy
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), Neuros/Immunos, Singapore, Singapore
| | - Anthony Partridge
- Translation Medicine Research Centre, MSD International, Singapore, Singapore
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore, Singapore. .,School of Biological Sciences, NTU, Singapore, Singapore.
| |
Collapse
|
125
|
Xia X, Wang Y, Qin Y, Zhao S, Zheng JC. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res Rev 2022; 74:101558. [PMID: 34990846 DOI: 10.1016/j.arr.2021.101558] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Neurotransmission is the electrical impulse-triggered propagation of signals between neurons or between neurons and other cell types such as skeletal muscle cells. Recent studies point out the involvement of exosomes, a type of small bilipid layer-enclosed extracellular vesicles, in regulating neurotransmission. Through horizontally transferring proteins, lipids, and nucleic acids, exosomes can modulate synaptic activities rapidly by controlling neurotransmitter release or progressively by regulating neural plasticity including synapse formation, neurite growth & removal, and axon guidance & elongation. In this review, we summarize the similarities and differences between exosomes and synaptic vesicles in their biogenesis, contents, and release. We also highlight the recent progress made in demonstrating the biological roles of exosome in regulating neurotransmission, and propose a modified model of neurotransmission, in which exosomes act as novel neurotransmitters. Lastly, we provide a comprehensive discussion of the enlightenment of the current knowledge on neurotransmission to the future directions of exosome research.
Collapse
|
126
|
Zoghebi K, Aliabadi HM, Tiwari RK, Parang K. [(WR) 8WKβA]-Doxorubicin Conjugate: A Delivery System to Overcome Multi-Drug Resistance against Doxorubicin. Cells 2022. [PMID: 35053417 DOI: 10.3390/cells11020301/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Doxorubicin (Dox) is an anthracycline chemotherapeutic agent used to treat breast, leukemia, and lymphoma malignancies. However, cardiotoxicity and inherent acquired resistance are major drawbacks, limiting its clinical application. We have previously shown that cyclic peptide [WR]9 containing alternate tryptophan (W) and arginine (R) residues acts as an efficient molecular transporter. An amphiphilic cyclic peptide containing a lysine (K) residue and alternative W and R was conjugated through a free side chain amino group with Dox via a glutarate linker to afford [(WR)8WKβA]-Dox conjugate. Antiproliferative assays were performed in different cancer cell lines using the conjugate and the corresponding physical mixture of the peptide and Dox to evaluate the effectiveness of synthesized conjugate compared to the parent drug alone. [(WR)8WKβA]-Dox conjugate showed higher antiproliferative activity at 10 µM and 5 µM than Dox alone at 5 μM. The conjugate inhibited the cell viability of ovarian adenocarcinoma (SK-OV-3) by 59% and the triple-negative breast cancer cells MDA-MB-231 and MCF-7 by 71% and 77%, respectively, at a concentration of 5 μM after 72 h of incubation. In contrast, Dox inhibited the proliferation of SK-OV-3, MDA-MB-231, and MCF-7 by 35%, 63%, and 57%, respectively. Furthermore, [(WR)8WKβA]-Dox conjugate (5 µM) inhibited the cell viability of Dox-resistant cells (MES-SA/MX2) by 92%, while the viability of cells incubated with free Dox was only 15% at 5 μM. Confocal microscopy images confirmed the ability of both Dox conjugate and the physical mixture of the peptide with the drug to deliver Dox through an endocytosis-independent pathway, as the uptake was not inhibited in the presence of endocytosis inhibitors. The stability of Dox conjugate was observed at different time intervals using analytical HPLC when the conjugate was incubated with 25% human serum. Half-life (t1/2) for [(WR)8WKβA]-Dox conjugate was (∼6 h), and more than 80% of the conjugate was degraded at 12 h. The release of free Dox was assessed intracellularly using the CCRF-CEM cell line. The experiment demonstrated that approximately 100% of free Dox was released from the conjugate intracellularly within 72 h. These data confirm the ability of the cyclic cell-penetrating peptide containing tryptophan and arginine residues as an efficient tool for delivery of Dox and for overcoming resistance to it.
