101
|
Payne LJ, Meaden S, Mestre MR, Palmer C, Toro N, Fineran P, Jackson S. PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Res 2022; 50:W541-W550. [PMID: 35639517 PMCID: PMC9252829 DOI: 10.1093/nar/gkac400] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Most bacteria and archaea possess multiple antiviral defence systems that protect against infection by phages, archaeal viruses and mobile genetic elements. Our understanding of the diversity of defence systems has increased greatly in the last few years, and many more systems likely await discovery. To identify defence-related genes, we recently developed the Prokaryotic Antiviral Defence LOCator (PADLOC) bioinformatics tool. To increase the accessibility of PADLOC, we describe here the PADLOC web server (freely available at https://padloc.otago.ac.nz), allowing users to analyse whole genomes, metagenomic contigs, plasmids, phages and archaeal viruses. The web server includes a more than 5-fold increase in defence system types detected (since the first release) and expanded functionality enabling detection of CRISPR arrays and retron ncRNAs. Here, we provide user information such as input options, description of the multiple outputs, limitations and considerations for interpretation of the results, and guidance for subsequent analyses. The PADLOC web server also houses a precomputed database of the defence systems in > 230,000 RefSeq genomes. These data reveal two taxa, Campylobacterota and Spriochaetota, with unusual defence system diversity and abundance. Overall, the PADLOC web server provides a convenient and accessible resource for the detection of antiviral defence systems.
Collapse
Affiliation(s)
- Leighton J Payne
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sean Meaden
- Biosciences, University of Exeter, Penryn, UK
| | | | - Chris Palmer
- Information Technology Services Research and Teaching Group, University of Otago, Dunedin, New Zealand
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Granada, Spain
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
102
|
LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, Doron S, Badiee M, Leung AKL, Sorek R, Laub MT. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat Microbiol 2022; 7:1028-1040. [PMID: 35725776 PMCID: PMC9250638 DOI: 10.1038/s41564-022-01153-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 01/03/2023]
Abstract
Toxin-antitoxin (TA) systems are broadly distributed, yet poorly conserved, genetic elements whose biological functions are unclear and controversial. Some TA systems may provide bacteria with immunity to infection by their ubiquitous viral predators, bacteriophages. To identify such TA systems, we searched bioinformatically for those frequently encoded near known phage defence genes in bacterial genomes. This search identified homologues of DarTG, a recently discovered family of TA systems whose biological functions and natural activating conditions were unclear. Representatives from two different subfamilies, DarTG1 and DarTG2, strongly protected E. coli MG1655 against different phages. We demonstrate that for each system, infection with either RB69 or T5 phage, respectively, triggers release of the DarT toxin, a DNA ADP-ribosyltransferase, that then modifies viral DNA and prevents replication, thereby blocking the production of mature virions. Further, we isolated phages that have evolved to overcome DarTG defence either through mutations to their DNA polymerase or to an anti-DarT factor, gp61.2, encoded by many T-even phages. Collectively, our results indicate that phage defence may be a common function for TA systems and reveal the mechanism by which DarTG systems inhibit phage infection.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Department of Genetic Medicine, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
103
|
Tamarit D, Caceres EF, Krupovic M, Nijland R, Eme L, Robinson NP, Ettema TJG. A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nat Microbiol 2022; 7:948-952. [PMID: 35760836 PMCID: PMC9246712 DOI: 10.1038/s41564-022-01122-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
Asgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology, and particularly their virome, remain enigmatic. We reassembled and closed the chromosome of Candidatus Odinarchaeum yellowstonii LCB_4, through long-range PCR, revealing CRISPR spacers targeting viral contigs. We found related viruses in the genomes of diverse prokaryotes from geothermal environments, including other Asgard archaea. These viruses open research avenues into the ecology and evolution of Asgard archaea.
