101
|
Giacomet C, Pochmann D, Peccin P, Boeira M, Dani C, Peres A, Elsner V. Does a HIIT modulate BDNF levels, and epigenetic and muscle damage markers in postmenopausal obese women? COMPARATIVE EXERCISE PHYSIOLOGY 2019. [DOI: 10.3920/cep190026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent clinical studies demonstrated that single bouts of exercise including high intensity interval training (HIIT) protocols are able to modulate muscle damage and epigenetic markers as well as brain-derived neurotrophic factor (BDNF) levels in different populations, however, this relationship is lacking in obese women. To evaluate the impact of a single bout of HIIT on creatine kinase (CK), BDNF and global histone H3 and H4 acetylation levels in obese postmenopausal women. The sample consisted of 10 volunteers with a body mass index of 27 to 39.9 kg / m2 that were submitted to a single session of HIIT on a cycle ergometer for 60 s (separated by 75 s of active recovery). In order to measure the biomarkers, blood samples (15 ml) were collected immediately before and immediately after the intervention. Our protocol did not modify any biomarkers (P>0.05), although a negative correlation between fat mass and global histone H3 levels (P=0.022) and between oxygen consumption and global histone H4 levels (P=0.003) were found. A single bout of HIIT on a cycle ergometer is not an effective strategy to modulate histone acetylation status, CK and BDNF levels in postmenopausal obese women. Future studies considering different exercise protocols should be done in order to elucidate this issue.
Collapse
Affiliation(s)
- C. Giacomet
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
| | - D. Pochmann
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
| | - P.K. Peccin
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
| | - M.C. Boeira
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
| | - C. Dani
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
| | - A. Peres
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
| | - V.R. Elsner
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
- Programa de Pós Graduação em Ciências Biológicas: Fisiologia, Universidade federal do Rio Grande do Sul, Rua Coronel Joaquim Pedro Salgado 80, Rio Branco, Porto Alegre, RS, CEP 90420-060, Brazil
| |
Collapse
|
102
|
Sheng D, Zhao S, Gao L, Zheng H, Liu W, Hou J, Jin Y, Ye F, Zhao Q, Li R, Zhao N, Zhang L, Han Z, Wei L. BabaoDan attenuates high-fat diet-induced non-alcoholic fatty liver disease via activation of AMPK signaling. Cell Biosci 2019; 9:77. [PMID: 31548878 PMCID: PMC6751621 DOI: 10.1186/s13578-019-0339-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 09/09/2019] [Indexed: 12/29/2022] Open
Abstract
Background Babaodan (BBD), a traditional Chinese medicine, has been shown to have protective effects during liver injury and ameliorate liver disease progression, but little is known about its effect on non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the effects of BBD on obesity-induced NAFLD. Methods C57BL/6 J mice were fed with normal diet, high fat diet (HFD) or HFD + BBD for 8 weeks. Weights of all mice were recorded every 3 days. At the end of the experiments, the level of livers, kidneys and adipose tissues of each animal was weighed. Blood serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C) cholesterol, low density lipoprotein cholesterol (LDL-C), glucose and leptin were detected with appropriate test kits. Haematoxylin-eosin (HE), Masson trichrome and Oil Red O staining of the liver were performed. We applied immunohistochemical analysis to investigate the expression of TNF-α, IL-6 and leptin in liver tissue. The expression of genes related lipid anabolism (SREBP1-c, ACC, SCD-1, LXRα and CD36) and ß-oxidation (CPT-1 and PPARα) in liver and adipose tissues was determined by RT-PCR. The expression of AMPK and p-AMPK was determined by western blot analysis. Results We found the weight of bodies and tissues (retroperitoneal fat pads, kidneys and livers) of mice fed with HFD + BBD were significantly lower than that of HFD-fed mice. And liver injury induced by HFD was relieved in mice treated with BBD, accompanied with significant reduction were observed in serum ALT/AST activities and alleviated pathological damage. The levels of glucose, TG, TC, HDL-C and LDL-C in the liver or serum were significantly decreased on HFD + BBD group compared with HFD group. Furthermore, BBD treatment reduced the level of TNF-α and IL-6 induced by HFD. The level of leptin in the liver and serum were reduced in mice fed with HFD + BBD than that of HFD-fed mice. Several lipid synthesis genes (SREBP1-c, ACC, SCD-1, LXRα and CD36) were down-regulated and that of ß-oxidation (CPT-1 and PPARα) up-regulated in HFD + BBD group compared with HFD group. In addition, BBD increased the expression of p-AMPK compared with untreated HFD group, which suggested BBD improved the activation of AMPK pathway. Conclusion In summary, our results indicate that BBD has potential applications in the prevention and treatment of NAFLD, which may be closely related to its effect on lipid metabolism via activation of AMPK signaling.
Collapse
Affiliation(s)
- Dandan Sheng
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Shanmin Zhao
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Lu Gao
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Huifei Zheng
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Wenting Liu
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Jing Hou
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Yuxiang Jin
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Fei Ye
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Qiudong Zhao
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Rong Li
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Naping Zhao
- 2Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433 China
| | - Li Zhang
- 2Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433 China
| | - Zhipeng Han
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| | - Lixin Wei
- 1Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, NO. 225 Changhai Road, Shanghai, 200438 China
| |
Collapse
|
103
|
Rana S, Sultana A, Bhatti AA. Association of BDNF rs6265 and MC4R rs17782313 with metabolic syndrome in Pakistanis. J Biosci 2019. [DOI: 10.1007/s12038-019-9915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
104
|
Rana S, Sultana A, Bhatti AA. Association of BDNF rs6265 and MC4R rs17782313 with metabolic syndrome in Pakistanis. J Biosci 2019; 44:95. [PMID: 31502573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The current case-control study sought the association of BDNF rs6265 and MC4R rs17782313 with metabolic syndrome (MetS), MetS components and other related metabolic parameters in a sample of Pakistani subjects. Fasting high-density lipoprotein cholesterol (HDL-C) and homeostatic model assessment of insulin sensitivity showed a significantly lower mean whereas body mass index (BMI), waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose, insulin, total cholesterol (TC), low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, triglycerides (TG), cholesterol to HDL-C ratio, TG to HDL-C ratio, homeostatic model assessment of insulin resistance, visceral adiposity index, lipid accumulation product and the product of TG and glucose showed a significantly higher mean in the presence of MetS. Reduced HDL-C appeared as the most frequent and hypertriglyceridemia as the least frequent component of MetS whereas clustering of reduced HDL-C + abdominal obesity (AO) + hyperglycemia appeared as the most prevalent combination of MetS components. Moreover, BDNF rs6265 showed BMI and gender independent association with increased risk of MetS in Pakistani individuals whereas MC4R rs17782313 showed BMI and gender dependent association with increased risk of MetS in Pakistani females. In addition, BDNF rs6265 and MC4R rs17782313 showed gender-dependent associations with decreased risk of having low HDL-C in males and increased risk of having abdominal obesity in females, respectively. However, no association was observed for metabolic variables other than components of MetS across genotypes of both BDNF rs6265 and MC4R rs17782313.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | | | | |
Collapse
|
105
|
Cui W, Liu CX, Wang J, Zhang YC, Shen Q, Feng ZH, Wu J, Li JX. An oleanolic acid derivative reduces denervation-induced muscle atrophy via activation of CNTF-mediated JAK2/STAT3 signaling pathway. Eur J Pharmacol 2019; 861:172612. [PMID: 31421088 DOI: 10.1016/j.ejphar.2019.172612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Denervation caused by sciatic nerve injury has brought great harm to the patients, especially denervation-induced muscle atrophy. The body stress produces a large number of Schwann cells when the sciatic nerve is injured, and the cells secrete some cytokines including ciliary neurotrophic factor (CNTF) that not only play a role in promoting the repair of sciatic nerve, but also maintain the normal physiological function of the muscles surrounding the damaged nerves. CNTF upregulates janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) signals in myoblasts, and consequently accelerates the proliferation and differentiation of myoblasts. This effect on myoblasts is the most effective way to relieve muscle atrophy. Therefore, increasing CNTF is a promising direction to improve muscle atrophy. In the present study, an oleanolic acid derivative, HA-19, increased the proliferation of Schwann cells, and elevated CNTF production of the cells. HA-19 up-regulated the phosphorylation of JAK2 and STAT3 not only by directly acting on myoblasts, but also by increasing the secretion of CNTF of Schwann cells; and consequently, promoted the proliferation and differentiation of myoblasts. In denervation-induced muscle atrophy mice model, treatment with HA-19 significantly increased the weights of tibialis anterior (TA), gastrocnemius (Gastroc.), extensor digitorum longus (EDL), soleus and quadriceps (Quad.) under atrophied state. And, very interestingly, these muscles under normal condition were also strengthened by HA-19. Our finding demonstrated that HA-19 has a great potential as a lead compound for the drug discovery of anti-denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, 210008, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
106
|
Pérez-Torres I, Gutiérrez-Alvarez Y, Guarner-Lans V, Díaz-Díaz E, Manzano Pech L, Caballero-Chacón SDC. Intra-Abdominal Fat Adipocyte Hypertrophy through a Progressive Alteration of Lipolysis and Lipogenesis in Metabolic Syndrome Rats. Nutrients 2019; 11:nu11071529. [PMID: 31284400 PMCID: PMC6683042 DOI: 10.3390/nu11071529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
This study evaluates the progressive participation of enzymes involved in lipolysis and lipogenesis, leading to adipocyte hypertrophy in a metabolic syndrome (MS) rat model caused by chronic consumption of 30% sucrose in drinking water. A total of 70 male Wistar rats were divided into two groups: C and MS. Each of these groups were then subdivided into five groups which were sacrificed as paired groups every month from the beginning of the treatment until 5 months. The intra-abdominal fat was dissected, and the adipocytes were extracted. Lipoprotein lipase (LPL), hormone-sensitive lipase (HSL), protein kinases A (PKA), and perilipin A expressions were determined. The LPL and HSL activities were evaluated by spectrophotometry. Histological staining was performed in adipose tissue. Significant increases were observed in blood pressure, HOMA-IR, leptin, triglycerides, insulin, intra-abdominal fat, and number of fat cells per field (p = 0.001) and in advanced glycosylation products, adipocyte area, LPL, HSL activities and/or expression (p ≤ 0.01) in the MS groups progressively from the third month onward. Lipogenesis and lipolysis were increased by LPL activity and HSL activity and/or expression. This was associated with hyperinsulinemia and release of non-esterified fatty acids causing a positive feedback loop that contributes to the development of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico.
