101
|
COVID-19: Has the Liver Been Spared? Int J Mol Sci 2023; 24:ijms24021091. [PMID: 36674607 PMCID: PMC9866733 DOI: 10.3390/ijms24021091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The liver is a secondary and often collateral target of COVID-19 disease but can lead to important consequences. COVID-19 might directly cause a high number of complications in patients with pre-existing chronic liver disease, increasing their risk of hepatic decompensation. Moreover, it also determines indirect consequences in the management of patients with liver disease, especially in those suffering from decompensated cirrhosis and HCC, as well as in the execution of their follow-up and the availability of all therapeutic possibilities. Liver imaging in COVID-19 patients proved to be highly nonspecific, but it can still be useful for identifying the complications that derive from the infection. Moreover, the recent implementation of telemedicine constitutes a possible solution to both the physical distancing and the re-organizational difficulties arising from the pandemic. The present review aims to encompass the currently hypothesized pathophysiological mechanisms of liver injury in patients with COVID-19 mediated by both the direct invasion of the virus and its indirect effects and analyze the consequence of the pandemic in patients with chronic liver disease and liver tumors, with particular regard to the management strategies that have been implemented to face this worldwide emergency and that can be further improved.
Collapse
|
102
|
Naeem M, Bano N, Manzoor S, Ahmad A, Munawar N, Razak SIA, Lee TY, Devaraj S, Hazafa A. Pathogenetic Mechanisms of Liver-Associated Injuries, Management, and Current Challenges in COVID-19 Patients. Biomolecules 2023; 13:99. [PMID: 36671484 PMCID: PMC9855873 DOI: 10.3390/biom13010099] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 01/06/2023] Open
Abstract
The global outbreak of COVID-19 possesses serious challenges and adverse impacts for patients with progression of chronic liver disease and has become a major threat to public health. COVID-19 patients have a high risk of lung injury and multiorgan dysfunction that remains a major challenge to hepatology. COVID-19 patients and those with liver injury exhibit clinical manifestations, including elevation in ALT, AST, GGT, bilirubin, TNF-α, and IL-6 and reduction in the levels of CD4 and CD8. Liver injury in COVID-19 patients is induced through multiple factors, including a direct attack of SARS-CoV-2 on liver hepatocytes, hypoxia reperfusion dysfunction, cytokine release syndrome, drug-induced hepatotoxicity caused by lopinavir and ritonavir, immune-mediated inflammation, renin-angiotensin system, and coagulopathy. Cellular and molecular mechanisms underlying liver dysfunction are not fully understood in severe COVID-19 attacks. High mortality and the development of chronic liver diseases such as cirrhosis, alcoholic liver disease, autoimmune hepatitis, nonalcoholic fatty liver disease, and hepatocellular carcinoma are also associated with patients with liver damage. COVID-19 patients with preexisting or developing liver disease should be managed. They often need hospitalization and medication, especially in conjunction with liver transplants. In the present review, we highlight the attack of SARS-CoV-2 on liver hepatocytes by exploring the cellular and molecular events underlying the pathophysiological mechanisms in COVID-19 patients with liver injury. We also discuss the development of chronic liver diseases during the progression of SARS-CoV-2 replication. Lastly, we explore management principles in COVID-19 patients with liver injury and liver transplantation.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Naheed Bano
- Department of Fisheries and Aquaculture, Muhammad Nawaz Sharif University of Agriculture, Multan 60000, Pakistan
| | - Saba Manzoor
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan
| | - Aftab Ahmad
- Biochemistry/Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group (BioInspira), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Tze Yan Lee
- School of Liberal Arts, Science and Technology (PUScLST) Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, Kuala Lumpur 50490, Malaysia
| | - Sutha Devaraj
- Faculty of Medicine, AIMST University, Bedong 08100, Malaysia
| | - Abu Hazafa
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
103
|
Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat Rev Gastroenterol Hepatol 2023; 20:37-49. [PMID: 36258033 PMCID: PMC9579565 DOI: 10.1038/s41575-022-00688-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 02/07/2023]
Abstract
Heavy alcohol consumption is a major cause of morbidity and mortality. Globally, alcohol per-capita consumption rose from 5.5 litres in 2005 to 6.4 litres in 2016 and is projected to increase further to 7.6 litres in 2030. In 2019, an estimated 25% of global cirrhosis deaths were associated with alcohol. The global estimated age-standardized death rate (ASDR) of alcohol-associated cirrhosis was 4.5 per 100,000 population, with the highest and lowest ASDR in Africa and the Western Pacific, respectively. The annual incidence of hepatocellular carcinoma (HCC) among patients with alcohol-associated cirrhosis ranged from 0.9% to 5.6%. Alcohol was associated with approximately one-fifth of global HCC-related deaths in 2019. Between 2012 and 2017, the global estimated ASDR for alcohol-associated cirrhosis declined, but the ASDR for alcohol-associated liver cancer increased. Measures are required to curb heavy alcohol consumption to reduce the burden of alcohol-associated cirrhosis and HCC. Degree of alcohol intake, sex, older age, obesity, type 2 diabetes mellitus, gut microbial dysbiosis and genetic variants are key factors in the development of alcohol-associated cirrhosis and HCC. In this Review, we discuss the global epidemiology, projections and risk factors for alcohol-associated cirrhosis and HCC.
Collapse
Affiliation(s)
- Daniel Q Huang
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, CA, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Philippe Mathurin
- Service des Maladies de l'appareil digestif, Hôpital Huriez, Lille, France
- Unité INSERM 995, Faculté de médecine, Lille, France
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Departamento de Gastrenterologia, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
104
|
Nowroozi A, Momtazmanesh S, Rezaei N. COVID-19 and MAFLD/NAFLD: An updated review. Front Med (Lausanne) 2023; 10:1126491. [PMID: 37035343 PMCID: PMC10080090 DOI: 10.3389/fmed.2023.1126491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
The COVID-19 pandemic is ongoing and places a substantial burden on healthcare systems worldwide. As we further shed light on different disease characteristics, we identify more and more groups of people at higher risk of poor COVID-19 outcomes. Metabolic-associated fatty liver disease (MAFLD) (previously non-alcoholic fatty liver disease or NAFLD) is a common metabolic disorder characterized by fat accumulation and liver fibrosis. Given its close correlation with metabolic syndrome, an established risk factor for severe COVID-19, it is necessary to investigate its interplay with the novel coronavirus. In this study, we review the available data on COVID-19 prognosis, treatment and prevention options in patients with MAFLD, and the effect that the disease and the pandemic have on MAFLD care. Furthermore, we point out the gaps in the current literature to accentuate the work that needs to be done to improve MAFLD care during the pandemic and beyond.
Collapse
Affiliation(s)
- Ali Nowroozi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Sara Momtazmanesh,
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
105
|
Picon Y, Joveleviths D, Alvares-DA-Silva MR. MINIMAL LIVER ENZYMES ABNORMALITIES AT ADMISSION ARE RELATED TO SEVERE COVID-19 CLINICAL COURSE IN A LARGE BRAZILIAN COHORT. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:11-20. [PMID: 37194770 DOI: 10.1590/s0004-2803.202301000-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/08/2022] [Indexed: 05/18/2023]
Abstract
BACKGROUND COVID-19 is a multisystemic disease, primarily affecting the respiratory system. Liver involvement is frequent, but the impact on the clinical course and outcomes are controversial. OBJECTIVE The aim was to assess liver function at the admission and evaluate its effects on severity and mortality in hospitalized patients with COVID-19. METHODS This is a retrospective study of hospitalized patients in a tertiary hospital in Brazil, with a PCR-confirmed SARS-CoV-2 infection between April and October 2020. 1080 out of 1229 patients had liver enzymes on admission and were divided in two cohorts, based on the presence or absence of abnormal liver enzymes (ALE). Demographic, clinical, laboratory, imaging, clinical severity, and mortality were evaluated. Patients were followed until discharge, death or transfer to another institution. RESULTS Median age was 60 years and 51.5% were male. The more frequent comorbidities were hypertension (51.2%), and diabetes (31.6%). Chronic liver disease and cirrhosis were present in 8.6% and 2.3%, respectively. ALE (aminotransferases higher than 40 IU/L) were present in 56.9% of patients [mild (1-2 times): 63.9%; moderate (2-5 times): 29.8%; severe (>5 times): 6.3%]. Male gender [RR 1.49, P=0.007], increased total bilirubin [RR 1.18, P<0.001] and chronic liver disease [RR 1.47, P=0.015] were predictors of abnormal aminotransferases on admission. Patients with ALE had a higher risk of disease severity [RR 1.19; P=0.004]. There was no association among ALE and mortality. CONCLUSION ALE is common in COVID-19 hospitalized patients and were independently correlated with severe COVID-19. Even mild ALE at admission may be a severity prognostic marker.
Collapse
Affiliation(s)
- Ysela Picon
- Hospital de Clínicas de Porto Alegre, Serviço de Gastroenterologia, Porto Alegre, RS, Brasil
- Organização Mundial de Gastroenterologia, WGO Porto Alegre Hepatology Training Center, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Porto Alegre, RS, Brasil
| | - Dvora Joveleviths
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Porto Alegre, RS, Brasil
| | - Mario Reis Alvares-DA-Silva
- Hospital de Clínicas de Porto Alegre, Serviço de Gastroenterologia, Porto Alegre, RS, Brasil
- Organização Mundial de Gastroenterologia, WGO Porto Alegre Hepatology Training Center, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Porto Alegre, RS, Brasil
- Pesquisador CNPq
| |
Collapse
|
106
|
Bucurica S, Ionita Radu F, Bucurica A, Socol C, Prodan I, Tudor I, Sirbu CA, Plesa FC, Jinga M. Risk of New-Onset Liver Injuries Due to COVID-19 in Preexisting Hepatic Conditions-Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010062. [PMID: 36676691 PMCID: PMC9864905 DOI: 10.3390/medicina59010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted the world and caused the 2019 coronavirus disease (COVID-19) pandemic. The clinical manifestations of the virus can vary from patient to patient, depending on their respective immune system and comorbidities. SARS-CoV-2 can affect patients through two mechanisms: directly by targeting specific receptors or by systemic mechanisms. We reviewed data in the latest literature in order to discuss and determine the risk of new-onset liver injuries due to COVID-19 in preexisting hepatic conditions. The particular expression of angiotensin-converting enzyme 2 (ACE2) receptors is an additional risk factor for patients with liver disease. COVID-19 causes more severe forms in patients with non-alcoholic fatty liver disease (NAFLD), increases the risk of cirrhosis decompensation, and doubles the mortality for these patients. The coinfection SARS-CoV-2-viral hepatitis B or C might have different outcomes depending on the stage of the liver disease. Furthermore, the immunosuppressant treatment administered for COVID-19 might reactivate the hepatic virus. The high affinity of SARS-CoV-2 spike proteins for cholangiocytes results in a particular type of secondary sclerosing cholangitis. The impact of COVID-19 infection on chronic liver disease patients is significant, especially in cirrhosis, influencing the prognosis and outcome of these patients.
Collapse
Affiliation(s)
- Sandica Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Florentina Ionita Radu
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
- Correspondence: (F.I.R.); (F.C.P.)
| | - Ana Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Calin Socol
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Prodan
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Ioana Tudor
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Carmen Adella Sirbu
- Department of Neurology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Department of Neurology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Florentina Cristina Plesa
- Department of Neurology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
- Department of Preclinical Disciplines, Titu Maiorescu University of Medicine, 031593 Bucharest, Romania
- Correspondence: (F.I.R.); (F.C.P.)