Collapse
Affiliation(s)
- Daniel Tamarit
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Eva F Caceres
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6047, Archaeal Virology Unit, Paris, France
| | - Reindert Nijland
- Marine Animal Ecology Group, Wageningen University, Wageningen, the Netherlands
| | - Laura Eme
- Laboratoire Écologie, Systématique, Évolution, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Nicholas P Robinson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
104
|
Mestre MR, Gao LA, Shah SA, López-Beltrán A, González-Delgado A, Martínez-Abarca F, Iranzo J, Redrejo-Rodríguez M, Zhang F, Toro N. UG/Abi: a highly diverse family of prokaryotic reverse transcriptases associated with defense functions. Nucleic Acids Res 2022; 50:6084-6101. [PMID: 35648479 PMCID: PMC9226505 DOI: 10.1093/nar/gkac467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptases (RTs) are enzymes capable of synthesizing DNA using RNA as a template. Within the last few years, a burst of research has led to the discovery of novel prokaryotic RTs with diverse antiviral properties, such as DRTs (Defense-associated RTs), which belong to the so-called group of unknown RTs (UG) and are closely related to the Abortive Infection system (Abi) RTs. In this work, we performed a systematic analysis of UG and Abi RTs, increasing the number of UG/Abi members up to 42 highly diverse groups, most of which are predicted to be functionally associated with other gene(s) or domain(s). Based on this information, we classified these systems into three major classes. In addition, we reveal that most of these groups are associated with defense functions and/or mobile genetic elements, and demonstrate the antiphage role of four novel groups. Besides, we highlight the presence of one of these systems in novel families of human gut viruses infecting members of the Bacteroidetes and Firmicutes phyla. This work lays the foundation for a comprehensive and unified understanding of these highly diverse RTs with enormous biotechnological potential.
Collapse
Affiliation(s)
- Mario Rodríguez Mestre
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Linyi Alex Gao
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820 Gentofte, Denmark
| | - Adrián López-Beltrán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alejandro González-Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Spain
| | - Francisco Martínez-Abarca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Spain
| | - Jaime Iranzo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Modesto Redrejo-Rodríguez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Spain
| |
Collapse
|
105
|
PhREEPred: Phage Resistance Emergence Prediction web to foresee encapsulated bacterial escape from phage cocktail treatment. J Mol Biol 2022; 434:167670. [PMID: 35671831 DOI: 10.1016/j.jmb.2022.167670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Phages, as well as phage-derived proteins, especially lysins and depolymerases, are intensively studied to become prospective alternatives or supportive antibacterials used alone or in combination. In the common phage therapy approach, the unwanted emergence of phage-resistant variants from the treated bacterial population can be postponed or reduced by the utilization of an effective phage cocktail. In this work, we present a publicly available web tool PhREEPred (Phage Resistance Emergence Prediction) (https://phartner.shinyapps.io/PhREEPred/), which will allow an informed choice of the composition of phage cocktails by predicting the outcome of phage cocktail or phage/depolymerase combination treatments given a mutating population that escapes single phage treatment. PhREEPred simulates solutions of our mathematical model calibrated and tested on the experimental Klebsiella pneumoniae setup and Klebsiella-specific lytic phages: K63 type-specific phage KP34 equipped with a capsule-degrading enzyme (KP34p57), capsule-independent myoviruses KP15 and KP27, and recombinant capsule depolymerase KP34p57. The model can calculate the phage-resistance emergence depending on the bacterial growth rate and initial density, the multiplicity of infection, phage latent period, its infectiveness and the cocktail composition, as well as initial depolymerase concentration and activity rate. This model reproduced the experimental results and showed that (i) the phage cocktail of parallelly infecting phages is less effective than the one composed of sequentially infecting phages; (ii) depolymerase can delay or prevent bacterial resistance by unveiling an alternative receptor for initially inactive phages. In our opinion, this customer-friendly web tool will allow for the primary design of the phage cocktail and phage-depolymerase combination effectiveness against encapsulated pathogens.
