101
|
Sun M, Liao B, Tao Y, Chen H, Xiao F, Gu J, Gao S, Jin Y. Calcineurin-NFAT Signaling Controls Somatic Cell Reprogramming in a Stage-Dependent Manner. J Cell Physiol 2015; 231:1151-62. [PMID: 26448199 DOI: 10.1002/jcp.25212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
Abstract
Calcineurin-NFAT signaling is critical for early lineage specification of mouse embryonic stem cells and early embryos. However, its roles in somatic cell reprogramming remain unknown. Here, we report that calcineurin-NFAT signaling has a dynamic activity and plays diverse roles at different stages of reprogramming. At the early stage, calcineurin-NFAT signaling is transiently activated and its activation is required for successful reprogramming. However, at the late stage of reprogramming, activation of calcineurin-NFAT signaling becomes a barrier for reprogramming and its inactivation is critical for successful induction of pluripotency. Mechanistically, calcineurin-NFAT signaling contributes to the reprogramming through regulating multiple early events during reprogramming, including mesenchymal to epithelial transition (MET), cell adhesion and emergence of SSEA1(+) intermediate cells. Collectively, this study reveals for the first time the important roles of calcineurin-NFAT signaling during somatic cell reprogramming and provides new insights into the molecular regulation of reprogramming.
Collapse
Affiliation(s)
- Ming Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Liao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yu Tao
- National Institute of Biological Sciences, Beijing, China.,The College of Life Science, Beijing Normal University, Beijing, China
| | - Hao Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Xiao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Gu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
102
|
Park D, Lim J, Park JY, Lee SH. Concise Review: Stem Cell Microenvironment on a Chip: Current Technologies for Tissue Engineering and Stem Cell Biology. Stem Cells Transl Med 2015; 4:1352-68. [PMID: 26450425 DOI: 10.5966/sctm.2015-0095] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Stem cells have huge potential in many therapeutic areas. With conventional cell culture methods, however, it is difficult to achieve in vivo-like microenvironments in which a number of well-controlled stimuli are provided for growing highly sensitive stem cells. In contrast, microtechnology-based platforms offer advantages of high precision, controllability, scalability, and reproducibility, enabling imitation of the complex physiological context of in vivo. This capability may fill the gap between the present knowledge about stem cells and that required for clinical stem cell-based therapies. We reviewed the various types of microplatforms on which stem cell microenvironments are mimicked. We have assigned the various microplatforms to four categories based on their practical uses to assist stem cell biologists in using them for research. In particular, many examples are given of microplatforms used for the production of embryoid bodies and aggregates of stem cells in vitro. We also categorized microplatforms based on the types of factors controlling the behaviors of stem cells. Finally, we outline possible future directions for microplatform-based stem cell research, such as research leading to the production of well-defined environments for stem cells to be used in scaled-up systems or organs-on-a-chip, the regulation of induced pluripotent stem cells, and the study of the genetic states of stem cells on microplatforms. SIGNIFICANCE Stem cells are highly sensitive to a variety of physicochemical cues, and their fate can be easily altered by a slight change of environment; therefore, systematic analysis and discrimination of the extracellular signals and intracellular pathways controlling the fate of cells and experimental realization of sensitive and controllable niche environments are critical. This review introduces diverse microplatforms to provide in vitro stem cell niches. Microplatforms could control microenvironments around cells and have recently attracted much attention in biology including stem cell research. These microplatforms and the future directions of stem cell microenvironment are described.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jaeho Lim
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-ang University, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
103
|
Mou H, Brazauskas K, Rajagopal J. Personalized medicine for cystic fibrosis: establishing human model systems. Pediatr Pulmonol 2015; 50 Suppl 40:S14-23. [PMID: 26335952 DOI: 10.1002/ppul.23233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
With over 1,500 identifiable mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that result in distinct functional and phenotypical abnormalities, it is virtually impossible to perform randomized clinical trials to identify the best therapeutics for all patients. Therefore, a personalized medicine approach is essential. The only way to realistically accomplish this is through the development of improved in vitro human model systems. The lack of a readily available and infinite supply of human CFTR-expressing airway epithelial cells is a key bottleneck. We propose that a concerted two-pronged approach is necessary for patient-specific cystic fibrosis research to continue to prosper and realize its potential: (1) more effective culture and differentiation conditions for growing primary human airway and nasal epithelial cells and (2) the development of collective protocols for efficiently differentiating disease- and patient-specific induced pluripotent stem cells (iPSC) into pure populations of adult epithelial cells. Ultimately, we need a personalized human model system for cystic fibrosis with the capacity for uncomplicated bankability, widespread availability, and universal applicability for patient-specific disease modeling, novel pharmacotherapy investigation and screening, and readily executable genetic modification.
Collapse
Affiliation(s)
- Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Karissa Brazauskas
- Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Pulmonary Critical Care Unit, Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
104
|
Stace ET, Dakin SG, Mouthuy PA, Carr AJ. Translating Regenerative Biomaterials Into Clinical Practice. J Cell Physiol 2015; 231:36-49. [DOI: 10.1002/jcp.25071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Edward T. Stace
- National Institute of Health Research Musculoskeletal Biomedical Research Unit; Oxford United Kingdom
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford United Kingdom
| | - Stephanie G. Dakin
- National Institute of Health Research Musculoskeletal Biomedical Research Unit; Oxford United Kingdom
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford United Kingdom
| | - Pierre-Alexis Mouthuy
- National Institute of Health Research Musculoskeletal Biomedical Research Unit; Oxford United Kingdom
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford United Kingdom
| | - Andrew J. Carr
- National Institute of Health Research Musculoskeletal Biomedical Research Unit; Oxford United Kingdom
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford United Kingdom
| |
Collapse
|
105
|
Dautriche CN, Tian Y, Xie Y, Sharfstein ST. A Closer Look at Schlemm's Canal Cell Physiology: Implications for Biomimetics. J Funct Biomater 2015; 6:963-85. [PMID: 26402712 PMCID: PMC4598687 DOI: 10.3390/jfb6030963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/10/2015] [Accepted: 09/06/2015] [Indexed: 12/13/2022] Open
Abstract
Among ocular pathologies, glaucoma is the second leading cause of progressive vision loss, expected to affect 80 million people worldwide by 2020. A primary cause of glaucoma appears to be damage to the conventional outflow tract. Conventional outflow tissues, a composite of the trabecular meshwork and the Schlemm's canal, regulate and maintain homeostatic responses to intraocular pressure. In glaucoma, filtration of aqueous humor into the Schlemm's canal is hindered, leading to an increase in intraocular pressure and subsequent damage to the optic nerve, with progressive vision loss. The Schlemm's canal encompasses a unique endothelium. Recent advances in culturing and manipulating Schlemm's canal cells have elucidated several aspects of their physiology, including ultrastructure, cell-specific marker expression, and biomechanical properties. This review highlights these advances and discusses implications for engineering a 3D, biomimetic, in vitro model of the Schlemm's canal endothelium to further advance glaucoma research, including drug testing and gene therapy screening.
Collapse
Affiliation(s)
- Cula N Dautriche
- State University of New York (SUNY) Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| | - Yangzi Tian
- State University of New York (SUNY) Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| | - Yubing Xie
- State University of New York (SUNY) Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| | - Susan T Sharfstein
- State University of New York (SUNY) Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
106
|
Pan JF, Li S, Guo CA, Xu DL, Zhang F, Yan ZQ, Mo XM. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:045001. [PMID: 27877821 PMCID: PMC5090180 DOI: 10.1088/1468-6996/16/4/045001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 06/06/2023]
Abstract
Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF-Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF-Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.