Collapse
Affiliation(s)
- Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
127
|
Zoghebi K, Aliabadi HM, Tiwari RK, Parang K. [(WR)8WKβA]-Doxorubicin Conjugate: A Delivery System to Overcome Multi-Drug Resistance against Doxorubicin. Cells 2022; 11:cells11020301. [PMID: 35053417 PMCID: PMC8774489 DOI: 10.3390/cells11020301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/02/2023] Open
Abstract
Doxorubicin (Dox) is an anthracycline chemotherapeutic agent used to treat breast, leukemia, and lymphoma malignancies. However, cardiotoxicity and inherent acquired resistance are major drawbacks, limiting its clinical application. We have previously shown that cyclic peptide [WR]9 containing alternate tryptophan (W) and arginine (R) residues acts as an efficient molecular transporter. An amphiphilic cyclic peptide containing a lysine (K) residue and alternative W and R was conjugated through a free side chain amino group with Dox via a glutarate linker to afford [(WR)8WKβA]-Dox conjugate. Antiproliferative assays were performed in different cancer cell lines using the conjugate and the corresponding physical mixture of the peptide and Dox to evaluate the effectiveness of synthesized conjugate compared to the parent drug alone. [(WR)8WKβA]-Dox conjugate showed higher antiproliferative activity at 10 µM and 5 µM than Dox alone at 5 μM. The conjugate inhibited the cell viability of ovarian adenocarcinoma (SK-OV-3) by 59% and the triple-negative breast cancer cells MDA-MB-231 and MCF-7 by 71% and 77%, respectively, at a concentration of 5 μM after 72 h of incubation. In contrast, Dox inhibited the proliferation of SK-OV-3, MDA-MB-231, and MCF-7 by 35%, 63%, and 57%, respectively. Furthermore, [(WR)8WKβA]-Dox conjugate (5 µM) inhibited the cell viability of Dox-resistant cells (MES-SA/MX2) by 92%, while the viability of cells incubated with free Dox was only 15% at 5 μM. Confocal microscopy images confirmed the ability of both Dox conjugate and the physical mixture of the peptide with the drug to deliver Dox through an endocytosis-independent pathway, as the uptake was not inhibited in the presence of endocytosis inhibitors. The stability of Dox conjugate was observed at different time intervals using analytical HPLC when the conjugate was incubated with 25% human serum. Half-life (t1/2) for [(WR)8WKβA]-Dox conjugate was (∼6 h), and more than 80% of the conjugate was degraded at 12 h. The release of free Dox was assessed intracellularly using the CCRF-CEM cell line. The experiment demonstrated that approximately 100% of free Dox was released from the conjugate intracellularly within 72 h. These data confirm the ability of the cyclic cell-penetrating peptide containing tryptophan and arginine residues as an efficient tool for delivery of Dox and for overcoming resistance to it.
Collapse
Affiliation(s)
- Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (K.Z.); (H.M.A.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (K.Z.); (H.M.A.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (K.Z.); (H.M.A.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (K.Z.); (H.M.A.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| |
Collapse
|
128
|
Sphingomyelin-Sequestered Cholesterol Domain Recruits Formin-Binding Protein 17 for Constricting Clathrin-Coated Pits in Influenza Virus Entry. J Virol 2022; 96:e0181321. [PMID: 35020471 DOI: 10.1128/jvi.01813-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that the sphingomyelin (SM)-sequestered cholesterol, but not the accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol-independent. Whereas, the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein which activates actin nucleation, is recruited to IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. Importance: IAV infects the cells by harnessing cellular endocytic machineries. Better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies, and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol-independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results would provide new insights into IAV infection and pathway/cargo-specific involvement of cholesterol pool(s).
Collapse
|
129
|
A Peptide from Budding Yeast GAPDH Serves as a Promising Antifungal against Cryptococcus neoformans. Microbiol Spectr 2022; 10:e0082621. [PMID: 35019693 PMCID: PMC8754130 DOI: 10.1128/spectrum.00826-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infection of Cryptococcus neoformans is one of the leading causes of morbidity and mortality, particularly among immunocompromised patients. However, currently available drugs for the treatment of C. neoformans infection are minimal. Here, we report SP1, a peptide derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Saccharomyces cerevisiae, efficiently kills C. neoformans and Cryptococcus gattii. SP1 causes damages to the capsule. Unlike many antimicrobial peptides, SP1 does not form pores on the cell membrane of C. neoformans. It interacts with membrane ergosterol and enters vacuole possibly through membrane trafficking. C. neoformans treated with SP1 show the apoptotic phenotypes such as imbalance of calcium ion homeostasis, reactive oxygen increment, phosphatidylserine exposure, and nuclear fragmentation. Our data imply that SP1 has the potential to be developed into a treatment option for cryptococcosis. IMPORTANCE Cryptococcus neoformans and Cryptococcus gattii can cause cryptococcosis, which has a high mortality rate. To treat the disease, amphotericin B and fluconazole are often used in clinic. However, amphotericin B has rather high renal toxicity, and tolerance to these drugs are quicky developed. The peptide SP1 derived from baker's yeast GAPDH shows antifungal function to kill Cryptococcus neoformans and Cryptococcus gattii efficiently with a high specificity, even for the drug-resistant strains. Our data demonstrate that SP1 induces the apoptosis-like death of Cryptococcus neoformans at low concentrations. The finding of this peptide may shed light on a new direction to treat cryptococcosis.