Collapse
|
106
|
Structural rearrangements allow nucleic acid discrimination by type I-D Cascade. Nat Commun 2022; 13:2829. [PMID: 35595728 PMCID: PMC9123187 DOI: 10.1038/s41467-022-30402-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are adaptive immune systems that protect prokaryotes from foreign nucleic acids, such as bacteriophages. Two of the most prevalent CRISPR-Cas systems include type I and type III. Interestingly, the type I-D interference proteins contain characteristic features of both type I and type III systems. Here, we present the structures of type I-D Cascade bound to both a double-stranded (ds)DNA and a single-stranded (ss)RNA target at 2.9 and 3.1 Å, respectively. We show that type I-D Cascade is capable of specifically binding ssRNA and reveal how PAM recognition of dsDNA targets initiates long-range structural rearrangements that likely primes Cas10d for Cas3′ binding and subsequent non-target strand DNA cleavage. These structures allow us to model how binding of the anti-CRISPR protein AcrID1 likely blocks target dsDNA binding via competitive inhibition of the DNA substrate engagement with the Cas10d active site. This work elucidates the unique mechanisms used by type I-D Cascade for discrimination of single-stranded and double stranded targets. Thus, our data supports a model for the hybrid nature of this complex with features of type III and type I systems. I-D CRISPR-Cascade can target both single-stranded and double-stranded nucleic acids. Here, Schwartz et. al determine these structures and reveal large-scale rearrangements that allow for target discrimination and destruction.
Collapse
|
107
|
Picton DM, Harling-Lee JD, Duffner SJ, Went SC, Morgan RD, Hinton JCD, Blower TR. A widespread family of WYL-domain transcriptional regulators co-localizes with diverse phage defence systems and islands. Nucleic Acids Res 2022; 50:5191-5207. [PMID: 35544231 PMCID: PMC9122601 DOI: 10.1093/nar/gkac334] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteria are under constant assault by bacteriophages and other mobile genetic elements. As a result, bacteria have evolved a multitude of systems that protect from attack. Genes encoding bacterial defence mechanisms can be clustered into 'defence islands', providing a potentially synergistic level of protection against a wider range of assailants. However, there is a comparative paucity of information on how expression of these defence systems is controlled. Here, we functionally characterize a transcriptional regulator, BrxR, encoded within a recently described phage defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a combination of reporters and electrophoretic mobility shift assays, we discovered that BrxR acts as a repressor. We present the structure of BrxR to 2.15 Å, the first structure of this family of transcription factors, and pinpoint a likely binding site for ligands within the WYL-domain. Bioinformatic analyses demonstrated that BrxR-family homologues are widespread amongst bacteria. About half (48%) of identified BrxR homologues were co-localized with a diverse array of known phage defence systems, either alone or clustered into defence islands. BrxR is a novel regulator that reveals a common mechanism for controlling the expression of the bacterial phage defence arsenal.
Collapse
Affiliation(s)
- David M Picton
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Joshua D Harling-Lee
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK
| | - Samuel J Duffner
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Sam C Went
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | | | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| |
Collapse
|
108
|
Rousset F, Depardieu F, Miele S, Dowding J, Laval AL, Lieberman E, Garry D, Rocha EPC, Bernheim A, Bikard D. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 2022; 30:740-753.e5. [PMID: 35316646 PMCID: PMC9122126 DOI: 10.1016/j.chom.2022.02.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Bacteria carry diverse genetic systems to defend against viral infection, some of which are found within prophages where they inhibit competing viruses. Phage satellites pose additional pressures on phages by hijacking key viral elements to their own benefit. Here, we show that E. coli P2-like phages and their parasitic P4-like satellites carry hotspots of genetic variation containing reservoirs of anti-phage systems. We validate the activity of diverse systems and describe PARIS, an abortive infection system triggered by a phage-encoded anti-restriction protein. Antiviral hotspots participate in inter-viral competition and shape dynamics between the bacterial host, P2-like phages, and P4-like satellites. Notably, the anti-phage activity of satellites can benefit the helper phage during competition with virulent phages, turning a parasitic relationship into a mutualistic one. Anti-phage hotspots are present across distant species and constitute a substantial source of systems that participate in the competition between mobile genetic elements.