Collapse
Affiliation(s)
- Jian-Feng Pan
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Shuo Li
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Chang-An Guo
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Du-Liang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
- Biomaterials and Tissue Engineering Lab, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
| | - Feng Zhang
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Zuo-Qin Yan
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China
| | - Xiu-Mei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
- Biomaterials and Tissue Engineering Lab, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
| |
Collapse
|
107
|
Liao HF, Mo CF, Wu SC, Cheng DH, Yu CY, Chang KW, Kao TH, Lu CW, Pinskaya M, Morillon A, Lin SS, Cheng WTK, Bourc'his D, Bestor T, Sung LY, Lin SP. Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction 2015; 150:245-56. [PMID: 26159833 DOI: 10.1530/rep-15-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022]
Abstract
Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chu-Fan Mo
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shinn-Chih Wu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Dai-Han Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chih-Yun Yu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Kai-Wei Chang
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Tzu-Hao Kao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chia-Wei Lu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Marina Pinskaya
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Antonin Morillon
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shih-Shun Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| | - Winston T K Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Déborah Bourc'his
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Timothy Bestor
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Li-Ying Sung
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| |
Collapse
|
108
|
Dong L, Hao H, Liu J, Tong C, Ti D, Chen D, Chen L, Li M, Liu H, Fu X, Han W. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system. J Tissue Eng Regen Med 2015; 11:1479-1489. [PMID: 26118627 DOI: 10.1002/term.2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/02/2015] [Accepted: 04/29/2015] [Indexed: 11/09/2022]
Abstract
Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liang Dong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Deyun Chen
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Li Chen
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Meirong Li
- Central Laboratory, Hainan Branch, Chinese PLA General Hospital, Sanya, People's Republic of China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
109
|
LI ZHOUBIN, MARGARITI ANDRIANA, WU YUTAO, YANG FENG, HU JIAN, ZHANG LI, CHEN TING. MicroRNA-199a induces differentiation of induced pluripotent stem cells into endothelial cells by targeting sirtuin 1. Mol Med Rep 2015; 12:3711-3717. [DOI: 10.3892/mmr.2015.3845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
|
110
|
Kim BJ, Lee YA, Kim KJ, Kim YH, Jung MS, Ha SJ, Kang HG, Jung SE, Kim BG, Choi YR, Do JT, Ryu BY. Effects of paracrine factors on CD24 expression and neural differentiation of male germline stem cells. Int J Mol Med 2015; 36:255-62. [PMID: 25976705 DOI: 10.3892/ijmm.2015.2208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/27/2015] [Indexed: 11/05/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are adult male germ cells that develop after birth. Throughout the lifetime of an organism, SSCs sustain spermatogenesis through self-renewal and produce daughter cells that differentiate into spermatozoa. Several studies have demonstrated that SSCs can acquire pluripotency under appropriate culture conditions, thus becoming multipotent germline stem cells (mGSCs) that express markers of pluripotency in culture and form teratomas following transplantation into immunodeficient mice. In the present study, we generated neural precursor cells expressing CD24, a neural precursor marker, from pluripotent stem cell lines and demonstrated that these cells effectively differentiated along a neural lineage in vitro. In addition, we found that paracrine factors promoted CD24 expression during the neural differentiation of mGSCs. Our results indicated that the expression of CD24, enhanced by a combination of retinoic acid (RA), noggin and fibroblast growth factor 8 (FGF8) under serum-free conditions promoted neural precursor differentiation. Using a simple cell sorting method, we were able to collect neural precursor cells with the potential to differentiate from mGSCs into mature neurons and astrocytes in vitro.
Collapse
Affiliation(s)
- Bang-Jin Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-An Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Ki-Jung Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Mi-Seon Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seung-Jung Ha
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Hyun-Gu Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Byung-Gak Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Yu-Ri Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
111
|
|
112
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
113
|
Park HJ, Yang K, Kim MJ, Jang J, Lee M, Kim DW, Lee H, Cho SW. Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions. Biomaterials 2015; 50:127-39. [PMID: 25736503 DOI: 10.1016/j.biomaterials.2015.01.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 12/26/2022]
Abstract
Current protocols for human pluripotent stem cell (hPSC) expansion require feeder cells or matrices from animal sources that have been the major obstacle to obtain clinical grade hPSCs due to safety issues, difficulty in quality control, and high expense. Thus, feeder-free, chemically defined synthetic platforms have been developed, but are mostly confined to typical polystyrene culture plates. Here, we report a chemically defined, material-independent, bio-inspired surface coating allowing for feeder-free expansion and maintenance of self-renewal and pluripotency of hPSCs on various polymer substrates and devices. Polydopamine (pDA)-mediated immobilization of vitronectin (VN) peptides results in surface functionalization of VN-dimer/pDA conjugates. The engineered surfaces facilitate adhesion, proliferation, and colony formation of hPSCs via enhanced focal adhesion, cell-cell interaction, and biophysical signals, providing a chemically defined, xeno-free culture system for clonal expansion and long-term maintenance of hPSCs. This surface engineering enables the application of clinically-relevant hPSCs to a variety of biomedical systems such as tissue-engineering scaffolds and medical devices.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Mun-Jung Kim
- Department of Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jiho Jang
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Mihyun Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
114
|
Toh YC, Xing J, Yu H. Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation. Biomaterials 2015; 50:87-97. [PMID: 25736499 DOI: 10.1016/j.biomaterials.2015.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Heterogeneity in human pluripotent stem cell (PSC) fates is partially caused by mechanical asymmetry arising from spatial polarization of cell-cell and cell-matrix adhesions. Independent studies have shown that integrin and E-cadherin adhesions promote opposing differentiation and pluripotent fates respectively although their crosstalk mechanism in modulating cell fate heterogeneity remains unknown. Here, we demonstrated that spatial polarization of integrin and E-cadherin adhesions in a human PSC colony compete to recruit Rho-ROCK activated myosin II to different localities to pattern pluripotent-differentiation decisions, resulting in spatially heterogeneous colonies. Cell micropatterning was used to modulate the spatial polarization of cell adhesions, which enabled us to prospectively determine localization patterns of activated myosin II and mesoendoderm differentiation. Direct inhibition of Rho-ROCK-myosin II activation phenocopied E-cadherin rather than integrin inhibition to form uniformly differentiated colonies. This indicated that E-cadherin was the primary gatekeeper to differentiation progression. This insight allows for biomaterials to be tailored for human PSC maintenance or differentiation with minimal heterogeneity.
Collapse
Affiliation(s)
- Yi-Chin Toh
- Institute of Bioengineering and Nanotechnology, A*STAR, #04-01, 31 Biopolis Way, 138669 Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-12, Singapore 117575, Singapore.
| | - Jiangwa Xing
- Institute of Bioengineering and Nanotechnology, A*STAR, #04-01, 31 Biopolis Way, 138669 Singapore, Singapore; Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, A*STAR, #04-01, 31 Biopolis Way, 138669 Singapore, Singapore; Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9 #04-11, 2 Medical Drive, Singapore 117597, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore 117456, Singapore; Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing; #B-10, Singapore 138602, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
115
|
Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4. Stem Cells Int 2015; 2015:389628. [PMID: 25755671 PMCID: PMC4337757 DOI: 10.1155/2015/389628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
Shortage of red blood cells (RBCs, erythrocytes) can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs), but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs) by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.
Collapse
|
116
|
Fan HC, Ho LI, Chi CS, Cheng SN, Juan CJ, Chiang KL, Lin SZ, Harn HJ. Current proceedings of cerebral palsy. Cell Transplant 2015; 24:471-85. [PMID: 25706819 DOI: 10.3727/096368915x686931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is a complicated disease with varying causes and outcomes. It has created significant burden to both affected families and societies, not to mention the quality of life of the patients themselves. There is no cure for the disease; therefore, development of effective therapeutic strategies is in great demand. Recent advances in regenerative medicine suggest that the transplantation of stem cells, including embryonic stem cells, neural stem cells, bone marrow mesenchymal stem cells, induced pluripotent stem cells, umbilical cord blood cells, and human embryonic germ cells, focusing on the root of the problem, may provide the possibility of developing a complete cure in treating CP. However, safety is the first factor to be considered because some stem cells may cause tumorigenesis. Additionally, more preclinical and clinical studies are needed to determine the type of cells, route of delivery, cell dose, timing of transplantation, and combinatorial strategies to achieve an optimal outcome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
117
|
All AH, Gharibani P, Gupta S, Bazley FA, Pashai N, Chou BK, Shah S, Resar LM, Cheng L, Gearhart JD, Kerr CL. Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One 2015; 10:e0116933. [PMID: 25635918 PMCID: PMC4311989 DOI: 10.1371/journal.pone.0116933] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are at the forefront of research in regenerative medicine and are envisaged as a source for personalized tissue repair and cell replacement therapy. Here, we demonstrate for the first time that oligodendrocyte progenitors (OPs) can be derived from iPS cells generated using either an episomal, non-integrating plasmid approach or standard integrating retroviruses that survive and differentiate into mature oligodendrocytes after early transplantation into the injured spinal cord. The efficiency of OP differentiation in all 3 lines tested ranged from 40% to 60% of total cells, comparable to those derived from human embryonic stem cells. iPS cell lines derived using episomal vectors or retroviruses generated a similar number of early neural progenitors and glial progenitors while the episomal plasmid-derived iPS line generated more OPs expressing late markers O1 and RIP. Moreover, we discovered that iPS-derived OPs (iPS-OPs) engrafted 24 hours following a moderate contusive spinal cord injury (SCI) in rats survived for approximately two months and that more than 70% of the transplanted cells differentiated into mature oligodendrocytes that expressed myelin associated proteins. Transplanted OPs resulted in a significant increase in the number of myelinated axons in animals that received a transplantation 24 h after injury. In addition, nearly a 5-fold reduction in cavity size and reduced glial scarring was seen in iPS-treated groups compared to the control group, which was injected with heat-killed iPS-OPs. Although further investigation is needed to understand the mechanisms involved, these results provide evidence that patient-specific, iPS-derived OPs can survive for three months and improve behavioral assessment (BBB) after acute transplantation into SCI. This is significant as determining the time in which stem cells are injected after SCI may influence their survival and differentiation capacity.