Collapse
|
130
|
Kaczor DM, Kramann R, Hackeng TM, Schurgers LJ, Koenen RR. Differential Effects of Platelet Factor 4 (CXCL4) and Its Non-Allelic Variant (CXCL4L1) on Cultured Human Vascular Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23020580. [PMID: 35054772 PMCID: PMC8775478 DOI: 10.3390/ijms23020580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Platelet factor 4 (CXCL4) is a chemokine abundantly stored in platelets. Upon injury and during atherosclerosis, CXCL4 is transported through the vessel wall where it modulates the function of vascular smooth muscle cells (VSMCs) by affecting proliferation, migration, gene expression and cytokine release. Variant CXCL4L1 is distinct from CXCL4 in function and expression pattern, despite a minor three-amino acid difference. Here, the effects of CXCL4 and CXCL4L1 on the phenotype and function of human VSMCs were compared in vitro. VSMCs were found to constitutively express CXCL4L1 and only exogenously added CXCL4 was internalized by VSMCs. Pre-treatment with heparin completely blocked CXCL4 uptake. A role of the putative CXCL4 receptors CXCR3 and DARC in endocytosis was excluded, but LDL receptor family members appeared to be involved in the uptake of CXCL4. Incubation of VSMCs with both CXCL4 and CXCL4L1 resulted in decreased expression of contractile marker genes and increased mRNA levels of KLF4 and NLRP3 transcription factors, yet only CXCL4 stimulated proliferation and calcification of VSMCs. In conclusion, CXCL4 and CXCL4L1 both modulate gene expression, yet only CXCL4 increases the division rate and formation of calcium-phosphate crystals in VSMCs. CXCL4 and CXCL4L1 may play distinct roles during vascular remodeling in which CXCL4 induces proliferation and calcification while endogenously expressed CXCL4L1 governs cellular homeostasis. The latter notion remains a subject for future investigation.
Collapse
Affiliation(s)
- Dawid M. Kaczor
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (D.M.K.); (T.M.H.); (L.J.S.)
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
- Division of Nephrology and Clinical Immunology and Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- Erasmus Medical Center, Department of Internal Medicine, Nephrology and Transplantation, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Tilman M. Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (D.M.K.); (T.M.H.); (L.J.S.)
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (D.M.K.); (T.M.H.); (L.J.S.)
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (D.M.K.); (T.M.H.); (L.J.S.)
- Correspondence: ; Tel.: +31-433-881-674
| |
Collapse
|
131
|
Mathew MP, Donaldson JG, Hanover JA. Evaluating the Role of Galectins in Clathrin-Independent Endocytosis. Methods Mol Biol 2022; 2442:391-411. [PMID: 35320537 DOI: 10.1007/978-1-0716-2055-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Galectin-3 is a chimeric galectin involved in diverse intracellular and extracellular functions. Galectin-3 is synthesized in the cytoplasm and then released extracellularly by a poorly understood non-canonical secretion mechanism. As a result, it can play important roles both inside and outside the cell. One important extracellular role of galectin-3 is in modulating clathrin-independent endocytosis (CIE), a form of cellular internalization that is still not well understood. CIE, unlike clathrin-mediated endocytosis, has neither defined signaling sequences nor cytoplasmic machinery. As a result, extracellular interactions like the galectin-glycan interactions are thought to directly drive changes in CIE. This chapter discusses the methods designed to study the role of galectin-glycan interactions in CIE, which have provided us with insight into the functions of galectin-3 and cell surface glycans during CIE cargo internalization. These methods include media supplementation for metabolic glycoengineering, antibody internalization assays, lectin panels to assay changes in glycan patterns, exogenous galectin-3 supplementation, galectin-3 secretion assays, and in vitro assays to monitor the effect of galectins on CIE.
Collapse
Affiliation(s)
- Mohit P Mathew
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | | | - John A Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
132
|
Exosomes and COVID-19: challenges and opportunities. COMPARATIVE CLINICAL PATHOLOGY 2022; 31:347-354. [PMID: 35039753 PMCID: PMC8754531 DOI: 10.1007/s00580-021-03311-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 or COVID-19, starting from Wuhan, China, in December 2019, is a pandemic situation affecting millions worldwide and has exerted a huge burden on healthcare infrastructure. Therefore, there is an urgent need to understand the molecular mechanisms underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and design novel effective therapeutic strategies for combating this pandemic. In this regard, special attention has been paid to the exosomes. These nanoparticles are extracellular vesicles with critical function in the pathogenesis of several diseases including viral sepsis. Therefore, they may be involved in the pathogenesis of COVID-19 infection and also may be a way for transferring viral components and infecting other neighbor cells. Exosomes also can be considered as a therapeutic strategy for treating COVID-19 patients or used as a carrier for delivering effective therapeutic agents. Therefore, in this review, we discussed the biogenesis and contents of exosomes, their function in viral infection, and their potential as a therapeutic candidate in treating COVID-19.