| | - Yolanda Gutiérrez-Alvarez
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Sección XVI, Tlalpan, México City 14000, Mexico
| | - Linaloe Manzano Pech
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Sara Del Carmen Caballero-Chacón
- Facultad de Medicina y Veterinaria y Zootecnia, Department of Physiology and Pharmacology UNAM, Av. Universidad 3000, Coyoacán, México City 04510, Mexico
| |
Collapse
|
107
|
Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, Cimini A, d'Angelo M. Neuronal Cells Rearrangement During Aging and Neurodegenerative Disease: Metabolism, Oxidative Stress and Organelles Dynamic. Front Mol Neurosci 2019; 12:132. [PMID: 31191244 PMCID: PMC6546816 DOI: 10.3389/fnmol.2019.00132] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges, resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative disorders, these mechanisms are compromised. In fact, neurons show unique age-related changes in functions and metabolism, resulting in greater susceptibility to insults and disease. Aging affects the nervous system as well as other organs. More precisely, as the nervous system ages, neuron metabolism may change, inducing glucose hypometabolism, impaired transport of critical substrates underlying metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant defenses and/or increase of reactive oxygen species (ROS). These changes lead to greater vulnerability of neurons in various regions of the brain and increased susceptibility to several diseases. Specifically, the first part of the review article will focus on the major neuronal cells’ rearrangements during aging in response to changes in metabolism and oxidative stress, while the second part will cover the neurodegenerative disease areas in detail.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, United States
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| |
Collapse
|
108
|
Ansari SA, Emerald BS. The Role of Insulin Resistance and Protein O-GlcNAcylation in Neurodegeneration. Front Neurosci 2019; 13:473. [PMID: 31143098 PMCID: PMC6521730 DOI: 10.3389/fnins.2019.00473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome including obesity and type 2 diabetes is increasing at an alarming rate worldwide. Similarly, there has been an increase in the cases of neurodegenerative diseases such as Alzheimer’s disease (AD) possibility due to increase in elderly population in the past few decades. Both, metabolic diseases and AD have one common feature that is insulin resistance. Recent studies suggest a link between the regulatory functions of insulin in the brain and AD. Hypoglycemia, a characteristic feature of AD may be a result of impaired insulin signaling in the affected regions of the brain. O-GlcNAcylation is a post-translational protein modification, the levels of which are dependent on the availability of glucose inside the cells. Hyperphosphorylation of Tau is a major molecular feature, which leads to its aggregation and neurotoxicity in AD. In addition, impaired processing of Amyloid precursor protein (APP) leading to toxic amyloid β (Aβ) aggregation is also implicated in the pathogenesis of AD. Both APP and Tau are also found to be O-GlcNAcylated. Reduced O-GlcNAcylation of APP and Tau due to hypoglycemia is found to be associated with their pathological features in AD brain. Recent studies have also identified perturbed O-GlcNAcylation/phosphorylation of several other proteins important for normal neuronal function, which may be contributing to the neuropathological development in AD. Herein, we discuss about the uptake and distribution of insulin inside the brain, brain insulin signaling and insulin resistance as well as its relation to neurodegenerative diseases with a special focus on protein O-GlcNAcylation and its potential role in the treatment of AD.
Collapse
Affiliation(s)
- Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
109
|
Xie X, Yang H, An JJ, Houtz J, Tan JW, Xu H, Liao GY, Xu ZX, Xu B. Activation of Anxiogenic Circuits Instigates Resistance to Diet-Induced Obesity via Increased Energy Expenditure. Cell Metab 2019; 29:917-931.e4. [PMID: 30661931 PMCID: PMC6507421 DOI: 10.1016/j.cmet.2018.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/31/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Anxiety disorders are associated with body weight changes in humans. However, the mechanisms underlying anxiety-induced weight changes remain poorly understood. Using Emx1Cre/+ mice, we deleted the gene for brain-derived neurotrophic factor (BDNF) in the cortex, hippocampus, and some amygdalar subregions. The resulting mutant mice displayed impaired GABAergic transmission and elevated anxiety. They were leaner when fed either a chow diet or a high-fat diet, owing to higher sympathetic activity, basal metabolic rate, brown adipocyte thermogenesis, and beige adipocyte formation, compared to control mice. BDNF re-expression in the amygdala rescued the anxiety and metabolic phenotypes in mutant mice. Conversely, anxiety induced by amygdala-specific Bdnf deletion or administration of an inverse GABAA receptor agonist increased energy expenditure. These results reveal that increased activities in anxiogenic circuits can reduce body weight by promoting adaptive thermogenesis and basal metabolism via the sympathetic nervous system and suggest that amygdalar GABAergic neurons are a link between anxiety and metabolic dysfunction.
Collapse
Affiliation(s)
- Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Haili Yang
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Juan Ji An
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Jessica Houtz
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ji-Wei Tan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Haifei Xu
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Guey-Ying Liao
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Zhi-Xiang Xu
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
110
|
McMurphy T, Huang W, Liu X, Siu JJ, Queen NJ, Xiao R, Cao L. Hypothalamic gene transfer of BDNF promotes healthy aging in mice. Aging Cell 2019; 18:e12846. [PMID: 30585393 PMCID: PMC6413658 DOI: 10.1111/acel.12846] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/15/2018] [Accepted: 09/02/2018] [Indexed: 12/26/2022] Open
Abstract
The aging process and age-related diseases all involve perturbed energy adaption and impaired ability to cope with adversity. Brain-derived neurotrophic factor (BDNF) in the hypothalamus plays important role in regulation of energy balance. Our previous studies show that recombinant adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity, diabetes, and metabolic syndromes in both diet-induced and genetic models. Here we examined the efficacy and safety of a built-in autoregulatory system to control transgene BDNF expression mimicking the body's natural feedback systems in middle-aged mice. Twelve-month-old mice were treated with either autoregulatory BDNF vector or yellow fluorescence protein (YFP) control, maintained on normal diet, and monitored for 28 weeks. BDNF gene transfer prevented the development of aging-associated metabolic declines characterized by: preventing aging-associated weight gain, reducing adiposity, reversing the decline of brown fat activity, increasing adiponectin while reducing leptin and insulin in circulation, improving glucose tolerance, increasing energy expenditure, alleviating hepatic steatosis, and suppressing inflammatory genes in the hypothalamus and adipose tissues. Moreover, BDNF treatment reduced anxiety-like and depression-like behaviors. These safety and efficacy data provide evidence that hypothalamic BDNF is a target for promoting healthy aging.
Collapse
Affiliation(s)
- Travis McMurphy
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Jason J. Siu
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Run Xiao
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| |
Collapse
|
111
|
Mikoteit T, Brand S, Eckert A, Holsboer-Trachsler E, Beck J. Brain-derived neurotrophic factor is a biomarker for subjective insomnia but not objectively assessable poor sleep continuity. J Psychiatr Res 2019; 110:103-109. [PMID: 30616157 DOI: 10.1016/j.jpsychires.2018.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Brain-derived neurotrophic factor (BDNF) is a central mediator of the effects of stress on neuronal plasticity. Patients with subjective insomnia have significantly lower serum BDNF (sBDNF) levels. The aims of the present study were to investigate the associations of sBDNF with, 1) subjective and 2) objective sleep; 3) to investigate the associations between dimensions of psychopathology, subjective sleep and sBDNF, and 4) to investigate the associations between insomnia, sBDNF and cortisol. METHODS 60 patients with insomnia (IG; mean age: 40.4 years; 48.3% females) and 30 healthy, age and gender-matched controls (CG) took part in the study. Subjective sleep was assessed using the Insomnia Severity Index (ISI), objective sleep was assessed once via sleep-EEG recordings. Both sBDNF and salivary cortisol were sampled once the following morning. Last, experts rated participants' symptoms of depression and anxiety. RESULTS sBDNF was significantly lower in the IG than in the CG (large effect size; Hedge's g = 1.75), while higher insomnia scores, but not depression or anxiety ratings, predicted lower sBDNF levels. Concerning objective sleep, low sBDNF did not correlate with sleep continuity measures, but with decreased REM-sleep; the latter was also characteristic of the IG. sBDNF and salivary morning cortisol were unrelated. CONCLUSIONS Independently of symptoms of depression or anxiety, sBDNF appears to be a biomarker for the clinical diagnosis of insomnia, but not for objectively assessed poor sleep continuity. A possible link between sBDNF and insomnia seems to be via regulation of REM-sleep, but not salivary morning cortisol.