Collapse
Affiliation(s)
- François Rousset
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France.
| | - Florence Depardieu
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Solange Miele
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Julien Dowding
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Anne-Laure Laval
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | | | | | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris, CNRS UMR 3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - Aude Bernheim
- Université de Paris, INSERM, IAME, 75006 Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France.
| |
Collapse
|
109
|
Tesson F, Hervé A, Mordret E, Touchon M, d'Humières C, Cury J, Bernheim A. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat Commun 2022; 13:2561. [PMID: 35538097 PMCID: PMC9090908 DOI: 10.1038/s41467-022-30269-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Bacteria and archaea have developed multiple antiviral mechanisms, and genomic evidence indicates that several of these antiviral systems co-occur in the same strain. Here, we introduce DefenseFinder, a tool that automatically detects known antiviral systems in prokaryotic genomes. We use DefenseFinder to analyse 21000 fully sequenced prokaryotic genomes, and find that antiviral strategies vary drastically between phyla, species and strains. Variations in composition of antiviral systems correlate with genome size, viral threat, and lifestyle traits. DefenseFinder will facilitate large-scale genomic analysis of antiviral defense systems and the study of host-virus interactions in prokaryotes.
Collapse
Affiliation(s)
- Florian Tesson
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- SEED, U1284, INSERM, Université de Paris, Paris, France
| | | | | | - Marie Touchon
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | | | - Jean Cury
- SEED, U1284, INSERM, Université de Paris, Paris, France.
- Université Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, UMR, 9015, Orsay, France.
| | - Aude Bernheim
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.
- SEED, U1284, INSERM, Université de Paris, Paris, France.
| |
Collapse
|
110
|
Abstract
In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
Collapse
|
111
|
Srivastava N, Sarethy IP, Jeevanandam J, Danquah M. Emerging strategies for microbial screening of novel chemotherapeutics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
112
|
Bari SMN, Chou-Zheng L, Howell O, Hossain M, Hill CM, Boyle TA, Cater K, Dandu VS, Thomas A, Aslan B, Hatoum-Aslan A. A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme. Cell Host Microbe 2022; 30:570-582.e7. [PMID: 35421352 DOI: 10.1016/j.chom.2022.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
The perpetual arms race between bacteria and their viruses (phages) has given rise to diverse immune systems, including restriction-modification and CRISPR-Cas, which sense and degrade phage-derived nucleic acids. These complex systems rely upon production and maintenance of multiple components to achieve antiphage defense. However, the prevalence and effectiveness of minimal, single-component systems that cleave DNA remain unknown. Here, we describe a unique mode of nucleic acid immunity mediated by a single enzyme with nuclease and helicase activities, herein referred to as Nhi (nuclease-helicase immunity). This enzyme provides robust protection against diverse staphylococcal phages and prevents phage DNA accumulation in cells stripped of all other known defenses. Our observations support a model in which Nhi targets and degrades phage-specific replication intermediates. Importantly, Nhi homologs are distributed in diverse bacteria and exhibit functional conservation, highlighting the versatility of such compact weapons as major players in antiphage defense.
Collapse
Affiliation(s)
- S M Nayeemul Bari
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Lucy Chou-Zheng
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Olivia Howell
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Motaher Hossain
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Courtney M Hill
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Tori A Boyle
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Katie Cater
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Vidya Sree Dandu
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Alexander Thomas
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Barbaros Aslan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA.