Collapse
Affiliation(s)
- Angelo H. All
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
- Departments of Orthopedic Surgery, Biomedical Engineering and Medicine, Division of Neurology, National University of Singapore, Singapore, Singapore
| | - Payam Gharibani
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Siddharth Gupta
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Faith A. Bazley
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Nikta Pashai
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bin-Kuan Chou
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sandeep Shah
- Division of Hematology in Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Linda M. Resar
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Hematology in Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Linzhao Cheng
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Hematology in Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John D. Gearhart
- Department of Cell and Developmental Biology in the School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Animal Biology in the School of Veterinary Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Candace L. Kerr
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Unversity of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
118
|
Raikwar SP, Kim EM, Sivitz WI, Allamargot C, Thedens DR, Zavazava N. Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice. PLoS One 2015; 10:e0116582. [PMID: 25629318 PMCID: PMC4309616 DOI: 10.1371/journal.pone.0116582] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by autoimmune disease that leads to the destruction of pancreatic β-cells. Transplantation of cadaveric pancreatic organs or pancreatic islets can restore normal physiology. However, there is a chronic shortage of cadaveric organs, limiting the treatment of the majority of patients on the pancreas transplantation waiting list. Here, we hypothesized that human iPS cells can be directly differentiated into insulin producing cells (IPCs) capable of secreting insulin. Using a series of pancreatic growth factors, we successfully generated iPS cells derived IPCs. Furthermore, to investigate the capability of these cells to secrete insulin in vivo, the differentiated cells were transplanted under the kidney capsules of diabetic immunodeficient mice. Serum glucose levels gradually declined to either normal or near normal levels over 150 days, suggesting that the IPCs were secreting insulin. In addition, using MRI, a 3D organoid appeared as a white patch on the transplanted kidneys but not on the control kidneys. These organoids showed neo-vascularization and stained positive for insulin and glucagon. All together, these data show that a pancreatic organ can be created in vivo providing evidence that iPS cells might be a novel option for the treatment of T1D.
Collapse
Affiliation(s)
- Sudhanshu P. Raikwar
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Eun-Mi Kim
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - William I. Sivitz
- Division of Endocrinology & Metabolism, University of Iowa, Iowa City, IA, United States of America
| | - Chantal Allamargot
- Central Microscopy Research facility, University of Iowa, Iowa City, IA, United States of America
| | - Daniel R. Thedens
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Nicholas Zavazava
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA, United States of America
- Veterans Affairs Medical Center, Iowa City, IA, United States of America
| |
Collapse
|
119
|
Kikuchi C, Bienengraeber M, Canfield S, Koopmeiner A, Schäfer R, Bosnjak ZJ, Bai X. Comparison of Cardiomyocyte Differentiation Potential Between Type 1 Diabetic Donor- and Nondiabetic Donor-Derived Induced Pluripotent Stem Cells. Cell Transplant 2015; 24:2491-504. [PMID: 25562386 DOI: 10.3727/096368914x685762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the most common type of diabetes in children and adolescents. Diabetic subjects are more likely to experience a myocardial infarction compared to nondiabetic subjects. In recent years, induced pluripotent stem cells (iPSCs) have received increasing attention from basic scientists and clinicians and hold promise for myocardial regeneration due to their unlimited proliferation potential and differentiation capacity. However, cardiomyogenesis of type 1 diabetic donor-derived iPSCs (T1DM-iPSCs) has not been investigated yet. The aim of the study was to comparatively analyze cardiomyocyte (CM) differentiation capacity of nondiabetic donor-derived iPSCs (N-iPSCs) and T1DM-iPSCs. The differentiated CMs were confirmed by both expression of cardiac-specific markers and presence of cardiac action potential. Since mitochondrial bioenergetics is vital to every aspect of CM function, extracellular acidification rates and oxygen consumption rates were measured using Seahorse extracellular flux analyzer. The results showed that N-iPSCs and T1DM-iPSCs demonstrated similar capacity of differentiation into spontaneously contracting CMs exhibiting nodal-, atrial-, or ventricular-like action potentials. Differentiation efficiency was up to 90%. In addition, the CMs differentiated from N-iPSCs and T1DM-iPSCs (N-iPSC-CMs and T1DM-iPSC-CMs, respectively) showed 1) well-regulated glucose utilization at the level of glycolysis and mitochondrial oxidative phosphorylation and 2) the ability to switch metabolic pathways independent of extracellular glucose concentration. Collectively, we demonstrate for the first time that T1DM-iPSCs can differentiate into functional CMs with well-regulated glucose utilization as shown in N-iPSCs, suggesting that T1DM-iPSC-CMs might be a promising autologous cell source for myocardial regeneration in type 1 diabetes patients.
Collapse
Affiliation(s)
- Chika Kikuchi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Wong WT, Sayed N, Cooke JP. Induced pluripotent stem cells: how they will change the practice of cardiovascular medicine. Methodist Debakey Cardiovasc J 2014; 9:206-9. [PMID: 24298311 DOI: 10.14797/mdcj-9-4-206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be generated from adult somatic tissues by the forced expression of a few defined transcription factors, including Oct4, Sox2, Klf4, and c-Myc. iPSC technology holds tremendous promises for therapeutic cardiovascular regeneration because of the cells' unlimited capacity for proliferation and differentiation into all cell lineages. The iPSCs can be generated from somatic cells of patients with a genetic basis for their disease so as to understand the pathobiology of the disorder. This disease modeling can be adapted to high-throughput screens to discover new therapeutic molecules. Finally, the iPSC technology may enable personalized cell therapies, while avoiding the ethical concerns surrounding human embryonic stem cells. Intensive efforts are underway to develop reliable methods to guide stem cell differentiation into cardiovascular lineages in the treatment of peripheral artery disease and heart diseases. Studies of disease pathogenesis and drug discovery using iPSC technology shall advance the discovery of novel treatments for cardiovascular diseases.
Collapse
Affiliation(s)
- Wing Tak Wong
- Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, Texas
| | | | | |
Collapse
|
121
|
Bilousova G, Roop DR. Induced pluripotent stem cells in dermatology: potentials, advances, and limitations. Cold Spring Harb Perspect Med 2014; 4:a015164. [PMID: 25368014 DOI: 10.1101/cshperspect.a015164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) has raised the possibility of producing truly personalized treatment options for numerous diseases. Similar to embryonic stem cells (ESCs), iPSCs can give rise to any cell type in the body and are amenable to genetic correction by homologous recombination. These ESC properties of iPSCs allow for the development of permanent corrective therapies for many currently incurable disorders, including inherited skin diseases, without using embryonic tissues or oocytes. Here, we review recent progress and limitations of iPSC research with a focus on clinical applications of iPSCs and using iPSCs to model human diseases for drug discovery in the field of dermatology.