Collapse
Affiliation(s)
- Thorsten Mikoteit
- University of Basel, Psychiatric Clinics (UPK), Basel, Switzerland; Psychiatric Services Solothurn and Faculty of Medicine of the University of Basel, Solothurn, Switzerland; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Serge Brand
- University of Basel, Psychiatric Clinics (UPK), Basel, Switzerland; University of Basel, Department of Sport, Exercise and Health, Division of Sport and Psychosocial Health, Basel, Switzerland; Kermanshah University of Medical Sciences, Psychiatry Department, Substance Use Disorders Prevention Center, Sleep Disorders Research Center, Kermanshah, Iran
| | - Anne Eckert
- University of Basel, Psychiatric Clinics (UPK), Basel, Switzerland; University of Basel, Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular & Cognitive Neuroscience, Basel, Switzerland
| | | | - Johannes Beck
- University of Basel, Psychiatric Clinics (UPK), Basel, Switzerland; Psychiatric Hospital Sonnenhalde, Riehen, Switzerland
| |
Collapse
|
112
|
Liu M, Tso P, Woods SC. Receptor CD36 links a risk-associated allele to obesity and metabolic disorders. J Biol Chem 2019; 293:13349-13350. [PMID: 30143599 DOI: 10.1074/jbc.h118.004818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice harboring a particular allele of the human brain-derived neurotropic factor (BDNFM/M mice) develop extreme obesity and insulin resistance when fed a high-fat diet. The underlying mechanisms of this genetic risk factor for obesity are unclear. In the current issue of JBC, Yang et al. report that pharmacological inhibition of integral membrane protein CD36 significantly reduces body weight gain and improves glucose tolerance in BDNFM/M mice. Targeting CD36 may therefore be a promising strategy to improve metabolic dysfunctions and normalize risk factors in obese individuals.
Collapse
Affiliation(s)
- Min Liu
- From the Department of Pathology and Laboratory Medicine and
| | - Patrick Tso
- From the Department of Pathology and Laboratory Medicine and
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237
| |
Collapse
|
113
|
TrkB-expressing neurons in the dorsomedial hypothalamus are necessary and sufficient to suppress homeostatic feeding. Proc Natl Acad Sci U S A 2019; 116:3256-3261. [PMID: 30718415 DOI: 10.1073/pnas.1815744116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic evidence indicates that brain-derived neurotrophic factor (BDNF) signaling through the TrkB receptor plays a critical role in the control of energy balance. Mutations in the BDNF or the TrkB-encoding NTRK2 gene have been found to cause severe obesity in humans and mice. However, it remains unknown which brain neurons express TrkB to control body weight. Here, we report that TrkB-expressing neurons in the dorsomedial hypothalamus (DMH) regulate food intake. We found that the DMH contains both glutamatergic and GABAergic TrkB-expressing neurons, some of which also express the leptin receptor (LepR). As revealed by Fos immunohistochemistry, a significant number of TrkB-expressing DMH (DMHTrkB) neurons were activated upon either overnight fasting or after refeeding. Chemogenetic activation of DMHTrkB neurons strongly suppressed feeding in the dark cycle when mice are physiologically hungry, whereas chemogenetic inhibition of DMHTrkB neurons greatly promoted feeding in the light cycle when mice are physiologically satiated, without affecting feeding in the dark cycle. Neuronal tracing revealed that DMHTrkB neurons do not innervate neurons expressing agouti-related protein in the arcuate nucleus, indicating that DMHTrkB neurons are distinct from previously identified LepR-expressing GABAergic DMH neurons that suppress feeding. Furthermore, selective Ntrk2 deletion in the DMH of adult mice led to hyperphagia, reduced energy expenditure, and obesity. Thus, our data show that DMHTrkB neurons are a population of neurons that are necessary and sufficient to suppress appetite and maintain physiological satiation. Pharmacological activation of these neurons could be a therapeutic intervention for the treatment of obesity.
Collapse
|
114
|
Zhang Z, Zhang Y, Wang Y, Ding S, Wang C, Gao L, Johnson A, Xue B. Genetic knockdown of brain-derived neurotrophic factor in the nervous system attenuates angiotensin II-induced hypertension in mice. J Renin Angiotensin Aldosterone Syst 2019; 20:1470320319834406. [PMID: 30894041 PMCID: PMC6429654 DOI: 10.1177/1470320319834406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION: Brain-derived neurotropic factor (BDNF) is expressed throughout the central nervous system and peripheral organs involved in the regulation of blood pressure, but the systemic effects of BDNF in the control of blood pressure are not well elucidated. MATERIALS AND METHODS: We utilized loxP flanked BDNF male mice to cross with nestin-Cre female mice to generate nerve system BDNF knockdown mice, nestin-BDNF (+/-), or injected Cre adenovirus into the subfornical organ to create subfornical organ BDNF knockdown mice. Histochemistry was used to verify injection location. Radiotelemetry was employed to determine baseline blood pressure and pressor response to angiotensin II (1000 ng/kg/min). Real-time polymerase chain reaction was used to measure the expression of renin-angiotensin system components in the laminal terminalis and peripheral organs. RESULTS: Nestin-BDNF (+/-) mice had lower renin-angiotensin system expression in the laminal terminalis and peripheral organs including the gonadal fat pad, and a lower basal blood pressure. They exhibited an attenuated hypertensive response and a weak or similar modification of renin-angiotensin system component expression to angiotensin II infusion. Subfornical organ BDNF knockdown was sufficient for the attenuation of angiotensin II-induced hypertension. CONCLUSION: Central BDNF, especially subfornical organ BDNF is involved in the maintenance of basal blood pressure and in augmentation of hypertensive response to angiotensin II through systemic regulation of the expression of renin-angiotensin system molecules.
Collapse
Affiliation(s)
- Zhongming Zhang
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Yijing Zhang
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Yan Wang
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Shengchen Ding
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Chenhui Wang
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Li Gao
- 1 Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing's Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Alan Johnson
- 2 Department of Psychological and Brain Sciences, University of Iowa, USA
| | - Baojian Xue
- 2 Department of Psychological and Brain Sciences, University of Iowa, USA
| |
Collapse
|
115
|
Luo F, Mu Y, Gao C, Xiao Y, Zhou Q, Yang Y, Ni X, Shen WL, Yang J. Whole-brain patterns of the presynaptic inputs and axonal projections of BDNF neurons in the paraventricular nucleus. J Genet Genomics 2019; 46:31-40. [DOI: 10.1016/j.jgg.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/22/2022]
|
116
|
Lai C, Stanfill AG, Zhang X, Cashion AK. The impact of plasma brain-derived neurotrophic factor concentration and weight gain after kidney transplantation. Res Nurs Health 2018; 42:82-86. [PMID: 30512217 DOI: 10.1002/nur.21921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/17/2018] [Indexed: 11/09/2022]
Abstract
Obesity and its related complications continue to be significant challenges for kidney transplant recipients. In previous studies, researchers have reported that brain-derived neurotrophic factor (BDNF) is closely associated with metabolic imbalance and obesity, but the role of BDNF in weight gain after kidney transplant has not been elucidated. The purpose of this pilot study was to explore the relationship between plasma BDNF levels and weight change. We examined associations between plasma BDNF levels measured at transplantation and 12 months later and measures of weight change during these 12 months in a sample of 55 kidney recipients (mean age of 48 years, 60% male, 56% African American). Of the 55 recipients, 49 had BDNF levels measured at baseline, 33 had BDNF levels measured at 12 months, and 27 had BDNF levels measured at both time points. We found that plasma BDNF levels at baseline (n = 49), but not at 12 months (n = 33), were significantly and positively correlated with the body mass index change (p = 0.037) and percentage weight change (p = 0.036). In addition, average plasma BDNF value at 12 months (307 ± 254 pg/ml) was significantly lower than at baseline (452 ± 345 pg/ml) in the 27 recipients with BDNF levels measured at both time points. Findings from this pilot work suggest that BDNF might serve as a regulator of weight change for kidney transplant related obesity.
Collapse
Affiliation(s)
- Chen Lai
- National Institute of Nursing Research, National Institutes of Health (CL, AKC, XZ), Bethesda, Maryland
| | - Ansley G Stanfill
- Department of Acute and Tertiary Care (AGS), University of Tennessee Health Science Center College of Nursing, Memphis, Tennessee.,Department of Genetics, Genomics, and Informatics (AGS), University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - Xuemin Zhang
- National Institute of Nursing Research, National Institutes of Health (CL, AKC, XZ), Bethesda, Maryland
| | - Ann K Cashion
- National Institute of Nursing Research, National Institutes of Health (CL, AKC, XZ), Bethesda, Maryland
| |
Collapse
|
117
|
Marcos-Pasero H, Aguilar-Aguilar E, de la Iglesia R, Espinosa-Salinas I, Gómez-Patiño M, Colmenarejo G, de Molina AR, Reglero G, Loria-Kohen V. Association of calcium and dairy product consumption with childhood obesity and the presence of a Brain Derived Neurotropic Factor-Antisense (BDNF-AS) polymorphism. Clin Nutr 2018; 38:2616-2622. [PMID: 30501916 DOI: 10.1016/j.clnu.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Calcium and dairy products have multiple health benefits. The objective of this work was to evaluate the association between calcium/dairy intake, blood pressure, the BDNF-AS rs925946 polymorphism and nutritional status in a group of schoolchildren. METHODS As part of the GENYAL study to childhood obesity prevention, 221 children belonging to different areas of the Community of Madrid were enrolled. Anthropometric and dietary data were collected, and children were genotyped according to the rs925946 polymorphism. Adjusted logistic and linear models were used to describe the data. RESULTS A significantly lower consumption of calcium in overweight versus normal weight children was observed (811.0 ± 174.1; 859.0 ± 195.9; 954.0 ± 223.1 mg; for obesity, overweight and normal weight, respectively, p = 0.010). Moreover, an inverse association between blood pressures and calcium intake was detected (β = -0.006 (-0.011, -3e-4)), p = 0.040. The number of dairy servings/day showed a protective effect against overweight (OR = 0.48 (0.29, 0.75), p = 0.001). Finally, common homozygous children (GG) showed an inverse association between the calcium intake and the BMI (β = -0.003 (-0.006, -0.001), p = 0.004), which was not observed in children carrying the T allele (β = -1.3e-4 (-0.0022, 0.0024), p = 0.93). CONCLUSION Calcium and dairy were strongly associated with the nutritional status and blood pressure. The identification of differential effects of calcium/dairy consumption on the nutritional status according to genetics may contribute to the personalization of future nutritional advice. TRIAL REGISTRATION This study is registered at www.clinicaltrials.govNCT03419520.
