101
|
Khan AO, Rodriguez-Romera A, Reyat JS, Olijnik AA, Colombo M, Wang G, Wen WX, Sousos N, Murphy LC, Grygielska B, Perrella G, Mahony CB, Ling RE, Elliott NE, Karali CS, Stone AP, Kemble S, Cutler EA, Fielding AK, Croft AP, Bassett D, Poologasundarampillai G, Roy A, Gooding S, Rayes J, Machlus KR, Psaila B. Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies. Cancer Discov 2023; 13:364-385. [PMID: 36351055 PMCID: PMC9900323 DOI: 10.1158/2159-8290.cd-22-0199] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow-stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFβ stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics. See related commentary by Derecka and Crispino, p. 263. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Antonio Rodriguez-Romera
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michela Colombo
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Guanlin Wang
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wei Xiong Wen
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nikolaos Sousos
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lauren C. Murphy
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Christopher B. Mahony
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca E. Ling
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Natalina E. Elliott
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Andrew P. Stone
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Emily A. Cutler
- University College London Cancer Institute, London, United Kingdom
| | | | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | | | - Anindita Roy
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
102
|
Ryou H, Sirinukunwattana K, Aberdeen A, Grindstaff G, Stolz BJ, Byrne H, Harrington HA, Sousos N, Godfrey AL, Harrison CN, Psaila B, Mead AJ, Rees G, Turner GDH, Rittscher J, Royston D. Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients. Leukemia 2023; 37:348-358. [PMID: 36470992 PMCID: PMC9898027 DOI: 10.1038/s41375-022-01773-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022]
Abstract
The grading of fibrosis in myeloproliferative neoplasms (MPN) is an important component of disease classification, prognostication and monitoring. However, current fibrosis grading systems are only semi-quantitative and fail to fully capture sample heterogeneity. To improve the quantitation of reticulin fibrosis, we developed a machine learning approach using bone marrow trephine (BMT) samples (n = 107) from patients diagnosed with MPN or a reactive marrow. The resulting Continuous Indexing of Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids MPN subtyping. When combined with megakaryocyte feature analysis, CIF discriminates between the frequently challenging differential diagnosis of essential thrombocythemia (ET) and pre-fibrotic myelofibrosis with high predictive accuracy [area under the curve = 0.94]. CIF also shows promise in the identification of MPN patients at risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled in the Primary Thrombocythemia-1 trial identified features predictive of post-ET myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated analysis of fibrosis has clear potential to further refine disease classification boundaries and inform future studies of the micro-environmental factors driving disease initiation and progression in MPN and other stem cell disorders.
Collapse
Affiliation(s)
- Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Korsuk Sirinukunwattana
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ground Truth Labs, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Gillian Grindstaff
- Department of Mathematics, University of California, Los Angeles, CA, USA
| | - Bernadette J Stolz
- Mathematical Institute, University of Oxford, Oxford, UK
- Laboratory for Topology and Neuroscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Helen Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Heather A Harrington
- Mathematical Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nikolaos Sousos
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anna L Godfrey
- Haematopathology & Oncology Diagnostics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Bethan Psaila
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Adam J Mead
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gabrielle Rees
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gareth D H Turner
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jens Rittscher
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ground Truth Labs, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
103
|
Ernst MPT, Pronk E, van Dijk C, van Strien PMH, van Tienhoven TVD, Wevers MJW, Sanders MA, Bindels EMJ, Speck NA, Raaijmakers MHGP. Hematopoietic Cell Autonomous Disruption of Hematopoiesis in a Germline Loss-of-function Mouse Model of RUNX1-FPD. Hemasphere 2023; 7:e824. [PMID: 36741355 PMCID: PMC9891454 DOI: 10.1097/hs9.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.
Collapse
Affiliation(s)
- Martijn P. T. Ernst
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Michiel J. W. Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
104
|
Florian DC, Bennett NE, Odziomek M, Baljon JJ, Wehbe M, Merkel AR, Fischer MA, Savona MR, Rhoades JA, Guelcher SA, Wilson JT. Nanoparticle STING Agonist Reprograms the Bone Marrow to an Antitumor Phenotype and Protects Against Bone Destruction. CANCER RESEARCH COMMUNICATIONS 2023; 3:223-234. [PMID: 36968140 PMCID: PMC10035525 DOI: 10.1158/2767-9764.crc-22-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/23/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
When breast cancer metastasizes to bone, treatment options are limited. Failure to treat bone metastases is thought to be due to therapy-resistant features of the bone marrow microenvironment. Using a murine model of bone metastatic mammary carcinoma, we demonstrate that systemic delivery of polymer nanoparticles loaded with cyclic dinucleotide (CDN) agonists of stimulator of interferon genes (STING) inhibited tumor growth and bone destruction after 7 days of treatment. Each dose of STING-activating nanoparticles trafficked to the bone marrow compartment and was retained within the tumor microenvironment for over 24 hours, enhancing antitumor immunity through proinflammatory cytokine production and early T-cell activation. While acquired resistance mechanisms, including increased levels of immunosuppressive cytokines and the infiltration of regulatory T cells, ultimately limited antitumor efficacy after 2 weeks of treatment, bone protective effects remained. Overall, these studies demonstrate that STING pathway activation, here enabled using a nanomedicine approach to enhance CDN delivery to bone metastatic sites, can reprogram the immune contexture of the bone marrow to an antitumor phenotype that inhibits bone colonization of metastatic breast cancer cells and protects from tumor-mediated bone destruction. Significance Bone metastases are difficult to treat due to the inaccessibility of the bone marrow compartment and the immunosuppressive microenvironment that protects resident stem cells. Packaging a STING agonist into a nanoparticle that enables systemic administration and drug accumulation at tumor sites overcomes both barriers to stymie metastatic breast cancer growth.
Collapse
Affiliation(s)
- David C. Florian
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Natalie E. Bennett
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mateusz Odziomek
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jessalyn J. Baljon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Mohamed Wehbe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Alyssa R. Merkel
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Melissa A. Fischer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Michael R. Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Julie A. Rhoades
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Scott A. Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
105
|
Hughes AM, Kuek V, Oommen J, Chua GA, van Loenhout M, Malinge S, Kotecha RS, Cheung LC. Characterization of mesenchymal stem cells in pre-B acute lymphoblastic leukemia. Front Cell Dev Biol 2023; 11:1005494. [PMID: 36743421 PMCID: PMC9897315 DOI: 10.3389/fcell.2023.1005494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Components of the bone marrow microenvironment (BMM) have been shown to mediate the way in which leukemia develops, progresses and responds to treatment. Increasing evidence shows that leukemic cells hijack the BMM, altering its functioning and establishing leukemia-supportive interactions with stromal and immune cells. While previous work has highlighted functional defects in the mesenchymal stem cell (MSC) population from the BMM of acute leukemias, thorough characterization and molecular profiling of MSCs in pre-B cell acute lymphoblastic leukemia (B-ALL), the most common cancer in children, has not been conducted. Here, we investigated the cellular and transcriptome profiles of MSCs isolated from the BMM of an immunocompetent BCR-ABL1+ model of B-ALL. Leukemia-associated MSCs exhibited reduced self-renewal capacity in vitro and significant changes in numerous molecular signatures, including upregulation of inflammatory signaling pathways. Additionally, we found downregulation of genes involved in extracellular matrix organization and osteoblastogenesis in leukemia-associated MSCs. This study provides cellular and molecular insights into the role of MSCs during B-ALL progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Grace-Alyssa Chua
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Maria van Loenhout
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Sebastien Malinge
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia,Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia,*Correspondence: Laurence C. Cheung, ,
| |
Collapse
|
106
|
Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci 2023; 24:ijms24021727. [PMID: 36675240 PMCID: PMC9863985 DOI: 10.3390/ijms24021727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives. The 5mC and oxidized methylcytosines are essential for the maintenance of cellular identity and function during differentiation. Cytosine modifications with DNMT and TET enzymes exert pleiotropic effects on various aspects of hematopoiesis, including self-renewal of hematopoietic stem/progenitor cells (HSPCs), lineage determination, differentiation, and function. Under pathological conditions, these enzymes are frequently dysregulated, leading to loss of function. In particular, the loss of DNMT3A and TET2 function is conspicuous in diverse hematological disorders, including myeloid and lymphoid malignancies, and causally related to clonal hematopoiesis and malignant transformation. Here, we update recent advances in understanding how the maintenance of DNA methylation homeostasis by DNMT and TET proteins influences normal hematopoiesis and malignant transformation, highlighting the potential impact of DNMT3A and TET2 dysregulation on clonal dominance and evolution of pre-leukemic stem cells to full-blown malignancies. Clarification of the normal and pathological functions of DNA-modifying epigenetic regulators will be crucial to future innovations in epigenetic therapies for treating hematological disorders.