Collapse
|
133
|
Elashiry M, Elsayed R, Cutler CW. Exogenous and Endogenous Dendritic Cell-Derived Exosomes: Lessons Learned for Immunotherapy and Disease Pathogenesis. Cells 2021; 11:cells11010115. [PMID: 35011677 PMCID: PMC8750541 DOI: 10.3390/cells11010115] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Immune therapeutic exosomes, derived exogenously from dendritic cells (DCs), the 'directors' of the immune response, are receiving favorable safety and tolerance profiles in phase I and II clinical trials for a growing number of inflammatory and neoplastic diseases. DC-derived exosomes (EXO), the focus of this review, can be custom tailored with immunoregulatory or immunostimulatory molecules for specific immune cell targeting. Moreover, the relative stability, small size and rapid uptake of EXO by recipient immune cells offer intriguing options for therapeutic purposes. This necessitates an in-depth understanding of mechanisms of EXO biogenesis, uptake and routing by recipient immune cells, as well as their in vivo biodistribution. Against this backdrop is recognition of endogenous exosomes, secreted by all cells, the molecular content of which is reflective of the metabolic state of these cells. In this regard, exosome biogenesis and secretion is regulated by cell stressors of chronic inflammation and tumorigenesis, including dysbiotic microbes, reactive oxygen species and DNA damage. Such cell stressors can promote premature senescence in young cells through the senescence associated secretory phenotype (SASP). Pathological exosomes of the SASP amplify inflammatory signaling in stressed cells in an autocrine fashion or promote inflammatory signaling to normal neighboring cells in paracrine, without the requirement of cell-to-cell contact. In summary, we review relevant lessons learned from the use of exogenous DC exosomes for immune therapy, as well as the pathogenic potential of endogenous DC exosomes.
Collapse
|
134
|
Riyad JM, Weber T. Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions. Gene Ther 2021; 28:683-696. [PMID: 33658649 PMCID: PMC8413391 DOI: 10.1038/s41434-021-00243-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
In the last two decades, recombinant adeno-associated virus has emerged as the most popular gene therapy vector. Recently AAV gene therapy has been approved by the FDA for the treatment of two rare genetic disorders, namely the early childhood blindness disease Leber congenital amaurosis and spinal muscular atrophy (SMA). As is the case for the treatment of SMA, if the AAV vector must be administered systemically, very high vector doses are often required for therapeutic efficacy. But higher vector doses inevitably increase the risk of adverse events. The tragic death of three children in a clinical trial to treat X-linked myotubular myopathy with an AAV vector has thrown this limitation into sharp relief. Regardless of the precise cause(s) that led to the death of the two children, it is critical that we develop better AAV vectors to achieve therapeutic levels of expression with lower vector doses. To transduce successfully a target cell, AAV has to overcome both systemic as well as cellular roadblocks. In this review, we discuss some of the most prominent cellular roadblocks that AAV must get past to deliver successfully its therapeutic payload. We also highlight recent advancements in our knowledge of AAV biology that can potentially be harnessed to improve AAV vector performance and thereby make AAV gene therapy safer.
Collapse
Affiliation(s)
- Jalish M Riyad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Weber
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
135
|
Noguera P, Klinger M, Örün H, Grunow B, Del-Pozo J. Ultrastructural insights into the replication cycle of salmon pancreas disease virus (SPDV) using salmon cardiac primary cultures (SCPCs). JOURNAL OF FISH DISEASES 2021; 44:2031-2041. [PMID: 34424537 DOI: 10.1111/jfd.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Salmon pancreas disease virus (SPDV) has been affecting the salmon farming industry for over 30 years, but despite the substantial amount of studies, there are still a number of recognized knowledge gaps, for example in the transmission of the virus. In this work, an ultrastructural morphological approach was used to describe observations after infection by SPDV of an ex vivo cardiac model generated from Atlantic salmon embryos. The observations in this study and those available on previous ultrastructural work on SPDV are compared and contrasted with the current knowledge on terrestrial mammalian and insect alphaviral replication cycles, which is deeper than that of SPDV both morphologically and mechanistically. Despite their limitations, morphological descriptions remain an excellent way to generate novel hypotheses, and this has been the aim of this work. This study has used a target host, ex vivo model and resulted in some previously undescribed features, including filopodial membrane projections, cytoplasmic stress granules or putative intracytoplasmic budding. The latter suggests a new hypothesis that warrants further mechanistic research: SPDV in salmon may have retained the capacity for non-cytolytic (persistent) infections by intracellular budding, similar to that noted in arthropod vectors of other alphaviruses. In the notable absence of a known intermediate host for SPDV, the presence of this pattern suggests that both cytopathic and persistent infections may coexist in the same host. It is our hope that the ultrastructural comparison presented here stimulates new research that brings the knowledge on SPDV replication cycle up to a similar level to that of terrestrial alphaviruses.
Collapse
Affiliation(s)
| | | | - Histro Örün
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Bianka Grunow
- Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jorge Del-Pozo
- Royal Dick School of Veterinary Sciences, University of Edinburgh, Roslin, UK
| |
Collapse
|
136
|
Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nat Commun 2021; 12:6565. [PMID: 34782623 PMCID: PMC8592984 DOI: 10.1038/s41467-021-26851-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Brain inflammation generally accompanies and accelerates neurodegeneration. Here we report a microglial mechanism in which polyglutamine binding protein 1 (PQBP1) senses extrinsic tau 3R/4R proteins by direct interaction and triggers an innate immune response by activating a cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) pathway. Tamoxifen-inducible and microglia-specific depletion of PQBP1 in primary culture in vitro and mouse brain in vivo shows that PQBP1 is essential for sensing-tau to induce nuclear translocation of nuclear factor κB (NFκB), NFκB-dependent transcription of inflammation genes, brain inflammation in vivo, and eventually mouse cognitive impairment. Collectively, PQBP1 is an intracellular receptor in the cGAS-STING pathway not only for cDNA of human immunodeficiency virus (HIV) but also for the transmissible neurodegenerative disease protein tau. This study characterises a mechanism of brain inflammation that is common to virus infection and neurodegenerative disorders.