| | - Mariana Jinga
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010242 Bucharest, Romania
| |
Collapse
|
107
|
Barve P, Choday P, Nguyen A, Ly T, Samreen I, Jhooty S, Umeh CA, Chaudhuri S. Living with liver disease in the era of COVID-19-the impact of the epidemic and the threat to high-risk populations. World J Clin Cases 2022; 10:13167-13178. [PMID: 36683630 PMCID: PMC9850990 DOI: 10.12998/wjcc.v10.i36.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
The cardinal symptoms of severe acute respiratory syndrome coronavirus 2 infection as the pandemic began in 2020 were cough, fever, and dyspnea, thus characterizing the virus as a predominantly pulmonary disease. While it is apparent that many patients presenting acutely to the hospital with coronavirus disease 2019 (COVID-19) infection have complaints of respiratory symptoms, other vital organs and systems are also being affected. In fact, almost half of COVID-19 hospitalized patients were found to have evidence of some degree of liver injury. Incidence and severity of liver injury in patients with underlying liver disease were even greater. According to the Centers of Disease Control and Prevention, from August 1, 2020 to May 31, 2022 there have been a total of 4745738 COVID-19 hospital admissions. Considering the gravity of the COVID-19 pandemic and the incidence of liver injury in COVID-19 patients, it is imperative that we as clinicians understand the effects of the virus on the liver and conversely, the effect of underlying hepatobiliary conditions on the severity of the viral course itself. In this article, we review the spectrum of novel studies regarding COVID-19 induced liver injury, compiling data on the effects of the virus in various age and high-risk groups, especially those with preexisting liver disease, in order to obtain a comprehensive understanding of this disease process. We also provide an update of the impact of the new Omicron variant and the changing nature of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Pranav Barve
- Department of Internal Medicine, Hemet Global Medical Center, Menifee, CA 92585, United States
| | - Prithi Choday
- Department of Internal Medicine, Hemet Global Medical Center, Hemet, CA 92543, United States
| | - Anphong Nguyen
- Department of Internal Medicine, Hemet Global Medical Center, Hemet, CA 92543, United States
| | - Tri Ly
- Department of Internal Medicine, Hemet Global Medical Center, Hemet, CA 92543, United States
| | - Isha Samreen
- Department of Internal Medicine, Hemet Global Medical Center, Hemet, CA 92543, United States
| | - Sukhwinder Jhooty
- College of Medicine, American University of Antigua, Manipal Education America’s, New York, NY 10005, United States
| | - Chukwuemeka A Umeh
- Department of Internal Medicine, Hemet Global Medical Center, Hemet, CA 92543, United States
| | - Sumanta Chaudhuri
- Department of Internal Medicine, Hemet Global Medical Center, Hemet, CA 92543, United States
| |
Collapse
|
108
|
Drácz B, Müller V, Takács I, Hagymási K, Dinya E, Miheller P, Szijártó A, Werling K. Effectiveness of COVID-19 Vaccination with mRNA Vaccines for Patients with Cirrhosis in Hungary: Multicentre Matched Cohort Study. Vaccines (Basel) 2022; 11:vaccines11010050. [PMID: 36679899 PMCID: PMC9861308 DOI: 10.3390/vaccines11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Patients with cirrhosis are vulnerable to hepatic decompensation events and death following COVID-19 infection. Therefore, primary vaccination with COVID-19 vaccines is fundamental to reducing the risk of COVID-19 related deaths in patients with cirrhosis. However, limited data are available about the effectiveness of mRNA vaccines compared to other vaccines. The aim of our study was to investigate the efficacy of mRNA vaccines versus other vaccines in cirrhosis. In this retrospective study, we compared clinical characteristics and vaccine effectiveness of 399 COVID-19 patients without cirrhosis (GROUP A) to 52 COVID-19 patients with cirrhosis (GROUP B). 54 hospitalised cirrhosis controls without COVID-19 (GROUP C) were randomly sampled 1:1 and matched by gender and age. Of the cirrhosis cases, we found no difference (p = 0.76) in mortality rates in controls without COVID-19 (11.8%) compared to those with COVID-19 (9.6%). However, COVID-19 patients with cirrhosis were associated with higher rates of worsening hepatic encephalopathy, ascites and esophageal varices. Patients with cirrhosis receiving mRNA vaccines had significantly better survival rates compared to viral vector or inactivated vaccines. Primary vaccination with the BNT162b2 vaccine was the most effective in preventing acute hepatic decompensating events, COVID-19 infection requiring hospital admission and in-hospital mortality.
Collapse
Affiliation(s)
- Bálint Drácz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1083 Budapest, Hungary
- Correspondence:
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Hagymási
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1083 Budapest, Hungary
| | - Elek Dinya
- Digital Health Department, Semmelweis University, 1083 Budapest, Hungary
| | - Pál Miheller
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1083 Budapest, Hungary
| | - Attila Szijártó
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1083 Budapest, Hungary
| | - Klára Werling
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
109
|
Domovitz T, Ayoub S, Werbner M, Alter J, Izhaki Tavor L, Yahalom-Ronen Y, Tikhonov E, Meirson T, Maman Y, Paran N, Israely T, Dessau M, Gal-Tanamy M. HCV Infection Increases the Expression of ACE2 Receptor, Leading to Enhanced Entry of Both HCV and SARS-CoV-2 into Hepatocytes and a Coinfection State. Microbiol Spectr 2022; 10:e0115022. [PMID: 36314945 PMCID: PMC9769977 DOI: 10.1128/spectrum.01150-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.
Collapse
Affiliation(s)
- Tom Domovitz
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samer Ayoub
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michal Werbner
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Joel Alter
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lee Izhaki Tavor
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Evgeny Tikhonov
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Yaakov Maman
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Dessau
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
110
|
Liver alterations and detection of SARS-CoV-2 RNA and proteins in COVID-19 autopsies. GeroScience 2022; 45:1015-1031. [PMID: 36527584 PMCID: PMC9759055 DOI: 10.1007/s11357-022-00700-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The most severe alterations in Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection are seen in the lung. However, other organs also are affected. Here, we report histopathologic findings in the liver and detection of viral proteins and RNA in COVID-19 autopsies performed at the Semmelweis University (Budapest, Hungary). Between March 2020 through March 2022, 150 autopsies on patients who died of COVID-19 were analyzed. Cause-of-death categories were formed based on the association with SARS-CoV-2 as strong, contributive, or weak. Samples for histopathologic study were obtained from all organs, fixed in formalin, and embedded in paraffin (FFPE). Immunohistochemical study (IHC) to detect SARS-CoV-2 spike protein and nucleocapsid protein (NP), CD31, claudin-5, factor VIII, macrosialin (CD68), and cytokeratin 7, with reverse transcriptase polymerase chain reaction (RT-PCR), and in situ hybridization (ISH, RNAscope®) for SARS-CoV-2 RNA were conducted using FFPE samples of livers taken from 20 autopsies performed ≤ 2 days postmortem. All glass slides were scanned; the digital images were evaluated by semiquantitative scoring and scores were analyzed statistically. Steatosis, single-cell and focal/zonal hepatocyte necrosis, portal fibrosis, and chronic inflammation were found in varying percentages. Sinusoidal ectasia, endothelial cell disruption, and fibrin-filled sinusoids were seen in all cases; these were assessed semiquantitatively for severity (SEF scored). SEF scores did not correlate with cause-of-death categories (p = 0.92) or with severity of lung alterations (p = 0.96). SARS-CoV-2 RNA was detected in 13/20 cases by PCR and in 9/20 by ISH, with IHC demonstration of spike protein in 4/20 cases and NP in 15/20. Viral RNA and proteins were located in endothelial and Kupffer cells, and in portal macrophages, but not in hepatocytes and cholangiocytes. In conclusion, endothelial damage (SEF scores) was the most common alteration in the liver and was a characteristic, but not specific alteration in COVID-19, suggesting an important role in the pathogenesis of COVID-19-associated liver disease. Detection of SARS-CoV-2 RNA and viral proteins in liver non-parenchymal cells suggests that while the most extended primary viral cytotoxic effect occurs in the lung, viral components are present in other organs too, as in the liver. The necrosis/apoptosis and endothelial damage associated with viral infection in COVID-19 suggest that those patients who survive more severe COVID-19 may face prolonged liver repair and accordingly should be followed regularly in the post-COVID period.
Collapse
|
111
|
Herren OM, Gillman AS, Marshall VJ, Das R. Understanding the Changing Landscape of Health Disparities in Chronic Liver Diseases and Liver Cancer. GASTRO HEP ADVANCES 2022; 2:505-520. [PMID: 37347072 PMCID: PMC10281758 DOI: 10.1016/j.gastha.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Liver disease and liver cancer disparities in the U.S. are reflective of complex multiple determinants of health. This review describes the disproportionate burden of liver disease and liver cancer among racial, ethnic, sexual, and gender minority, rural, low socioeconomic status (SES) populations, and place-based contexts. The contributions of traditional and lifestyle-related risk factors (e.g., alcohol consumption, evitable toxin exposure, nutrition quality) and comorbid conditions (e.g., viral hepatitis, obesity, type II diabetes) to disparities is also explored. Biopsychosocial mechanisms defining the physiological consequences of inequities underlying these health disparities, including inflammation, allostatic load, genetics, epigenetics, and social epigenomics are described. Guided by the National Institute on Minority Health and Health Disparities (NIMHD) framework, integrative research of unexplored social and biological mechanisms of health disparities, appropriate methods and measures for early screening, diagnosis, assessment, and strategies for timely treatment and maintaining multidisciplinary care should be actively pursued. We review emerging research on adverse social determinants of liver health, such as structural racism, discrimination, stigma, SES, rising care-related costs, food insecurity, healthcare access, health literacy, and environmental exposures to pollutants. Limited research on protective factors of liver health is also described. Research from effective, multilevel, community-based interventions indicate a need for further intervention efforts that target both risk and protective factors to address health disparities. Policy-level impacts are also needed to reduce disparities. These insights are important, as the social contexts and inequities that influence determinants of liver disease/cancer have been worsened by the coronavirus disease-2019 pandemic and are forecasted to amplify disparities.
Collapse
Affiliation(s)
- Olga M. Herren
- Extramural Scientific Programs, Division of Integrative Biological and Behavioral Sciences
| | - Arielle S. Gillman
- Extramural Scientific Programs, Division of Integrative Biological and Behavioral Sciences
| | - Vanessa J. Marshall
- Office of the Director National Institute on Minority Health and Health Disparities (NIMHD), Bethesda, MD
| | - Rina Das
- Extramural Scientific Programs, Division of Integrative Biological and Behavioral Sciences
| |
Collapse
|
112
|
Minata M, Harada KH, Yamaguchi T, Fujitani T, Nakagawa H. Diabetes Mellitus May Exacerbate Liver Injury in Patients with COVID-19: A Single-Center, Observational, Retrospective Study. Diabetes Ther 2022; 13:1847-1860. [PMID: 36136238 PMCID: PMC9493161 DOI: 10.1007/s13300-022-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The spread of coronavirus disease 2019 (COVID-19) is having a profound effect on global health. In this study, we investigated early predictors of severe prognosis from the perspective of liver injury and risk factors for severe liver injury in patients with COVID-19. METHODS We examined prognostic markers and risk factors for severe liver injury by analyzing clinical data measured throughout the course of the illness and the disease severity of 273 patients hospitalized for COVID-19. We assessed liver injury on the basis of aminotransferase concentrations and fibrosis-4 (FIB-4) index on admission, peak aminotransferase concentration during hospitalization, aminotransferase peak-to-average ratio, and albumin and total bilirubin concentrations. Furthermore, we analyzed age, aspartate aminotransferase (AST) concentrations, FIB-4 index on admission, hypertension, diabetes mellitus (DM), dyslipidemia, cerebral infarction, myocardial infarction, and body mass index as mortality risk factors. RESULTS We identified advanced age as a risk factor. Among biochemical variables, AST concentration and FIB-4 index on admission were associated with high mortality. AST on admission and peak AST during hospitalization were significantly higher in the non-surviving (n = 45) than the discharged group (n = 228). Multivariable Cox hazards analyses for mortality showed significant hazard ratios for age, peak AST, and FIB-4 index on admission (p = 0.0001 and 0.0108, respectively), but not in a model including AST and FIB-4 index on admission. Furthermore, the AST peak was significantly higher among non-surviving patients with DM than in those without DM. CONCLUSIONS We found that advanced age, high AST, and FIB-4 index on admission and a higher peak AST during hospitalization are risk factors for poor COVID-19 prognosis. Furthermore, DM was a risk factor for exacerbation of liver injury among non-surviving patients. The AST concentration and FIB-4 index should be assessed periodically throughout hospitalization, especially in patients with high AST values on admission and those with DM.
Collapse
Affiliation(s)
- Mutsuko Minata
- Research Institute, Nozaki Tokushukai Hospital, 10-50, 2-chome, Tanigawa, Daito, Osaka, 574-0074, Japan.
- Nozaki Tokushukai Hospital, 10-50, 2-chome, Tanigawa, Daito, Osaka, 574-0074, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Konoe-cho Yoshida Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Tomoyuki Yamaguchi
- Research Institute, Nozaki Tokushukai Hospital, 10-50, 2-chome, Tanigawa, Daito, Osaka, 574-0074, Japan
- Nozaki Tokushukai Hospital, 10-50, 2-chome, Tanigawa, Daito, Osaka, 574-0074, Japan
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Konoe-cho Yoshida Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Hidemitsu Nakagawa
- Research Institute, Nozaki Tokushukai Hospital, 10-50, 2-chome, Tanigawa, Daito, Osaka, 574-0074, Japan
- Nozaki Tokushukai Hospital, 10-50, 2-chome, Tanigawa, Daito, Osaka, 574-0074, Japan
| |
Collapse
|
113
|
Furfaro F, Gabbiadini R, D'Amico F, Zilli A, Dal Buono A, Allocca M, Fiorino G, Danese S. Gastrointestinal System: COVID-19 and Potential Mechanisms Associated with Coagulopathy. Curr Drug Targets 2022; 23:1611-1619. [PMID: 36154571 DOI: 10.2174/1389450123666220922095913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 01/25/2023]
Abstract
SARS-CoV-2 is a novel coronavirus that expanded worldwide, generating a pandemic of acute respiratory syndrome called "coronavirus disease 2019" (COVID-19), which resulted in a global health crisis. The spectrum of COVID-19 manifestations ranges from none or mild symptoms to severe respiratory failure associated with systemic manifestations, mostly gastrointestinal symptoms. Hypercoagulability is an important feature of COVID-19 disease, which can potentially influence patients' prognosis. Therefore, gastroenterologists should focus on subjects with concomitant hypercoagulable gastrointestinal disorders as they may display a higher risk of thrombotic complications during SARS-CoV-2 infection. The aim of this review is to summarize the available evidence regarding the interplay of the prothrombotic pathogenetic mechanisms of both COVID-19 and hypercoagulable digestive diseases and the possible clinical implications. We summarized the potential interplay of prothrombotic mechanisms of both COVID-19 and hypercoagulable digestive diseases in the graphical abstract.