Collapse
|
107
|
Review on Bortezomib Resistance in Multiple Myeloma and Potential Role of Emerging Technologies. Pharmaceuticals (Basel) 2023; 16:ph16010111. [PMID: 36678608 PMCID: PMC9864669 DOI: 10.3390/ph16010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma is a hematological cancer type. For its treatment, Bortezomib has been widely used. However, drug resistance to this effective chemotherapeutic has been developed for various reasons. 2D cell cultures and animal models have failed to understand the MM disease and Bortezomib resistance. It is therefore essential to utilize new technologies to reveal a complete molecular profile of the disease. In this review, we in-depth examined the possible molecular mechanisms that cause Bortezomib resistance and specifically addressed MM and Bortezomib resistance. Moreover, we also included the use of nanoparticles, 3D culture methods, microfluidics, and organ-on-chip devices in multiple myeloma. We also discussed whether the emerging technology offers the necessary tools to understand and prevent Bortezomib resistance in multiple myeloma. Despite the ongoing research activities on MM, the related studies cannot provide a complete summary of MM. Nanoparticle and 3D culturing have been frequently used to understand MM disease and Bortezomib resistance. However, the number of microfluidic devices for this application is insufficient. By combining siRNA/miRNA technologies with microfluidic devices, a complete molecular genetic profile of MM disease could be revealed. Microfluidic chips should be used clinically in personal therapy and point-of-care applications. At least with Bortezomib microneedles, it could be ensured that MM patients can go through the treatment process more painlessly. This way, MM can be switched to the curable cancer type list, and Bortezomib can be targeted for its treatment with fewer side effects.
Collapse
|
108
|
Liang H, Shi R, Wang H, Zhou Y. Advances in the application of Raman spectroscopy in haematological tumours. Front Bioeng Biotechnol 2023; 10:1103785. [PMID: 36704299 PMCID: PMC9871369 DOI: 10.3389/fbioe.2022.1103785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Hematologic malignancies are a diverse collection of cancers that affect the blood, bone marrow, and organs. They have a very unpredictable prognosis and recur after treatment. Leukemia, lymphoma, and myeloma are the most prevalent symptoms. Despite advancements in chemotherapy and supportive care, the incidence rate and mortality of patients with hematological malignancies remain high. Additionally, there are issues with the clinical diagnosis because several hematological malignancies lack defined, systematic diagnostic criteria. This work provided an overview of the fundamentals, benefits, and limitations of Raman spectroscopy and its use in hematological cancers. The alterations of trace substances can be recognized using Raman spectroscopy. High sensitivity, non-destructive, quick, real-time, and other attributes define it. Clinicians must promptly identify disorders and keep track of analytes in biological fluids. For instance, surface-enhanced Raman spectroscopy is employed in diagnosing gene mutations in myelodysplastic syndromes due to its high sensitivity and multiple detection benefits. Serum indicators for multiple myeloma have been routinely used for detection. The simultaneous observation of DNA strand modifications and the production of new molecular bonds by tip-enhanced Raman spectroscopy is of tremendous significance for diagnosing lymphoma and multiple myeloma with unidentified diagnostic criteria.
Collapse
Affiliation(s)
- Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ruxue Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,*Correspondence: Yuan Zhou,
| |
Collapse
|
109
|
Monoclonal Gammopathies and the Bone Marrow Microenvironment: From Bench to Bedside and Then Back Again. Hematol Rep 2023; 15:23-49. [PMID: 36648882 PMCID: PMC9844382 DOI: 10.3390/hematolrep15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by a multistep evolutionary pathway, with an initial phase called monoclonal gammopathy of undetermined significance (MGUS), potentially evolving into the symptomatic disease, often preceded by an intermediate phase called "smoldering" MM (sMM). From a biological point of view, genomic alterations (translocations/deletions/mutations) are already present at the MGUS phase, thus rendering their role in disease evolution questionable. On the other hand, we currently know that changes in the bone marrow microenvironment (TME) could play a key role in MM evolution through a progressive shift towards a pro-inflammatory and immunosuppressive shape, which may drive cancer progression as well as clonal plasma cells migration, proliferation, survival, and drug resistance. Along this line, the major advancement in MM patients' survival has been achieved by the introduction of microenvironment-oriented drugs (including immunomodulatory drugs and monoclonal antibodies). In this review, we summarized the role of the different components of the TME in MM evolution from MGUS as well as potential novel therapeutic targets/opportunities.
Collapse
|
110
|
Tripathi K, Bandari SK, Sanderson RD. Extracellular vesicles released during hypoxia transport heparanase and enhance macrophage migration, endothelial tube formation and cancer cell stemness. PROTEOGLYCAN RESEARCH 2023; 1:e1. [PMID: 37091070 PMCID: PMC10117102 DOI: 10.1002/pgr2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/30/2023]
Abstract
Heparanase is upregulated during the progression of most cancers and via its enzyme activity promotes extracellular matrix degradation, angiogenesis and cell migration. Heparanase expression is often associated with enhanced tumor aggressiveness and chemoresistance. We previously demonstrated that increased heparanase expression in tumor cells enhances secretion and alters the composition of tumor-released exosomes. In the present study, we discovered that extracellular vesicles (EVs) secreted by human multiple myeloma cells growing in hypoxic conditions exhibited elevated levels of heparanase cargo compared to EVs from cells growing in normoxic conditions. When macrophages (RAW 264.7 monocyte/macrophage-like cells) were exposed to EVs released by tumor cells growing in either hypoxic or normoxic conditions, macrophage migration and invasion was elevated by EVs from hypoxic conditions. The elevated invasion of macrophages was blocked by a monoclonal antibody that inhibits heparanase enzyme activity. Moreover, the heparanase-bearing EVs from hypoxic cells greatly enhanced endothelial cell tube formation consistent with the known role of heparanase in promoting angiogenesis. EVs from hypoxic tumor cells when compared with EVs from normoxic cells also enhanced cancer stemness properties of both CAG and RPMI 8226 human myeloma cells. Together these data indicate that under hypoxic conditions, tumor cells secrete EVs having an elevated level of heparanase as cargo. These EVs can act on both tumor and non-tumor cells, enhancing tumor progression and tumor cell stemness that likely supports chemoresistance and relapse of tumor.
Collapse
Affiliation(s)
- Kaushlendra Tripathi
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
- Present address:
Building 29B, Room 5NN Suite 22, Lab 5NN11, Molecular Pathology SectionLab of Immunogenetics, NIAID, NIH9000 Rockville PikeBethesdaMaryland20892USA
| | - Shyam K. Bandari
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
- Present address:
Exelixis1851 Harbor Bay ParkwayAlamedaCalifornia94502USA
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
111
|
Yao D, Lai J, Lu Y, Zhong J, Zha X, Huang X, Liu L, Zeng X, Chen S, Weng J, Du X, Li Y, Xu L. Comprehensive analysis of the immune pattern of T cell subsets in chronic myeloid leukemia before and after TKI treatment. Front Immunol 2023; 14:1078118. [PMID: 36742315 PMCID: PMC9893006 DOI: 10.3389/fimmu.2023.1078118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background Immunological phenotypes and differentiation statuses commonly decide the T cell function and anti-tumor ability. However, little is known about these alterations in CML patients. Method Here, we investigated the immunologic phenotypes (CD38/CD69/HLA-DR/CD28/CD57/BTLA/TIGIT/PD-1) of T subsets (TN, TCM, TEM, and TEMRA) in peripheral blood (PB) and bone marrow (BM) from de novo CML patients (DN-CML), patients who achieved a molecular response (MR) and those who failed to achieve an MR (TKI-F) after tyrosine kinase inhibitor (TKI) treatment using multicolor flow cytometry. Results CD38 or HLA-DR positive PB CD8+TN and TCM cells decreased in the DN-CML patients and this was further decreased in TKI-F patients. Meanwhile, the level of PD-1 elevated in CD8+ TEM and TEMRA cells from PB in all groups. Among BM sample, the level of HLA-DR+CD8+TCM cells significantly decreased in all groups and CD8+TEMRA cells from TKI-F patients exhibited increased level of TIGIT and CD8+ tissue-residual T cells (TRM) from DN-CML patients expressed a higher level of PD-1 and TIGIT. Lastly, we found a significantly decreased proportion of CD86+ dendritic cells (DCs) and an imbalanced CD80/CD86 in the PB and BM of DN-CML patients, which may impair the activation of T cells. Conclusion In summary, early differentiated TN and TCM cells from CML patients may remain in an inadequate activation state, particularly for TKI-F patients. And effector T cells (TEM, TEMRA and TRM) may be dysfunctional due to the expression of PD-1 and TIGIT in CML patients. Meanwhile, DCs cells exhibited the impairment of costimulatory molecule expression in DN-CML patients. Those factors may jointly contribute to the immune escape in CML patients.