Collapse
Affiliation(s)
- Ganna Bilousova
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
122
|
Yamazoe T, Koizumi S, Yamasaki T, Amano S, Tokuyama T, Namba H. Potent tumor tropism of induced pluripotent stem cells and induced pluripotent stem cell-derived neural stem cells in the mouse intracerebral glioma model. Int J Oncol 2014; 46:147-52. [PMID: 25310640 DOI: 10.3892/ijo.2014.2702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/12/2014] [Indexed: 11/05/2022] Open
Abstract
Although neural and mesenchymal stem cells have been well-known to have a strong glioma tropism, this activity in induced pluripotent stem cells (iPSCs) has not yet been fully studied. In the present study, we tested tumor tropic activity of mouse iPSCs and neural stem cells derived from the iPSC (iPS-NSCs) using in vitro Matrigel invasion chamber assay and in vivo mouse intracranial tumor model. Both iPSC and iPS-NSC had a similar potent in vitro tropism for glioma conditioned media. The migrated iPSCs to the gliomas kept expressing Nanog-GFP gene, suggesting no neuronal or glial differentiation. iPSCs or iPS-NSCs labeled with 5-bromo-2-deoxyuridine were intracranially implanted in the contralateral hemisphere to the GL261 glioma cell implantation in the allogeneic C57BL/6 mouse. Active migration of both stem cells was observed 7 days after implantation. Again, the iPSCs located in the tumor area expressed Nanog-GFP gene, suggesting that the migrated cells were still iPSCs. These findings demonstrated that both iPSCs and iPS-NSCs had potent glioma tropism and could be candidates as vehicles in stem cell-based glioma therapy.
Collapse
Affiliation(s)
- Tomohiro Yamazoe
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tomohiro Yamasaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shinji Amano
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tsutomu Tokuyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
123
|
Wang X, Qin J, Zhao RC, Zenke M. Reduced immunogenicity of induced pluripotent stem cells derived from Sertoli cells. PLoS One 2014; 9:e106110. [PMID: 25166861 PMCID: PMC4148392 DOI: 10.1371/journal.pone.0106110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022] Open
Abstract
Sertoli cells constitute the structural framework in testis and provide an immune-privileged environment for germ cells. Induced pluripotent stem cells (iPS cells) resemble embryonic stem cells (ES cells) and are generated from somatic cells by expression of specific reprogramming transcription factors. Here, we used C57BL/6 (B6) Sertoli cells to generate iPS cells (Ser-iPS cells) and compared the immunogenicity of Ser-iPS cells with iPS cells derived from mouse embryonic fibroblast (MEF-iPS cells). Ser-iPS cells were injected into syngeneic mice to test for their in vivo immunogenicity in teratoma assay. Teratoma assay allows assessing in vivo immunogenicity of iPS cells and of their differentiated progeny simultaneously. We observed that early-passage Ser-iPS cells formed more teratomas with less immune cell infiltration and tissue damage and necrosis than MEF-iPS cells. Differentiating Ser-iPS cells in embryoid bodies (EBs) showed reduced T cell activation potential compared to MEF-iPS cells, which was similar to syngeneic ES cells. However, Ser-iPS cells lost their reduced immunogenicity in vivo after extended passaging in vitro and late-passage Ser-iPS cells exhibited an immunogenicity similar to MEF-iPS cells. These findings indicate that early-passage Ser-iPS cells retain some somatic memory of Sertoli cells that impacts on immunogenicity of iPS cells and iPS cell-derived cells in vivo and in vitro. Our data suggest that immune-privileged Sertoli cells might represent a preferred source for iPS cell generation, if it comes to the use of iPS cell-derived cells for transplantation.
Collapse
Affiliation(s)
- Xiaoying Wang
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jie Qin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Peking Union Medical College Hospital, Beijing, China
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
124
|
Dai X, Liu P, Lau AW, Liu Y, Inuzuka H. Acetylation-dependent regulation of essential iPS-inducing factors: a regulatory crossroad for pluripotency and tumorigenesis. Cancer Med 2014; 3:1211-24. [PMID: 25116380 PMCID: PMC4302671 DOI: 10.1002/cam4.298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem (iPS) cells can be generated from somatic cells by coexpression of four transcription factors: Sox2, Oct4, Klf4, and c-Myc. However, the low efficiency in generating iPS cells and the tendency of tumorigenesis hinder the therapeutic applications for iPS cells in treatment of human diseases. To this end, it remains largely unknown how the iPS process is subjected to regulation by upstream signaling pathway(s). Here, we report that Akt regulates the iPS process by modulating posttranslational modifications of these iPS factors in both direct and indirect manners. Specifically, Akt directly phosphorylates Oct4 to modulate the Oct4/Sox2 heterodimer formation. Furthermore, Akt either facilitates the p300-mediated acetylation of Oct4, Sox2, and Klf4, or stabilizes Klf4 by inactivating GSK3, thus indirectly modulating stemness. As tumorigenesis shares possible common features and mechanisms with iPS, our study suggests that Akt inhibition might serve as a cancer therapeutic approach to target cancer stem cells.
Collapse
Affiliation(s)
- Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
125
|
Purwanti YI, Chen C, Lam DH, Wu C, Zeng J, Fan W, Wang S. Antitumor effects of CD40 ligand-expressing endothelial progenitor cells derived from human induced pluripotent stem cells in a metastatic breast cancer model. Stem Cells Transl Med 2014; 3:923-35. [PMID: 24972599 DOI: 10.5966/sctm.2013-0140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Given their intrinsic ability to home to tumor sites, endothelial progenitor cells (EPCs) are attractive as cellular vehicles for targeted cancer gene therapy. However, collecting sufficient EPCs is one of the challenging issues critical for effective clinical translation of this new approach. In this study, we sought to explore whether human induced pluripotent stem (iPS) cells could be used as a reliable and accessible cell source to generate human EPCs suitable for cancer treatment. We used an embryoid body formation method to derive CD133(+)CD34(+) EPCs from human iPS cells. The generated EPCs expressed endothelial markers such as CD31, Flk1, and vascular endothelial-cadherin without expression of the CD45 hematopoietic marker. After intravenous injection, the iPS cell-derived EPCs migrated toward orthotopic and lung metastatic tumors in the mouse 4T1 breast cancer model but did not promote tumor growth and metastasis. To investigate their therapeutic potential, the EPCs were transduced with baculovirus encoding the potent T cell costimulatory molecule CD40 ligand. The systemic injection of the CD40 ligand-expressing EPCs stimulated the secretion of both tumor necrosis factor-α and interferon-γ and increased the caspase 3/7 activity in the lungs with metastatic tumors, leading to prolonged survival of the tumor bearing mice. Therefore, our findings suggest that human iPS cell-derived EPCs have the potential to serve as tumor-targeted cellular vehicles for anticancer gene therapy.
Collapse
Affiliation(s)
- Yovita Ida Purwanti
- Department of Biological Sciences, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Singapore; Program of Innovative Cancer Therapeutics, Department of Surgery, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Can Chen
- Department of Biological Sciences, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Singapore; Program of Innovative Cancer Therapeutics, Department of Surgery, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Dang Hoang Lam
- Department of Biological Sciences, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Singapore; Program of Innovative Cancer Therapeutics, Department of Surgery, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Chunxiao Wu
- Department of Biological Sciences, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Singapore; Program of Innovative Cancer Therapeutics, Department of Surgery, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Jieming Zeng
- Department of Biological Sciences, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Singapore; Program of Innovative Cancer Therapeutics, Department of Surgery, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Weimin Fan
- Department of Biological Sciences, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Singapore; Program of Innovative Cancer Therapeutics, Department of Surgery, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Singapore; Program of Innovative Cancer Therapeutics, Department of Surgery, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
126
|
Baldwin J, Antille M, Bonda U, De-Juan-Pardo EM, Khosrotehrani K, Ivanovski S, Petcu EB, Hutmacher DW. In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective. Vasc Cell 2014; 6:13. [PMID: 25071932 PMCID: PMC4112973 DOI: 10.1186/2045-824x-6-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022] Open
Abstract
In vitro pre-vascularization is one of the main vascularization strategies in the tissue engineering field. Culturing cells within a tissue-engineered construct (TEC) prior to implantation provides researchers with a greater degree of control over the fate of the cells. However, balancing the diverse range of different cell culture parameters in vitro is seldom easy and in most cases, especially in highly vascularized tissues, more than one cell type will reside within the cell culture system. Culturing multiple cell types in the same construct presents its own unique challenges and pitfalls. The following review examines endothelial-driven vascularization and evaluates the direct and indirect role other cell types have in vessel and capillary formation. The article then analyses the different parameters researchers can modulate in a co-culture system in order to design optimal tissue-engineered constructs to match desired clinical applications.