Collapse
Affiliation(s)
- Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Ferdinando D'Amico
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Gionata Fiorino
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
114
|
Wang WX, Jia R, Song JW, Zhang X, Zhou SN, Wang FS, Fu J. Immunogenicity of inactivated coronavirus disease 2019 vaccines in patients with chronic hepatitis B undergoing antiviral therapy. Front Microbiol 2022; 13:1056884. [PMID: 36532454 PMCID: PMC9748573 DOI: 10.3389/fmicb.2022.1056884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 09/11/2024] Open
Abstract
Objectives To investigate the effect and its mechanisms of different antiviral agents on the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with chronic hepatitis B (CHB). Methods A total of 125 patients with CHB receiving nucleos(t)ide analogs (NAs) monotherapy or combined with Peg-interferon-alpha (Peg-IFNα) therapy and 29 healthy controls (HCs) were enrolled. Adverse reactions (ADRs) and levels of neutralizing antibody (NAb), immunoglobulin G (IgG), immunoglobulin M (IgM), and peripheral cytokines post-vaccination were analyzed. Results All ADRs were tolerable in CHB patients. Overall, no significant difference was observed in the antibody levels between patients and HCs after two doses of vaccination. An inverse correlation between NAb, IgG titers and the days after two doses was found in non-IFN group but not in IFN group. Correspondingly, peripheral interferon-γ levels were significantly higher in IFN group than in non-IFN group. After a booster dose, NAb and IgG antibodies were maintained at high levels in NA-treated patients. Conclusion Peg-interferon-alpha-based therapy may be beneficial for maintaining the immunogenicity of SARS-CoV-2 vaccines in CHB patients, which may be related to the high levels of IFN-γ induced by Peg-IFNα therapy. A booster dose can effectively recall the robust and long-lasting immunogenicity of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Peking University 302 Clinical Medical School, Beijing, China
| | - Rui Jia
- Department of Gastroenterology, The 985th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army (PLA), Taiyuan, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiaoning Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Peking University 302 Clinical Medical School, Beijing, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Peking University 302 Clinical Medical School, Beijing, China
| |
Collapse
|
115
|
Strickler SS, Esper A, Wells L, Wood A, Frediani JK, Nehl E, Waggoner JJ, Rebolledo PA, Levy JM, Figueroa J, Ramachandra T, Lam W, Martin GS. Severe acute respiratory syndrome coronavirus 2 vaccine breakthrough infections: A single metro-based testing network experience. Front Med (Lausanne) 2022; 9:1031083. [PMID: 36507539 PMCID: PMC9732086 DOI: 10.3389/fmed.2022.1031083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Understanding the incidence and characteristics that influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infections (VBIs) is imperative for developing public health policies to mitigate the coronavirus disease of 2019 (COVID-19) pandemic. We examined these factors and post-vaccination mitigation practices in individuals partially and fully vaccinated against SARS-CoV-2. Materials and methods Adults >18 years old were voluntarily enrolled from a single metro-based SARS-CoV-2 testing network from January to July 2021. Participants were categorized as asymptomatic or symptomatic, and as unvaccinated, partially vaccinated, or fully vaccinated. All participants had confirmed SARS-CoV-2 infection based on standard of care (SOC) testing with nasopharyngeal swabs. Variant analysis by rRT-PCR was performed in a subset of time-matched vaccinated and unvaccinated individuals. A subgroup of partially and fully vaccinated individuals with a positive SARS-CoV-2 rRT-PCR was contacted to assess disease severity and post-vaccination mitigation practices. Results Participants (n = 1,317) voluntarily underwent testing for SARS-CoV-2 during the enrollment period. A total of 29.5% of the population received at least one SARS-CoV-2 vaccine (n = 389), 12.8% partially vaccinated (n = 169); 16.1% fully vaccinated (n = 213). A total of 21.3% of partially vaccinated individuals tested positive (n = 36) and 9.4% of fully vaccinated individuals tested positive (n = 20) for SARS-CoV-2. Pfizer/BioNTech mRNA-1273 was the predominant vaccine received (1st dose = 66.8%, 2nd dose = 67.9%). Chronic liver disease and immunosuppression were more prevalent in the vaccinated (partially/fully) group compared to the unvaccinated group (p = 0.003, p = 0.021, respectively). There were more asymptomatic individuals in the vaccinated group compared to the unvaccinated group [n = 6 (10.7%), n = 16 (4.1%), p = 0.045]. CT values were lower for the unvaccinated group (median 24.3, IQR 19.1-30.5) compared to the vaccinated group (29.4, 22.0-33.7, p = 0.004). In the vaccinated group (n = 56), 18 participants were successfully contacted, 7 were lost to follow-up, and 2 were deceased. A total of 50% (n = 9) required hospitalization due to COVID-19 illness. Adherence to nationally endorsed mitigation strategies varied post-vaccination. Conclusion The incidence of SARS-CoV-2 infection at this center was 21.3% in the partially vaccinated group and 9.4% in the fully vaccinated group. Chronic liver disease and immunosuppression were more prevalent in the vaccinated SARS-CoV-2 positive group, suggesting that these may be risk factors for VBIs. Partially and fully vaccinated individuals had a higher incidence of asymptomatic SARS-CoV-2 and higher CT values compared to unvaccinated SARS-CoV-2 positive individuals.
Collapse
Affiliation(s)
- Samantha S. Strickler
- School of Medicine, Emory University, Atlanta, GA, United States,*Correspondence: Samantha S. Strickler,
| | - Annette Esper
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Leona Wells
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Anna Wood
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Jennifer K. Frediani
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Eric Nehl
- Rollins School of Public Health, Atlanta, GA, United States
| | | | - Paulina A. Rebolledo
- School of Medicine, Emory University, Atlanta, GA, United States,Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, United States
| | - Joshua M. Levy
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Janet Figueroa
- School of Medicine, Emory University, Atlanta, GA, United States
| | | | - Wilbur Lam
- School of Medicine, Emory University, Atlanta, GA, United States,Georgia Institute of Technology, Atlanta, GA, United States
| | | |
Collapse
|
116
|
Hanif FM, Majid Z, Ahmed S, Luck NH, Mubarak M. Hepatic manifestations of coronavirus disease 2019 infection: Clinical and laboratory perspective. World J Virol 2022; 11:453-466. [PMID: 36483109 PMCID: PMC9724207 DOI: 10.5501/wjv.v11.i6.453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2, has become a global challenge of unprecedented nature since December 2019. Although most patients with COVID-19 exhibit mild clinical manifestations and upper respiratory tract involvement, in approximately 5%-10% of patients, the disease is severe and involves multiple organs, leading to multi-organ dysfunction and failure. The liver and gastrointestinal tract are also frequently involved in COVID-19. In the context of liver involvement in patients with COVID-19, many key aspects need to be addressed in both native and transplanted organs. This review focuses on the clinical presentations and laboratory abnormalities of liver function tests in patients with COVID-19 with no prior liver disease, patients with pre-existing liver diseases and liver transplant recipients. A brief overview of the history of COVID-19 and etiopathogenesis of the liver injury will also be described as a prelude to better understanding the above aspects.
Collapse
Affiliation(s)
- Farina M Hanif
- Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Zain Majid
- Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Shoaib Ahmed
- Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Nasir H Luck
- Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Muhammed Mubarak
- Department of Pathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
117
|
Grando M, Balbi M, Zeppieri M. COVID-19-induced liver injury in adult patients: A brief overview. World J Virol 2022; 11:443-452. [PMID: 36483102 PMCID: PMC9724208 DOI: 10.5501/wjv.v11.i6.443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease has spread worldwide since 2019, causing important pandemic issues and various social health problems to date. Little is known about the origin of this virus and the effects it has on extra-pulmonary organs. The different mechanisms of the virus and the influence it has on humans are still being studied, with hopes of finding a cure for the disease and the pathologies associated with the infection. Liver damage caused by coronavirus disease 2019 (COVID-19) is sometimes underestimated and has been of important clinical interest in the past few years. Hepatic dysfunctions can manifest in different forms which can sometimes be mild and without specific signs and symptoms or be severe with important clinical implications. There are several studies that have tried to explain the mechanism of entry (hepatotropism) of the virus into hepatocytes and the effects the virus has on this important organ. What clearly emerges from the current literature is that hepatic injury represents an important clinical aspect in the management of patients infected with COVID-19, especially in frail patients and those with comorbidities. The aim of our brief overview is to summarize the current literature regarding the forms of hepatic damage, complications, mechanisms of pathology, clinical features of liver injury, influence of comorbidities and clinical management in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Massimiliano Balbi
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
118
|
Mihai N, Lazar M, Tiliscan C, Barbu EC, Chitu CE, Stratan L, Ganea OA, Arama SS, Ion DA, Arama V. Predictors of Liver Injury in Hospitalized Patients with SARS-CoV-2 Infection. Medicina (B Aires) 2022; 58:medicina58121714. [PMID: 36556915 PMCID: PMC9786677 DOI: 10.3390/medicina58121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objectives: SARS-CoV-2 infection is frequently associated with pneumonia but has a broad tissue tropism also leading to systemic complications (hematologic, gastro-intestinal, cardiac, neurologic, etc.). In this study, we aim to evaluate the impact of COVID-19 infection on the liver and to identify the risk factors/predictors for liver injury at admission to the hospital. Materials and Methods: We performed a retrospective cohort study on 249 patients, divided into two Group A (157 patients with liver involvement) and Group B (92 patients without liver involvement). We recorded demographic and lifestyle parameters, anthropometric parameters, comorbidities, clinical parameters, inflammation markers, complete blood count, coagulation, and biochemical parameters. Lung parenchyma, liver dimensions, and morphology were evaluated by computer tomography (CT) scans. Results: Patients with liver involvement had higher heart and respiratory rates, lower oxygen saturation (SO2), and necessitated higher oxygen flow at admittance. We found higher serum levels of C-reactive protein, fibrinogen, ferritin, creatine kinase, lactate dehydrogenase (LDH), serum triglycerides, and lower values for serum albumin in Group A patients. The patients with liver involvement presented more extensive lung injury with higher percentages of alveolar, mixed, and interstitial lesions, an increase in liver dimensions, and lower density ranges for the liver parenchyma. The patients presented hepatocytolytic involvement in 26 cases (10.4% from the entire study population), cholestatic involvement in 63 cases (37.7% from the entire study population), and mixed liver involvement in 68 cases (37.7% from the entire study population). Conclusions: Liver involvement in COVID-19 patients is frequent, usually mild, and occurs mostly in male patients over 50 years old. Cholestatic and mixed liver injuries are more frequent than hepatocytolytic injuries. The severity of lung injury evaluated by CT scan, increased values of inflammatory markers, LDH, and low values of SO2 can be considered risk factors/predictors for liver injury at admission to the hospital.
Collapse
Affiliation(s)
- Nicoleta Mihai
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Dr. Grozovici Street, 021105 Bucharest, Romania
| | - Mihai Lazar
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Dr. Grozovici Street, 021105 Bucharest, Romania
- Correspondence: (M.L.); (C.T.)
| | - Catalin Tiliscan
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Dr. Grozovici Street, 021105 Bucharest, Romania
- Correspondence: (M.L.); (C.T.)
| | - Ecaterina Constanta Barbu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Cristina Emilia Chitu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Laurentiu Stratan
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Oana Alexandra Ganea
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Dr. Grozovici Street, 021105 Bucharest, Romania
| | - Sorin Stefan Arama
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Daniela Adriana Ion
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Victoria Arama
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Dr. Grozovici Street, 021105 Bucharest, Romania
| |
Collapse
|
119
|
Schulz P, Shabbir R, Ramakrishnan S, Asrani SK. Acute Alcohol-Associated Hepatitis in the COVID-19 Pandemic — a Structured Review. CURRENT TRANSPLANTATION REPORTS 2022; 9:227-239. [DOI: 10.1007/s40472-022-00387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
120
|
Theocharidou E, Adebayo D. Challenges in liver transplantation in the context of a major pandemic. World J Transplant 2022; 12:347-358. [PMID: 36437846 PMCID: PMC9693897 DOI: 10.5500/wjt.v12.i11.347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) has led to a temporary suspension of liver transplant activity across the world and the remodeling of care for patients on the waiting list and transplant recipients with the increasing use of remote consultations. Emerging evidence shows that patients with more advanced liver disease are at increased risk of severe COVID-19 and death, whereas transplant recipients have similar risk with the general population which is mainly driven by age and metabolic comorbidities. Tacrolimus immunosuppression might have a protective role in the post-transplant population. Vaccines that have become rapidly available seem to be safe in liver patients, but the antibody response in transplant patients is likely suboptimal. Most transplant centers were gradually able to resume activity soon after the onset of the pandemic and after modifying their pathways to optimize safety for patients and workforce. Preliminary evidence regarding utilizing grafts from positive donors and/or transplanting recently recovered or infected recipients under certain circumstances is encouraging and may allow offering life-saving transplant to patients at the greatest need. This review summarizes the currently available data on liver transplantation in the context of a major pandemic and discusses areas of uncertainty and future challenges. Lessons learnt from the COVID-19 pandemic might provide invaluable guidance for future pandemics.