Collapse
Affiliation(s)
- Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jun Zhong
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
112
|
Wijaya R, Lim SH. Two approaches to tackling COVID-19 in patients with blood cancer. NATURE CANCER 2023; 4:5-6. [PMID: 36721072 DOI: 10.1038/s43018-022-00505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ratna Wijaya
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sean H Lim
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
113
|
Present and Future Role of Immune Targets in Acute Myeloid Leukemia. Cancers (Basel) 2022; 15:cancers15010253. [PMID: 36612249 PMCID: PMC9818182 DOI: 10.3390/cancers15010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
It is now well known that the bone marrow (BM) cell niche contributes to leukemogenesis, but emerging data support the role of the complex crosstalk between AML cells and the BM microenvironment to induce a permissive immune setting that protects leukemic stem cells (LSCs) from therapy-induced death, thus favoring disease persistence and eventual relapse. The identification of potential immune targets on AML cells and the modulation of the BM environment could lead to enhanced anti-leukemic effects of drugs, immune system reactivation, and the restoration of AML surveillance. Potential targets and effectors of this immune-based therapy could be monoclonal antibodies directed against LSC antigens such as CD33, CD123, and CLL-1 (either as direct targets or via several bispecific T-cell engagers), immune checkpoint inhibitors acting on different co-inhibitory axes (alone or in combination with conventional AML drugs), and novel cellular therapies such as chimeric antigen receptor (CAR) T-cells designed against AML-specific antigens. Though dozens of clinical trials, mostly in phases I and II, are ongoing worldwide, results have still been negatively affected by difficulties in the identification of the optimal targets on LSCs.
Collapse
|
114
|
Eulberg D, Frömming A, Lapid K, Mangasarian A, Barak A. The prospect of tumor microenvironment-modulating therapeutical strategies. Front Oncol 2022; 12:1070243. [PMID: 36568151 PMCID: PMC9772844 DOI: 10.3389/fonc.2022.1070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple mechanisms promote tumor prosperity, which does not only depend on cell-autonomous, inherent abnormal characteristics of the malignant cells that facilitate rapid cell division and tumor expansion. The neoplastic tissue is embedded in a supportive and dynamic tumor microenvironment (TME) that nurtures and protects the malignant cells, maintaining and perpetuating malignant cell expansion. The TME consists of different elements, such as atypical vasculature, various innate and adaptive immune cells with immunosuppressive or pro-inflammatory properties, altered extracellular matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-tethered bioactive molecules that contribute to malignancy, directly or indirectly. In this review, we describe the various TME components and provide examples of anti-cancer therapies and novel drugs under development that aim to target these components rather than the intrinsic processes within the malignant cells. Combinatory TME-modulating therapeutic strategies may be required to overcome the resistance to current treatment options and prevent tumor recurrence.
Collapse
|
115
|
Armes H, Bewicke‐Copley F, Rio‐Machin A, Di Bella D, Philippe C, Wozniak A, Tummala H, Wang J, Ezponda T, Prosper F, Dokal I, Vulliamy T, Kilpivaara O, Wartiovaara‐Kautto U, Fitzgibbon J, Rouault‐Pierre K. Germline ERCC excision repair 6 like 2 (ERCC6L2) mutations lead to impaired erythropoiesis and reshaping of the bone marrow microenvironment. Br J Haematol 2022; 199:754-764. [PMID: 36156210 PMCID: PMC9828415 DOI: 10.1111/bjh.18466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Despite the inclusion of inherited myeloid malignancies as a separate entity in the World Health Organization Classification, many established predisposing loci continue to lack functional characterization. While germline mutations in the DNA repair factor ERCC excision repair 6 like 2 (ERCC6L2) give rise to bone marrow failure and acute myeloid leukaemia, their consequences on normal haematopoiesis remain unclear. To functionally characterise the dual impact of germline ERCC6L2 loss on human primary haematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs), we challenged ERCC6L2-silenced and patient-derived cells ex vivo. Here, we show for the first time that ERCC6L2-deficiency in HSPCs significantly impedes their clonogenic potential and leads to delayed erythroid differentiation. This observation was confirmed by CIBERSORTx RNA-sequencing deconvolution performed on ERCC6L2-silenced erythroid-committed cells, which demonstrated higher proportions of polychromatic erythroblasts and reduced orthochromatic erythroblasts versus controls. In parallel, we demonstrate that the consequences of ERCC6L2-deficiency are not limited to HSPCs, as we observe a striking phenotype in patient-derived and ERCC6L2-silenced MSCs, which exhibit enhanced osteogenesis and suppressed adipogenesis. Altogether, our study introduces a valuable surrogate model to study the impact of inherited myeloid mutations and highlights the importance of accounting for the influence of germline mutations in HSPCs and their microenvironment.
Collapse
Affiliation(s)
- Hannah Armes
- Centre for Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Findlay Bewicke‐Copley
- Centre for Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Ana Rio‐Machin
- Centre for Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Doriana Di Bella
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Céline Philippe
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Anna Wozniak
- Centre for Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Hemanth Tummala
- Centre for Genomics and Child HealthBlizard Institute, Queen Mary University of LondonLondonUK
| | - Jun Wang
- Centre for Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Teresa Ezponda
- Área de Hemato‐OncologíaCIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Centro de Investigación Biomédica en Red de Cáncer, CIBERONCPamplonaSpain
| | - Felipe Prosper
- Área de Hemato‐OncologíaCIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Centro de Investigación Biomédica en Red de Cáncer, CIBERONCPamplonaSpain
- Clínica Universidad de NavarraPamplonaSpain
| | - Inderjeet Dokal
- Centre for Genomics and Child HealthBlizard Institute, Queen Mary University of LondonLondonUK
| | - Tom Vulliamy
- Centre for Genomics and Child HealthBlizard Institute, Queen Mary University of LondonLondonUK
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUSLAB Laboratory of Genetics, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- Department of Medical and Clinical Genetics, Medicum, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Ulla Wartiovaara‐Kautto
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of HematologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
| | - Jude Fitzgibbon
- Centre for Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Kevin Rouault‐Pierre
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
116
|
Lin CY, Song X, Seaman K, You L. Microfluidic Co-culture Platforms for Studying Osteocyte Regulation of Other Cell Types under Dynamic Mechanical Stimulation. Curr Osteoporos Rep 2022; 20:478-492. [PMID: 36149593 DOI: 10.1007/s11914-022-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Osteocytes are the most abundant cell type in bone. These unique cells act primarily as mechanosensors and play crucial roles in the functional adaptation of bone tissue. This review aims to summarize the recent microfluidic studies on mechanically stimulated osteocytes in regulating other cell types. RECENT FINDINGS Microfluidics is a powerful technology that has been widely employed in recent years. With the advantages of microfluidic platforms, researchers can mimic multicellular environments and integrate dynamic systems to study osteocyte regulation under mechanical stimulation. Microfluidic platforms have been developed to investigate mechanically stimulated osteocytes in the direct regulation of multiple cell types, including osteoclasts, osteoblasts, and cancer cells, and in the indirect regulation of cancer cells via endothelial cells. Overall, these microfluidic studies foster the development of treatment approaches targeting osteocytes under mechanical stimulation.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly Seaman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
117
|
Li R, Xue K, Li J. FGF13 suppresses acute myeloid leukemia by regulating bone marrow niches. Front Med 2022; 16:896-908. [PMID: 36053411 DOI: 10.1007/s11684-022-0944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 01/19/2023]
Abstract
Fibroblast growth factor 13 (FGF13) is aberrantly expressed in multiple cancer types, suggesting its essential role in tumorigenesis. Hence, we aimed to explore its definite role in the development of acute myeloid leukemia (AML) and emphasize its associations with bone marrow niches. Results showed that FGF13 was lowly expressed in patients with AML and that its elevated expression was related to prolonged overall survival (OS). Univariate and multivariate Cox regression analyses identified FGF13 as an independent prognostic factor. A prognostic nomogram integrating FGF13 and clinicopathologic variables was constructed to predict 1-, 3-, and 5-year OS. Gene mutation and functional analyses indicated that FGF13 was not associated with AML driver mutations but was related to bone marrow niches. As for immunity, FGF13 was remarkably associated with T cell count, immune checkpoint genes, and cytokines. In addition, FGF13 overexpression substantially inhibited the growth and significantly induced the early apoptosis of AML cells. The xenograft study indicated that FGF13 overexpression prolonged the survival of recipient mice. Overall, FGF13 could serve as an independent prognostic factor for AML, and it was closely related to the bone marrow microenvironment.
Collapse
Affiliation(s)
- Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
118
|
Wang R, Zhang C, Li D, Yao Y. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development. Front Bioeng Biotechnol 2022; 10:1057913. [PMID: 36483772 PMCID: PMC9722735 DOI: 10.3389/fbioe.2022.1057913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 07/21/2023] Open
Abstract
The extracellular matrix interacts with cancer cells and is a key factor in the development of cancer. Traditional two-dimensional models cannot mimic the natural in situ environment of cancer tissues, whereas three-dimensional (3D) models such as spherical culture, bioprinting, and microfluidic approaches can achieve in vitro reproduction of certain structures and components of the tumor microenvironment, including simulation of the hypoxic environment of tumor tissue. However, the lack of a perfusable vascular network is a limitation of most 3D models. Solid tumor growth and metastasis require angiogenesis, and tumor models with microvascular networks have been developed to better understand underlying mechanisms. Tumor-on-a-chip technology combines the advantages of microfluidics and 3D cell culture technology for the simulation of tumor tissue complexity and characteristics. In this review, we summarize progress in constructing tumor-on-a-chip models with efficiently perfused vascular networks. We also discuss the applications of tumor-on-a-chip technology to studying the tumor microenvironment and drug development. Finally, we describe the creation of several common tumor models based on this technology to provide a deeper understanding and new insights into the design of vascularized cancer models. We believe that the tumor-on-a-chip approach is an important development that will provide further contributions to the field.