Collapse
Affiliation(s)
- Jeremy Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mélanie Antille
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ulrich Bonda
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Leibniz Institute of Polymer Research Dresden (IPF) & Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, 01069, Dresden, Germany
| | - Elena M De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Kiarash Khosrotehrani
- University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Building 71/918, Herston, QLD 4029, Australian
- The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Saso Ivanovski
- Griffith Health Institute, Regenerative Medicine Centre, Gold Coast, QLD 4222, Australia
| | - Eugen Bogdan Petcu
- Griffith Health Institute, Regenerative Medicine Centre, Gold Coast, QLD 4222, Australia
| | - Dietmar Werner Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
127
|
Ghasroldasht MM, Irfan-Maqsood M, Matin MM, Bidkhori HR, Naderi-Meshkin H, Moradi A, Bahrami AR. Mesenchymal stem cell based therapy for osteo-diseases. Cell Biol Int 2014; 38:1081-5. [PMID: 24797260 DOI: 10.1002/cbin.10293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/16/2014] [Indexed: 01/06/2023]
Abstract
Stem cell therapy in recent years has gained much attention as the modern therapeutic approach to treat diseases. Mesenchymal stem cells (MSCs) are seen as the most reliable cells applied in therapy over other stem cells because of their versatility. Bone and cartilage diseases (osteo-diseases) are the major target of therapy using MSCs. In this perspective, we have statistically analyzed the data available on clinical trials registry databases regarding the mesenchymal stem cell based therapy for a number of mentioned diseases and paid attention towards the osteodiseases. We report that MSC therapy for osteo-diseases needs optimization in its standards to achieve acceptable results so that we can apply it in daily routine clinical practice.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | | | | | | | | | | | | |
Collapse
|
128
|
Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet 2014; 46:551-7. [PMID: 24816254 DOI: 10.1038/ng.2968] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 12/13/2022]
Abstract
Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated case-derived induced pluripotent stem cells (iPSCs) harboring distinct aberrations in the affected region on chromosome 15. In studying PWS-iPSCs and human parthenogenetic iPSCs, we unexpectedly found substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we determined that IPW, a long noncoding RNA in the critical region of the PWS locus, is a regulator of the DLK1-DIO3 region, as its overexpression in PWS and parthenogenetic iPSCs resulted in downregulation of MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.
Collapse
Affiliation(s)
- Yonatan Stelzer
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Ido Sagi
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Ofra Yanuka
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Shaare Zedek Medical Center, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
129
|
Li X, Pei D, Zheng H. Transitions between epithelial and mesenchymal states during cell fate conversions. Protein Cell 2014; 5:580-91. [PMID: 24805308 PMCID: PMC4130923 DOI: 10.1007/s13238-014-0064-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/23/2014] [Indexed: 12/15/2022] Open
Abstract
Cell fate conversion is considered as the changing of one type of cells to another type including somatic cell reprogramming (de-differentiation), differentiation, and trans-differentiation. Epithelial and mesenchymal cells are two major types of cells and the transitions between these two cell states as epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) have been observed during multiple cell fate conversions including embryonic development, tumor progression and somatic cell reprogramming. In addition, MET and sequential EMT-MET during the generation of induced pluripotent stem cells (iPSC) from fibroblasts have been reported recently. Such observation is consistent with multiple rounds of sequential EMT-MET during embryonic development which could be considered as a reversed process of reprogramming at least partially. Therefore in current review, we briefly discussed the potential roles played by EMT, MET, or even sequential EMT-MET during different kinds of cell fate conversions. We also provided some preliminary hypotheses on the mechanisms that connect cell state transitions and cell fate conversions based on results collected from cell cycle, epigenetic regulation, and stemness acquisition.
Collapse
Affiliation(s)
- Xiang Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | | |
Collapse
|
130
|
Induction of multiciliated cells from induced pluripotent stem cells. Proc Natl Acad Sci U S A 2014; 111:6120-1. [PMID: 24740182 DOI: 10.1073/pnas.1404414111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
131
|
Cereso N, Pequignot MO, Robert L, Becker F, De Luca V, Nabholz N, Rigau V, De Vos J, Hamel CP, Kalatzis V. Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14011. [PMID: 26015956 PMCID: PMC4362346 DOI: 10.1038/mtm.2014.11] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/24/2014] [Indexed: 02/06/2023]
Abstract
Inherited retinal dystrophies (IRDs) comprise a large group of genetically and clinically heterogeneous diseases that lead to progressive vision loss, for which a paucity of disease-mimicking animal models renders preclinical studies difficult. We sought to develop pertinent human cellular IRD models, beginning with choroideremia, caused by mutations in the CHM gene encoding Rab escort protein 1 (REP1). We reprogrammed REP1-deficient fibroblasts from a CHM-/y patient into induced pluripotent stem cells (iPSCs), which we differentiated into retinal pigment epithelium (RPE). This iPSC-derived RPE is a polarized monolayer with a classic morphology, expresses characteristic markers, is functional for fluid transport and phagocytosis, and mimics the biochemical phenotype of patients. We assayed a panel of adeno-associated virus (AAV) vector serotypes and showed that AAV2/5 is the most efficient at transducing the iPSC-derived RPE and that CHM gene transfer normalizes the biochemical phenotype. The high, and unmatched, in vitro transduction efficiency is likely aided by phagocytosis and mimics the scenario that an AAV vector encounters in vivo in the subretinal space. We demonstrate the superiority of AAV2/5 in the human RPE and address the potential of patient iPSC–derived RPE to provide a proof-of-concept model for gene replacement in the absence of an appropriate animal model.
Collapse
Affiliation(s)
- Nicolas Cereso
- Inserm U1051, Institute for Neurosciences of Montpellier , Montpellier, France ; University of Montpellier 1 , Montpellier, France ; University of Montpellier 2 , Montpellier, France
| | - Marie O Pequignot
- Inserm U1051, Institute for Neurosciences of Montpellier , Montpellier, France ; University of Montpellier 1 , Montpellier, France ; University of Montpellier 2 , Montpellier, France
| | - Lorenne Robert
- Inserm U1051, Institute for Neurosciences of Montpellier , Montpellier, France ; University of Montpellier 1 , Montpellier, France ; University of Montpellier 2 , Montpellier, France
| | - Fabienne Becker
- Inserm U1040, Institute for Research in Biotherapy , Montpellier, France
| | - Valerie De Luca
- Inserm U1051, Institute for Neurosciences of Montpellier , Montpellier, France ; University of Montpellier 1 , Montpellier, France ; University of Montpellier 2 , Montpellier, France
| | - Nicolas Nabholz
- Inserm U1051, Institute for Neurosciences of Montpellier , Montpellier, France ; University of Montpellier 1 , Montpellier, France ; University of Montpellier 2 , Montpellier, France ; Department of Ophthalmology, CHRU , Montpellier, France
| | - Valerie Rigau
- Department of Anatomy and Pathological Cytology, CHRU , Montpellier, France
| | - John De Vos
- University of Montpellier 1 , Montpellier, France ; University of Montpellier 2 , Montpellier, France ; Inserm U1040, Institute for Research in Biotherapy , Montpellier, France ; Cellular Therapy Unit, CHRU , Montpellier, France
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier , Montpellier, France ; University of Montpellier 1 , Montpellier, France ; University of Montpellier 2 , Montpellier, France ; Department of Ophthalmology, CHRU , Montpellier, France ; Centre of Reference for Genetic Sensory Diseases, CHRU , Montpellier, France
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier , Montpellier, France ; University of Montpellier 1 , Montpellier, France ; University of Montpellier 2 , Montpellier, France
| |
Collapse
|
132
|
Abstract
Current approaches for the development of regenerative therapies have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. The ultimate goal of regenerative therapy is to develop fully functioning bioengineered organs to replace lost or damaged organs that result from disease, injury, or aging. Almost all organs including ectodermal organs, such as teeth, hair, salivary glands, and lacrimal glands, arise from organ germs induced by reciprocal epithelial-mesenchymal interactions in the developing embryo. A novel concept to generate a bioengineered organ is to recreate organogenesis and thereby develop fully functioning bioengineered organs from the resulting bioengineered organ germ generated via 3-dimensional cell manipulation using immature stem cells in vitro. We have previously developed a bioengineering method for forming a 3-dimensional organ germ in the early developmental stages, termed the "bioengineered organ germ method." Recently, we reported fully functioning bioengineered tooth replacements after transplantation of a bioengineered tooth germ or a mature tooth unit comprising the bioengineered tooth and periodontal tissues. This concept could be adopted to generate not only teeth but also bioengineered hair follicles, salivary glands, and lacrimal glands. These studies emphasize the potential for bioengineered organ replacement in future regenerative therapies. In this review, we will summarize the strategies and the recent progress of research and development for the establishment of organ replacement regenerative therapies.