Collapse
Affiliation(s)
- Eleni Theocharidou
- 2nd Department of Internal Medicine, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642, Thessaloniki, Greece
| | - Danielle Adebayo
- Department of Gastroenterology and Hepatology, Royal Berkshire NHS Foundation Trust, London Road, Reading, RG1 5AN, United Kingdom
| |
Collapse
|
121
|
Zhang J, Zhao D, Hu J, Huang X, Gu Q, Tao Z. Hepatic dysfunctions in COVID-19 patients infected by the omicron variant of SARS-CoV-2. Front Public Health 2022; 10:1049006. [PMID: 36466505 PMCID: PMC9716022 DOI: 10.3389/fpubh.2022.1049006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Background Presently, the omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dominates amid the coronavirus disease 2019 (COVID-19) pandemic, but its clinical characteristics with intrinsic severity and organ tropism remain understudied. Methods We reported 1,001 mild COVID-19 patients that were infected with the omicron variant of SARS-CoV-2 and hospitalized in China from February to June 2022, including their demographic information, medical/immunization history, clinical symptom, and hematological profile. Patients with one-, two- and three-dose vaccination were compared to assess the vaccine effectiveness. Importantly, liver damage caused by the omicron variant infection was evaluated, in comparison to that caused by the wild-type or the delta variant SARS-CoV-2 infection. Results For the reported COVID-19 patients infected by the omicron variant of SARS-CoV-2, their median age was 36.0 [interquartile range (IQR): 26.0-50.0] and 49.7% were female. Hypertension, diabetes, and bronchitis were the leading comorbidities, and asymptomatic patients took up a major portion (61.2%). While most hematological parameters revealed the alleviated pathogenicity, full vaccination or booster shot showed effective protection against clinical severity. Furthermore, liver damages caused by viral infection of the omicron variant were largely attenuated when compared to those by infection of the wild-type or the delta variant SARS-CoV-2. Conclusions Our results supported that the viremic effect of the omicron variant tended to be modest, while the liver damage caused by this strain became milder than the previous circulating variants.
Collapse
Affiliation(s)
- Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Daguo Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhui Hu
- Department of Laboratory Medicine, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, China
| | - Xing Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingqing Gu
- Department of Infectious Diseases, The Affiliated Hospital of Kangda College of Nanjing Medical University, The Fourth People's Hospital of Lianyungang, Lianyungang, China
| | - Zhimin Tao
- Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
122
|
Cooper KM, Colletta A, Asirwatham AM, Moore Simas TA, Devuni D. COVID-19 associated liver injury: A general review with special consideration of pregnancy and obstetric outcomes. World J Gastroenterol 2022; 28:6017-6033. [PMID: 36405386 PMCID: PMC9669825 DOI: 10.3748/wjg.v28.i42.6017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Liver injury is an increasingly recognized extra-pulmonary manifestation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Coronavirus disease 2019 (COVID-19) associated liver injury (COVALI) is a clinical syndrome encompassing all patients with biochemical liver injury identified in the setting of SARS-CoV-2 infection. Despite profound clinical implications, its pathophysiology is poorly understood. Unfortunately, most information on COVALI is derived from the general population and may not be applicable to individuals under-represented in research, including pregnant individuals. This manuscript reviews: Clinical features of COVALI, leading theories of COVALI, and existing literature on COVALI during pregnancy, a topic not widely explored in the literature. Ultimately, we synthesized data from the general and perinatal populations that demonstrates COVALI to be a hepatocellular transaminitis that is likely induced by systemic inflammation and that is strongly associated with disease severity and poorer clinical outcome, and offered perspective on approaching transaminitis in the potentially COVID-19 positive patient in the obstetric setting.
Collapse
Affiliation(s)
- Katherine M. Cooper
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| | - Alessandro Colletta
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| | - Alison M. Asirwatham
- Department of Obstetrics and Gynecology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| | - Tiffany A. Moore Simas
- Department of Obstetrics and Gynecology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- Departments of Pediatrics, Psychiatry, and Population & Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| | - Deepika Devuni
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- Division of Gastroenterology and Hepatology, University of Massachusetts Chan Medical School, Worcester, MA 1605, United States
| |
Collapse
|
123
|
Liu YB, Chen MK. Epidemiology of liver cirrhosis and associated complications: Current knowledge and future directions. World J Gastroenterol 2022; 28:5910-5930. [PMID: 36405106 PMCID: PMC9669831 DOI: 10.3748/wjg.v28.i41.5910] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis causes a heavy global burden. In this review, we summarized up-to-date epidemiological features of cirrhosis and its complications. Recent epidemiological studies reported an increase in the prevalence of cirrhosis in 2017 compared to in 1990 in both men and women, with 5.2 million cases of cirrhosis and chronic liver disease occurring in 2017. Cirrhosis caused 1.48 million deaths in 2019, an increase of 8.1% compared to 2017. Disability-adjusted life-years due to cirrhosis ranked 16th among all diseases and 7th in people aged 50-74 years in 2019. The global burden of hepatitis B virus and hepatitis C virus-associated cirrhosis is decreasing, while the burden of cirrhosis due to alcohol and nonalcoholic fatty liver disease (NAFLD) is increasing rapidly. We described the current epidemiology of the major complications of cirrhosis, including ascites, variceal bleeding, hepatic encephalopathy, renal disorders, and infections. We also summarized the epidemiology of hepatocellular carcinoma in patients with cirrhosis. In the future, NAFLD-related cirrhosis will likely become more common due to the prevalence of metabolic diseases such as obesity and diabetes, and the prevalence of alcohol-induced cirrhosis is increasing. This altered epidemiology should be clinically noted, and relevant interventions should be undertaken.
Collapse
Affiliation(s)
- Yuan-Bin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei Province, China
| | - Ming-Kai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei Province, China
| |
Collapse
|
124
|
Qi X, Wang J, Zhang Q, Ai J, Liu C, Li Q, Gu Y, Lv J, Huang Y, Liu Y, Xu D, Chen S, Liu D, Li J, Xiang H, Liang J, Bian L, Zhang Z, Liu L, Zhang X, Qin W, Wang X, Hou Z, Zhang N, Zhang A, Zu H, Wang Y, Yan Z, Du X, Hou A, Ji J, Yang J, Huang J, Zhao Z, Zou S, Ji H, Ge G, Zeng Q, Zhang W. Safety and immunogenicity of COVID-19 vaccination in patients with hepatocellular carcinoma (CHESS-NMCID 2101): A multicenter prospective study. J Med Virol 2022; 94:5553-5559. [PMID: 35811309 PMCID: PMC9350086 DOI: 10.1002/jmv.27992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
Abstract
Data on safety and immunogenicity of coronavirus disease 2019 (COVID-19) vaccinations in hepatocellular carcinoma (HCC) patients are limited. In this multicenter prospective study, HCC patients received two doses of inactivated whole-virion COVID-19 vaccines. The safety and neutralizing antibody were monitored. Totally, 74 patients were enrolled from 10 centers in China, and 37 (50.0%), 25 (33.8%), and 12 (16.2%) received the CoronaVac, BBIBP-CorV, and WIBP-CorV, respectively. The vaccines were well tolerated, where pain at the injection site (6.8% [5/74]) and anorexia (2.7% [2/74]) were the most frequent local and systemic adverse events. The median level of neutralizing antibody was 13.5 (interquartile range [IQR]: 6.9-23.2) AU/ml at 45 (IQR: 19-72) days after the second dose of vaccinations, and 60.8% (45/74) of patients had positive neutralizing antibody. Additionally, lower γ-glutamyl transpeptidase level was related to positive neutralizing antibody (odds ratio = 1.022 [1.003-1.049], p = 0.049). In conclusion, this study found that inactivated COVID-19 vaccinations are safe and the immunogenicity is acceptable or hyporesponsive in patients with HCC. Given that the potential benefits may outweigh the risks and the continuing emergences of novel severe acute respiratory syndrome coronavirus 2 variants, we suggest HCC patients to be vaccinated against COVID-19. Future validation studies are warranted.
Collapse
Affiliation(s)
- Xiaolong Qi
- Department of Radiology, Medical School, Center of Portal Hypertension, Zhongda HospitalSoutheast UniversityNanjingChina
| | - Jitao Wang
- Department of Radiology, Medical School, Center of Portal Hypertension, Zhongda HospitalSoutheast UniversityNanjingChina
- CHESS‐COVID‐19 GroupXingtai People's HospitalXingtai, HebeiChina
| | - Qiran Zhang
- Department of Infectious DiseasesHuashan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Jingwen Ai
- Department of Infectious DiseasesHuashan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Chuan Liu
- Department of Radiology, Medical School, Center of Portal Hypertension, Zhongda HospitalSoutheast UniversityNanjingChina
| | - Qianqian Li
- Department of Hepatology and GastroenterologyThe Third Central Hospital of TianjinTianjinChina
| | - Ye Gu
- CHESS‐COVID‐19 GroupThe Sixth People's Hospital of ShenyangShenyangLiaoningChina
| | - Jiaojian Lv
- Department of Infectious DiseasesLishui People's HospitalLishui, ZhejiangChina
| | - Yifei Huang
- Department of Radiology, Medical School, Center of Portal Hypertension, Zhongda HospitalSoutheast UniversityNanjingChina
| | - Yanna Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Dan Xu
- Department of Radiology, Medical School, Center of Portal Hypertension, Zhongda HospitalSoutheast UniversityNanjingChina
| | - Shubo Chen
- CHESS‐COVID‐19 GroupXingtai People's HospitalXingtai, HebeiChina
| | - Dengxiang Liu
- CHESS‐COVID‐19 GroupXingtai People's HospitalXingtai, HebeiChina
| | - Jinlong Li
- CHESS‐COVID‐19 GroupXingtai People's HospitalXingtai, HebeiChina
| | - Huiling Xiang
- Department of Hepatology and GastroenterologyThe Third Central Hospital of TianjinTianjinChina
| | - Jing Liang
- Department of Hepatology and GastroenterologyThe Third Central Hospital of TianjinTianjinChina
| | - Li Bian
- CHESS‐COVID‐19 GroupThe Sixth People's Hospital of ShenyangShenyangLiaoningChina
| | - Zhen Zhang
- CHESS‐COVID‐19 GroupThe Sixth People's Hospital of ShenyangShenyangLiaoningChina
| | - Luxiang Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Xuying Zhang
- Clinal LaboratoryLishui People's HospitalLishui, ZhejiangChina
| | - Wei Qin
- Department of GastroenterologyBaoding people's HospitalBaoding, HeibeiChina
| | - Xiaodong Wang
- Department of GastroenterologyBaoding people's HospitalBaoding, HeibeiChina
| | - Zhiyun Hou
- Department of Hepatobiliary SurgeryJincheng People's HospitalJinchengShanxiChina
| | - Nina Zhang
- Department of Hepatobiliary SurgeryJincheng People's HospitalJinchengShanxiChina
| | - Aiguo Zhang
- Department of Hepatobiliary SurgeryJincheng People's HospitalJinchengShanxiChina
| | - Hongmei Zu
- Department of GastroenterologyThe Fourth People's Hospital of Qinghai ProvinceXiningQinghaiChina
| | - Yun Wang
- Department of GastroenterologyThe Fourth People's Hospital of Qinghai ProvinceXiningQinghaiChina
| | - Zhaolan Yan
- Department of GastroenterologyThe Fourth People's Hospital of Qinghai ProvinceXiningQinghaiChina
| | - Xiufang Du
- Department of Liver DiseasesThe Third People's Hospital of Linfen CityLinfenShanxiChina
| | - Aifang Hou
- Department of Liver DiseasesThe Third People's Hospital of Linfen CityLinfenShanxiChina
| | - Jiansong Ji
- CHESS‐COVID‐19 GroupLishui Hospital of Zhejiang UniversityLishui, ZhejiangChina
| | - Jie Yang
- CHESS‐COVID‐19 GroupLishui Hospital of Zhejiang UniversityLishui, ZhejiangChina
| | - Jiansheng Huang
- CHESS‐COVID‐19 GroupLishui Hospital of Zhejiang UniversityLishui, ZhejiangChina
| | - Zhongwei Zhao
- CHESS‐COVID‐19 GroupLishui Hospital of Zhejiang UniversityLishui, ZhejiangChina
| | - Shengqiang Zou
- Department of HepatologyZhenjiang Third Hospital Affiliated to Jiangsu UniversityZhenjiangJiangsuChina
| | - Hailei Ji
- Department of HepatologyZhenjiang Third Hospital Affiliated to Jiangsu UniversityZhenjiangJiangsuChina
| | - Guohong Ge
- Department of HepatologyZhenjiang Third Hospital Affiliated to Jiangsu UniversityZhenjiangJiangsuChina
| | - Qing‐Lei Zeng
- Department of Infectious Diseases and HepatologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Wenhong Zhang
- Department of Infectious DiseasesHuashan Hospital Affiliated to Fudan UniversityShanghaiChina
| |
Collapse
|
125
|
Abstract
Knowledge on SARS-CoV-2 infection and its resultant COVID-19 in liver diseases has rapidly increased during the pandemic. Hereby, we review COVID-19 liver manifestations and pathophysiological aspects related to SARS-CoV-2 infection in patients without liver disease as well as the impact of COVID-19 in patients with chronic liver disease (CLD), particularly cirrhosis and liver transplantation (LT). SARS-CoV-2 infection has been associated with overt proinflammatory cytokine profile, which probably contributes substantially to the observed early and late liver abnormalities. CLD, particularly decompensated cirrhosis, should be regarded as a risk factor for severe COVID-19 and death. LT was impacted during the pandemic, mainly due to concerns regarding donation and infection in recipients. However, LT did not represent a risk factor per se of worse outcome. Even though scarce, data regarding COVID-19 specific therapy in special populations such as LT recipients seem promising. COVID-19 vaccine-induced immunity seems impaired in CLD and LT recipients, advocating for a revised schedule of vaccine administration in this population.