Collapse
Affiliation(s)
| | | | - Danxue Li
- *Correspondence: Danxue Li, ; Yang Yao,
| | - Yang Yao
- *Correspondence: Danxue Li, ; Yang Yao,
| |
Collapse
|
119
|
Zhang Z, Yang K, Zhang H. Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia? Cancers (Basel) 2022; 14:cancers14225655. [PMID: 36428753 PMCID: PMC9688677 DOI: 10.3390/cancers14225655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of hematological malignancy characterized by its high heterogeneity and potentially life-threatening clinical features. Despite the advances in risk stratification and therapeutic management of T-ALL, patients often suffer from treatment failure and chemotherapy-induced toxicity, calling for greater efforts to improve therapeutic efficacy and safety in the treatment of T-ALL. During the past decades, increasing evidence has shown the indispensable effects of leukemia-initiating cells (LICs) and leukemic niches on T-ALL initiation and progression. These milestones greatly facilitate precision medicine by interfering with the pathways that are associated with LICs and leukemic niches or by targeting themselves directly. Most of these novel agents, either alone or in combination with conventional chemotherapy, have shown promising preclinical results, facilitating them to be further evaluated under clinical trials. In this review, we summarize the latest discoveries in LICs and leukemic niches in terms of T-ALL, with a particular highlight on the current precision medicine. The challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
120
|
Harris B, Saleem S, Cook N, Searle E. Targeting hypoxia in solid and haematological malignancies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:318. [PMID: 36320041 PMCID: PMC9628170 DOI: 10.1186/s13046-022-02522-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.
Collapse
Affiliation(s)
- Bill Harris
- grid.412917.80000 0004 0430 9259Experimental Cancer Medicine Team, Christie NHS Foundation Trust, Manchester, UK
| | - Sana Saleem
- grid.412917.80000 0004 0430 9259Haematology Department, Christie NHS Foundation Trust, Manchester, UK
| | - Natalie Cook
- grid.412917.80000 0004 0430 9259Experimental Cancer Medicine Team, Christie NHS Foundation Trust, Manchester, UK ,grid.5379.80000000121662407Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Emma Searle
- grid.412917.80000 0004 0430 9259Haematology Department, Christie NHS Foundation Trust, Manchester, UK ,grid.5379.80000000121662407Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
121
|
Ye Z, Li Y, Tian X, Wei Y, Yu Y, Lai K, Yang K, Qiu Z, Lin J, Zhao M, Lin D, Xu X. Fatty acid metabolism predicts prognosis and NK cell immunosurveillance of acute myeloid leukemia patients. Front Oncol 2022; 12:1018154. [DOI: 10.3389/fonc.2022.1018154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCell metabolic reprogramming is a hallmark of tumor prognosis, and fatty acid metabolism (FAM) plays a crucial role in the tumor microenvironment (TME). However, the relationship between FAM, TME, and prognosis of acute myeloid leukemia (AML) patients remains elusive.MethodsWe extracted the single-cell RNA sequencing (scRNA-Seq) and bulk transcriptome data of AML patients from the TCGA and GEO databases and assessed the relationship between FAM, TME, and AML patient prognosis. We also performed functional enrichment (FE) assay to evaluate the significance of FAM in anti-AML immunosurveillance.ResultsOur scRNA-Seq analysis revealed that the leukemic stem cell (LSC)-enriched population exhibited elevated levels of FAM-related genes. Using these FAM-related genes, we developed a prognostic model that accurately estimated AML patient outcome. FE analysis showed that FAM was strongly related to alterations of TME-based immunosurveillance in AML patients. More importantly, we demonstrated that FAM inhibition via pharmaceutical targeting of PLA2G4A, a highly expressed FAM gene in AML patients with poor prognosis, enhanced the NK cell-mediated immunosurveillance in leukemia cells.ConclusionsLeukemic stem cell (LSC)-enriched population exhibited elevated levels of FAM-related genes. We have successfully established the FAM formula that predicts AML patient prognosis and alterations in the TME-based immunosurveillance. We also found that PLA2G4A was a highly expressed FAM gene in AML patients with poor prognoses. Pharmaceutical targeting of PLA2G4A increased the expression of NKG2DL in leukemia cells in vitro and thus enhanced the NK cell-mediated immunosurveillance.
Collapse
|
122
|
Sun G, Gu Q, Zheng J, Cheng H, Cheng T. Emerging roles of extracellular vesicles in normal and malignant hematopoiesis. J Clin Invest 2022; 132:160840. [PMID: 36106632 PMCID: PMC9479752 DOI: 10.1172/jci160840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem cells, regulated by their microenvironment (or “niche”), sustain the production of mature blood and immune cells. Leukemia cells remodel the microenvironment to enhance their survival, which is accompanied by the loss of support for normal hematopoiesis in hematologic malignancies. Extracellular vesicles (EVs) mediate intercellular communication in physiological and pathological conditions, and deciphering their functions in cell-cell interactions in the ecosystem can highlight potential therapeutic targets. In this Review, we illustrate the utility of EVs derived from various cell types, focusing on the biological molecules they contain and the behavioral alterations they can induce in recipient cells. We also discuss the potential for clinical application in hematologic malignancies, including EV-based therapeutic regimens, drug delivery via EVs, and the use of EVs (or their cargoes) as biomarkers.
Collapse
Affiliation(s)
- Guohuan Sun
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
123
|
Mast cells as a therapeutic target in myeloproliferative neoplasms. Trends Mol Med 2022; 28:902-905. [PMID: 36064534 DOI: 10.1016/j.molmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Mast cells have been implicated as mediators of bone marrow fibrosis and pruritus in myeloproliferative neoplasms (MPNs) with JAK2V617F or calreticulin mutations. We hypothesize that potent KIT inhibitors, already in clinical use for systemic mastocytosis, have therapeutic potential for the treatment of MPNs by directly targeting mast cells.
Collapse
|
124
|
Shen M, Wu X, Zhu M, Yi X. Recent advances in biological membrane-based nanomaterials for cancer therapy. Biomater Sci 2022; 10:5756-5785. [PMID: 36017968 DOI: 10.1039/d2bm01044e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials have shown significant advantages in cancer theranostics, owing to their enhanced permeability and retention effect in tumors and multi-function integration capability. Biological membranes, which are collected from various cells and their secreted membrane structures, can further be applied to establish membrane-based nanomaterials with perfect biocompatibility, tumor-targeting capacity, immune-stimulatory activity and adjustable versatility for cancer therapy. In this review, according to their source, membranes are divided into four groups: (1) cell membranes; (2) secretory membranes; (3) engineered membranes; and (4) hybrid membranes. First, cell membranes can be extracted from natural cells of the body, tumor tissue cells, and bacteria. Furthermore, secretory membranes mainly refer to exosome, apoptotic body and bacterial outer membrane vesicle, and membranes with specific protein/peptide expression or therapeutic inclusions are obtained from engineered cells. Finally, a hybrid membrane will be constituted by two or more of the abovementioned membranes. These membranes can form drug-carrying nanoparticles themselves or coat multi-functional nanoparticles, further realizing efficient cancer therapy. We summarize the application of various biological membrane-based nanomaterials in cancer therapy and point out their advantages as well as the places that need to be further improved, providing systematic knowledge of this field and a strategy for further optimization.
Collapse
Affiliation(s)
- Mengling Shen
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaojie Wu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Minqian Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
125
|
Magliulo D, Bernardi R. Hypoxic stress and hypoxia-inducible factors in leukemias. Front Oncol 2022; 12:973978. [PMID: 36059690 PMCID: PMC9435438 DOI: 10.3389/fonc.2022.973978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
To cope with hypoxic stress, ancient organisms have developed evolutionally conserved programs centered on hypoxia-inducible transcriptional factors (HIFs). HIFs and their regulatory proteins have evolved as rheostats to adapt cellular metabolism to atmospheric oxygen fluctuations, but the amplitude of their transcriptional programs has tremendously increased along evolution to include a wide spectrum of physiological and pathological processes. The bone marrow represents a notable example of an organ that is physiologically exposed to low oxygen levels and where basal activation of hypoxia signaling appears to be intrinsically wired within normal and neoplastic hematopoietic cells. HIF-mediated responses are mainly piloted by the oxygen-labile α subunits HIF1α and HIF2α, and current literature suggests that these genes have a functional specification that remains to be fully defined. Since their identification in the mid 90s, HIF factors have been extensively studied in solid tumors, while their implication in leukemia has lagged behind. In the last decades however, many laboratories have addressed the function of hypoxia signaling in leukemia and obtained somewhat contradictory results. Suppression of HIFs expression in different types of leukemia has unveiled common leukemia-promoting functions such as stimulation of bone marrow neoangiogenesis, maintenance of leukemia stem cells and chemoresistance. However, genetic studies are revealing that a definition of HIF factors as bona fide tumor promoters is overly simplistic, and, depending on the leukemia subtype, the specific oncogenic event, or the stage of leukemia development, activation of hypoxia-inducible genes may lead to opposite consequences. With this article we will provide an updated summary of the studies describing the regulation and function of HIF1α and HIF2α in blood malignancies, spanning from acute to chronic, lymphoid to myeloid leukemias. In discussing these data, we will attempt to provide plausible explanations to contradictory findings and point at what we believe are areas of weakness in which further investigations are urgently needed. Gaining additional knowledge into the role of hypoxia signaling in leukemia appears especially timely nowadays, as new inhibitors of HIF factors are entering the clinical arena for specific types of solid tumors but their utility for patients with leukemia is yet to be determined.