Collapse
|
133
|
Picanço-Castro V, Moreira LF, Kashima S, Covas DT. Can pluripotent stem cells be used in cell-based therapy? Cell Reprogram 2014; 16:98-107. [PMID: 24606201 DOI: 10.1089/cell.2013.0072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pluripotent stem cells, both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the ability to differentiate into several cell types that can be used in drug testing and also in the study and treatment of diseases. These cells can be differentiated by in vitro systems, which may serve as models for human diseases and for cell transplantation. In this review, we address the pluripotent cell types, how to obtain and characterize these cells, and differentiation assays. We also focus on the potential of these cells in clinical trials, and we describe the clinical trials that are underway.
Collapse
|
134
|
Imaizumi K, Nishishita N, Muramatsu M, Yamamoto T, Takenaka C, Kawamata S, Kobayashi K, Nishikawa SI, Akuta T. A simple and highly effective method for slow-freezing human pluripotent stem cells using dimethyl sulfoxide, hydroxyethyl starch and ethylene glycol. PLoS One 2014; 9:e88696. [PMID: 24533137 PMCID: PMC3922972 DOI: 10.1371/journal.pone.0088696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/10/2014] [Indexed: 12/18/2022] Open
Abstract
Vitrification and slow-freezing methods have been used for the cryopreservation of human pluripotent stem cells (hPSCs). Vitrification requires considerable skill and post-thaw recovery is low. Furthermore, it is not suitable for cryopreservation of large numbers of hPSCs. While slow-freezing methods for hPSCs are easy to perform, they are usually preceded by a complicated cell dissociation process that yields poor post-thaw survival. To develop a robust and easy slow-freezing method for hPSCs, several different cryopreservation cocktails were prepared by modifying a commercially available freezing medium (CP-1™) containing hydroxyethyl starch (HES), and dimethyl sulfoxide (DMSO) in saline. The new freezing media were examined for their cryopreservation efficacy in combination with several different cell detachment methods. hPSCs in cryopreservation medium were slowly cooled in a conventional −80°C freezer and thawed rapidly. hPSC colonies were dissociated with several proteases. Ten percent of the colonies were passaged without cryopreservation and another 10% were cryopreserved, and then the recovery ratio was determined by comparing the number of Alkaline Phosphatase-positive colonies after thawing at day 5 with those passaged without cryopreservation at day 5. We found that cell detachment with Pronase/EDTA followed by cryopreservation using 6% HES, 5% DMSO, and 5% ethylene glycol (EG) in saline (termed CP-5E) achieved post-thaw recoveries over 80%. In summary, we have developed a new cryopreservation medium free of animal products for slow-freezing. This easy and robust cryopreservation method could be used widely for basic research and for clinical application.
Collapse
Affiliation(s)
- Keitaro Imaizumi
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Kobe office, RIKEN Cell Tech Co. Ltd., Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Naoki Nishishita
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Marie Muramatsu
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Takako Yamamoto
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Chiemi Takenaka
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Shin Kawamata
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- * E-mail: (SK); (TA)
| | - Kenichiro Kobayashi
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Okura, Setagaya-ku, Tokyo, Japan
| | - Shin-ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Teruo Akuta
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Kobe office, RIKEN Cell Tech Co. Ltd., Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- * E-mail: (SK); (TA)
| |
Collapse
|
135
|
Petit GH, Olsson TT, Brundin P. Review: The future of cell therapies and brain repair:
P
arkinson's disease leads the way. Neuropathol Appl Neurobiol 2014; 40:60-70. [DOI: 10.1111/nan.12110] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 12/22/2022]
Affiliation(s)
- G. H. Petit
- Neuronal Survival Unit, Department of Experimental Medical Science Wallenberg Neuroscience Center Lund Sweden
| | - T. T. Olsson
- Van Andel Research Institute Center for Neurodegenerative Science Grand Rapids MI USA
| | - P. Brundin
- Neuronal Survival Unit, Department of Experimental Medical Science Wallenberg Neuroscience Center Lund Sweden
- Van Andel Research Institute Center for Neurodegenerative Science Grand Rapids MI USA
| |
Collapse
|
136
|
Takaki M, Goto K, Kawahara I. The 5-hydroxytryptamine 4 Receptor Agonist-induced Actions and Enteric Neurogenesis in the Gut. J Neurogastroenterol Motil 2014; 20:17-30. [PMID: 24466442 PMCID: PMC3895605 DOI: 10.5056/jnm.2014.20.1.17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/15/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022] Open
Abstract
We explored a novel effect of 5-hydroxytryptamine 4 receptor (5-HT4R) agonists in vivo to reconstruct the enteric neural circuitry that mediates a fundamental distal gut reflex. The neural circuit insult was performed in guinea pigs and rats by rectal transection and anastomosis. A 5-HT4R-agonist, mosapride citrate (MOS) applied orally and locally at the anastomotic site for 2 weeks promoted the regeneration of the impaired neural circuit or the recovery of the distal gut reflex. MOS generated neurofilament-, 5-HT4R- and 5-bromo-2'-deoxyuridine-positive cells and formed neural network in the granulation tissue at the anastomosis. Possible neural stem cell markers increased during the same time period. These novel actions by MOS were inhibited by specific 5-HT4R-antagonist such as GR113808 (GR) or SB-207266. The activation of enteric neural 5-HT4R promotes reconstruction of an enteric neural circuit that involves possibly neural stem cells. We also succeeded in forming dense enteric neural networks by MOS in a gut differentiated from mouse embryonic stem cells. GR abolished the formation of enteric neural networks. MOS up-regulated the expression of mRNA of 5-HT4R, and GR abolished this upregulation, suggesting MOS differentiated enteric neural networks, mediated via activation of 5-HT4R. In the small intestine in H-line: Thy1 promoter green fluorescent protein (GFP) mice, we obtained clear 3-dimensional imaging of enteric neurons that were newly generated by oral application of MOS after gut transection and anastomosis. All findings indicate that treatment with 5-HT4R-agonists could be a novel therapy for generating new enteric neurons to rescue aganglionic disorders in the whole gut.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| |
Collapse
|
137
|
Ghaedi M, Mendez JJ, Bove PF, Sivarapatna A, Raredon MSB, Niklason LE. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials 2014; 35:699-710. [PMID: 24144903 PMCID: PMC3897000 DOI: 10.1016/j.biomaterials.2013.10.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
Abstract
Traditional stem cell differentiation protocols make use of a variety of cytokines including growth factors (GFs) and inhibitors in an effort to provide appropriate signals for tissue specific differentiation. In this study, iPSC-derived type II pneumocytes (iPSC-ATII) as well as native isolated human type II pneumocytes (hATII) were differentiated toward a type I phenotype using a unique air-liquid interface (ALI) system that relies on a rotating apparatus that mimics in vivo respiratory conditions. A relatively homogenous population of alveolar type II-like cells from iPSC was first generated (iPSC-ATII cells), which had phenotypic properties similar to mature human alveolar type II cells. iPSC-ATII cells were then cultured in a specially designed rotating culture apparatus. The effectiveness of the ALI bioreactor was compared with the effectiveness of small molecule-based differentiation of type II pneumocytes toward type 1 pneumocytes. The dynamics of differentiation were examined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), flow cytometry and immunocytochemistry. iPSC-ATII and hATII cells cultured in the ALI bioreactor had higher levels of type I markers, including aquaporin-5(AQ5), caveolin-1, and T1α, at both the RNA and protein levels as compared with the flask-grown iPSC-ATII and hATII that had been treated with small molecules to induce differentiation. In summary, this study demonstrates that a rotating bioreactor culture system that provides an air-liquid interface is a potent inducer of type I epithelial differentiation for both iPS-ATII cells and hATII cells, and provides a method for large-scale production of alveolar epithelium for tissue engineering and drug discovery.