Collapse
Affiliation(s)
- Helena Marcos-Pasero
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain.
| | - Elena Aguilar-Aguilar
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain.
| | - Rocío de la Iglesia
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain.
| | - Isabel Espinosa-Salinas
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain.
| | - Mónica Gómez-Patiño
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain.
| | - Gonzalo Colmenarejo
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain.
| | - Ana Ramírez de Molina
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain.
| | - Guillermo Reglero
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain; Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL) CEI UAM+CSIC, Calle Nicolás Cabrera, 9, 28049 Madrid, Spain.
| | - Viviana Loria-Kohen
- IMDEA-Food. CEI UAM+CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. de Cantoblanco nº 8, 28049 Madrid, Spain.
| |
Collapse
|
118
|
Sandberg JC, Björck IME, Nilsson AC. Impact of rye-based evening meals on cognitive functions, mood and cardiometabolic risk factors: a randomized controlled study in healthy middle-aged subjects. Nutr J 2018; 17:102. [PMID: 30400947 PMCID: PMC6220522 DOI: 10.1186/s12937-018-0412-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background Whole grain (WG) intake is associated with reduced risk of obesity, type 2 diabetes and cardiovascular disease, whereas type 2 diabetes increases the risk of cognitive decline and dementia. The purpose of this study was to investigate the effects of short-term intervention with WG rye on cognitive functions, mood and cardiometabolic risk markers in middle-aged test subjects. Method Rye-based breads were provided to 38 healthy test subjects (aged 52-70y) during three consecutive days in a crossover study design, using white wheat flour bread (WWB) as a reference. The rye-based bread consisted of a WG rye kernel/flour mixture (1:1 ratio) supplemented with resistant starch type 2 (RS2) (RB + RS2). The last bread portion was ingested at 2100 h, and cognitive function, mood and cardiometabolic risk markers were determined the following morning, 11 − 14 h post intake. Results In comparison to WWB, the RB + RS2 product increased ratings of mood parameters (valance, P < 0.001; activation P < 0.05). No differences were seen in the cognitive tests depending on intervention (P > 0.05). RB + RS2 increased insulin sensitivity (P < 0.05), fasting levels of gut hormones (PYY, P < 0.05; GLP-2, P < 0.01) and fasting concentrations of plasma acetate, butyrate and total SCFA (P < 0.001). In contrast, fasting levels of IL − 1β were decreased (P < 0.05). Insulin sensitivity was positively correlated with working memory test performance (P < 0.05). Conclusions This study display novel findings regarding effects of WG rye products on mood, and glucose and appetite regulation in middle-aged subjects, indicating anti-diabetic properties of WG rye. The beneficial effects are suggested to be mediated through gut fermentation of dietary fiber in the RB + RS2 product. Trial registration The study was retrospectively registered at ClinicalTrials.gov, register number NCT03275948. Registered September 8 2017.
Collapse
Affiliation(s)
- Jonna C Sandberg
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.,Food for Health Science Centre, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Inger M E Björck
- Food for Health Science Centre, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Anne C Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden. .,Food for Health Science Centre, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
119
|
Muñoz-Rodríguez JR, Agarrado A, Martín-Fernández J, Salas E, González-Martín C, Alguacil LF. Cocaine and amphetamine regulated transcript and brain-derived neurotrophic factor in morbid obesity. One-year follow-up after gastric bypass. Surg Obes Relat Dis 2018; 14:1732-1739. [PMID: 30274741 DOI: 10.1016/j.soard.2018.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Andrea Agarrado
- University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain; University Hospital of Jerez, SAS, Jerez de la Frontera, Cádiz, Spain
| | | | - Elisabet Salas
- University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
| | - Carmen González-Martín
- University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain; School of Pharmacy, San Pablo CEU University, Boadilla, Madrid, Spain
| | - Luis F Alguacil
- University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain; School of Pharmacy, San Pablo CEU University, Boadilla, Madrid, Spain
| |
Collapse
|
120
|
Sandberg JC, Björck IME, Nilsson AC. Increased Plasma Brain-Derived Neurotrophic Factor 10.5 h after Intake of Whole Grain Rye-Based Products in Healthy Subjects. Nutrients 2018; 10:E1097. [PMID: 30115826 PMCID: PMC6115734 DOI: 10.3390/nu10081097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022] Open
Abstract
It has previously been shown in short-term interventions that kernel-based whole grain (WG) rye products have beneficial effects on test markers related to obesity and type 2 diabetes (T2D). T2D increases the risk of several severe health issues, including declined cognitive functions. The protein brain-derived neurotrophic factor (BDNF) is suggested to be a potential biomarker for neuronal integrity. The aim of this study was to investigate the effect on plasma BDNF concentrations, 10.5 h after the intake of WG rye. Healthy young adults were provided late evening meals consisting of WG rye kernel-based bread (RKB) or a white wheat flour-based bread (reference product (WWB)), in a randomized cross-over design. The BDNF concentrations were investigated at fasting in the morning 10.5 h after single evening meals with RKB and WWB, and also after three consecutive evening meals with RKB and WWB, respectively. No difference was observed in the BDNF concentrations depending on the priming setting (p > 0.05). The RKB evening meals increased the BDNF concentrations by 27% at fasting (p = 0.001), compared to WWB. The increase of BDNF after the RKB indicate that, in addition to anti-diabetic properties, the dietary fiber in WG rye may support neuronal integrity.
Collapse
Affiliation(s)
- Jonna C Sandberg
- Department of Food Technology, Engineering and Nutrition, Lund University, SE-221 00 Lund, Sweden.
- Food for Health Science Centre, Lund University, SE-221 00 Lund, Sweden.
| | - Inger M E Björck
- Food for Health Science Centre, Lund University, SE-221 00 Lund, Sweden.
| | - Anne C Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, SE-221 00 Lund, Sweden.
- Food for Health Science Centre, Lund University, SE-221 00 Lund, Sweden.
| |
Collapse
|
121
|
Cheng M, Mei B, Zhou Q, Zhang M, Huang H, Han L, Huang Q. Computational analyses of obesity associated loci generated by genome-wide association studies. PLoS One 2018; 13:e0199987. [PMID: 29966015 PMCID: PMC6028139 DOI: 10.1371/journal.pone.0199987] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/17/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Genome-wide association studies (GWASs) have discovered associations of numerous SNPs and genes with obesity. However, the underlying molecular mechanisms through which these SNPs and genes affect the predisposition to obesity remain not fully understood. Aims of our study are to comprehensively characterize obesity GWAS SNPs and genes through computational approaches. METHODS For obesity GWAS identified SNPs, functional annotation, effects on miRNAs binding and impact on protein phosphorylation were performed via RegulomeDB and 3DSNP, miRNASNP, and the PhosSNP 1.0 database, respectively. For obesity associated genes, protein-protein interaction network construction, gene ontology and pathway enrichment analyses were performed by STRING, PANTHER and STRING, respectively. RESULTS A total of 445 SNPs are significantly associated with obesity related phenotypes at threshold P < 5×10-8. A number of SNPs were eQTLs for obesity associated genes, some SNPs located at binding sites of obesity related transcription factors. SNPs that might affect miRNAs binding and protein phosphorylation were identified. Protein-protein interaction network analysis identified the highly-interconnected "hub" genes. Obesity associated genes mainly involved in metabolic process and catalytic activity, and significantly enriched in 15 signal pathways. CONCLUSIONS Our results provided the targets for follow-up experimental testing and further shed new light on obesity pathophysiology.
Collapse
Affiliation(s)
- Mengrong Cheng
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Bing Mei
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qian Zhou
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Manling Zhang
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Han Huang
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Lanchun Han
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qingyang Huang
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
122
|
Esfandiari M, Papapanagiotou V, Diou C, Zandian M, Nolstam J, Södersten P, Bergh C. Control of Eating Behavior Using a Novel Feedback System. J Vis Exp 2018:57432. [PMID: 29806832 PMCID: PMC6101162 DOI: 10.3791/57432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Subjects eat food from a plate that sits on a scale connected to a computer that records the weight loss of the plate during the meal and makes up a curve of food intake, meal duration and rate of eating modeled by a quadratic equation. The purpose of the method is to change eating behavior by providing visual feedback on the computer screen that the subject can adapt to because her/his own rate of eating appears on the screen during the meal. The data generated by the method is automatically analyzed and fitted to the quadratic equation using a custom made algorithm. The method has the advantage of recording eating behavior objectively and offers the possibility of changing eating behavior both in experiments and in clinical practice. A limitation may be that experimental subjects are affected by the method. The same limitation may be an advantage in clinical practice, as eating behavior is more easily stabilized by the method. A treatment that uses this method has normalized body weight and restored the health of several hundred patients with anorexia nervosa and other eating disorders and has reduced the weight and improved the health of severely overweight patients.