Collapse
Affiliation(s)
| | - Rosa Bernardi
- Laboratory of Preclinical Models of Cancer, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
126
|
Xu ZJ, Wen XM, Zhang YC, Jin Y, Ma JC, Gu Y, Chen XY, Xia PH, Qian W, Lin J, Qian J. m6A regulator-based methylation modification patterns and characterization of tumor microenvironment in acute myeloid leukemia. Front Genet 2022; 13:948079. [PMID: 36035161 PMCID: PMC9399688 DOI: 10.3389/fgene.2022.948079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022] Open
Abstract
RNA N6-methyladenosine (m6A) is the most common and intensively studied RNA modification that critically regulates RNA metabolism, cell signaling, cell survival, and differentiation. However, the overall role of multiple m6A regulators in the tumor microenvironment (TME) has not yet been fully elucidated in acute myeloid leukemia (AML). In our study, we explored the genetic and transcriptional alterations of 23 m6A regulators in AML patients. Three distinct molecular subtypes were identified and associated with prognosis, patient clinicopathological features, as well as TME characteristics. The TME characterization revealed that m6A patterns were highly connected with metabolic pathways such as biosynthesis of unsaturated fatty acids, cysteine and methionine metabolism, and citrate cycle TCA cycle. Then, based on the differentially expressed genes (DEGs) related to m6A molecular subtypes, our study categorized the entire cohort into three m6A gene clusters. Furthermore, we constructed the m6Ascore for quantification of the m6A modification pattern of individual AML patients. It was found that the tumor-infiltrating lymphocyte cells (TILs) closely correlated with the three m6A clusters, three m6A gene clusters, and m6Ascore. And many biological processes were involved, including glycogen degradation, drug metabolism by cytochrome P450, pyruvate metabolism, and so on. Our comprehensive analysis of m6A regulators in AML demonstrated their potential roles in the clinicopathological features, prognosis, tumor microenvironment, and particularly metabolic pathways. These findings may improve our understanding of m6A regulators in AML and offer new perspectives on the assessment of prognosis and the development of anticancer strategy.
Collapse
Affiliation(s)
- Zi-Jun Xu
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Yuan-Cui Zhang
- Department of Internal Medicine, The Affiliated Third Hospital of Jiangsu University, Zhenjiang, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Gu
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xin-Yi Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Pei-Hui Xia
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Qian
- Department of Otolaryngology-Head and Neck Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Jiang Lin, ; Wei Qian,
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Jiang Lin, ; Wei Qian,
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Jiang Lin, ; Wei Qian,
| |
Collapse
|
127
|
Miao R, Chun H, Feng X, Gomes AC, Choi J, Pereira JP. Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size. Nat Commun 2022; 13:4611. [PMID: 35941168 PMCID: PMC9360400 DOI: 10.1038/s41467-022-32228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular competition for limiting hematopoietic factors is a physiologically regulated but poorly understood process. Here, we studied this phenomenon by hampering hematopoietic progenitor access to Leptin receptor+ mesenchymal stem/progenitor cells (MSPCs) and endothelial cells (ECs). We show that HSC numbers increase by 2-fold when multipotent and lineage-restricted progenitors fail to respond to CXCL12 produced by MSPCs and ECs. HSCs are qualitatively normal, and HSC expansion only occurs when early hematopoietic progenitors but not differentiated hematopoietic cells lack CXCR4. Furthermore, the MSPC and EC transcriptomic heterogeneity is stable, suggesting that it is impervious to major changes in hematopoietic progenitor interactions. Instead, HSC expansion correlates with increased availability of membrane-bound stem cell factor (mSCF) on MSPCs and ECs presumably due to reduced consumption by cKit-expressing hematopoietic progenitors. These studies suggest that an intricate homeostatic balance between HSCs and proximal hematopoietic progenitors is regulated by cell competition for limited amounts of mSCF. Hematopoietic stem cells (HSCs) rely on a combination of paracrine signals produced by their niche, including SCF. Here the authors show that HSCs and hematopoietic progenitors compete for limited amounts of membrane-bound SCF.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Harim Chun
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Xing Feng
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Ana Cordeiro Gomes
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Jungmin Choi
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea. .,Department of Genetics, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.
| |
Collapse
|
128
|
Kanazawa S, Okada H, Riu D, Mabuchi Y, Akazawa C, Iwata J, Hoshi K, Hikita A. Hematopoietic-Mesenchymal Signals Regulate the Properties of Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23158238. [PMID: 35897814 PMCID: PMC9330127 DOI: 10.3390/ijms23158238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 01/02/2023] Open
Abstract
It is well known that the properties of hematopoietic stem/progenitor cells (HSCs), such as their self-renewal ability and multipotency, are maintained through interactions with mesenchymal stem/stromal cells (MSCs). MSCs are rare cells that are present in the bone marrow and are useful for clinical applications due to their functional ability. To obtain the necessary number of cells, MSCs must be cultured to expand, but this causes a remarkable decrease in stem cell properties, such as multipotency and proliferation ability. In this study, we show that the c-Mpl signal, which is related to the maintenance of hematopoietic stem cells, has an important effect on the proliferation and differentiation ability of MSCs. Utilizing a co-culture system comprising MSCs and HSCs, it is suggested that signaling from hematopoietic cells to MSCs supports cell proliferation. Interestingly, the enhanced proliferation ability of the HSCs was decreased in c-Mpl knock-out HSCs (c-Mpl-KO). In addition, the MSCs co-cultured with c-Mpl-KO HSCs had reduced MSC marker expression (PDGFRa and Sca-1) compared to the MSCs co-cultured with c-Mpl-wild-type HSCs. These results suggest that a hematopoietic–mesenchymal signal exists, and that the state of the HSCs is important for the stability of MSC properties.
Collapse
Affiliation(s)
- Sanshiro Kanazawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Dan Riu
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (D.R.); (A.H.)
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Intractable Disease Research Centre, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Chihiro Akazawa
- Intractable Disease Research Centre, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA;
| | - Kazuto Hoshi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (D.R.); (A.H.)
- Correspondence: ; Tel.: +81-3-5800-8669
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (D.R.); (A.H.)
| |
Collapse
|
129
|
Śniegocka M, Liccardo F, Fazi F, Masciarelli S. Understanding ER homeostasis and the UPR to enhance treatment efficacy of acute myeloid leukemia. Drug Resist Updat 2022; 64:100853. [PMID: 35870226 DOI: 10.1016/j.drup.2022.100853] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Protein biogenesis, maturation and degradation are tightly regulated processes that are governed by a complex network of signaling pathways. The endoplasmic reticulum (ER) is responsible for biosynthesis and maturation of secretory proteins. Circumstances that alter cellular protein homeostasis, determine accumulation of misfolded and unfolded proteins in the ER, a condition defined as ER stress. In case of stress, the ER activates an adaptive response called unfolded protein response (UPR), a series of pathways of major relevance for cancer biology. The UPR plays a preeminent role in adaptation of tumor cells to the harsh conditions that they experience, due to high rates of proliferation, metabolic abnormalities and hostile environment scarce in oxygen and nutrients. Furthermore, the UPR is among the main adaptive cell stress responses contributing to the development of resistance to drugs and chemotherapy. Clinical management of Acute Myeloid Leukemia (AML) has improved significantly in the last decade, thanks to development of molecular targeted therapies. However, the emergence of treatment-resistant clones renders the rate of AML cure dismal. Moreover, different cell populations that constitute the bone marrow niche recently emerged as a main determinant leading to drug resistance. Herein we summarize the most relevant literature regarding the role played by the UPR in expansion of AML and ability to develop drug resistance and we discuss different possible modalities to overturn this adaptive response against leukemia. To this aim, we also describe the interconnection of the UPR with other cellular stress responses regulating protein homeostasis. Finally, we review the newest findings about the crosstalk between AML cells and cells of the bone marrow niche, under physiological conditions and in response to therapies, discussing in particular the importance of the niche in supporting survival of AML cells by favoring protein homeostasis.