Collapse
Affiliation(s)
- Jean-François Dufour
- Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Marjot
- Oxford Liver Unit, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Medicine, Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Chiara Becchetti
- Department of Hepatology and Gastroenterology, ASST Grande Ospedale Metropolitano Niguarda, Bern, Italy
- Department of Visceral Surgery and Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
126
|
Pita-Juarez Y, Karagkouni D, Kalavros N, Melms JC, Niezen S, Delorey TM, Essene AL, Brook OR, Pant D, Skelton-Badlani D, Naderi P, Huang P, Pan L, Hether T, Andrews TS, Ziegler CGK, Reeves J, Myloserdnyy A, Chen R, Nam A, Phelan S, Liang Y, Amin AD, Biermann J, Hibshoosh H, Veregge M, Kramer Z, Jacobs C, Yalcin Y, Phillips D, Slyper M, Subramanian A, Ashenberg O, Bloom-Ackermann Z, Tran VM, Gomez J, Sturm A, Zhang S, Fleming SJ, Warren S, Beechem J, Hung D, Babadi M, Padera RF, MacParland SA, Bader GD, Imad N, Solomon IH, Miller E, Riedel S, Porter CBM, Villani AC, Tsai LTY, Hide W, Szabo G, Hecht J, Rozenblatt-Rosen O, Shalek AK, Izar B, Regev A, Popov Y, Jiang ZG, Vlachos IS. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.27.514070. [PMID: 36324805 PMCID: PMC9628199 DOI: 10.1101/2022.10.27.514070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
Collapse
Affiliation(s)
- Yered Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dimitra Karagkouni
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikolaos Kalavros
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Sebastian Niezen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Essene
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepti Pant
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Disha Skelton-Badlani
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Pourya Naderi
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pinzhu Huang
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Liuliu Pan
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Tallulah S Andrews
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Carly G K Ziegler
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Andriy Myloserdnyy
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Rachel Chen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Andy Nam
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Yan Liang
- NanoString Technologies, Inc., Seattle, WA, USA
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Jana Biermann
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Molly Veregge
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Zachary Kramer
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher Jacobs
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Yusuf Yalcin
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Devan Phillips
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Michal Slyper
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | | | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victoria M Tran
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Gomez
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuting Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Fleming
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Deborah Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sonya A MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, Toronto, ON, Canada
| | - Nasser Imad
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric Miller
- NanoString Technologies, Inc., Seattle, WA, USA
| | - Stefan Riedel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Linus T-Y Tsai
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Winston Hide
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gyongyi Szabo
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Jonathan Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Alex K Shalek
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Yury Popov
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Z Gordon Jiang
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA, USA
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| |
Collapse
|
127
|
Pita-Juarez Y, Karagkouni D, Kalavros N, Melms JC, Niezen S, Delorey TM, Essene AL, Brook OR, Pant D, Skelton-Badlani D, Naderi P, Huang P, Pan L, Hether T, Andrews TS, Ziegler CGK, Reeves J, Myloserdnyy A, Chen R, Nam A, Phelan S, Liang Y, Amin AD, Biermann J, Hibshoosh H, Veregge M, Kramer Z, Jacobs C, Yalcin Y, Phillips D, Slyper M, Subramanian A, Ashenberg O, Bloom-Ackermann Z, Tran VM, Gomez J, Sturm A, Zhang S, Fleming SJ, Warren S, Beechem J, Hung D, Babadi M, Padera RF, MacParland SA, Bader GD, Imad N, Solomon IH, Miller E, Riedel S, Porter CBM, Villani AC, Tsai LTY, Hide W, Szabo G, Hecht J, Rozenblatt-Rosen O, Shalek AK, Izar B, Regev A, Popov Y, Jiang ZG, Vlachos IS. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 36324805 DOI: 10.1101/2022.08.06.503037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
Collapse
|
128
|
Drácz B, Czompa D, Müllner K, Hagymási K, Miheller P, Székely H, Papp V, Horváth M, Hritz I, Szijártó A, Werling K. The Elevated De Ritis Ratio on Admission Is Independently Associated with Mortality in COVID-19 Patients. Viruses 2022; 14:v14112360. [PMID: 36366457 PMCID: PMC9692894 DOI: 10.3390/v14112360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 02/01/2023] Open
Abstract
Liver damage in COVID-19 patients was documented as increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels or an elevated AST/ALT ratio, known as the De Ritis ratio. However, the prognostic value of the elevated De Ritis ratio in COVID-19 patients is still unknown. The aim of our study was to evaluate the prognostic value of the De Ritis ratio compared to other abnormal laboratory parameters and its relation to mortality. We selected 322 COVID-19 patients in this retrospective study conducted between November 2020 and March 2021. The laboratory parameters were measured on admission and followed till patient discharge or death. Of the 322 COVID-19 patients, 57 (17.7%) had gastrointestinal symptoms on admission. The multivariate analysis showed that the De Ritis ratio was an independent risk factor for mortality, with an OR of 29.967 (95% CI 5.266-170.514). In ROC analysis, the AUC value of the the De Ritis ratio was 0.85 (95% CI 0.777-0.923, p < 0.05) with sensitivity and specificity of 80.6% and 75.2%, respectively. A De Ritis ratio ≥1.218 was significantly associated with patient mortality, disease severity, higher AST and IL-6 levels, and a lower ALT level. An elevated De Ritis ratio on admission is independently associated with mortality in COVID-19 patients, indicating liver injury and cytokine release syndrome.
Collapse
|
129
|
Clinical predictors of recovery of COVID-19 associated-abnormal liver function test 2 months after hospital discharge. Sci Rep 2022; 12:17972. [PMID: 36289394 PMCID: PMC9606373 DOI: 10.1038/s41598-022-22741-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
This study investigated whether acute liver injury (ALI) persisted and identified predictors of ALI recovery [as indicated by alanine aminotransferase (ALT) level] at hospital discharge and 2 months post-discharge for 7595 hospitalized COVID-19 patients from the Montefiore Health System (03/11/2020-06/03/2021). Mild liver injury (mLI) was defined as ALT = 1.5-5 ULN, and severe livery injury (sLI) was ALT ≥ 5 ULN. Logistic regression was used to identify predictors of ALI onset and recovery. There were 4571 (60.2%), 2306 (30.4%), 718 (9.5%) patients with no liver injury (nLI), mLI and sLI, respectively. Males showed higher incidence of sLI and mLI (p < 0.05). Mortality odds ratio was 4.15 [95% CI 3.41, 5.05, p < 0.001] for sLI and 1.69 [95% CI 1.47, 1.96, p < 0.001] for mLI compared to nLI. The top predictors (ALT, lactate dehydrogenase, ferritin, lymphocytes) accurately predicted sLI onset up to three days prior. Only 33.5% of mLI and 17.1% of sLI patients (survivors) recovered completely at hospital discharge. Most ALI patients (76.7-82.4%) recovered completely ~ 2 months post-discharge. The top predictors accurately predicted recovery post discharge with 83.2 ± 2.2% accuracy. In conclusion, most COVID-19 patients with ALI recovered completely ~ 2 months post discharge. Early identification of patients at-risk of persistent ALI could help to prevent long-term liver complications.
Collapse
|
130
|
Liakina V, Stundiene I, Milaknyte G, Bytautiene R, Reivytyte R, Puronaite R, Urbanoviciute G, Kazenaite E. Effects of COVID-19 on the liver: The experience of a single center. World J Gastroenterol 2022; 28:5735-5749. [PMID: 36338891 PMCID: PMC9627423 DOI: 10.3748/wjg.v28.i39.5735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) was perhaps the most severe global health crisis in living memory. Alongside respiratory symptoms, elevated liver enzymes, abnormal liver function, and even acute liver failure were reported in patients suffering from severe acute respiratory disease coronavirus 2 pneumonia. However, the precise triggers of these forms of liver damage and how they affect the course and outcomes of COVID-19 itself remain unclear.
AIM To analyze the impact of liver enzyme abnormalities on the severity and outcomes of COVID-19 in hospitalized patients.
METHODS In this study, 684 depersonalized medical records from patients hospitalized with COVID-19 during the 2020-2021 period were analyzed. COVID-19 was diagnosed according to the guidelines of the National Institutes of Health (2021). Patients were assigned to two groups: those with elevated liver enzymes (Group 1: 603 patients), where at least one out of four liver enzymes were elevated (following the norm of hospital laboratory tests: alanine aminotransferase (ALT) ≥ 40, aspartate aminotransferase (AST) ≥ 40, gamma-glutamyl transferase ≥ 36, or alkaline phosphatase ≥ 150) at any point of hospitalization, from admission to discharge; and the control group (Group 2: 81 patients), with normal liver enzymes during hospitalization. COVID-19 severity was assessed according to the interim World Health Organization guidance (2022). Data on viral pneumonia complications, laboratory tests, and underlying diseases were also collected and analyzed.
RESULTS In total, 603 (88.2%) patients produced abnormal liver test results. ALT and AST levels were elevated by a factor of less than 3 in 54.9% and 74.8% of cases with increased enzyme levels, respectively. Patients in Group 1 had almost double the chance of bacterial viral pneumonia complications [odds ratio (OR) = 1.73, P = 0.0217], required oxygen supply more often, and displayed higher biochemical inflammation indices than those in Group 2. No differences in other COVID-19 complications or underlying diseases were observed between groups. Preexisting hepatitis of a different etiology was rarely documented (in only 3.5% of patients), and had no impact on the severity of COVID-19. Only 5 (0.73%) patients experienced acute liver failure, 4 of whom died. Overall, the majority of the deceased patients (17 out of 20) had elevated liver enzymes, and most were male. All deceased patients had at least one underlying disease or combination thereof, and the deceased suffered significantly more often from heart diseases, hypertension, and urinary tract infections than those who made recoveries. Alongside male gender (OR = 1.72, P = 0.0161) and older age (OR = 1.02, P = 0.0234), diabetes (OR = 3.22, P = 0.0016) and hyperlipidemia (OR = 2.67, P = 0.0238), but not obesity, were confirmed as independent factors associated with more a severe COVID-19 infection in our cohort.
CONCLUSION In our study, the presence of liver impairment allows us to predict a more severe inflammation with a higher risk of bacterial complication and worse outcomes of COVID-19. Therefore, patients with severe disease forms should have their liver tests monitored regularly and their results should be considered when selecting treatment to avoid further liver damage or even insufficiency.
Collapse
Affiliation(s)
- Valentina Liakina
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, VILNIUS TECH, Vilnius 10223, Lithuania
| | - Ieva Stundiene
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Gabriele Milaknyte
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Ramune Bytautiene
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Rosita Reivytyte
- Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Roma Puronaite
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, Vilnius 01513, Lithuania
| | | | - Edita Kazenaite
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| |
Collapse
|
131
|
Observational study of factors associated with morbidity and mortality from COVID-19 in Lebanon, 2020-2021. PLoS One 2022; 17:e0275101. [PMID: 36260598 PMCID: PMC9581355 DOI: 10.1371/journal.pone.0275101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic claimed millions of lives worldwide without clear signs of abating despite several mitigation efforts and vaccination campaigns. There have been tremendous interests in understanding the etiology of the disease particularly in what makes it severe and fatal in certain patients. Studies have shown that COVID-19 patients with kidney injury on admission were more likely to develop severe disease, and acute kidney disease was associated with high mortality in COVID-19 hospitalized patients. METHODS This study investigated 819 COVID-19 patients admitted between January 2020-April 2021 to the COVID-19 ward at a tertiary care center in Lebanon and evaluated their vital signs and biomarkers while probing for two main outcomes: intubation and fatality. Logistic and Cox regressions were performed to investigate the association between clinical and metabolic variables and disease outcomes, mainly intubation and mortality. Times were defined in terms of admission and discharge/fatality for COVID-19, with no other exclusions. RESULTS Regression analysis revealed that the following are independent risk factors for both intubation and fatality respectively: diabetes (p = 0.021 and p = 0.04), being overweight (p = 0.021 and p = 0.072), chronic kidney disease (p = 0.045 and p = 0.001), and gender (p = 0.016 and p = 0.114). Further, shortness of breath (p<0.001), age (p<0.001) and being overweight (p = 0.014) associated with intubation, while fatality with shortness of breath (p<0.001) in our group of patients. Elevated level of serum creatinine was the highest factor associated with fatality (p = 0.002), while both white blood count (p<0.001) and serum glutamic-oxaloacetic transaminase levels (p<0.001) emerged as independent risk factors for intubation. CONCLUSIONS Collectively our data show that high creatinine levels were significantly associated with fatality in our COVID-19 study patients, underscoring the importance of kidney function as a main modulator of SARS-CoV-2 morbidity and favor a careful and proactive management of patients with elevated creatinine levels on admission.