Collapse
Affiliation(s)
- Mahboobe Ghaedi
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Julio J. Mendez
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Peter F. Bove
- Cystic Fibrosis/Pulmonary Research Treatment Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amogh Sivarapatna
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Micha Sam B. Raredon
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Laura E. Niklason
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
138
|
Sewell W, Lin RY. Generation of thyroid follicular cells from pluripotent stem cells: potential for regenerative medicine. Front Endocrinol (Lausanne) 2014; 5:96. [PMID: 24995001 PMCID: PMC4062909 DOI: 10.3389/fendo.2014.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023] Open
Abstract
Nearly 12% of the population in the United States will be afflicted with a thyroid related disorder during their lifetime. Common treatment approaches are tailored to the specific disorder and include surgery, radioactive iodine ablation, antithyroid drugs, thyroid hormone replacement, external beam radiation, and chemotherapy. Regenerative medicine endeavors to combat disease by replacing or regenerating damaged, diseased, or dysfunctional body parts. A series of achievements in pluripotent stem cell research have transformed regenerative medicine in many ways by demonstrating "repair" of a number of body parts in mice, of which, the thyroid has now been inducted into this special group. Seminal work in pluripotent cells, namely embryonic stem cells and induced pluripotent stem cells, have made possible their path to becoming key tools and biological building blocks for cell-based regenerative medicine to combat the gamut of human diseases, including those affecting the thyroid.
Collapse
Affiliation(s)
- Will Sewell
- Department of Otolaryngology – Head and Neck Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Reigh-Yi Lin
- Department of Otolaryngology – Head and Neck Surgery, Saint Louis University School of Medicine, St. Louis, MO, USA
- *Correspondence: Reigh-Yi Lin, Department of Otolaryngology – Head and Neck Surgery, Saint Louis University School of Medicine, 1100 South Grand Blvd, St. Louis, MO 63104, USA e-mail:
| |
Collapse
|
139
|
Scheiner ZS, Talib S, Feigal EG. The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J Biol Chem 2013; 289:4571-7. [PMID: 24362036 DOI: 10.1074/jbc.r113.509588] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology offers the promise of immune-matched cell therapies for a wide range of diseases and injuries. It is generally assumed that cells derived from autologous iPSCs will be immune-privileged. However, there are reasons to question this assumption, including recent studies that have tested iPSC immunogenicity in various ways with conflicting results. Understanding the risk of an immune response and developing strategies to minimize it will be important steps before clinical testing. Here, we review the evidence for autologous iPSC immunogenicity, its potential causes, and approaches for assessment and mitigation.
Collapse
Affiliation(s)
- Zachary S Scheiner
- From the California Institute for Regenerative Medicine, San Francisco, California 94107
| | | | | |
Collapse
|
140
|
Ruan GP, Xu F, Li ZA, Zhu GX, Pang RQ, Wang JX, Cai XM, He J, Yao X, Ruan GH, Xu XM, Pan XH. Induced autologous stem cell transplantation for treatment of rabbit renal interstitial fibrosis. PLoS One 2013; 8:e83507. [PMID: 24367598 PMCID: PMC3867441 DOI: 10.1371/journal.pone.0083507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/05/2013] [Indexed: 12/02/2022] Open
Abstract
Introduction Renal interstitial fibrosis (RIF) is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. Methods A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP). These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. Results Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05) were observed in serum creatinine (SCr) (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L) and blood urea nitrogen (BUN) (119 ± 22 µmol/L to 97 ± 13 µmol/L), indicating improvement in renal function. Conclusions We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function.
Collapse
Affiliation(s)
- Guang-Ping Ruan
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Fan Xu
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Zi-An Li
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Guang-Xu Zhu
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Rong-Qing Pang
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Jin-Xiang Wang
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Xue-Min Cai
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Jie He
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Xiang Yao
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Guang-Hong Ruan
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Xin-Ming Xu
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Xing-Hua Pan
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
- * E-mail:
| |
Collapse
|
141
|
Navara CS, Hornecker J, Grow D, Chaudhari S, Hornsby PJ, Ichida JK, Eggan K, McCarrey JR. Derivation of induced pluripotent stem cells from the baboon: a nonhuman primate model for preclinical testing of stem cell therapies. Cell Reprogram 2013; 15:495-502. [PMID: 24182315 DOI: 10.1089/cell.2012.0093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Development of effective pluripotent stem cell-based therapies will require safety and efficacy testing in a clinically relevant preclinical model such as nonhuman primates (NHPs). Baboons and macaques are equally similar to humans genetically and both have been extensively used for biomedical research. Macaques are preferred for human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) research whereas baboons are preferred for transplantation studies because of the greater similarity of their anatomy and immunogenetic system to those of humans. We generated four induced pluripotent stem cell (iPSC) lines from skin cells of the olive baboon (Papio anubis). Each line shows the distinct morphology of primate pluripotent stem cells, including flat colonies with well-defined borders and a high nuclear/cytoplasm ratio. Each is positive for the pluripotency markers OCT4, SOX2, NANOG, and SSEA4. Pluripotency was confirmed in two lines by teratoma formation with representative tissues from each germ layer, whereas a third produced cells from all three germ layers following embryoid body differentiation. Three lines have a normal male karyotype and the fourth is missing the short arm of one copy of chromosome 18. This may serve as an in vitro model for the human developmental disorder 18p-, which impacts 1 in 50,000 births/year. These iPSC lines represent the first step toward establishing the baboon as a NHP model for developing stem cell-based therapies.
Collapse
Affiliation(s)
- Christopher S Navara
- 1 Department of Biology, University of Texas at San Antonio , San Antonio, TX 78249
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Deng Y, Zhang X, Zhao X, Li Q, Ye Z, Li Z, Liu Y, Zhou Y, Ma H, Pan G, Pei D, Fang J, Wei S. Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions. Acta Biomater 2013; 9:8840-50. [PMID: 23891809 DOI: 10.1016/j.actbio.2013.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 01/07/2023]
Abstract
Realization of the full potential of human induced pluripotent stem cells (hiPSC) in clinical applications requires the development of well-defined culture conditions for their long-term growth and directed differentiation. This paper describes a novel fully defined synthetic peptide-decorated substrate that supports self-renewal of hiPSC in commercially available xeno-free, chemically defined medium. The Au surface was deposited by a poly(OEGMA-co-HEMA) film, using the surface-initiated polymerization method (SIP) with the further step of carboxylation. The hiPSC generated from umbilical cord mesenchymal cells were successfully cultured for 10 passages on the peptide-tethered poly(OEGMA-co-HEMA) brushes for the first time. Cells maintained their characteristic morphology, proliferation and expressed high levels of markers of pluripotency, similar to the cells cultured on Matrigel™. Moreover, the cell adhesion could be tuned by the pattern and peptide concentration on the substrate. This well-defined, xeno-free and safe substrate, which supports long-term proliferation and self-renewal of hiPSC, will not only help to accelerate the translational perspectives of hiPSC, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation via SIP technology.
Collapse
Affiliation(s)
- Y Deng
- Department of Prosthodontics, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 2013; 123:4950-62. [PMID: 24135142 DOI: 10.1172/jci68793] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/15/2013] [Indexed: 01/11/2023] Open
Abstract
The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro. Consistent with an AETII phenotype, we found that up to 97% of cells were positive for surfactant protein C, 95% for mucin-1, 93% for surfactant protein B, and 89% for the epithelial marker CD54. Additionally, exposing induced AETII to a Wnt/β-catenin inhibitor (IWR-1) changed the iPSC-AETII-like phenotype to a predominantly AETI-like phenotype. We found that of induced AET1 cells, more than 90% were positive for type I markers, T1α, and caveolin-1. Acellular lung matrices were prepared from whole rat or human adult lungs treated with decellularization reagents, followed by seeding these matrices with alveolar cells derived from human iPSCs. Under appropriate culture conditions, these progenitor cells adhered to and proliferated within the 3D lung tissue scaffold and displayed markers of differentiated pulmonary epithelium.