Collapse
Affiliation(s)
- Martyna Śniegocka
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
130
|
Pandian SRK, Vijayakumar KK, Kunjiappan S, Babkiewicz E, Maszczyk P. Emerging role of exosomes in hematological malignancies. Clin Exp Med 2022:10.1007/s10238-022-00850-z. [PMID: 35798882 DOI: 10.1007/s10238-022-00850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Hematological malignancies are a heterogeneous group of neoplasms in the blood characterized by dysregulated hematopoiesis and classified as leukemia, lymphoma, and myeloma. The occurrence and progression of hematological malignancies depend on transformed hematopoietic stem cells, which refract to chemotherapy and often cause relapse. In recent years, monoclonal antibody therapies are preferred for hematopoietic cancers, owing to their inherent mechanisms of action and improved outcomes. However, efficient drug delivery methods and the establishment of novel biomarkers are currently being investigated and warranted to improve the outcome of patients with hematological malignancies. For instance, non-viral-mediated, natural carriers have been suggested for latent intracellular drug delivery. In this purview, repurposing small vesicles (e.g., exosomes) is considered a latent approach for myeloma therapy. Exosomes (nano-vesicles) have many advantages in that they are secreted by various animals and plants and become sought after for therapeutic and diagnostic purposes. The size of the cellular membrane of exosomes (30-150 nm) facilitates ligand binding and targeted delivery of the loaded molecules. Furthermore, exosomes can be modified to express specific target moiety on their cell membrane and can also be featured with desired biological activity, thereby potentially employed for various convoluted diseases, including hematological malignancies. To advance the current knowledge, this review is focused on the source, composition, function and surface engineering of exosomes pertaining to hematological malignancies.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, 626126, India.
| | - Kevin Kumar Vijayakumar
- School of Biotechnology, Department of Molecular Microbiology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, 626126, India
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089, Warsaw, Poland
| |
Collapse
|
131
|
Solimando AG, Da Vià MC, Bolli N, Steinbrunn T. The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring “Multiple Myelomas”. Cancers (Basel) 2022; 14:cancers14133271. [PMID: 35805041 PMCID: PMC9265748 DOI: 10.3390/cancers14133271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| | - Matteo Claudio Da Vià
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| |
Collapse
|
132
|
Aparici Herraiz I, Caires HR, Castillo-Fernández Ó, Sima N, Méndez-Mora L, Risueño RM, Sattabongkot J, Roobsoong W, Hernández-Machado A, Fernandez-Becerra C, Barrias CC, del Portillo HA. Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips. Front Cell Infect Microbiol 2022; 12:920204. [PMID: 35873153 PMCID: PMC9302440 DOI: 10.3389/fcimb.2022.920204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.
Collapse
Affiliation(s)
- Iris Aparici Herraiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hugo R. Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Óscar Castillo-Fernández
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Núria Sima
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lourdes Méndez-Mora
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aurora Hernández-Machado
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Cristina C. Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Hernando A. del Portillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Hernando A. del Portillo,
| |
Collapse
|
133
|
Liccardo F, Iaiza A, Śniegocka M, Masciarelli S, Fazi F. Circular RNAs Activity in the Leukemic Bone Marrow Microenvironment. Noncoding RNA 2022; 8:50. [PMID: 35893233 PMCID: PMC9326527 DOI: 10.3390/ncrna8040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy originating from defective hematopoietic stem cells in the bone marrow. In spite of the recent approval of several molecular targeted therapies for AML treatment, disease recurrence remains an issue. Interestingly, increasing evidence has pointed out the relevance of bone marrow (BM) niche remodeling during leukemia onset and progression. Complex crosstalk between AML cells and microenvironment components shapes the leukemic BM niche, consequently affecting therapy responsiveness. Notably, circular RNAs are a new class of RNAs found to be relevant in AML progression and chemoresistance. In this review, we provided an overview of AML-driven niche remodeling. In particular, we analyzed the role of circRNAs and their possible contribution to cell-cell communication within the leukemic BM microenvironment. Understanding these mechanisms will help develop a more effective treatment for AML.
Collapse
Affiliation(s)
| | | | | | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy; (F.L.); (A.I.); (M.Ś.)
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy; (F.L.); (A.I.); (M.Ś.)
| |
Collapse
|
134
|
Kumar R, Pereira RS, Niemann J, Azimpour AI, Zanetti C, Karantanou C, Minka W, Minciacchi VR, Kowarz E, Meister M, Godavarthy PS, Maguer-Satta V, Lefort S, Wiercinska E, Bonig H, Marschalek R, Krause DS. The differential role of the lipid raft-associated protein flotillin 2 for progression of myeloid leukemia. Blood Adv 2022; 6:3611-3624. [PMID: 35298613 PMCID: PMC9631564 DOI: 10.1182/bloodadvances.2021005992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid raft-associated proteins play a vital role in membrane-mediated processes. The lipid microdomain-associated protein flotillin 2 (FLOT2), which has a scaffolding function, is involved in polarization, as well as in actin cytoskeletal organization of primitive and mature hematopoietic cells and has been associated with different malignancies. However, its involvement in myeloid leukemias is not well studied. Using murine transplantation models, we show here that the absence of FLOT2 from leukemia-initiating cells (LICs) altered the disease course of BCR-ABL1+ chronic myeloid leukemia (CML), but not of MLL-AF9-driven acute myeloid leukemia (AML). While FLOT2 was required for expression of the adhesion molecule CD44 on both CML- and AML-LIC, a defect in the cytoskeleton, cell polarity, and impaired homing ability of LIC was only observed in FLOT2-deficient BCR-ABL1+ compared with MLL-AF9+ cells. Downstream of CD44, BCR-ABL1 kinase-independent discrepancies were observed regarding expression, localization, and activity of cell division control protein 42 homolog (CDC42) between wild-type (WT) and FLOT2-deficient human CML and AML cells. Inhibition of CDC42 by ML141 impaired the homing of CML LIC and, thereby, CML progression. This suggested that alteration of both CD44 and CDC42 may be causative of impaired CML progression in the absence of FLOT2. In summary, our data suggest a FLOT2-CD44-CDC42 axis, which differentially regulates CML vs AML progression, with deficiency of FLOT2 impairing the development of CML.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Raquel S. Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Alexander I. Azimpour
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Wahyu Minka
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Melanie Meister
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Parimala S. Godavarthy
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Sylvain Lefort
- CRCL, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Eliza Wiercinska
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
| | - Halvard Bonig
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
- Goethe University, Institute for Transfusion Medicine and Immunohematology, Frankfurt, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Germany
- Frankfurt Cancer Institute, Frankfurt, Germany; and
- Institute for General Pharmacology and Toxicology, Institute for Biochemistry II, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
135
|
Tan Z, Kan C, Wong M, Sun M, Liu Y, Yang F, Wang S, Zheng H. Regulation of Malignant Myeloid Leukemia by Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:857045. [PMID: 35756991 PMCID: PMC9213747 DOI: 10.3389/fcell.2022.857045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow microenvironment (BMM) has been proven to have benefits for both normal hematopoietic stem cell niche and pathological leukemic stem cell niche. In fact, the pathological leukemia microenvironment reprograms bone marrow niche cells, especially mesenchymal stem cells for leukemia progression, chemoresistance and relapse. The growth and differentiation of MSCs are modulated by leukemia stem cells. Moreover, chromatin abnormality of mesenchymal stem cells is sufficient for leukemia initiation. Here, we summarize the detailed relationship between MSC and leukemia. MSCs can actively and passively regulate the progression of myelogenous leukemia through cell-to-cell contact, cytokine-receptor interaction, and exosome communication. These behaviors benefit LSCs proliferation and survival and inhibit physiological hematopoiesis. Finally, we describe the recent advances in therapy targeting MSC hoping to provide new perspectives and therapeutic strategies for leukemia.
Collapse
Affiliation(s)
- Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Chen Kan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Mandy Wong
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Minqiong Sun
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Siying Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| |
Collapse
|
136
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
137
|
Zhan H, Kaushansky K. Megakaryocytes as the Regulator of the Hematopoietic Vascular Niche. Front Oncol 2022; 12:912060. [PMID: 35814384 PMCID: PMC9258777 DOI: 10.3389/fonc.2022.912060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Megakaryocytes (MKs) are important components of the hematopoietic niche. Compared to the non-hematopoietic niche cells, MKs serving as part of the hematopoietic niche provides a mechanism for feedback regulation of hematopoietic stem cells (HSCs), in which HSC progeny (MKs) can modulate HSC adaptation to hematopoietic demands during both steady-state and stress hematopoiesis. MKs are often located adjacent to marrow sinusoids. Considering that most HSCs reside close to a marrow vascular sinusoid, as do MKs, the interactions between MKs and vascular endothelial cells are positioned to play important roles in modulating HSC function, and by extrapolation, might be dysregulated in various disease states. In this review, we discuss the interactions between MKs and the vascular niche in both normal and neoplastic hematopoiesis.