Collapse
|
132
|
Bao J, Liu S, Liang X, Wang C, Cao L, Li Z, Wei F, Fu A, Shi Y, Shen B, Zhu X, Zhao Y, Liu H, Miao L, Wang Y, Liang S, Wu L, Huang J, Guo T, Liu F. A prediction model for COVID-19 liver dysfunction in patients with normal hepatic biochemical parameters. Life Sci Alliance 2022; 6:6/1/e202201576. [PMID: 36261228 PMCID: PMC9585965 DOI: 10.26508/lsa.202201576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19-related LD. In this study, we performed proteomic analysis on 397 serum samples from 98 COVID-19 patients to identify new biomarkers for LD. We then established 19 simple machine learning models using proteomic measurements and clinical variables to predict LD in a development cohort of 74 COVID-19 patients with normal hepatic biochemical parameters. The model based on the biomarker ANGL3 and sex (AS) exhibited the best discrimination (time-dependent AUCs: 0.60-0.80), calibration, and net benefit in the development cohort, and the accuracy of this model was 69.0-73.8% in an independent cohort. The AS model exhibits great potential in supporting optimization of therapeutic strategies for COVID-19 patients with a high risk of LD. This model is publicly available at https://xixihospital-liufang.shinyapps.io/DynNomapp/.
Collapse
Affiliation(s)
- Jianfeng Bao
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shourong Liu
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Liang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China,Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Congcong Wang
- Insititute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Cao
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoyi Li
- Insititute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Furong Wei
- Insititute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai Fu
- Insititute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingqiu Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China,Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Bo Shen
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoli Zhu
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yuge Zhao
- Department of Pathology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Liu
- Department of Pathology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangbin Miao
- Insititute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Insititute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Liang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China,Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Linyan Wu
- Department of Nursing, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinsong Huang
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.,Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Fang Liu
- Insititute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
133
|
Mihai N, Tiliscan C, Visan CA, Stratan L, Ganea O, Arama SS, Lazar M, Arama V. Evaluation of Drug-Induced Liver Injury in Hospitalized Patients with SARS-CoV-2 Infection. Microorganisms 2022; 10:microorganisms10102045. [PMID: 36296321 PMCID: PMC9606929 DOI: 10.3390/microorganisms10102045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Elevated liver enzymes are frequently reported in SARS-CoV-2-infected patients. Several mechanisms of liver injury have been proposed, but no clear conclusions were drawn. We aimed to evaluate hepatocellular and cholestatic injury in relation to the administration of potentially hepatotoxic drugs included in the current COVID-19 therapeutic guidelines in a retrospective cohort of 396 hospitalized COVID-19 patients. The main findings of our study are: (1) Significant increase in aminotransferases level was observed during hospitalization, suggesting drug-related hepatotoxicity. (2) Tocilizumab was correlated with hepatocellular injury, including ALT values greater than five times the upper limit of normal. (3) Anakinra was correlated with ALT values greater than three times the upper limit of normal. (4) Younger patients receiving tocilizumab or anakinra had a higher risk of hepatocellular injury. (5) The combination of favipiravir with tocilizumab was associated with AST values greater than three times the upper limit of normal and with an increase in direct bilirubin. (6) The administration of at least three potentially hepatotoxic drugs was correlated with hepatocellular injury, including ALT values greater than five times the upper limit of normal, and with the increase in indirect bilirubin. (7) Remdesivir and favipiravir by themselves did not correlate with hepatocellular or cholestatic injury in our study cohort.
Collapse
Affiliation(s)
- Nicoleta Mihai
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Catalin Tiliscan
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
- Correspondence:
| | - Constanta Angelica Visan
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Laurentiu Stratan
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Oana Ganea
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Stefan Sorin Arama
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Mihai Lazar
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Victoria Arama
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
- “Prof. Dr. Matei Bals” National Institute for Infectious Diseases, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| |
Collapse
|
134
|
Li H, Wang Y, Ao L, Ke M, Chen Z, Chen M, Peng M, Ling N, Hu P, Cai D, Zhang D, Ren H. Association between immunosuppressants and poor antibody responses to SARS-CoV-2 vaccines in patients with autoimmune liver diseases. Front Immunol 2022; 13:988004. [PMID: 36275639 PMCID: PMC9579272 DOI: 10.3389/fimmu.2022.988004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The antibody and B cell responses after inactivated SARS-CoV-2 vaccination have not been well documented in patients with autoimmune liver disease (AILD). Therefore, we conducted a prospective observational study that included AILD patients and healthy participants as controls between July 1, 2021, and September 30, 2021, at the Second Affiliated Hospital of Chongqing Medical University. All adverse events (AEs) after the COVID-19 vaccination were recorded and graded. Immunoglobulin (Ig)-G antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (anti-RBD-IgG) and neutralizicadng antibodies (NAbs) were tested following full-course vaccination (BBIBP-CorV or CoronaVac). In addition, SARS-CoV-2-specific B cells were detected by flow cytometry. In total, 76 AILD patients and 136 healthy controls (HCs) were included. All AEs were mild and self-limiting, and the incidences were similar between the AILD and HCs. The seropositivity rates of anti-RBD-IgG and NAbs in AILD were 97.4% (100% in HCs, p = 0.13) and 63.2% (84.6% in HCs, p < 0.001), respectively. The titers of anti-RBD-IgG and NAbs were significantly lower in AILD patients than those in HCs. After adjusting for confounders, immunosuppressive therapy was an independent risk factor for low-level anti-RBD-IgG (adjusted odds ratio [aOR]: 4.7; 95% confidence interval [CI], 1.5-15.2; p = 0.01) and a reduced probability of NAbs seropositivity (aOR, 3.0; 95% CI, 1.0-8.9; p = 0.04) in AILD patients. However, regardless of immunosuppressants, the SARS-CoV-2-specific memory B cells responses were comparable between the AILD and HC groups. Our results suggest that inactivated SARS-CoV-2 vaccines (BBIBP-CorV and CoronaVac) are safe, but their immunogenicity is compromised in patients with AILD. Moreover, immunosuppressants are significantly associated with poor antibody responses to the SARS-CoV-2 vaccines. These results could inform physicians and policymakers about decisions on screening the populations at higher risk of poor antibody responses to SARS-CoV-2 vaccines and providing additional vaccinations in patients with AILD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dachuan Cai
- *Correspondence: Hong Ren, ; Dachuan Cai, ; Dazhi Zhang,
| | - Dazhi Zhang
- *Correspondence: Hong Ren, ; Dachuan Cai, ; Dazhi Zhang,
| | - Hong Ren
- *Correspondence: Hong Ren, ; Dachuan Cai, ; Dazhi Zhang,
| |
Collapse
|
135
|
Impact of COVID-19 on the liver and on the care of patients with chronic liver disease, hepatobiliary cancer, and liver transplantation: An updated EASL position paper. J Hepatol 2022; 77:1161-1197. [PMID: 35868584 PMCID: PMC9296253 DOI: 10.1016/j.jhep.2022.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has presented a serious challenge to the hepatology community, particularly healthcare professionals and patients. While the rapid development of safe and effective vaccines and treatments has improved the clinical landscape, the emergence of the omicron variant has presented new challenges. Thus, it is timely that the European Association for the Study of the Liver provides a summary of the latest data on the impact of COVID-19 on the liver and issues guidance on the care of patients with chronic liver disease, hepatobiliary cancer, and previous liver transplantation, as the world continues to deal with the consequences of the COVID-19 pandemic.
Collapse
|
136
|
Chavda VP, Patel AB, Pandya A, Vora LK, Patravale V, Tambuwala ZM, Aljabali AAA, Serrano-Aroca Á, Mishra V, Tambuwala MM. Co-infection associated with SARS-CoV-2 and their management. Future Sci OA 2022; 8:FSO819. [PMID: 36788985 PMCID: PMC9912272 DOI: 10.2144/fsoa-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/18/2022] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Aayushi B Patel
- Pharmacy Section, LM College of Pharmacy, Ahmedabad, Gujarat, 380058, India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Zara M Tambuwala
- College of Science, University of Lincoln, Brayford Campus, Lincoln, LN6 7TS, UK
| | - Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid, 566, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Murtaza M Tambuwala
- Lincoln Medical School University of Lincoln, Brayford Campus, Lincoln, LN6 7TS, UK
| |
Collapse
|
137
|
Trends in Etiology-based Mortality From Chronic Liver Disease Before and During COVID-19 Pandemic in the United States. Clin Gastroenterol Hepatol 2022; 20:2307-2316.e3. [PMID: 35811045 PMCID: PMC9262655 DOI: 10.1016/j.cgh.2022.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS During the global coronavirus disease 2019 (COVID-19) pandemic, patients with pre-existing chronic liver disease may represent a vulnerable population. We studied the etiology-based temporal trends in mortality of chronic liver disease and the underlying cause of death in the United States before and during the COVID-19 pandemic. METHODS Population-based analyses were performed on United States national mortality records (2017-2020). Temporal trends in quarterly age-standardized mortality were obtained by joinpoint analysis with estimates of quarterly percentage change (QPC). RESULTS Quarterly age-standardized all-cause mortality due to alcohol-related liver disease (ALD) initially increased at a quarterly rate of 1.1% before the COVID-19 pandemic, followed by a sharp increase during the COVID-19 pandemic at a quarterly rate of 11.2%. Likewise, steady increase in mortality of nonalcoholic fatty liver disease before the COVID-19 pandemic (QPC, 1.9%) accelerated during the COVID-19 pandemic (QPC, 6.6%). Although ALD-related mortality increased steeply compared with viral hepatitis-related mortality during the COVID-19 pandemic, the proportion of mortality due to COVID-19 among individuals with ALD was the lowest at 2.5%; more than 50% lower than viral hepatitis. The significant decline in all-cause mortality due to viral hepatitis before the COVID-19 pandemic plateaued during the COVID-19 pandemic due to increase in COVID-19-related mortality in individuals with viral hepatitis. Mortality due to cirrhosis increased markedly during the COVID-19 pandemic, mainly attributable to ALD. CONCLUSION All-cause mortality for ALD and nonalcoholic fatty liver disease rapidly accelerated during the COVID-19 pandemic compared with the pre-COVID-19 era. There has been a significant decline in viral hepatitis; however, a significant increase in COVID-related death in this population.
Collapse
|
138
|
Zhong H, Zhou Y, Mei SY, Tang R, Feng JH, He ZY, Xu QY, Xing SP. Scars of COVID-19: A bibliometric analysis of post-COVID-19 fibrosis. Front Public Health 2022; 10:967829. [PMID: 36203683 PMCID: PMC9530282 DOI: 10.3389/fpubh.2022.967829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) becomes a worldwide public health threat. Increasing evidence proves that COVID-19-induced acute injuries could be reversed by a couple of therapies. After that, post-COVID-19 fibrosis (PCF), a sequela of "Long COVID," earns rapidly emerging concerns. PCF is associated with deteriorative lung function and worse quality of life. But the process of PCF remains speculative. Therefore, we aim to conduct a bibliometric analysis to explore the overall structure, hotspots, and trend topics of PCF. Materials and methods A comprehensive search was performed in the Web of Science core database to collect literature on PCF. Search syntax included COVID-19 relevant terms: "COVID 19," "COVID-19 Virus Disease," "COVID-19 Virus Infection," "Coronavirus Disease-19," "2019 Novel Coronavirus Disease," "2019 Novel Coronavirus Infection," "SARS Coronavirus 2 Infection," "COVID-19 Pandemic," "Coronavirus," "2019-nCoV," and "SARS-CoV-2"; and fibrosis relevant terms: "Fibrosis," "Fibroses," and "Cirrhosis." Articles in English were included. Totally 1,088 publications were enrolled. Searching results were subsequentially exported and collected for the bibliometric analysis. National, organizational, and individual level data were analyzed and visualized through biblioshiny package in the R, VOSviewer software, the CiteSpace software, and the Graphical Clustering Toolkit (gCLUTO) software, respectively. Results The intrinsic structure and development in the field of PCF were investigated in the present bibliometric analysis. The topmost keywords were "COVID-19" (occurrences, 636) surrounded by "SARS-CoV-2" (occurrences, 242), "coronavirus" (occurrences, 123), "fibrosis" (occurrences, 120), and "pneumonia" (occurrences, 94). The epidemiology, physiopathology, diagnosis, and therapy of PCF were extensively studied. After this, based on dynamic analysis of keywords, hot topics sharply changed from "Wuhan," "inflammation," and "cytokine storm" to "quality of life" and "infection" through burst detection; from "acute respiratory syndrome," "cystic-fibrosis" and "fibrosis" to "infection," "COVID-19," "quality-of-life" through thematic evolution; from "enzyme" to "post COVID." Similarly, co-cited references analysis showed that topics of references with most citations shift from "pulmonary pathology" (cluster 0) to "COVID-19 vaccination" (cluster 6). Additionally, the overview of contributors, impact, and collaboration was revealed. Summarily, the USA stood out as the most prolific, influential, and collaborative country. The Udice French Research University, Imperial College London, Harvard University, and the University of Washington represented the largest volume of publications, citations, H-index, and co-authorships, respectively. Dana Albon was the most productive and cited author with the strongest co-authorship link strength. Journal of Cystic Fibrosis topped the list of prolific and influential journals. Conclusion Outcomes gained from this study assisted professionals in better realizing PCF and would guide future practices. Epidemiology, pathogenesis, and therapeutics were study hotspots in the early phase of PCF research. As the spread of the COVID-19 pandemic and progress in this field, recent attention shifted to the quality of life of patients and post-COVID comorbidities. Nevertheless, COVID-19 relevant infection and vaccination were speculated to be research trends with current and future interest. International cooperation as well as in-depth laboratory experiments were encouraged to promote further explorations in the field of PCF.