Collapse
Affiliation(s)
| | | | - Christos Diou
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki
| | | | | | | | | |
Collapse
|
123
|
André C, Catania C, Remus-Borel J, Ladeveze E, Leste-Lasserre T, Mazier W, Binder E, Gonzales D, Clark S, Guzman-Quevedo O, Abrous DN, Layé S, Cota D. mTORC1 pathway disruption abrogates the effects of the ciliary neurotrophic factor on energy balance and hypothalamic neuroinflammation. Brain Behav Immun 2018; 70:325-334. [PMID: 29548998 DOI: 10.1016/j.bbi.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 11/19/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) potently decreases food intake and body weight in diet-induced obese mice by acting through neuronal circuits and pathways located in the arcuate nucleus (ARC) of the hypothalamus. CNTF also exerts pro-inflammatory actions within the brain. Here we tested whether CNTF modifies energy balance by inducing inflammatory responses in the ARC and whether these effects depend upon the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which regulates both energy metabolism and inflammation. To this purpose, chow- and high fat diet (HFD)- fed mice lacking the S6 kinase 1 (S6K1-/-), a downstream target of mTORC1, and their wild-type (WT) littermates received 12 days continuous intracerebroventricular (icv) infusion of the CNTF analogue axokine (CNTFAx15). Behavioral, metabolic and molecular effects were evaluated. Central chronic administration of CNTFAx15 decreased body weight and feed efficiency in WT mice only, when fed HFD, but not chow. These metabolic effects correlated with increased number of iba-1 positive microglia specifically in the ARC and were accompanied by significant increases of IL-1β and TNF-α mRNA expression in the hypothalamus. Hypothalamic iNOS and SOCS3 mRNA, molecular markers of pro-inflammatory response, were also increased by CNTFAx15. All these changes were absent in S6K1-/- mice. This study reveals that CNTFAx15 requires a functional S6K1 to modulate energy balance and hypothalamic inflammation in a diet-dependent fashion. Further investigations should determine whether S6K1 is a suitable target for the treatment of pathologies characterized by a high neuroinflammatory state.
Collapse
Affiliation(s)
- Caroline André
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Caterina Catania
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Julie Remus-Borel
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France; University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Elodie Ladeveze
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Thierry Leste-Lasserre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Wilfrid Mazier
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Elke Binder
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Delphine Gonzales
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Samantha Clark
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Omar Guzman-Quevedo
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Djoher Nora Abrous
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France; University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
124
|
Yoo S, Blackshaw S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog Neurobiol 2018; 170:53-66. [PMID: 29631023 DOI: 10.1016/j.pneurobio.2018.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades, evidence has accumulated that neurogenesis can occur in both the juvenile and adult mammalian hypothalamus. Levels of hypothalamic neurogenesis can be regulated by dietary, environmental and hormonal signals. Since the hypothalamus has a central role in controlling a broad range of homeostatic physiological processes, these findings may have far ranging behavioral and medical implications. However, many questions in the field remain unresolved, including the cells of origin of newborn hypothalamic neurons and the extent to which these cells actually regulate hypothalamic-controlled behaviors. In this manuscript, we conduct a critical review of the literature on postnatal hypothalamic neurogenesis in mammals, lay out the main outstanding controversies in the field, and discuss how best to advance our knowledge of this fascinating but still poorly understood process.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
125
|
Greydanus DE, Agana M, Kamboj MK, Shebrain S, Soares N, Eke R, Patel DR. Pediatric obesity: Current concepts. Dis Mon 2018; 64:98-156. [DOI: 10.1016/j.disamonth.2017.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
126
|
Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 2018; 10:679-689. [PMID: 28592656 PMCID: PMC5483000 DOI: 10.1242/dmm.026609] [Citation(s) in RCA: 486] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ‘obesity epidemic’ represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed. Summary: This at a glance article gives an overview of the recent knowledge mainly derived from rodent models regarding the CNS-dependent regulation of energy and glucose homeostasis, and depicts how dysregulation of the involved neuronal networks promotes overnutrition and obesity.
Collapse
Affiliation(s)
- Katharina Timper
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, Cologne 50931, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, Cologne 50924, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, Cologne 50931, Germany .,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, Cologne 50924, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany.,National Center for Diabetes Research (DZD), Ingolstädter Land Str. 1, Neuherberg 85764, Germany
| |
Collapse
|
127
|
Association Between the Brain-derived Neurotrophic Factor Val66Met Polymorphism and Overweight/Obesity in Pediatric Population. Arch Med Res 2018; 48:599-608. [PMID: 29506764 DOI: 10.1016/j.arcmed.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) rs6265 (G196A; Val66Met) single nucleotide polymorphism has been associated with BMI and obesity in distinct populations, both adult and pediatric, with contradictory results involving either Val or Met as the risk variant. AIM OF THE STUDY To determine the association between the BDNF Val66Met polymorphism and BMI in Mexican children and adolescents. METHODS BDNF Val66Met genotyping by restriction fragment length polymorphism and nutritional status characterized by their BMI-for-age z-scores (BAZ) from pediatric volunteers (n = 498) were analyzed by Fisher's exact test association analysis. Standardized residuals (R) were used to determine which genotype/allele had the major influence on the significant Fisher's exact test statistic. Odds ratios were analyzed to measure the association between genotype and normal weight (≥-2 SD < + 1 SD) and overweight (≥ + 1 SD, including obesity, Ow + Ob) status with 95% confidence intervals to estimate the precision of the effect as well as 95% credible intervals to obtain the most probable estimate. RESULTS Comparisons between GG (Val/Val), GA (Val/Met) and AA (Met/Met) genotypes or Met homozygotes vs. Val carriers (combination of GG and GA genotypes) showed significant differences (p = 0.034 and p = 0.037, respectively) between normal weight and the combined overweight and obese pediatric subjects. Our data showed that children/adolescents homozygous for the A allele have increased risk of overweight compared to the Val carriers (Bayes OR = 4.2, 95% CI**[1.09-33.1]). CONCLUSION This is the first study showing the significant association between the BDNF rs6265 AA (Met/Met) genotype and overweight/obesity in Mexican pediatric population.
Collapse
|
128
|
Perry RJ, Shulman GI. The Role of Leptin in Maintaining Plasma Glucose During Starvation. POSTDOC JOURNAL : A JOURNAL OF POSTDOCTORAL RESEARCH AND POSTDOCTORAL AFFAIRS 2018; 6:3-19. [PMID: 29682594 PMCID: PMC5909716 DOI: 10.14304/surya.jpr.v6n3.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For 20 years it has been known that concentrations of leptin, a hormone produced by the white adipose tissue (WAT) largely in proportion to body fat, drops precipitously with starvation, particularly in lean humans and animals. The role of leptin to suppress the thyroid and reproductive axes during a prolonged fast has been well defined; however, the impact of leptin on metabolic regulation has been incompletely understood. However emerging evidence suggests that, in starvation, hypoleptinemia increases activity of the hypothalamic-pituitary-adrenal axis, promoting WAT lipolysis, increasing hepatic acetyl-CoA concentrations, and maintaining euglycemia. In addition, leptin may be largely responsible for mediating a shift from a reliance upon glucose metabolism (absorption and glycogenolysis) to fat metabolism (lipolysis increasing gluconeogenesis) which preserves substrates for the brain, heart, and other critical organs. In this way a leptin-mediated glucose-fatty acid cycle appears to maintain glycemia and permit survival in starvation.
Collapse
Affiliation(s)
- Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
- Howard Hughes Medical Institute
| |
Collapse
|
129
|
Subkhangulova A, Malik AR, Hermey G, Popp O, Dittmar G, Rathjen T, Poy MN, Stumpf A, Beed PS, Schmitz D, Breiderhoff T, Willnow TE. SORCS1 and SORCS3 control energy balance and orexigenic peptide production. EMBO Rep 2018; 19:embr.201744810. [PMID: 29440124 PMCID: PMC5891432 DOI: 10.15252/embr.201744810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
SORCS1 and SORCS3 are two related sorting receptors expressed in neurons of the arcuate nucleus of the hypothalamus. Using mouse models with individual or dual receptor deficiencies, we document a previously unknown function of these receptors in central control of metabolism. Specifically, SORCS1 and SORCS3 act as intracellular trafficking receptors for tropomyosin-related kinase B to attenuate signaling by brain-derived neurotrophic factor, a potent regulator of energy homeostasis. Loss of the joint action of SORCS1 and SORCS3 in mutant mice results in excessive production of the orexigenic neuropeptide agouti-related peptide and in a state of chronic energy excess characterized by enhanced food intake, decreased locomotor activity, diminished usage of lipids as metabolic fuel, and increased adiposity, albeit at overall reduced body weight. Our findings highlight a novel concept in regulation of the melanocortin system and the role played by trafficking receptors SORCS1 and SORCS3 in this process.