| |
Collapse
|
113
|
Rheinemann L, Downhour DM, Davenport KA, McKeown AN, Sundquist WI, Elde NC. Recurrent evolution of an inhibitor of ESCRT-dependent virus budding and LINE-1 retrotransposition in primates. Curr Biol 2022; 32:1511-1522.e6. [PMID: 35245459 PMCID: PMC9007875 DOI: 10.1016/j.cub.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Most antiviral proteins recognize specific features of viruses. In contrast, the recently described antiviral factor retroCHMP3 interferes with the "host endosomal complexes required for transport" (ESCRT) pathway to inhibit the budding of enveloped viruses. RetroCHMP3 arose independently on multiple occasions via duplication and truncation of the gene encoding the ESCRT-III factor CHMP3. However, since the ESCRT pathway is essential for cellular membrane fission reactions, ESCRT inhibition is potentially cytotoxic. This raises fundamental questions about how hosts can repurpose core cellular functions into antiviral functions without incurring a fitness cost due to excess cellular toxicity. We reveal the evolutionary process of detoxification for retroCHMP3 in New World monkeys using a combination of ancestral reconstructions, cytotoxicity, and virus release assays. A duplicated, full-length copy of retroCHMP3 in the ancestors of New World monkeys provides modest inhibition of virus budding while exhibiting subtle cytotoxicity. Ancient retroCHMP3 then accumulated mutations that reduced cytotoxicity but preserved virus inhibition before a truncating stop codon arose in the more recent ancestors of squirrel monkeys, resulting in potent inhibition. In species where full-length copies of retroCHMP3 still exist, their artificial truncation generated potent virus-budding inhibitors with little cytotoxicity, revealing the potential for future antiviral defenses in modern species. In addition, we discovered that retroCHMP3 restricts LINE-1 retrotransposition, revealing how different challenges to genome integrity might explain multiple independent origins of retroCHMP3 in different species to converge on new immune functions.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Diane Miller Downhour
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Kristen A Davenport
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Alesia N McKeown
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA.
| |
Collapse
|
114
|
Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol 2022; 22:629-638. [PMID: 35396464 DOI: 10.1038/s41577-022-00705-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
The cell-autonomous innate immune system enables animal cells to resist viral infection. This system comprises an array of sensors that, after detecting viral molecules, activate the expression of antiviral proteins and the interferon response. The repertoire of immune sensors and antiviral proteins has long been considered to be derived from extensive evolutionary innovation in vertebrates, but new data challenge this dogma. Recent studies show that central components of the cell-autonomous innate immune system have ancient evolutionary roots in prokaryotic genes that protect bacteria from phages. These include the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, Toll/IL-1 receptor (TIR) domain-containing pathogen receptors, the viperin family of antiviral proteins, SAMHD1-like nucleotide-depletion enzymes, gasdermin proteins and key components of the RNA interference pathway. This Perspective details current knowledge of the elements of antiviral immunity that are conserved from bacteria to humans, and presents possible evolutionary scenarios to explain the observed conservation.
Collapse
|
115
|
Mehta R, Chekmeneva E, Jackson H, Sands C, Mills E, Arancon D, Li HK, Arkell P, Rawson TM, Hammond R, Amran M, Haber A, Cooke GS, Noursadeghi M, Kaforou M, Lewis MR, Takats Z, Sriskandan S. Antiviral metabolite 3'-deoxy-3',4'-didehydro-cytidine is detectable in serum and identifies acute viral infections including COVID-19. MED 2022; 3:204-215.e6. [PMID: 35128501 PMCID: PMC8801973 DOI: 10.1016/j.medj.2022.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/14/2021] [Accepted: 01/21/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND There is a critical need for rapid viral infection diagnostics to enable prompt case identification in pandemic settings and support targeted antimicrobial prescribing. METHODS Using untargeted high-resolution liquid chromatography coupled with mass spectrometry, we compared the admission serum metabolome of emergency department patients with viral infections (including COVID-19), bacterial infections, inflammatory conditions, and healthy controls. Sera from an independent cohort of emergency department patients admitted with viral or bacterial infections underwent profiling to validate findings. Associations between whole-blood gene expression and the identified metabolite of interest were examined. FINDINGS 3'-Deoxy-3',4'-didehydro-cytidine (ddhC), a free base of the only known human antiviral small molecule ddhC-triphosphate (ddhCTP), was detected for the first time in serum. When comparing 60 viral with 101 non-viral cases in the discovery cohort, ddhC was the most significantly differentially abundant metabolite, generating an area under the receiver operating characteristic curve (AUC) of 0.954 (95% CI: 0.923-0.986). In the validation cohort, ddhC was again the most significantly differentially abundant metabolite when comparing 40 viral with 40 bacterial cases, generating an AUC of 0.81 (95% CI 0.708-0.915). Transcripts of viperin and CMPK2, enzymes responsible for ddhCTP synthesis, were among the five genes most highly correlated with ddhC abundance. CONCLUSIONS The antiviral precursor molecule ddhC is detectable in serum and an accurate marker for acute viral infection. Interferon-inducible genes viperin and CMPK2 are implicated in ddhC production in vivo. These findings highlight a future diagnostic role for ddhC in viral diagnosis, pandemic preparedness, and acute infection management. FUNDING NIHR Imperial BRC; UKRI.