Collapse
|
139
|
Identification of Suitable Drug Combinations for Treating COVID-19 Using a Novel Machine Learning Approach: The RAIN Method. Life (Basel) 2022; 12:life12091456. [PMID: 36143492 PMCID: PMC9505329 DOI: 10.3390/life12091456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This study follows an improved approach to systematic reviews, called the Systematic Review and Artificial Intelligence Network Meta-Analysis (RAIN), registered within PROSPERO (CRD42021256797), in which, the PRISMA criterion is still considered. Drugs used in the treatment of COVID-19 were searched in the databases of ScienceDirect, Web of Science (WoS), ProQuest, Embase, Medline (PubMed), and Scopus. In addition, using artificial intelligence and the measurement of the p-value between human genes affected by COVID-19 and drugs that have been suggested by clinical experts, and reported within the identified research papers, suitable drug combinations are proposed for the treatment of COVID-19. During the systematic review process, 39 studies were selected. Our analysis shows that most of the reported drugs, such as azithromycin and hydroxyl-chloroquine on their own, do not have much of an effect on the recovery of COVID-19 patients. Based on the result of the new artificial intelligence, on the other hand, at a significance level of less than 0.05, the combination of the two drugs therapeutic corticosteroid + camostat with a significance level of 0.02, remdesivir + azithromycin with a significance level of 0.03, and interleukin 1 receptor antagonist protein + camostat with a significance level 0.02 are considered far more effective for the treatment of COVID-19 and are therefore recommended. Abstract COVID-19 affects several human genes, each with its own p-value. The combination of drugs associated with these genes with small p-values may lead to an estimation of the combined p-value between COVID-19 and some drug combinations, thereby increasing the effectiveness of these combinations in defeating the disease. Based on human genes, we introduced a new machine learning method that offers an effective drug combination with low combined p-values between them and COVID-19. This study follows an improved approach to systematic reviews, called the Systematic Review and Artificial Intelligence Network Meta-Analysis (RAIN), registered within PROSPERO (CRD42021256797), in which, the PRISMA criterion is still considered. Drugs used in the treatment of COVID-19 were searched in the databases of ScienceDirect, Web of Science (WoS), ProQuest, Embase, Medline (PubMed), and Scopus. In addition, using artificial intelligence and the measurement of the p-value between human genes affected by COVID-19 and drugs that have been suggested by clinical experts, and reported within the identified research papers, suitable drug combinations are proposed for the treatment of COVID-19. During the systematic review process, 39 studies were selected. Our analysis shows that most of the reported drugs, such as azithromycin and hydroxyl-chloroquine on their own, do not have much of an effect on the recovery of COVID-19 patients. Based on the result of the new artificial intelligence, on the other hand, at a significance level of less than 0.05, the combination of the two drugs therapeutic corticosteroid + camostat with a significance level of 0.02, remdesivir + azithromycin with a significance level of 0.03, and interleukin 1 receptor antagonist protein + camostat with a significance level 0.02 are considered far more effective for the treatment of COVID-19 and are therefore recommended. Additionally, at a significance level of less than 0.01, the combination of interleukin 1 receptor antagonist protein + camostat + azithromycin + tocilizumab + oseltamivir with a significance level of 0.006, and the combination of interleukin 1 receptor antagonist protein + camostat + chloroquine + favipiravir + tocilizumab7 with corticosteroid + camostat + oseltamivir + remdesivir + tocilizumab at a significant level of 0.009 are effective in the treatment of patients with COVID-19 and are also recommended. The results of this study provide sets of effective drug combinations for the treatment of patients with COVID-19. In addition, the new artificial intelligence used in the RAIN method could provide a forward-looking approach to clinical trial studies, which could also be used effectively in the treatment of diseases such as cancer.
Collapse
|
140
|
Briand F, Sencio V, Robil C, Heumel S, Deruyter L, Machelart A, Barthelemy J, Bogard G, Hoffmann E, Infanti F, Domenig O, Chabrat A, Richard V, Prévot V, Nogueiras R, Wolowczuk I, Pinet F, Sulpice T, Trottein F. Diet-Induced Obesity and NASH Impair Disease Recovery in SARS-CoV-2-Infected Golden Hamsters. Viruses 2022; 14:v14092067. [PMID: 36146875 PMCID: PMC9503118 DOI: 10.3390/v14092067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Obese patients with non-alcoholic steatohepatitis (NASH) are prone to severe forms of COVID-19. There is an urgent need for new treatments that lower the severity of COVID-19 in this vulnerable population. To better replicate the human context, we set up a diet-induced model of obesity associated with dyslipidemia and NASH in the golden hamster (known to be a relevant preclinical model of COVID-19). A 20-week, free-choice diet induces obesity, dyslipidemia, and NASH (liver inflammation and fibrosis) in golden hamsters. Obese NASH hamsters have higher blood and pulmonary levels of inflammatory cytokines. In the early stages of a SARS-CoV-2 infection, the lung viral load and inflammation levels were similar in lean hamsters and obese NASH hamsters. However, obese NASH hamsters showed worse recovery (i.e., less resolution of lung inflammation 10 days post-infection (dpi) and lower body weight recovery on dpi 25). Obese NASH hamsters also exhibited higher levels of pulmonary fibrosis on dpi 25. Unlike lean animals, obese NASH hamsters infected with SARS-CoV-2 presented long-lasting dyslipidemia and systemic inflammation. Relative to lean controls, obese NASH hamsters had lower serum levels of angiotensin-converting enzyme 2 activity and higher serum levels of angiotensin II—a component known to favor inflammation and fibrosis. Even though the SARS-CoV-2 infection resulted in early weight loss and incomplete body weight recovery, obese NASH hamsters showed sustained liver steatosis, inflammation, hepatocyte ballooning, and marked liver fibrosis on dpi 25. We conclude that diet-induced obesity and NASH impair disease recovery in SARS-CoV-2-infected hamsters. This model might be of value for characterizing the pathophysiologic mechanisms of COVID-19 and evaluating the efficacy of treatments for the severe forms of COVID-19 observed in obese patients with NASH.
Collapse
Affiliation(s)
| | - Valentin Sencio
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Cyril Robil
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Séverine Heumel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Lucie Deruyter
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Arnaud Machelart
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Johanna Barthelemy
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Gemma Bogard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eik Hoffmann
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | | | | | | | - Vincent Prévot
- Univ. Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Ruben Nogueiras
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), S-15781 Santiago de Compostela, Spain
| | - Isabelle Wolowczuk
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florence Pinet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | | | - François Trottein
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
141
|
Characteristics of COVID-19 Infection in a Hospitalized Autoimmune Hepatitis Patient. Pathogens 2022; 11:pathogens11091054. [PMID: 36145486 PMCID: PMC9501835 DOI: 10.3390/pathogens11091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a major public health worldwide. Hepatic dysfunction has been seen in patients with COVID-19 and could be related to a viral cytopathic effect, an exacerbated immune reaction, or drug-induced liver damage. Currently, routine modification of immunosuppressive therapy in patients with autoimmune hepatitis (AIH) before and after SARS-CoV-2 infection remains an important topic to be discussed. However, there is little evidence about this thematic to support any recommendation. Here, we described a case report in which the use of an immunosuppressive drug by a patient with diagnosed AIH might have influenced the COVID-19 clinical course with altered laboratory hematological and biochemical parameters during infection.
Collapse
|
142
|
Bartolomeo CS, Lemes RMR, Morais RL, Pereria GC, Nunes TA, Costa AJ, de Barros Maciel RM, Braconi CT, Maricato JT, Janini LMR, Okuda LH, Lee KS, Prado CM, Ureshino RP, Stilhano RS. SARS-CoV-2 infection and replication kinetics in different human cell types: The role of autophagy, cellular metabolism and ACE2 expression. Life Sci 2022; 308:120930. [PMID: 36075471 PMCID: PMC9444585 DOI: 10.1016/j.lfs.2022.120930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Abstract
Aims This study evaluated SARS-CoV-2 replication in human cell lines derived from various tissues and investigated molecular mechanisms related to viral infection susceptibility and replication. Main methods SARS-CoV-2 replication in BEAS-2B and A549 (respiratory tract), HEK-293 T (kidney), HuH7 (liver), SH-SY5Y (brain), MCF7 (breast), Huvec (endothelial) and Caco-2 (intestine) was evaluated by RT-qPCR. Concomitantly, expression levels of ACE2 (Angiotensin Converting Enzyme) and TMPRSS2 were assessed through RT-qPCR and western blot. Proteins related to autophagy and mitochondrial metabolism were monitored in uninfected cells to characterize the cellular metabolism of each cell line. The effect of ACE2 overexpression on viral replication in pulmonary cells was also investigated. Key findings Our data show that HuH7, Caco-2 and MCF7 presented a higher viral load compared to the other cell lines. The increased susceptibility to SARS-CoV-2 infection seems to be associated not only with the differential levels of proteins intrinsically related to energetic metabolism, such as ATP synthase, citrate synthase, COX and NDUFS2 but also with the considerably higher TMPRSS2 mRNA expression. The two least susceptible cell types, BEAS-2B and A549, showed drastically increased SARS-CoV-2 replication capacity when ACE2 was overexpressed. These modified cell lines are relevant for studying SARS-CoV-2 replication in vitro. Significance Our data not only reinforce that TMPRSS2 expression and cellular energy metabolism are important molecular mechanisms for SARS-CoV-2 infection and replication, but also indicate that HuH7, MCF7 and Caco-2 are suitable models for mechanistic studies of COVID-19. Moreover, pulmonary cells overexpressing ACE2 can be used to understand mechanisms associated with SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil; Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil; Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rafael Leite Morais
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Cruz Pereria
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Tamires Alves Nunes
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Angelica Jardim Costa
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rui Monteiro de Barros Maciel
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil; Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carla Torres Braconi
- Department of Microbiology Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luiz Mario Ramos Janini
- Department of Microbiology Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Liria Hiromi Okuda
- Instituto Biológico, Secretaria de Agricultura e Abastecimento, São Paulo, SP, Brazil
| | - Kil Sun Lee
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil; Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
143
|
Kaya G, Issi F, Guven B, Ozkaya E, Buruk CK, Cakir M. SARS-CoV-2 Antibodies in Children with Chronic Disease from a Pediatric Gastroenterology Outpatient Clinic. Pediatr Gastroenterol Hepatol Nutr 2022; 25:422-431. [PMID: 36148294 PMCID: PMC9482828 DOI: 10.5223/pghn.2022.25.5.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022] Open
Abstract
PURPOSE At the beginning of the Coronavirus disease (COVID-19) epidemic, physicians paid close attention to children with chronic diseases to prevent transmission or a severe course of infection. We aimed to measure the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels in children with chronic gastrointestinal and liver diseases to analyze the risk factors for infection and its interaction with their primary disease. METHODS This cross-sectional study analyzed SARS-CoV-2 antibody levels in patients with gastrointestinal and liver diseases (n=141) and in healthy children (n=48) between January and February 2021. RESULTS During the pandemic, 10 patients (7%) and 1 child (2%) had confirmed COVID-19 infection (p=0.2). The SARS-CoV-2 antibody test was positive in 36 patients (25.5%) and 11 children (22.9%) (p=0.7). SARS-CoV-2 antibody positivity was found in 20.4%, 26.6%, 33.3%, and 33.3% of patients with chronic liver diseases, chronic gastrointestinal tract diseases, cystic fibrosis, and liver transplantation recipients, respectively (p>0.05, patients vs. healthy children). Risk factors for SARS-CoV-2 antibody positivity were COVID-19-related symptoms (47.2% vs. 14.2%, p=0.00004) and close contact with SARS-CoV-2 polymerase chain reaction-positive patients (69.4% vs. 9%, p<0.00001). The use, number, and type of immunosuppressants and primary diagnosis were not associated with SARS-CoV-2 antibody positivity. The frequency of disease activation/flare was not significant in patients with (8.3%) or without (14.2%) antibody positivity (p=0.35). CONCLUSION SARS-CoV-2 antibodies in children with chronic gastrointestinal and liver diseases are similar to that in healthy children. Close follow-up is important to understand the long-term effects of past COVID-19 infection in these children.