Collapse
Affiliation(s)
| | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Popp
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Thomas Rathjen
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Alexander Stumpf
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | - Prateep Sanker Beed
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | | | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany .,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
130
|
Abstract
Leptin is an adipocyte-derived hormone, which contributes to the homeostatic regulation of energy balance and metabolism through humoral and neural pathways. Leptin acts on the neurons in certain brain areas such as the hypothalamus, hippocampus, and brain stem to regulate food intake, thermogenesis, energy expenditure, and homeostasis of glucose/lipid metabolism. The pathologically increased circulating leptin is a biomarker of leptin resistance, which is common in obese individuals. Leptin resistance is defined by a reduced sensitivity or a failure in response of the brain to leptin, showing a decrease in the ability of leptin to suppress appetite or enhance energy expenditure, which causes an increased food intake and finally leads to overweight, obesity, cardiovascular diseases, and other metabolic disorders. Leptin resistance is a challenge for clinical treatment or drug discovery of obesity. Until recently, emerging evidence has been showing novel mechanisms of the leptin resistance. Here, we summarized the advances and controversy of leptin resistance and associated diseases, for better understanding the physiology and pathophysiology of leptin as well as the new strategies for treating obesity and metabolic disorders.
Collapse
|
131
|
Hao RH, Yang TL, Rong Y, Yao S, Dong SS, Chen H, Guo Y. Gene expression profiles indicate tissue-specific obesity regulation changes and strong obesity relevant tissues. Int J Obes (Lond) 2017; 42:363-369. [PMID: 29151593 DOI: 10.1038/ijo.2017.283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the growing evidence that other tissues, apart from adipose, could have strong relevance to obesity, it is necessary to comprehensively understand the relationship between obesity and other tissues, and to point out the most relevant tissues. METHODS There were 549 participants with 20 different tissue types involved in this study. We firstly employed both Spearman's correlation test and WGCNA (weighted correlation network analysis) to identify body mass index (BMI)-related genes. Subsequently, we performed enrichment analyses with obesity genes and pathways to see the different regulation patterns among tissues. In addition, we compared obesity genes identified by genome-wide association studies (GWAS) with BMI-related genes to find the overlapping proportion in each tissue. Finally, we integrated preceding results to identify six strong obesity relevant tissues and indicate three categories to represent different obesity relevant tissues. RESULTS Statistical analyses revealed diverse BMI-related genes and tissue-specific enrichment patterns among tissues. Comparison between BMI-related genes and GWAS findings showed tissue-specific expression changes of GWAS genes. Ultimately, six tissues that showed predominant performance in enrichment analyses and significantly embraced GWAS genes were referred to as strong obesity relevant tissues, including adipose, esophagus, nerve, pancreas, pituitary and skin. We also proposed three categories to represent different obesity relevant tissues. CONCLUSIONS We performed the first study to investigate the BMI-related gene expression changes across 20 tissues at the same time. With valid data analyses and comparison with GWAS findings, our study provides a holistic view of how different tissues correlate with obesity, and proposes target tissues for obesity pathogenesis investigation.
Collapse
Affiliation(s)
- R-H Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - T-L Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Y Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - S Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - S-S Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - H Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Y Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
132
|
Dodd GT, Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 2017; 29. [PMID: 28758251 DOI: 10.1111/jne.12513] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
A growing body of evidence from research in rodents and humans has identified insulin as an important neuoregulatory peptide in the brain, where it coordinates diverse aspects of energy balance and peripheral glucose homeostasis. This review discusses where and how insulin interacts within the brain and evaluates the physiological and pathophysiological consequences of central insulin signalling in metabolism, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- G T Dodd
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - T Tiganis
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
133
|
Sundarrajan L, Unniappan S. Small interfering RNA mediated knockdown of irisin suppresses food intake and modulates appetite regulatory peptides in zebrafish. Gen Comp Endocrinol 2017; 252:200-208. [PMID: 28666854 DOI: 10.1016/j.ygcen.2017.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/24/2017] [Accepted: 06/24/2017] [Indexed: 12/12/2022]
Abstract
Irisin is a myokine encoded in fibronectin type III domain containing 5 (FNDC5). FNDC5 forms an integral part of the muscle post-exercise, and causes an increase in energy expenditure in mammals. Irisin is abundantly expressed in cardiac and skeletal muscles and is secreted upon activation of peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1 alpha). Irisin regulates feeding behaviour and cardiovascular function in mammals. More recently, irisin has gained importance as a potential biomarker for myocardial infarction due to its abundance in cardiac muscle. The goal of this research was to determine whether irisin influences feeding, and regulates appetite regulatory peptides in zebrafish. Intraperitoneal injection of irisin [0.1, 1, 10 and 100ng/g body weight (BW)] did not affect feeding, but its knockdown using siRNA (10ng/g BW) caused a significant reduction in food intake. Knockdown of irisin reduced ghrelin and orexin-A mRNA expression, and increased cocaine and amphetamine regulated transcript mRNA expression in zebrafish brain and gut. siRNA mediated knockdown of irisin also downregulated brain derived neurotrophic factor mRNA in zebrafish. The role of endogenous irisin on food intake is likely mediated by its actions on other metabolic peptides. Collectively, these results indicate that unaltered endogenous irisin is required to maintain food intake in zebrafish.
Collapse
Affiliation(s)
- Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
134
|
Ceja-Galicia ZA, Daniel A, Salazar AM, Pánico P, Ostrosky-Wegman P, Díaz-Villaseñor A. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen? Mol Cell Endocrinol 2017; 452:25-32. [PMID: 28495457 DOI: 10.1016/j.mce.2017.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Abstract
The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes. Thus, the known effects of arsenic on WAT/adipocytes were integrated based on the diverse metabolic and physiological processes that occur in WAT and are altered in obesity, specifically: adipocyte growth, adipokine secretion, lipid metabolism, and glucose metabolism. The currently available information suggests that arsenic can negatively affect WAT metabolism, resulting in arsenic being a potential obesogen.
Collapse
Affiliation(s)
- Zeltzin A Ceja-Galicia
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Maestría en Ciencias de la Producción y Salud Animal, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Alberto Daniel
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Maestría en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Pablo Pánico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Andrea Díaz-Villaseñor
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
135
|
Iwasa T, Matsuzaki T, Yano K, Tungalagsuvd A, Munkhzaya M, Mayila Y, Kuwahara A, Irahara M. The effects of prenatal undernutrition and a high-fat postnatal diet on central and peripheral orexigenic and anorexigenic factors in female rats. Endocr J 2017; 64:597-604. [PMID: 28321032 DOI: 10.1507/endocrj.ej16-0593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Prenatal undernutrition and postnatal overnutrition increase the risk of some peripheral and central metabolic disorders in adulthood. We speculated that disturbances of appetite/metabolic regulatory factors might already have been established in the early stages of life and contribute to obesity later in life. The effects of a high-fat diet on the levels of peripheral and central appetite/metabolic regulatory factors were compared between the offspring of normally nourished dams and those of undernourished dams in the peri-pubertal period. In the offspring of the normally nourished dams (control), the consumption of the high-fat diet resulted in lower hypothalamic mRNA levels of orexigenic factors (neuropeptide Y (NPY) and prepro-orexin (pporexin)), whereas no such changes were seen in the offspring of the undernourished dams (subjected to intrauterine growth restriction). These results indicate that in high-energy conditions either the adaptive response does not function properly or has not been established in the offspring of undernourished dams. Because NPY and pporexin are negatively regulated by leptin, these findings suggest that in the intrauterine growth restriction group, the leptin resistance of hypothalamic functions, which is usually caused by diet-induced obesity in adulthood, had already been established in the peri-pubertal period.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kiyohito Yano
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Munkhsaikhan Munkhzaya
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
136
|
Miller GD. Appetite Regulation: Hormones, Peptides, and Neurotransmitters and Their Role in Obesity. Am J Lifestyle Med 2017; 13:586-601. [PMID: 31662725 DOI: 10.1177/1559827617716376] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
Understanding body weight regulation will aid in the development of new strategies to combat obesity. This review examines energy homeostasis and food intake behaviors, specifically with regards to hormones, peptides, and neurotransmitters in the periphery and central nervous system, and their potential role in obesity. Dysfunction in feeding signals by the brain is a factor in obesity. The hypothalamic (arcuate nucleus) and brainstem (nucleus tractus solitaris) areas integrate behavioral, endocrine, and autonomic responses via afferent and efferent pathways from and to the brainstem and peripheral organs. Neurons present in the arcuate nucleus express pro-opiomelanocortin, Neuropeptide Y, and Agouti Related Peptide, with the former involved in lowering food intake, and the latter two acutely increasing feeding behaviors. Action of peripheral hormones from the gut, pancreas, adipose, and liver are also involved in energy homeostasis. Vagal afferent neurons are also important in regulating energy homeostasis. Peripheral signals respond to the level of stored and currently available fuel. By studying their actions, new agents maybe developed that disable orexigenic responses and enhance anorexigenic signals. Although there are relatively few medications currently available for obesity treatment, a number of agents are in development that work through these pathways.
Collapse
Affiliation(s)
- Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
137
|
Houtz J, Borden P, Ceasrine A, Minichiello L, Kuruvilla R. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion. Dev Cell 2017; 39:329-345. [PMID: 27825441 DOI: 10.1016/j.devcel.2016.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/15/2016] [Accepted: 10/06/2016] [Indexed: 01/19/2023]
Abstract
Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction.