Collapse
|
144
|
Yang Y, Akinci E, Dutton JR, Banga A, Slack JMW. Stage specific reprogramming of mouse embryo liver cells to a beta cell-like phenotype. Mech Dev 2013; 130:602-12. [PMID: 23994012 DOI: 10.1016/j.mod.2013.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022]
Abstract
We show that cultures of mouse embryo liver generate insulin-positive cells when transduced with an adenoviral vector encoding the three genes: Pdx1, Ngn3 and MafA (Ad-PNM). Only a proportion of transduced cells become insulin-positive and the highest yield occurs in the period E14-16, declining at later stages. Insulin-positive cells do not divide further although they can persist for several weeks. RT-PCR analysis of their gene expression shows the upregulation of a whole battery of genes characteristic of beta cells including upregulation of the endogenous counterparts of the input genes. Other features, including a relatively low insulin content, the expression of genes for other pancreatic hormones, and the fact that insulin secretion is not glucose-sensitive, indicate that the insulin-positive cells remain immature. The origin of the insulin-positive cells is established both by co-immunostaining for α-fetoprotein and albumin, and by lineage tracing for Sox9, which is expressed in the ductal plate cells giving rise to biliary epithelium. This shows that the majority of insulin-positive cells arise from hepatoblasts with a minority from the ductal plate cells.
Collapse
Affiliation(s)
- Ying Yang
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
145
|
Wang Y, Tian C, Zheng JC. FoxO3a contributes to the reprogramming process and the differentiation of induced pluripotent stem cells. Stem Cells Dev 2013; 22:2954-63. [PMID: 23815557 DOI: 10.1089/scd.2013.0044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Induced pluripotent stem (iPS) cells, which are morphologically and functionally similar with embryonic stem (ES) cells, have been successfully generated from somatic cells through defined reprogramming transcription factors. Forkhead class O3a (FoxO3a) has been recently reported to play an important role in the homeostasis and maintenance of certain types of stem cells; however, the role of FoxO3a in the reprogramming process and differentiation of iPS cells remains unclear. In this study, we investigate the function of FoxO3a during the reprogramming process and characterize the properties of iPS cells from FoxO3a-wild type and -null mouse embryonic fibroblasts (MEFs). Our results show that the FoxO3a-null iPS cells are similar to the wild-type iPS cells in the levels of ES cell markers, alkaline phosphatase activity, and formation of teratoma in vivo. The reprogramming process is delayed in the FoxO3a-null MEFs compared to the wild-type MEFs; whereas the overexpression of FoxO3a partially recovers the impaired reprogramming efficiency in the null group. More importantly, FoxO3a deficiency impairs the neuronal lineage differentiation potential of iPS cells in vitro. These results suggest that FoxO3a affects the reprogramming kinetics and the neuronal lineage differentiation potential of the resulting iPS cells. Therefore, this study demonstrates a novel function of FoxO3a in cell reprogramming, which will help the development of alternative strategies for generating iPS cells.
Collapse
Affiliation(s)
- Yongxiang Wang
- 1 Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center , Omaha, Nebraska
| | | | | |
Collapse
|
146
|
Cai J, Zhang Y, Liu P, Chen S, Wu X, Sun Y, Li A, Huang K, Luo R, Wang L, Liu Y, Zhou T, Wei S, Pan G, Pei D. Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. CELL REGENERATION 2013; 2:6. [PMID: 25408878 PMCID: PMC4230506 DOI: 10.1186/2045-9769-2-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/08/2013] [Indexed: 02/06/2023]
Abstract
Background Tooth is vital not only for a good smile, but also good health. Yet, we lose tooth regularly due to accidents or diseases. An ideal solution to this problem is to regenerate tooth with patients’ own cells. Here we describe the generation of tooth-like structures from integration-free human urine induced pluripotent stem cells (ifhU-iPSCs). Results We first differentiated ifhU-iPSCs to epithelial sheets, which were then recombined with E14.5 mouse dental mesenchymes. Tooth-like structures were recovered from these recombinants in 3 weeks with success rate up to 30% for 8 different iPSC lines, comparable to H1 hESC. We further detected that ifhU-iPSC derived epithelial sheets differentiated into enamel-secreting ameloblasts in the tooth-like structures, possessing physical properties such as elastic modulus and hardness found in the regular human tooth. Conclusion Our results demonstrate that ifhU-iPSCs can be used to regenerate patient specific dental tissues or even tooth for further drug screening or regenerative therapies. Electronic supplementary material The online version of this article (doi:10.1186/2045-9769-2-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinglei Cai
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Pengfei Liu
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China ; Department of Regeneration Medicine, School of Pharmaceutical, Jilin University, Changchun, P.R. China
| | - Shubin Chen
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Xuan Wu
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China ; Department of Regeneration Medicine, School of Pharmaceutical, Jilin University, Changchun, P.R. China
| | - Yuhua Sun
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, P.R. China
| | - Ang Li
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, P.R. China
| | - Ke Huang
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Rongping Luo
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Lihui Wang
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Ying Liu
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China ; The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotech & Biomedicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, P.R. China
| | - Ting Zhou
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, P.R. China ; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| |
Collapse
|
147
|
Low immunogenicity of neural progenitor cells differentiated from induced pluripotent stem cells derived from less immunogenic somatic cells. PLoS One 2013; 8:e69617. [PMID: 23922758 PMCID: PMC3724937 DOI: 10.1371/journal.pone.0069617] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/12/2013] [Indexed: 01/29/2023] Open
Abstract
The groundbreaking discovery of induced pluripotent stem cells (iPS cells) provides a new source for cell therapy. However, whether the iPS derived functional lineages from different cell origins have different immunogenicity remains unknown. It had been known that the cells isolated from extra-embryonic tissues, such as umbilical cord mesenchymal cells (UMCs), are less immunogenic than other adult lineages such as skin fibroblasts (SFs). In this report, we differentiated iPS cells from human UMCs and SFs into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with allologous peripheral blood mononuclear cells (PBMCs), we showed that UMCs were indeed less immunogenic than skin cells to simulate proliferation of PBMCs. Surprisingly, we found that the NPCs differentiated from UMC-iPS cells retained low immunogenicity as the parental UMCs based on the PBMC proliferation assay. In cytotoxic expression assay, reactions in most kinds of immune effector cells showed more perforin and granzyme B expression with SF-NPCs stimulation than that with UMC-NPCs stimulation in PBMC co-culture system, in T cell co-culture system as well. Furthermore, through whole genome expression microarray analysis, we showed that over 70 immune genes, including all members of HLA-I, were expressed at lower levels in NPCs derived from UMC-iPS cells than that from SF-iPS cells. Our results demonstrated a phenomenon that the low immunogenicity of the less immunogenic cells could be retained after cell reprogramming and further differentiation, thus provide a new concept to generate functional lineages with lower immunogenicity for regenerative medicine.
Collapse
|
148
|
Honda A, Hatori M, Hirose M, Honda C, Izu H, Inoue K, Hirasawa R, Matoba S, Togayachi S, Miyoshi H, Ogura A. Naive-like conversion overcomes the limited differentiation capacity of induced pluripotent stem cells. J Biol Chem 2013; 288:26157-26166. [PMID: 23880763 DOI: 10.1074/jbc.m113.502492] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called "naive" state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity.
Collapse
Affiliation(s)
- Arata Honda
- From the Organization for Promotion of Tenure Track, University of Miyazaki, 5200, Kibara, Kiyotake, Miyazaki 889-1692,; the RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074,; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012,.
| | | | | | - Chizumi Honda
- From the Organization for Promotion of Tenure Track, University of Miyazaki, 5200, Kibara, Kiyotake, Miyazaki 889-1692
| | - Haruna Izu
- From the Organization for Promotion of Tenure Track, University of Miyazaki, 5200, Kibara, Kiyotake, Miyazaki 889-1692
| | - Kimiko Inoue
- the RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074,; the Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, and
| | | | - Shogo Matoba
- the RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074
| | | | | | - Atsuo Ogura
- the RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074,; the Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, and; the Center for Disease Biology and Integrative Medicine, 5 Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
149
|
Abstract
The conversion of somatic cells into pluripotent cells is transforming the way diseases are researched and treated. Induced pluripotent stem (iPS) cells' promise may soon be realized in the field of hematology, as hematopoietic stem cell transplants are already commonplace in clinics around the world. We provide a current comparison between induced pluripotent and embryonic stem cells, describe progress toward modeling hematological disorders using iPS cells, and illustrate the hurdles that must be overcome before iPS cell therapies will be available in clinics.
Collapse
Affiliation(s)
- Anne B C Cherry
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston, MA, USA
| | | |
Collapse
|
150
|
Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev 2013; 65:1091-133. [PMID: 23818131 DOI: 10.1124/pr.112.007393] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.
Collapse
Affiliation(s)
- George J Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | | | | | | |
Collapse
|