Collapse
Affiliation(s)
- Gulay Kaya
- Department of Pediatrics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Fatma Issi
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Burcu Guven
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Esra Ozkaya
- Department of Microbiology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Celal Kurtulus Buruk
- Department of Microbiology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Murat Cakir
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| |
Collapse
|
144
|
Mauro A, De Grazia F, Anderloni A, Di Sabatino A. Upper gastrointestinal bleeding in coronavirus disease 2019 patients. Curr Opin Gastroenterol 2022; 38:443-449. [PMID: 35916320 DOI: 10.1097/mog.0000000000000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Upper gastrointestinal bleeding (UGIB) has significant morbidity and UGIB cases have been described in coronavirus disease 2019 (COVID-19) patients. Management of this condition can be challenging considering both the possible severe COVID-19-related pneumonia as well as the risk of the virus spreading from patients to health operators. The aim of this paper is to review the most recent studies available in the literature in order to evaluate the actual incidence of UGIB, its clinical and endoscopic manifestations and its optimal management. RECENT FINDINGS UGIB has an incidence between 0.5% and 1.9% among COVID-19 patients, and it typically presents with melena or hematemesis. Peptic ulcers are the most common endoscopic findings. High Charlson Comorbidity Index (CCI), dialysis, acute kidney injury and advanced oncological disease increase the risk for UGIB. Although anticoagulants are commonly used in COVID-19 patients they are not associated with an increased incidence of UGIB. Conservative management is a common approach that results in similar outcomes compared to upper GI endoscopic treatment. Apparently, UGIB in COVID-19 seems not have a detrimental effect and only one study showed an increased mortality in those who developed UGIB during hospitalization. SUMMARY Incidence of UGIB in COVID-19 patients is similar to that of the general population. Despite the widespread use of anticoagulants in these patients, they are not associated with an increased risk of UGIB. Conservative management could be an effective option, especially for patients that are at risk of intubation.
Collapse
Affiliation(s)
- Aurelio Mauro
- First Department of Internal Medicine.,Gastroenterology and Endoscopic Unit, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Federico De Grazia
- Gastroenterology and Endoscopic Unit, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Andrea Anderloni
- Gastroenterology and Endoscopic Unit, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | | |
Collapse
|
145
|
Liu J, Zhang L, Gao J, Zhang B, Liu X, Yang N, Liu X, Liu X, Cheng Y. Discovery of genistein derivatives as potential SARS-CoV-2 main protease inhibitors by virtual screening, molecular dynamics simulations and ADMET analysis. Front Pharmacol 2022; 13:961154. [PMID: 36091808 PMCID: PMC9452787 DOI: 10.3389/fphar.2022.961154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Due to the constant mutation of virus and the lack of specific therapeutic drugs, the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a huge threat to the health of people, especially those with underlying diseases. Therefore, drug discovery against the SARS-CoV-2 remains of great significance. Methods: With the main protease of virus as the inhibitor target, 9,614 genistein derivatives were virtually screened by LeDock and AutoDock Vina, and the top 20 compounds with highest normalized scores were obtained. Molecular dynamics simulations were carried out for studying interactions between these 20 compounds and the target protein. The drug-like properties, activity, and ADMET of these compounds were also evaluated by DruLiTo software or online server. Results: Twenty compounds, including compound 11, were screened by normalized molecular docking, which could bind to the target through multiple non-bonding interactions. Molecular dynamics simulation results showed that compounds 2, 4, 5, 11, 13, 14, 17, and 18 had the best binding force with the target protein of SARS-CoV-2, and the absolute values of binding free energies all exceeded 50 kJ/mol. The drug-likeness properties indicated that a variety of compounds including compound 11 were worthy of further study. The results of bioactivity score prediction found that compounds 11 and 12 had high inhibitory activities against protease, which indicated that these two compounds had the potential to be further developed as COVID-19 inhibitors. Finally, compound 11 showed excellent predictive ADMET properties including high absorption and low toxicity. Conclusion: These in silico work results show that the preferred compound 11 (ZINC000111282222), which exhibited strong binding to SARS-CoV-2 main protease, acceptable drug-like properties, protease inhibitory activity and ADMET properties, has great promise for further research as a potential therapeutic agent against COVID-19.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Jian Gao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Baochen Zhang
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ninghui Yang
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiaotong Liu
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xifu Liu
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Xifu Liu, ; Yu Cheng,
| | - Yu Cheng
- Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Xifu Liu, ; Yu Cheng,
| |
Collapse
|
146
|
Mercado-Gómez M, Prieto-Fernández E, Goikoetxea-Usandizaga N, Vila-Vecilla L, Azkargorta M, Bravo M, Serrano-Maciá M, Egia-Mendikute L, Rodríguez-Agudo R, Lachiondo-Ortega S, Lee SY, Eguileor Giné A, Gil-Pitarch C, González-Recio I, Simón J, Petrov P, Jover R, Martínez-Cruz LA, Ereño-Orbea J, Delgado TC, Elortza F, Jiménez-Barbero J, Nogueiras R, Prevot V, Palazon A, Martínez-Chantar ML. The spike of SARS-CoV-2 promotes metabolic rewiring in hepatocytes. Commun Biol 2022; 5:827. [PMID: 35978143 PMCID: PMC9383691 DOI: 10.1038/s42003-022-03789-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a multi-organ damage that includes hepatic dysfunction, which has been observed in over 50% of COVID-19 patients. Liver injury in COVID-19 could be attributed to the cytopathic effects, exacerbated immune responses or treatment-associated drug toxicity. Herein we demonstrate that hepatocytes are susceptible to infection in different models: primary hepatocytes derived from humanized angiotensin-converting enzyme-2 mice (hACE2) and primary human hepatocytes. Pseudotyped viral particles expressing the full-length spike of SARS-CoV-2 and recombinant receptor binding domain (RBD) bind to ACE2 expressed by hepatocytes, promoting metabolic reprogramming towards glycolysis but also impaired mitochondrial activity. Human and hACE2 primary hepatocytes, where steatosis and inflammation were induced by methionine and choline deprivation, are more vulnerable to infection. Inhibition of the renin-angiotensin system increases the susceptibility of primary hepatocytes to infection with pseudotyped viral particles. Metformin, a common therapeutic option for hyperglycemia in type 2 diabetes patients known to partially attenuate fatty liver, reduces the infection of human and hACE2 hepatocytes. In summary, we provide evidence that hepatocytes are amenable to infection with SARS-CoV-2 pseudovirus, and we propose that metformin could be a therapeutic option to attenuate infection by SARS-CoV-2 in patients with fatty liver. SARS-CoV-2 pseudovirus infects human hepatocytes leading to metabolic reprogramming towards glycolysis and impaired mitochondrial activity, and metformin can reduce infection under steatotic conditions.
Collapse
Affiliation(s)
- Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Laura Vila-Vecilla
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRedISCIII, 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Miren Bravo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Alvaro Eguileor Giné
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Jorge Simón
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Petar Petrov
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Experimental Hepatology Joint Research Unit, IIS Hospital La Fe, Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Experimental Hepatology Joint Research Unit, IIS Hospital La Fe, Valencia, Spain.,Dep. Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - June Ereño-Orbea
- Chemical Glycobiology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain
| | - Teresa Cardoso Delgado
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRedISCIII, 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES), 28029, Madrid, Spain
| | - Ruben Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, CIBER Fisiopatología de a Obesidad y Nutrición (CIBERobn), Galician Agency of Innovation (GAIN), Xunta de Galicia, 15782, Santiago de Compostela, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Development and Plasticity of the Neuroendocrine Brain Lab, UMR-S1172 INSERM, DISTALZ, EGID, Lille, France
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - María L Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
147
|
Secondary sclerosing cholangitis after COVID-19 pneumonia: a report of two cases and review of the literature. Clin J Gastroenterol 2022; 15:1124-1129. [PMID: 35953614 PMCID: PMC9371366 DOI: 10.1007/s12328-022-01687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 01/08/2023]
Abstract
AbstractSecondary sclerosing cholangitis in critically ill patients (SC-CIP) is a rare disease characterized by chronic cholestasis. The underlying pathophysiology of SC-CIP is not fully understood, and prognosis in severe cases remains poor with liver transplantation remaining the only curative treatment option. There is a growing amount of literature describing patients with chronic cholangiopathy after COVID-19 infection. The vast majority of the patients described in these reports were male and had a poor outcome. While the exact percentage of patients with COVID-19-related SC-CIP cannot be estimated accurately due to a lack of larger studies, an increase in patients with long-term complications of chronic cholestatic liver disease after severe COVID19-pneumonia can be expected in the upcoming years. Treatment options remain limited and further research is needed to improve the dismal prognosis of SC-CIP. Here, we present the cases of two patients who developed SC-CIP after prolonged intensive care unit stay due to severe COVID-19 pneumonia. Both patients required invasive ventilation for 31 and 141 days, respectively, as well as extra-corporal membrane oxygenation for 23 and 87 days. The patients suffered from jaundice and severe pruritus, and typical features of SC-CIP were present by MRCP and ERC. Repeated removal of biliary casts resulted in some alleviation of their clinical symptoms, but cholestasis parameters remain elevated. Furthermore, an increased liver stiffness was indicative of advanced fibrosis in both patients. In addition to these two case reports, we provide a concise review of the literature of SC-CIP after COVID-19 infection and discuss risk factors, treatment options and prognosis.
Collapse
|
148
|
Zhu M, Chen L. Hepatitis of unknown etiology in children: What we know and what we can do? Front Microbiol 2022; 13:956887. [PMID: 36003929 PMCID: PMC9393628 DOI: 10.3389/fmicb.2022.956887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Recently, acute hepatitis of unknown etiology in children has gained great concern since March 2022. The disease was first reported by Public Health Scotland. Cases increased rapidly and are now reported in 33 countries worldwide. All cases are predominantly aged under 5 years old. Most patients presented with jaundice, and remarkably, some cases progress to acute liver failure. Until now, the etiology is not fully elucidated, and the investigations are ongoing. Adenovirus infection seems to be an important factor. Several hypotheses on the etiology have been proposed. This review aims to summarize current research progress and put forward some suggestions.
Collapse
|
149
|
Jia K, Wu J, Li Y, Liu J, Liu R, Cai Y, Zhang Y, Li X. A novel pulmonary fibrosis murine model with immune-related liver injury. Animal Model Exp Med 2022. [PMID: 35934841 DOI: 10.1002/ame2.12263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by aggravated alveolar destruction and fibrotic matrix deposition, tendentiously experiences the stage called acute exacerbation IPF (AE-IPF) and progresses to multiple organ damage, especially liver injury. Recent studies have found a variety of immune microenvironment disorders associated with elevated IPF risk and secondary organ injury, whereas current animal models induced with bleomycin (BLM) could not completely reflect the pathological manifestations of AE-IPF patients in clinic, and the exact underlying mechanisms are not yet fully explored. In the current study, we established an AE-IPF model by tracheal administration of a single dose of BLM and then repeated administrations of lipopolysaccharide in mice. This mouse model successfully recapitulated the clinical features of AE-IPF, including excessive intrapulmonary inflammation and fibrosis and extrapulmonary manifestations, as indicated by significant upregulation of Il6, Tnfa, Il1b, Tgfb, fibronectin, and Col1a1 in both lungs and liver and elevated serum aspartate transaminase and alanine transaminase levels. These effects might be attributed to the regulation of Th17 cells. By sharing this novel murine model, we expect to provide an appropriate experimental platform to investigate the pathogenesis of AE-IPF coupled with liver injury and contribute to the discovery and development of targeted interventions.
Collapse
Affiliation(s)
- Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
150
|
Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022; 45:1430-1449. [PMID: 35320469 PMCID: PMC8940980 DOI: 10.1007/s10753-022-01656-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a global pandemic with severe socioeconomic effects. Immunopathogenesis of COVID-19 leads to acute respiratory distress syndrome (ARDS) and organ failure. Binding of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (hACE2) on bronchiolar and alveolar epithelial cells triggers host inflammatory pathways that lead to pathophysiological changes. Proinflammatory cytokines and type I interferon (IFN) signaling in alveolar epithelial cells counter barrier disruption, modulate host innate immune response to induce chemotaxis, and initiate the resolution of inflammation. Here, we discuss experimental models to study SARS-CoV-2 infection, molecular pathways involved in SARS-CoV-2-induced inflammation, and viral hijacking of anti-inflammatory pathways, such as delayed type-I IFN response. Mechanisms of alveolar adaptation to hypoxia, adenosinergic signaling, and regulatory microRNAs are discussed as potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Divisions of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Agnieszka K Czopik
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|