Collapse
Affiliation(s)
- Jessica Houtz
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Philip Borden
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Alexis Ceasrine
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 224 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
138
|
Monnereau C, Jansen PW, Tiemeier H, Jaddoe VWV, Felix JF. Influence of genetic variants associated with body mass index on eating behavior in childhood. Obesity (Silver Spring) 2017; 25:765-772. [PMID: 28245097 PMCID: PMC5496668 DOI: 10.1002/oby.21778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Childhood eating behaviors are associated with body mass index (BMI). Recent genome-wide association studies have identified many single-nucleotide polymorphisms (SNPs) associated with adult and childhood BMI. This study hypothesized that these SNPs also influence eating behavior. METHODS In a population-based prospective cohort study among 3,031 children (mean age [standard deviation]: 4.0 [0.1] years), two weighted genetic risk scores, based on 15 childhood and 97 adult BMI SNPs, and ten individual appetite- and/or satiety-related SNPs were tested for association with food fussiness, food responsiveness, enjoyment of food, satiety responsiveness, and slowness in eating. RESULTS The 15 SNP-based childhood BMI genetic risk score was not associated with the eating behavior subscales. The 97 SNP-based adult BMI genetic risk score was nominally associated with satiety responsiveness (β: -0.007 standard deviation, 95% confidence interval [CI] -0.013, 0.000). Of the 10 individual SNPs, rs11030104 in BDNF and rs10733682 in LMX1B were nominally associated with satiety responsiveness (β: -0.057 standard deviation, 95% CI -0.112, -0.002). CONCLUSIONS These findings do not strongly support the hypothesis that BMI-associated SNPs also influence eating behavior at this age. A potential role for BMI SNPs in satiety responsiveness during childhood was observed; however, no associations with the other eating behavior subscales were found.
Collapse
Affiliation(s)
- Claire Monnereau
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pauline W Jansen
- Institute of Psychology, Erasmus University, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
139
|
Butt ZD, Hackett JD, Volkoff H. Irisin in goldfish (Carassius auratus): Effects of irisin injections on feeding behavior and expression of appetite regulators, uncoupling proteins and lipoprotein lipase, and fasting-induced changes in FNDC5 expression. Peptides 2017; 90:27-36. [PMID: 28219696 DOI: 10.1016/j.peptides.2017.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
Abstract
Irisin is a peptide cleaved from the fibronectin type III domain containing protein 5 (FNDC5) gene that is secreted predominantly by muscle cells but also by other tissues including brain and intestine. In mammals, irisin has been shown to have thermogenic actions via the modulation of uncoupling proteins (UCPs) and to affect feeding and energy homeostasis via actions in brain, adipose tissue, liver, muscle and gastrointestinal tract. To examine the role of irisin on feeding and metabolism in fish, the effects of peripheral (intraperitoneal) injections of irisin on feeding behavior, glucose levels and the mRNA expressions of appetite regulators (cocaine and amphetamine regulated transcript CART, agouti related protein AgRP, orexin), UCPs and lipoprotein lipase LPL and brain factors (brain-derived neurotrophic factor , BDNF and tyrosine hydroxylase TH) were assessed in brain, white muscle and intestine. Irisin injections (100ng/g) induced a decrease in food intake and increases in brain orexin, CART1 and CART2, UCP2, BDNF, muscle UCP2 and intestine LPL mRNA expressions but did not affect blood glucose levels, brain AgRP, TH, UCP1, UCP3 and LPL or muscle UCP1, UCP3 and LPL expressions. A partial goldfish FNDC5 cDNA was isolated and the expressions of FDNC5, UCPs, LPL and BDNF were also compared between fed and fasted fish. Fasting induced decreases FNDC5 mRNA expression in the brain and intestine, but not in muscle. Fasting also induced increases in brain BDNF and LPL expressions and increases in UCP1, UCP2, UCP3 and LPL expressions in muscle. Our result suggest that irisin is an anorexigenic factor in fish and its actions might be in part mediated by appetite-regulating factors such as CART and orexins as well as UCP2 and brain factors such as BDNF.
Collapse
Affiliation(s)
- Zahndra Diann Butt
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1 B 3X9, Canada
| | - Jessica Dalton Hackett
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1 B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1 B 3X9, Canada.
| |
Collapse
|
140
|
Wang Q, Liu Y, Zhang C, Guo F, Feng C, Li X, Shi H, Su Z. High hydrostatic pressure enables almost 100% refolding of recombinant human ciliary neurotrophic factor from inclusion bodies at high concentration. Protein Expr Purif 2017; 133:152-159. [PMID: 28323167 DOI: 10.1016/j.pep.2017.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 11/28/2022]
Abstract
Protein refolding from inclusion bodies (IBs) often encounters a problem of low recovery at high protein concentration. In this study, we demonstrated that high hydrostatic pressure (HHP) could simultaneously achieve high refolding concentration and high refolding yield for IBs of recombinant human ciliary neurotrophic factor (rhCNTF), a potential therapeutic for neurodegenerative diseases. The use of dilution refolding obtained 18% recovery at 3 mg/mL, even in the presence of 4 M urea. In contrast, HHP refolding could efficiently increase the recovery up to almost 100% even at 4 mg/mL. It was found that in the dilution, hydrophobic aggregates were the off-path products and their amount increased with the protein concentration. However, HHP could effectively minimize the formation of hydrophobic aggregates, leading to almost complete conversion of the rhCNTF IBs to the correct configuration. The stable operation range of concentration is 0.5-4.0 mg/mL, in which the refolding yield was almost 100%. Compared with the literatures where HHP failed to increase the refolding yield beyond 90%, the reason could be attributed to the structural difference that rhCNTF has no disulfide bond and is a monomeric protein. After purification by one-step of anionic chromatography, the purity of rhCNTF reached 95% with total process recovery of 54.1%. The purified rhCNTF showed similar structure and in vitro bioactivity to the native species. The whole process featured integration of solubilization/refolding, a high refolding yield of 100%, a high concentration of 4 mg/mL, and a simple chromatography to ensure a high productivity.
Collapse
Affiliation(s)
- Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Fangxia Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cui Feng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Xiunan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Hong Shi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
141
|
Furukawa K, Fuse I, Iwakura Y, Sotoyama H, Hanyu O, Nawa H, Sone H, Takei N. Advanced glycation end products induce brain-derived neurotrophic factor release from human platelets through the Src-family kinase activation. Cardiovasc Diabetol 2017; 16:20. [PMID: 28178976 PMCID: PMC5299653 DOI: 10.1186/s12933-017-0505-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) exerts beneficial effects not only on diabetic neuropathies but also on cardiovascular injury. There is argument regarding the levels of serum BDNF in patients with diabetes mellitus (DM). Because BDNF in peripheral blood is rich in platelets, this may represent dysregulation of BDNF release from platelets. Here we focused on advanced glycation end products (AGEs), which are elevated in patients with DM and have adverse effects on cardiovascular functions. The aim of this study is to elucidate the role of AGEs in the regulation of BDNF release from human platelets. Methods Platelets collected from peripheral blood of healthy volunteers were incubated with various concentrations of AGE (glycated-BSA) at 37 °C for 5 min with or without BAPTA-AM, a cell permeable Ca2+ chelator, or PP2, a potent inhibitor of Src family kinases (SFKs). Released and cellular BDNF were measured by ELISA and calculated. Phosphorylation of Src and Syk, a downstream kinase of SFKs, in stimulated platelets was examined by Western blotting and immunoprecipitation. Results AGE induced BDNF release from human platelets in a dose-dependent manner, which was dependent on intracellular Ca2+ and SFKs. We found that AGE induced phosphorylation of Src and Syk. Conclusions AGE induces BDNF release from human platelets through the activation of the Src-Syk-(possibly phospholipase C)-Ca2+ pathway. Considering the toxic action of AGEs and the protective roles of BDNF, it can be hypothesized that AGE-induced BDNF release is a biological defense system in the early phase of diabetes. Chronic elevation of AGEs may induce depletion or downregulation of BDNF in platelets during the progression of DM. Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0505-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazuo Furukawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan.,Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Ichiro Fuse
- Japanese Red Cross Niigata Blood Center, Niigata, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan
| | - Osamu Hanyu
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan.
| |
Collapse
|
142
|
Wang H, Wang B, Yin H, Zhang G, Yu L, Kong X, Yuan H, Fang X, Liu Q, Liu C, Shi L. Reduced neurotrophic factor level is the early event before the functional neuronal deficiency in high-fat diet induced obese mice. Metab Brain Dis 2017; 32:247-257. [PMID: 27624843 DOI: 10.1007/s11011-016-9905-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/01/2016] [Indexed: 12/30/2022]
Abstract
Neurodegeneration is considered one of the possible complications of high fat diet (HFD) induced obesity. Much evidence has shown the close relationship between HFD and dementia at comparatively later stage of neuronal injury. It is so far not clear that the initial events of neuronal injury resulting from HFD and obesity. In the present research, obese mouse model achieved by 3-month HFD was applied for the investigation of the possible neuronal deficiency before the obvious cognitive decline. We found that 3-month HFD has already increased the average level of body weight of mice. But almost no obvious cognitive defect was observed. At such time point, we detected the cleavage of amyloid precursor protein (APP), including the expression and maturation level of α- and β-secretase and proteolytic fragment soluble APP. Results showed similar readout between HFD and normal diet (ND) mice. Besides, neuronal inflammation and brain-blood barrier permeability were also detected. No obvious changes could be observed between HFD and ND mice. Surprisingly, the first detectable neuronal changes was showed to be the downregulation of some neurotrpic factors, like neuronal growth factor β and brain derived neurotrophic factor, together with the activity of specific receptors, like Trk receptor phosphorylation. All the data piled up indicated that the early neuronal change in HFD induced obese mice was the downregulation of some neurotrophic factors. The results may provide the potential clue to therapeutic and preventive strategy for HFD induced cognitive decline.