Collapse
Affiliation(s)
- Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States
- Medical Service, Northport Veterans Affairs (VA) Medical Center, Northport, NY, United States
- *Correspondence: Huichun Zhan,
| | - Kenneth Kaushansky
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
138
|
Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133047. [PMID: 35804818 PMCID: PMC9264814 DOI: 10.3390/cancers14133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hematological malignancies (HMs) cover 50% of all malignancies, and people of all ages can be affected by these deadly diseases. In many cases, conventional diagnostic tools fail to diagnose HMs at an early stage, due to heterogeneity and the long-term indolent phase of HMs. Therefore, many patients start their treatment at the late stage of HMs and have poor survival. Gold nanomaterials (GNMs) have shown promise as a cancer theranostic agent. GNMs are 1 nm to 100 nm materials having magnetic resonance and surface-plasmon-resonance properties. GNMs conjugated with antibodies, nucleic acids, peptides, photosensitizers, chemotherapeutic drugs, synthetic-drug candidates, bioactive compounds, and other theranostic biomolecules may enhance the efficacy and efficiency of both traditional and advanced theranostic approaches to combat HMs. Abstract Hematological malignancies (HMs) are a heterogeneous group of blood neoplasia generally characterized by abnormal blood-cell production. Detection of HMs-specific molecular biomarkers (e.g., surface antigens, nucleic acid, and proteomic biomarkers) is crucial in determining clinical states and monitoring disease progression. Early diagnosis of HMs, followed by an effective treatment, can remarkably extend overall survival of patients. However, traditional and advanced HMs’ diagnostic strategies still lack selectivity and sensitivity. More importantly, commercially available chemotherapeutic drugs are losing their efficacy due to adverse effects, and many patients develop resistance against these drugs. To overcome these limitations, the development of novel potent and reliable theranostic agents is urgently needed to diagnose and combat HMs at an early stage. Recently, gold nanomaterials (GNMs) have shown promise in the diagnosis and treatment of HMs. Magnetic resonance and the surface-plasmon-resonance properties of GNMs have made them a suitable candidate in the diagnosis of HMs via magnetic-resonance imaging and colorimetric or electrochemical sensing of cancer-specific biomarkers. Furthermore, GNMs-based photodynamic therapy, photothermal therapy, radiation therapy, and targeted drug delivery enhanced the selectivity and efficacy of anticancer drugs or drug candidates. Therefore, surface-tuned GNMs could be used as sensitive, reliable, and accurate early HMs, metastatic HMs, and MRD-detection tools, as well as selective, potent anticancer agents. However, GNMs may induce endothelial leakage to exacerbate cancer metastasis. Studies using clinical patient samples, patient-derived HMs models, or healthy-animal models could give a precise idea about their theranostic potential as well as biocompatibility. The present review will investigate the theranostic potential of vectorized GNMs in HMs and future challenges before clinical theranostic applications in HMs.
Collapse
|
139
|
Bertrand J, Dostálová H, Kryštof V, Jorda R, Delgado T, Castro-Alvarez A, Mella J, Cabezas D, Faúndez M, Espinosa-Bustos C, Salas CO. Design, Synthesis, In Silico Studies and Inhibitory Activity towards Bcr-Abl, BTK and FLT3-ITD of New 2,6,9-Trisubstituted Purine Derivatives as Potential Agents for the Treatment of Leukaemia. Pharmaceutics 2022; 14:pharmaceutics14061294. [PMID: 35745866 PMCID: PMC9228270 DOI: 10.3390/pharmaceutics14061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
We report 31 new compounds designed, synthesized and evaluated on Bcr-Abl, BTK and FLT3-ITD as part of our program to develop 2,6,9-trisubstituted purine derivatives as inhibitors of oncogenic kinases. The design was inspired by the chemical structures of well-known kinase inhibitors and our previously developed purine derivatives. The synthesis of these purines was simple and used a microwave reactor for the final step. Kinase assays showed three inhibitors with high selectivity for each protein that were identified: 4f (IC50 = 70 nM for Bcr-Abl), 5j (IC50 = 0.41 μM for BTK) and 5b (IC50 = 0.38 μM for FLT-ITD). The 3D-QSAR analysis and molecular docking studies suggested that two fragments are potent and selective inhibitors of these three kinases: a substitution at the 6-phenylamino ring and the length and volume of the alkyl group at N-9. The N-7 and the N-methyl-piperazine moiety linked to the aminophenyl ring at C-2 are also requirements for obtaining the activity. Furthermore, most of these purine derivatives were shown to have a significant inhibitory effect in vitro on the proliferation of leukaemia and lymphoma cells (HL60, MV4-11, CEM, K562 and Ramos) at low concentrations. Finally, we show that the selected purines (4i, 5b and 5j) inhibit the downstream signalling of the respective kinases in cell models. Thus, this study provides new evidence regarding how certain chemical modifications of purine ring substituents provide novel inhibitors of target kinases as potential anti-leukaemia drugs.
Collapse
Affiliation(s)
- Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (J.B.); (T.D.)
| | - Hana Dostálová
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (H.D.); (R.J.)
| | - Vladimír Kryštof
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (H.D.); (R.J.)
- Correspondence: (V.K.); (C.O.S.)
| | - Radek Jorda
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (H.D.); (R.J.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Thalía Delgado
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (J.B.); (T.D.)
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Manuel Montt 112, Temuco 4780000, Chile;
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2360102, Chile; (J.M.); (D.C.)
- Facultad de Farmacia, Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Avenida Gran Bretaña 1093, Valparaíso 2360102, Chile
| | - David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2360102, Chile; (J.M.); (D.C.)
| | - Mario Faúndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (M.F.); (C.E.-B.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (M.F.); (C.E.-B.)
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (J.B.); (T.D.)
- Correspondence: (V.K.); (C.O.S.)
| |
Collapse
|
140
|
Zhu W, Deo RC, MacRae CA. Single Cell Biology: Exploring Somatic Cell Behaviors, Competition and Selection in Chronic Disease. Front Pharmacol 2022; 13:867431. [PMID: 35656307 PMCID: PMC9152313 DOI: 10.3389/fphar.2022.867431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The full range of cell functions is under-determined in most human diseases. The evidence that somatic cell competition and clonal imbalance play a role in non-neoplastic chronic disease reveal a need for a dedicated effort to explore single cell function if we are to understand the mechanisms by which cell population behaviors influence disease. It will be vital to document not only the prevalent pathologic behaviors but also those beneficial functions eliminated or suppressed by competition. An improved mechanistic understanding of the role of somatic cell biology will help to stratify chronic disease, define more precisely at an individual level the role of environmental factors and establish principles for prevention and potential intervention throughout the life course and across the trajectory from wellness to disease.
Collapse
Affiliation(s)
- Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rahul C Deo
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Calum A MacRae
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
141
|
Aprile A, Sighinolfi S, Raggi L, Ferrari G. Targeting the Hematopoietic Stem Cell Niche in β-Thalassemia and Sickle Cell Disease. Pharmaceuticals (Basel) 2022; 15:ph15050592. [PMID: 35631417 PMCID: PMC9146437 DOI: 10.3390/ph15050592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 01/19/2023] Open
Abstract
In the last decade, research on pathophysiology and therapeutic solutions for β-thalassemia (BThal) and sickle cell disease (SCD) has been mostly focused on the primary erythroid defect, thus neglecting the study of hematopoietic stem cells (HSCs) and bone marrow (BM) microenvironment. The quality and engraftment of HSCs depend on the BM microenvironment, influencing the outcome of HSC transplantation (HSCT) both in allogeneic and in autologous gene therapy settings. In BThal and SCD, the consequences of severe anemia alter erythropoiesis and cause chronic stress in different organs, including the BM. Here, we discuss the recent findings that highlighted multiple alterations of the BM niche in BThal and SCD. We point out the importance of improving our understanding of HSC biology, the status of the BM niche, and their functional crosstalk in these disorders towards the novel concept of combined therapies by not only targeting the genetic defect, but also key players of the HSC–niche interaction in order to improve the clinical outcomes of transplantation.
Collapse
Affiliation(s)
- Annamaria Aprile
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.S.); (L.R.)
- Correspondence: (A.A.); (G.F.)
| | - Silvia Sighinolfi
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.S.); (L.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Laura Raggi
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.S.); (L.R.)