Collapse
|
137
|
Wu C, Guo WB, Liu YY, Yang L, Miao AJ. Molecular mechanisms underlying the calcium-mediated uptake of hematite nanoparticles by the ciliate Tetrahymena thermophila. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117749. [PMID: 34329064 DOI: 10.1016/j.envpol.2021.117749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In aquatic ecosystems, the calcium (Ca) concentration varies greatly. It is well known that Ca affects the aggregation of nanoparticles (NPs) and thus their bioaccumulation. Nevertheless, Ca also plays critical roles in various biological processes, whose effects on NP accumulation in aquatic organisms remain unclear. In this study, the effects of Ca on the uptake of polyacrylate-coated hematite NPs (HemNPs) by the aquatic ciliate Tetrahymena thermophila were investigated. At all of the tested Ca concentrations, HemNPs were well dispersed in the experimental medium, excluding the possibility of Ca to influence HemNP bioaccumulation by aggregating the NPs. Instead, Ca was shown to induce the clathrin-mediated endocytosis and phagocytosis of HemNPs. Manipulation of the Ca speciation in the experimental medium as well as the influx and intracellular availability of Ca in T. thermophila indicated that HemNP uptake was regulated by the intracellular Ca level. The results of the proteomics analyses further showed that the binding of intracellular Ca to calmodulin altered the activity of proteins involved in clathrin-mediated endocytosis (calcineurin and dynamin) and phagocytosis (actin). Overall, the biologically inductive effects of Ca on NP accumulation in aquatic organisms should be considered when evaluating the environmental risks of NPs.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Yue-Yue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
138
|
Zhang F, Hou Y, Zhu M, Deng B, Zhao M, Zhu X, Sun Y, Chen D, Jiang C, Wang L, Chen C, Chen H, Chen H, Zheng H, Li W. Death Pathways of Cancer Cells Modulated by Surface Molecule Density on Gold Nanorods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102666. [PMID: 34523247 PMCID: PMC8596106 DOI: 10.1002/advs.202102666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Indexed: 05/13/2023]
Abstract
Necrosis induces strong inflammation with undesirable implications in clinics compared with apoptosis. Fortunately, the switch between necrosis and apoptosis could be realized by tailoring the appropriate structural properties of gold nano rods (GNRs) that could precisely modulate cell death pathways. Herein, the intracellular interaction between GNRs and organelles is monitored and it is found that lysosomes dominates necrosis/apoptosis evoking. Then the surface molecule density of GNRs, which is first defined as ρsurf. molecule (Nsurf. molecules /(a × π × Diameter × Length)), mediates lysosome activities as the membrane permeabilization (LMP), the Cathepsin B and D release, the cross-talk between lysosome and different organelles, which selectively evokes apoptosis or necrosis and the production of TNF-α from macrophages. GNRs with small ρsurf. molecule mainly induce apoptosis, while with large ρsurf. molecule they greatly contribute to necrosis. Interestingly, necrosis can be suppressed by GNRs with higher ρsurf. molecule due to the overexpression of key protease caspase 8, which cleaves the RIP1-RIP3 complex and activates caspase 3 followed by necrosis to apoptosis transition. This investigation indicates that the ρsurf. molecule greatly affects the utility of nanomaterials and different structural properties of nanomaterials have different implications in clinics.