Collapse
Affiliation(s)
- Huanhuan Wang
- School of Medicine, Hangzhou Normal University, Xuelin Street 16#,, Hangzhou, 310036, China.
| | - Bing Wang
- College of Life Science, Hangzhou Normal University, Hangzhou, China
| | - Hongping Yin
- School of Medicine, Hangzhou Normal University, Xuelin Street 16#,, Hangzhou, 310036, China
| | - Guoqing Zhang
- College of Public Health, Dalian Medical University, Dalian, China
| | - Liping Yu
- Center of Laboratory Animal, Hangzhou Normal University, Hangzhou, China
| | - Xiangmin Kong
- School of Medicine, Hangzhou Normal University, Xuelin Street 16#,, Hangzhou, 310036, China
| | - Haiying Yuan
- Department of Clinical Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xingyue Fang
- College of Science, Hainan Medical School, Hainan, China
| | - Qibing Liu
- College of Science, Hainan Medical School, Hainan, China
| | - Cuiqing Liu
- College of Basic Medicine, Zhejiang Chinese Medical University, Zhejiang, China
| | - Liyun Shi
- Department of Immunology, Nanjing University of Traditional Chinese Medicine, Xianlin Street 138#,, Nanjing, 210023, China.
| |
Collapse
|
143
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
144
|
Huang WH, Guenthner CJ, Xu J, Nguyen T, Schwarz LA, Wilkinson AW, Gozani O, Chang HY, Shamloo M, Luo L. Molecular and Neural Functions of Rai1, the Causal Gene for Smith-Magenis Syndrome. Neuron 2016; 92:392-406. [PMID: 27693255 DOI: 10.1016/j.neuron.2016.09.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/13/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Abstract
Haploinsufficiency of Retinoic Acid Induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), which is associated with diverse neurodevelopmental and behavioral symptoms as well as obesity. RAI1 encodes a nuclear protein but little is known about its molecular function or the cell types responsible for SMS symptoms. Using genetically engineered mice, we found that Rai1 preferentially occupies DNA regions near active promoters and promotes the expression of a group of genes involved in circuit assembly and neuronal communication. Behavioral analyses demonstrated that pan-neural loss of Rai1 causes deficits in motor function, learning, and food intake. These SMS-like phenotypes are produced by loss of Rai1 function in distinct neuronal types: Rai1 loss in inhibitory neurons or subcortical glutamatergic neurons causes learning deficits, while Rai1 loss in Sim1+ or SF1+ cells causes obesity. By integrating molecular and organismal analyses, our study suggests potential therapeutic avenues for a complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Wei-Hsiang Huang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Casey J Guenthner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Jin Xu
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Tiffany Nguyen
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Lindsay A Schwarz
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alex W Wilkinson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Mehrdad Shamloo
- Stanford Behavioral and Functional Neuroscience Laboratory, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
145
|
Developmental changes in the hypothalamic mRNA expression levels of brain-derived neurotrophic factor and serum leptin levels: Their responses to fasting in male and female rats. Int J Dev Neurosci 2016; 54:1-5. [PMID: 27521083 DOI: 10.1016/j.ijdevneu.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023] Open
Abstract
The actions and responses of hypothalamic appetite regulatory factors change markedly during the neonatal to pre-pubertal period in order to maintain appropriate metabolic and nutritional conditions. In this study, we examined the developmental changes in the hypothalamic mRNA levels of brain-derived neurotrophic factor (BDNF), which is a potent anorectic factor and the changes in the sensitivity of the hypothalamic expression of this factor to fasting during the neonatal to pre-pubertal period. Under fed conditions, hypothalamic BDNF mRNA expression decreased during development in both male and female rats. Similarly, the serum levels of leptin, which is a positive regulator of hypothalamic BDNF expression, also tended to fall during the developmental period. The serum leptin level and the hypothalamic BDNF mRNA level were found to be positively correlated in both sexes under the fed conditions. Hypothalamic BDNF mRNA expression was decreased by 24h fasting (separating the rats from their mothers) in the early neonatal period (postnatal day 10) in both males and females, but no such changes were seen at postnatal day 20. Twenty-four hours' fasting (food deprivation) did not affect hypothalamic BDNF mRNA expression in the pre-pubertal period (postnatal day 30). On the other hand, the rats' serum leptin levels were decreased by 24h fasting (separating the rats from their mothers at postnatal day 10 and 20, and food deprivation at postnatal day 30) throughout the early neonatal to pre-pubertal period. The correlation between serum leptin and hypothalamic BDNF mRNA levels was not significant under the fasted conditions. It can be speculated that leptin partially regulates hypothalamic BDNF mRNA levels, but only in fed conditions. Such changes in hypothalamic BDNF expression might play a role in maintaining appropriate metabolic and nutritional conditions and promoting normal physical development. In addition, because maternal separation induces a negative energy balance and short- and long-term stress responses, it is also possible that reductions in hypothalamic BDNF mRNA levels in the early neonatal period (postnatal day 10) may be partially induced by stress responses of the maternal deprivation.
Collapse
|
146
|
Interaction of BDNF rs6265 variants and energy and protein intake in the risk for glucose intolerance and type 2 diabetes in middle-aged adults. Nutrition 2016; 33:187-194. [PMID: 27553771 DOI: 10.1016/j.nut.2016.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Brain-derived neurotrophic factor (BDNF) is associated with the risk for Alzheimer's disease and type 2 diabetes. The aim of this study was to examine the association of BDNF variants with type 2 diabetes and the interactions of different BDNF genotypes with dietary habits and food and nutrient intakes in middle-aged adults. METHODS The study population included 8840 adults ages 40 to 65 y from the Ansan and Asung areas in the Korean Genome Epidemiology Study, a cross-sectional study of Korean adults, conducted from 2001 to 2002. Adjusted odd ratios for the prevalence of glucose intolerance and type 2 diabetes according to BDNF genotypes were calculated after adjusting for age, sex, residence area, body mass index, physical activity, and smoking and stress status. Nutrient intake was calculated from usual food intake determined by semiquantitative food frequencies using the nutrient assessment software. RESULTS BDNF rs6265 Val/Met and Met/Met variants were negatively associated with the risk for type 2 diabetes after adjusting for covariates. Serum glucose levels after glucose loading and hemoglobin A1c, but not serum insulin levels, also were negatively associated with BDNF Val/Met and Met/Met. In subgroup analysis, sex and stress levels had an interaction with BDNF Val/Met in the risk for type 2 diabetes. Glucose-intolerant and diabetic, but not nondiabetic, patients with BDNF Met/Met had nominally, but significantly higher intakes of energy than those with BDNF Val/Val. BDNF rs6265 had consistent gene-diet interactions with energy and protein intake. With low-energy, low-protein, and high-carbohydrate intake, BDNF Val/Met lowered the risk for type 2 diabetes after adjusting for confounding factors. BDNF Val/Met did not compensate for developing type 2 diabetes with high-energy intake. Additionally, indexes of insulin resistance and insulin secretion showed the same gene-energy interaction as type 2 diabetes. CONCLUSIONS BDNF Val/Met and Met/Met variants (rs6265) decreases the risk for glucose intolerance and type 2 diabetes. BDNF variants interacted with nutrient intake, especially energy and protein intake: Middle-aged individuals with BDNF Val/Val are prone to developing type 2 diabetes even with low energy and protein intake.
Collapse
|
147
|
Blomain ES, Merlino DJ, Pattison AM, Snook AE, Waldman SA. Guanylyl Cyclase C Hormone Axis at the Intersection of Obesity and Colorectal Cancer. Mol Pharmacol 2016; 90:199-204. [PMID: 27251363 DOI: 10.1124/mol.115.103192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/25/2016] [Indexed: 12/12/2022] Open
Abstract
Obesity has emerged as a principal cause of mortality worldwide, reflecting comorbidities including cancer risk, particularly in colorectum. Although this relationship is established epidemiologically, molecular mechanisms linking colorectal cancer and obesity continue to be refined. Guanylyl cyclase C (GUCY2C), a membrane-bound guanylyl cyclase expressed in intestinal epithelial cells, binds the paracrine hormones guanylin and uroguanylin, inducing cGMP signaling in colorectum and small intestine, respectively. Guanylin is the most commonly lost gene product in sporadic colorectal cancer, and its universal loss early in transformation silences GUCY2C, a tumor suppressor, disrupting epithelial homeostasis underlying tumorigenesis. In small intestine, eating induces endocrine secretion of uroguanylin, the afferent limb of a novel gut-brain axis that activates hypothalamic GUCY2C-cGMP signaling mediating satiety opposing obesity. Recent studies revealed that diet-induced obesity suppressed guanylin and uroguanylin expression in mice and humans. Hormone loss reflects reversible calorie-induced endoplasmic reticulum stress and the associated unfolded protein response, rather than the endocrine, adipokine, or inflammatory milieu of obesity. Loss of intestinal uroguanylin secretion silences the hypothalamic GUCY2C endocrine axis, creating a feed-forward loop contributing to hyperphagia in obesity. Importantly, calorie-induced guanylin loss silences the GUCY2C-cGMP paracrine axis underlying obesity-induced epithelial dysfunction and colorectal tumorigenesis. Indeed, genetically enforced guanylin replacement eliminated diet-induced intestinal tumorigenesis in mice. Taken together, these observations suggest that GUCY2C hormone axes are at the intersection of obesity and colorectal cancer. Moreover, they suggest that hormone replacement that restores GUCY2C signaling may be a novel therapeutic paradigm to prevent both hyperphagia and intestinal tumorigenesis in obesity.
Collapse
Affiliation(s)
- Erik S Blomain
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dante J Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|