- University of Milano Bicocca, 20126 Milan, Italy
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.S.); (L.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: (A.A.); (G.F.)
| |
Collapse
|
142
|
Skroblyn T, Joedicke JJ, Pfau M, Krüger K, Bourquin JP, Izraeli S, Eckert C, Höpken UE. CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment. J Pathol 2022; 258:12-25. [PMID: 35522562 DOI: 10.1002/path.5924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
The testis is the second most frequent extramedullary site of relapse in pediatric acute lymphoblastic leukemia (ALL). The mechanism for B-cell (B) ALL cell migration towards and survival within the testis remains elusive. Here, we identified CXCL12-CXCR4 as the leading signaling axis for B-ALL cell migration and survival in the testicular leukemic niche. We combined analysis of primary human ALL with a novel patient-derived xenograft (PDX)-ALL mouse model with testicular involvement. Prerequisites for leukemic cell infiltration in the testis were pre-pubertal age of the recipient mice, high surface expression of CXCR4 on PDX-ALL cells, and CXCL12 secretion from the testicular stroma. Analysis of primary pediatric patient samples revealed that CXCR4 was the only chemokine receptor being robustly expressed on B-ALL cells both at the time of diagnosis and relapse. In affected patient testes, leukemic cells localized within the interstitial space in close proximity to testicular macrophages. Mouse macrophages isolated from affected testes, in the PDX model, revealed a macrophage polarization towards a M2-like phenotype in the presence of ALL cells. Therapeutically, blockade of CXCR4-mediated functions using an anti-CXCR4 antibody treatment completely abolished testicular infiltration of PDX-ALL cells and strongly impaired the overall development of leukemia. Collectively, we identified a pre-pubertal condition together with high CXCR4 expression as factors affecting the leukemia permissive testicular microenvironment. We propose CXCR4 as a promising target for therapeutic prevention of testicular relapses in childhood B-ALL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tessa Skroblyn
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany.,Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany
| | - Jara J Joedicke
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Translational Tumorimmunology, 13125, Berlin, Germany
| | - Madlen Pfau
- Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany
| | - Kerstin Krüger
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany
| | - Jean P Bourquin
- Department of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Shai Izraeli
- Schneider Children's Medical Center of Israel, Petach Tiqva, and Tel Aviv University, Israel
| | - Cornelia Eckert
- Charité-University Medicine, Department of Pediatric Oncology, Campus Virchow Klinikum, 13353, Berlin, Germany.,German Cancer Consortium, and German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Uta E Höpken
- Max-Delbrück-Center for Molecular Medicine, MDC, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125, Berlin, Germany
| |
Collapse
|
143
|
Menter T, Tzankov A. Tumor Microenvironment in Acute Myeloid Leukemia: Adjusting Niches. Front Immunol 2022; 13:811144. [PMID: 35273598 PMCID: PMC8901718 DOI: 10.3389/fimmu.2022.811144] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemias (AML) comprise a wide array of different entities, which have in common a rapid expansion of myeloid blast cells leading to displacement of normal hematopoietic cells and also disruption of the microenvironment in the bone marrow niches. Based on an insight into the complex cellular interactions in the bone marrow niches in non-neoplastic conditions in general, this review delineates the complex relationship between leukemic cells and reactive cells of the tumor microenvironment (TME) in AML. A special focus is directed on niche cells and various T-cell subsets as these also provide a potential therapeutic rationale considering e.g. immunomodulation. The TME of AML on the one hand plays a vital role for sustaining and promoting leukemogenesis but - on the other hand - it also has adverse effects on abnormal blasts developing into overt leukemia hindering their proliferation and potentially removing such cells. Thus, leukemic cells need to and develop strategies in order to manipulate the TME. Interference with those strategies might be of particular therapeutic potential since mechanisms of resistance related to tumor cell plasticity do not apply to it.
Collapse
Affiliation(s)
- Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
144
|
Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett 2022; 547:215723. [DOI: 10.1016/j.canlet.2022.215723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
|
145
|
Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022; 286:121568. [DOI: 10.1016/j.biomaterials.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
|
146
|
Inflammatory Cytokine Profiles Do Not Differ Between Patients With Idiopathic Cytopenias of Undetermined Significance and Myelodysplastic Syndromes. Hemasphere 2022; 6:e0713. [PMID: 35495296 PMCID: PMC9038488 DOI: 10.1097/hs9.0000000000000713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/18/2022] [Indexed: 02/03/2023] Open
Abstract
Immune dysregulation has been highlighted as a key player in the pathogenesis of myelodysplastic syndromes (MDS), but little is known about cytokine profiles in patients with unexplained cytopenia with or without mutations in MDS-associated genes (clonal cytopenias of undetermined significance [CCUS] and idiopathic cytopenias of undetermined significance [ICUS], respectively), which often precede MDS. Here, we study the cytokine profiles in 111 patients with ICUS (N = 41), CCUS (N = 30), lower-risk MDS (LR-MDS; N = 22) and higher-risk MDS (HR-MDS; N = 18), and in healthy elderly controls (N = 21). Twenty cytokines were examined in blood plasma at time of diagnosis using Luminex assays and enzyme linked immunosorbent assays. The cytokine levels were compared between patient groups, and in patients versus controls. Associations between cytokines and MDS-associated mutations were evaluated. An aberrant cytokine profile was observed in all patient groups relative to healthy elderly controls. Patients had significantly higher levels of IL-6 (P< 0 .001), tumor necrosis factor α (P < 0.001), IL-10 (P < 0.001), and C-X-C motif chemokine 10 (P < 0.001) and lower levels of transforming growth factor beta 1 (P < 0.001), CCL5/regulated on activation normal T-cell expressed and secreted (P < 0.001), and S100A4 (P < 0.001) compared with healthy controls. Survival was significantly shorter in CCUS and MDS patients with a high systemic inflammatory cytokine load (median overall survival [OS] 21 months) compared with those with low-moderate systemic inflammatory cytokine load (median OS 64 months; P < 0.0001). These data suggest that patients with ICUS and CCUS have cytokine levels as abnormal as in LR-MDS. Indeed, high cytokine levels are present before MDS is diagnosed and cytokine levels are elevated irrespective of the presence or size of the myeloid clones. Cytokines may have a prognostic impact at a very early premalignant stage of myeloid disorders.
Collapse
|
147
|
Fibbe W, Bernardi R, Charbord P, Krause D, Lo Celso C, Méndez-Ferrer S, Mummery C, Oostendorp R, Raaijmakers M, Socié G, Staal F, Bacigalupo A. The EHA Research Roadmap: Hematopoietic Stem Cells and Allotransplantation. Hemasphere 2022; 6:e0714. [PMID: 35509429 PMCID: PMC9061153 DOI: 10.1097/hs9.0000000000000714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Willem Fibbe
- Department of Internal Medicine and Nephrology, Leiden University Medical Center. Leiden, the Netherlands
| | - Rosa Bernardi
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Daniela Krause
- Goethe University Frankfurt and Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Haematology, Imperial College London, United Kingdom
| | | | - Christine Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Robert Oostendorp
- Department of Internal Medicine III, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Gerard Socié
- Hospital Saint Louis, APHP & University of Paris, France
| | - Frank Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
148
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
149
|
Dai J, Hu JJ, Dong X, Chen B, Dong X, Liu R, Xia F, Lou X. Deep Downregulation of PD-L1 by Caged Peptide-Conjugated AIEgen/miR-140 Nanoparticles for Enhanced Immunotherapy. Angew Chem Int Ed Engl 2022; 61:e202117798. [PMID: 35224832 DOI: 10.1002/anie.202117798] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 12/11/2022]
Abstract
Downregulating programmed cell death ligand 1(PD-L1) protein levels in tumor cells is an effective way to achieve immune system activation for oncology treatment, but current strategies are inadequate. Here, we design a caged peptide-AIEgen probe (GCP) to self-assemble with miR-140 forming GCP/miR-140 nanoparticles. After entering tumor cells, GCP/miR-140 disassembles in the presence of Cathepsin B (CB) and releases caged GO203 peptide, miR-140 and PyTPA. Peptide decages in the highly reductive intracellular environment and binds to mucin 1 (MUC1), thereby downregulating the expression of PD-L1. Meanwhile, miR-140 reduces PD-L1 expression by targeting downregulation of PD-L1 mRNA. Under the action of PyTPA-mediated photodynamic therapy (PDT), tumor-associated antigens are released, triggering immune cell attack on tumor cells. This multiple mechanism-based strategy of deeply downregulating PD-L1 in tumor cells activates the immune system and thus achieves effective immunotherapy.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoqi Dong
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
150
|
Hughes AM, Kuek V, Kotecha RS, Cheung LC. The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers (Basel) 2022; 14:2089. [PMID: 35565219 PMCID: PMC9102980 DOI: 10.3390/cancers14092089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
B lymphopoiesis is characterized by progressive loss of multipotent potential in hematopoietic stem cells, followed by commitment to differentiate into B cells, which mediate the humoral response of the adaptive immune system. This process is tightly regulated by spatially distinct bone marrow niches where cells, including mesenchymal stem and progenitor cells, endothelial cells, osteoblasts, osteoclasts, and adipocytes, interact with B-cell progenitors to direct their proliferation and differentiation. Recently, the B-cell niche has been implicated in initiating and facilitating B-cell precursor acute lymphoblastic leukemia. Leukemic cells are also capable of remodeling the B-cell niche to promote their growth and survival and evade treatment. Here, we discuss the major cellular components of bone marrow niches for B lymphopoiesis and the role of the malignant B-cell niche in disease development, treatment resistance and relapse. Further understanding of the crosstalk between leukemic cells and bone marrow niche cells will enable development of additional therapeutic strategies that target the niches in order to hinder leukemia progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|