Collapse
Affiliation(s)
- Fulei Zhang
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Yi Hou
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Minhui Zhu
- Department of Otolaryngology Head & Neck SurgeryShanghai Changhai HospitalNaval Medical University168 Changhai RoadShanghai200433China
| | - Bo Deng
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan430073China
| | - Mengxin Zhao
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Xiandi Zhu
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Yun Sun
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Di Chen
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Cheng Jiang
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100049China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics and National Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100049China
| | - Huaiwen Chen
- Department of Otolaryngology Head & Neck SurgeryShanghai Changhai HospitalNaval Medical University168 Changhai RoadShanghai200433China
| | - Han Chen
- Department of General SurgeryNavy No.905 Hospital of Chinese People's Liberation ArmyNaval Medical UniversityShanghai200050China
| | - Hongliang Zheng
- Department of Otolaryngology Head & Neck SurgeryShanghai Changhai HospitalNaval Medical University168 Changhai RoadShanghai200433China
| | - Wei Li
- Department of Nanomedicine & International Joint Cancer InstituteNaval Medical UniversityShanghai200433China
| |
Collapse
|
139
|
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021; 35:643-671. [PMID: 34705260 PMCID: PMC8548996 DOI: 10.1007/s40259-021-00500-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Delivering macromolecules into the cytosol or nucleus is possible in vitro for DNA, RNA and proteins, but translation for clinical use has been limited. Therapeutic delivery of macromolecules into cells requires overcoming substantially higher barriers compared to the use of small molecule drugs or proteins in the extracellular space. Breakthroughs like DNA delivery for approved gene therapies and RNA delivery for silencing of genes (patisiran, ONPATTRO®, Alnylam Pharmaceuticals, Cambridge, MA, USA) or for vaccination such as the RNA-based coronavirus disease 2019 (COVID-19) vaccines demonstrated the feasibility of using macromolecules inside cells for therapy. Chemical carriers are part of the reason why these novel RNA-based therapeutics possess sufficient efficacy for their clinical application. A clear advantage of synthetic chemicals as carriers for macromolecule delivery is their favourable properties with respect to production and storage compared to more bioinspired vehicles like viral vectors or more complex drugs like cellular therapies. If biologicals can be applied to intracellular targets, the druggable space is substantially broadened by circumventing the limited utility of small molecules for blocking protein–protein interactions and the limitation of protein-based drugs to the extracellular space. An in depth understanding of the macromolecular cargo types, carrier types and the cell biology of delivery is crucial for optimal application and further development of biologicals inside cells. Basic mechanistic principles of the molecular and cell biological aspects of cytosolic/nuclear delivery of macromolecules, with particular consideration of protein delivery, are reviewed here. The efficiency of macromolecule delivery and applications in research and therapy are highlighted.
Collapse
Affiliation(s)
- Andrea L J Marschall
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Brunswick, Germany.
| |
Collapse
|
140
|
Zhang L, Zhou D, Li Q, Zhu S, Imran M, Duan H, Cao S, Ke S, Ye J. The Antiviral Effect of Novel Steroidal Derivatives on Flaviviruses. Front Microbiol 2021; 12:727236. [PMID: 34690968 PMCID: PMC8527100 DOI: 10.3389/fmicb.2021.727236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Flaviviruses are the major emerging arthropod-borne pathogens globally. However, there is still no practical anti-flavivirus approach. Therefore, existing and emerging flaviviruses desperately need active broad-spectrum drugs. In the present study, the antiviral effect of steroidal dehydroepiandrosterone (DHEA) and 23 synthetic derivatives against flaviviruses such as Japanese encephalitis virus (JEV), Zika virus (ZIKV), and Dengue virus (DENV) were appraised by examining the characteristics of virus infection both in vitro and in vivo. Our results revealed that AV1003, AV1004 and AV1017 were the most potent inhibitors of flavivirus propagation in cells. They mainly suppress the viral infection in the post-invasion stage in a dose-dependent manner. Furthermore, orally administered compound AV1004 protected mice from lethal JEV infection by increasing the survival rate and reducing the viral load in the brain of infected mice. These results indicate that the compound AV1004 might be a potential therapeutic drug against JEV infection. These DHEA derivatives may provide lead scaffolds for further design and synthesis of potential anti-flavivirus potential drugs.
Collapse
Affiliation(s)
- Luping Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Dengyuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiuyan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shuo Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Imran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
141
|
Sadiq IZ, Muhammad A, Mada SB, Ibrahim B, Umar UA. Biotherapeutic effect of cell-penetrating peptides against microbial agents: a review. Tissue Barriers 2021; 10:1995285. [PMID: 34694961 DOI: 10.1080/21688370.2021.1995285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selective permeability of biological membranes represents a significant barrier to the delivery of therapeutic substances into both microorganisms and mammalian cells, restricting the access of drugs into intracellular pathogens. Cell-penetrating peptides usually 5-30 amino acids with the characteristic ability to penetrate biological membranes have emerged as promising antimicrobial agents for treating infections as well as an effective delivery modality for biological conjugates such as nucleic acids, drugs, vaccines, nanoparticles, and therapeutic antibodies. However, several factors such as antimicrobial resistance and poor drug delivery of the existing medications justify the urgent need for developing a new class of antimicrobials. Herein, we review cell-penetrating peptides (CPPs) used to treat microbial infections. Although these peptides are biologically active for infections, effective transduction into membranes and cargo transport, serum stability, and half-life must be improved for optimum functions and development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sanusi Bello Mada
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Bashiru Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Umar Aliyu Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
142
|
Roles of Endocytic Processes and Early Endosomes on Focal Adhesion Dynamics in MDA-MB-231 Cells. Rep Biochem Mol Biol 2021; 10:145-155. [PMID: 34604404 DOI: 10.52547/rbmb.10.2.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023]
Abstract
Background Focal adhesion (FA) play a critical role in many biological processes which include cell survival and cell migration. They serve as cellular anchor, allowing cells to stay attached to the extracellular matrix (ECM), and can also regulate cellular transduction. Previously, it has been suggested that vesicles such as endosomes could interact directly with FA or be implicated in their turnover. In this study, we investigated whether there is a relationship between FA and the early endocytic machinery in MDA-MB-231 cells. Methods In this study, cell culture, transfection, time laps confocal microscopies, immunocytochemistry, western blotting, Cell fractionation and immunoprecipitation techniques were performed. Results Cells acutely treated with Dynasore, an inhibitor of dynamin, or with Pitstop 2, an inhibitor of clathryn-dependent endocytosis showed a reduction in the expression of early endosome biomarkers such as Rab5 and EEA1. Additionally, cells treated with these endocytic inhibitors exhibited an increase number and size of FA, as well as an increase FA turnover duration. This data was consistent with the reduction of the speed of cell migration. We demonstrated that Rab5- and EEA1-positive early endosomes were found to be colocalized with internalized FA. Conclusion The present study suggests that there is a link between FA and early endosome markers, which indicates that the early endosomes may be involved in FA dynamics.
Collapse
|
143
|
Khayyatnejad Shoushtari S, Zoghebi K, Sajid MI, Tiwari RK, Parang K. Hybrid Cyclic-Linear Cell-Penetrating Peptides Containing Alternative Positively Charged and Hydrophobic Residues as Molecular Transporters. Mol Pharm 2021; 18:3909-3919. [PMID: 34491768 DOI: 10.1021/acs.molpharmaceut.1c00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell membrane properties create a significant obstacle in intracellular delivery of cell-impermeable and negatively charged molecules. Herein, we report the synthesis and biological evaluation of a novel series of hybrid cyclic-linear peptides containing alternative positive and hydrophobic amino acids on the ring and side chain [(RW)5]K(RW)X (X = 1-5) to compare their molecular transporter efficiency. The peptides were synthesized through Fmoc solid-phase peptide synthesis. In vitro cytotoxicity of the peptides showed that the peptides did not exhibit any significant cytotoxicity at the concentration of 10 μM in human leukemia carcinoma cell line (CCRF-CEM), human ovarian adenocarcinoma cells (SK-OV-3), human epithelial embryonic kidney healthy (HEK-293), and human epithelial mammary gland adenocarcinoma cells (MDA-MB-231) after 3 h incubation. The cellular uptake of a fluorescence-labeled phosphopeptide (F'-GpYEEI) and anti-human immunodeficiency virus (HIV) drugs (lamivudine (F'-3TC), emtricitabine (F'-FTC), Stavudine (F'-d4T)), where F' is carboxyfluorescein, was measured in the presence of the peptides in CCRF-CEM and SK-OV-3 cells. Among all peptides, [(RW)5K](RW)5 (10 μM) was the most efficient transporter that improved the cellular uptake of F'-GpYEEI (2 μM) by 18- and 11-fold in CCRF-CEM and SK-OV-3, respectively, compared with F'-GpYEEI alone. Fluorescence-activated cell sorting (FACS) analysis results indicated that the cellular uptake of fluorescence-labeled peptide (F'-[(RW)5K](RW)5) was only partially inhibited by chlorpromazine as an endocytosis inhibitor after 3 h incubation in MDA-MB-231 cells. These data suggest the potential of this series of hybrid cyclic-linear peptides as cell-penetrating peptides and molecular transporters.
Collapse
Affiliation(s)
- Sorour Khayyatnejad Shoushtari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
144
|
Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjörner EK, Stevens MM, El-Andaloussi S. Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS NANO 2021; 15:13993-14021. [PMID: 34505766 PMCID: PMC8482762 DOI: 10.1021/acsnano.1c05099] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Oligonucleotides (ONs) comprise a rapidly growing class of therapeutics. In recent years, the list of FDA-approved ON therapies has rapidly expanded. ONs are small (15-30 bp) nucleotide-based therapeutics which are capable of targeting DNA and RNA as well as other biomolecules. ONs can be subdivided into several classes based on their chemical modifications and on the mechanisms of their target interactions. Historically, the largest hindrance to the widespread usage of ON therapeutics has been their inability to effectively internalize into cells and escape from endosomes to reach their molecular targets in the cytosol or nucleus. While cell uptake has been improved, "endosomal escape" remains a significant problem. There are a range of approaches to overcome this, and in this review, we focus on three: altering the chemical structure of the ONs, formulating synthetic, lipid-based nanoparticles to encapsulate the ONs, or biologically loading the ONs into extracellular vesicles. This review provides a background to the design and mode of action of existing FDA-approved ONs. It presents the most common ON classifications and chemical modifications from a fundamental scientific perspective and provides a roadmap of the cellular uptake pathways by which ONs are trafficked. Finally, this review delves into each of the above-mentioned approaches to ON delivery, highlighting the scientific principles behind each and covering recent advances.
Collapse
Affiliation(s)
- Jeremy P. Bost
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Hanna Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Audrey Gallud
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Marco Maugeri
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Dhanu Gupta
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Taavi Lehto
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hadi Valadi
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Elin K. Esbjörner
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Department
of Materials, Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2BU, United Kingdom
| | - Samir El-Andaloussi
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
145
|
Hiratsuka R, Terasaka O. Dynamics of Cell Membrane and Cell Wall Development during Generative Cell Engulfment by the Pollen Tube Cell in Liriope muscari. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rie Hiratsuka
- Division of Biology, Department of Natural Science, The Jikei University School of Medicine
| | - Osamu Terasaka
- Division of Biology, Department of Natural Science, The Jikei University School of Medicine
| |
Collapse
|
146
|
Wang D, Liu S, Wang G. Establishment of an Endocytosis-Related Prognostic Signature for Patients With Low-Grade Glioma. Front Genet 2021; 12:709666. [PMID: 34552618 PMCID: PMC8450508 DOI: 10.3389/fgene.2021.709666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background Low-grade glioma (LGG) is a heterogeneous tumor that might develop into high-grade malignant glioma, which markedly reduces patient survival time. Endocytosis is a cellular process responsible for the internalization of cell surface proteins or external materials into the cytosol. Dysregulated endocytic pathways have been linked to all steps of oncogenesis, from initial transformation to late invasion and metastasis. However, endocytosis-related gene (ERG) signatures have not been used to study the correlations between endocytosis and prognosis in cancer. Therefore, it is essential to develop a prognostic model for LGG based on the expression profiles of ERGs. Methods The Cancer Genome Atlas and the Genotype-Tissue Expression database were used to identify differentially expressed ERGs in LGG patients. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene set enrichment analysis methodologies were adopted for functional analysis. A protein-protein interaction (PPI) network was constructed and hub genes were identified based on the Search Tool for the Retrieval of Interacting Proteins database. Univariate and multivariate Cox regression analyses were used to develop an ERG signature to predict the overall survival (OS) of LGG patients. Finally, the association between the ERG signature and gene mutation status was further analyzed. Results Sixty-two ERGs showed distinct mRNA expression patterns between normal brain tissues and LGG tissues. Functional analysis indicated that these ERGs were strikingly enriched in endosomal trafficking pathways. The PPI network indicated that EGFR was the most central protein. We then built a 29-gene signature, dividing patients into high-risk and low-risk groups with significantly different OS times. The prognostic performance of the 29-gene signature was validated in another LGG cohort. Additionally, we found that the mutation scores calculated based on the TTN, PIK3CA, NF1, and IDH1 mutation status were significantly correlated with the endocytosis-related prognostic signature. Finally, a clinical nomogram with a concordance index of 0.881 predicted the survival probability of LGG patients by integrating clinicopathologic features and ERG signatures. Conclusion Our ERG-based prediction models could serve as an independent prognostic tool to accurately predict the outcomes of LGG.
Collapse
Affiliation(s)
- Dawei Wang
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Academy of Clinical Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiguang Liu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Wang
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
147
|
Hu JJ, Dong X, Jiang W, Xia F, Lou X. Multifunctional aggregates for precise cellular analysis. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1051-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
148
|
Hounjet J, Vooijs M. The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation. Biomolecules 2021; 11:biom11091369. [PMID: 34572582 PMCID: PMC8466058 DOI: 10.3390/biom11091369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.
Collapse
|
149
|
Dunn A, Cai Y, Iwasawa K, Kimura M, Takebe T. POLYseq: A poly(β-amino ester)-based vector for multifunctional cellular barcoding. Stem Cell Reports 2021; 16:2149-2158. [PMID: 34450040 PMCID: PMC8452539 DOI: 10.1016/j.stemcr.2021.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Despite evolving biological application of next-generation sequencing (NGS) at single-cell level, current techniques in NGS library preparation restrict multiplexing, necessitating the costly preparation of distinct libraries for each sample. Here, we report the development of a novel poly(β-amino) ester labeling system synthesized with inexpensive, common reagents, termed POLYseq, capable of efficiently delivering fluorescent molecules or sample-distinguishing DNA barcodes through non-covalent binding enabling rapid creation of custom sample pools. Chemical formulation was found to determine cellular labeling propensity. Live image-based tracking of fluorescent conjugated POLYseq vectors demonstrated lysosomal compartmentalization. Barcode labeling was uniformly detected across 90% of cells by single-cell RNA sequencing, allowing for the successful identification of human and mouse cultured cell lines from a single pool. These findings highlight the multifunctional applications of POLYseq in live cell imaging and NGS in a scalable and cost-effective manner.
Collapse
Affiliation(s)
- Andrew Dunn
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
150
|
TAT for Enzyme/Protein Delivery to Restore or Destroy Cell Activity in Human Diseases. Life (Basel) 2021; 11:life11090924. [PMID: 34575072 PMCID: PMC8466028 DOI: 10.3390/life11090924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Much effort has been dedicated in the recent decades to find novel protein/enzyme-based therapies for human diseases, the major challenge of such therapies being the intracellular delivery and reaching sub-cellular organelles. One promising approach is the use of cell-penetrating peptides (CPPs) for delivering enzymes/proteins into cells. In this review, we describe the potential therapeutic usages of CPPs (mainly trans-activator of transcription protein, TAT) in enabling the uptake of biologically active proteins/enzymes needed in cases of protein/enzyme deficiency, concentrating on mitochondrial diseases and on the import of enzymes or peptides in order to destroy pathogenic cells, focusing on cancer cells.
Collapse
|