Collapse
Affiliation(s)
- Ravi Mehta
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Elena Chekmeneva
- National Phenome Centre, Imperial College London, London SW7 2AZ, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Heather Jackson
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Caroline Sands
- National Phenome Centre, Imperial College London, London SW7 2AZ, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Ewurabena Mills
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | | | - Ho Kwong Li
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London SW7 2AZ, UK
| | - Paul Arkell
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Timothy M. Rawson
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
- Division of Infection & Immunity, University College London, London WC1 E6BT, UK
| | - Robert Hammond
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Maisarah Amran
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Anna Haber
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Graham S. Cooke
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, University College London, London WC1 E6BT, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Matthew R. Lewis
- National Phenome Centre, Imperial College London, London SW7 2AZ, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Zoltan Takats
- National Phenome Centre, Imperial College London, London SW7 2AZ, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London SW7 2AZ, UK
- NIHR Health Protection Research Unit in Healthcare-associated Infection & Antimicrobial Resistance, Imperial College London, London W12 0NN, UK
| |
Collapse
|
116
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
117
|
Ghosh S, Marsh ENG. Viperin-taken down with a pinch of salt. EMBO Rep 2022; 23:e54258. [PMID: 34796609 PMCID: PMC8728622 DOI: 10.15252/embr.202154258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
What to eat when you have a cold has always been the subject of much debate and advice, usually informed by very little science. However, in this issue of EMBO Reports, Yuan et al (2021) uncover an intriguing link between a high salt diet and a susceptibility to viral infection. Mice fed on a short-term high salt diet were found to carry a higher viral load than control mice fed a normal diet. The researchers trace this effect back to a salt-induced decrease in cellular levels of the antiviral protein, viperin. More generally, these studies provide further insights into the regulation of proteins involved in the cellular antiviral response.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
| | - E Neil G Marsh
- Departments of Chemistry and Biological ChemistryUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
118
|
Rocha EPC, Bikard D. Microbial defenses against mobile genetic elements and viruses: Who defends whom from what? PLoS Biol 2022; 20:e3001514. [PMID: 35025885 PMCID: PMC8791490 DOI: 10.1371/journal.pbio.3001514] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Prokaryotes have numerous mobile genetic elements (MGEs) that mediate horizontal gene transfer (HGT) between cells. These elements can be costly, even deadly, and cells use numerous defense systems to filter, control, or inactivate them. Recent studies have shown that prophages, conjugative elements, their parasites (phage satellites and mobilizable elements), and other poorly described MGEs encode defense systems homologous to those of bacteria. These constitute a significant fraction of the repertoire of cellular defense genes. As components of MGEs, these defense systems have presumably evolved to provide them, not the cell, adaptive functions. While the interests of the host and MGEs are aligned when they face a common threat such as an infection by a virulent phage, defensive functions carried by MGEs might also play more selfish roles to fend off other antagonistic MGEs or to ensure their maintenance in the cell. MGEs are eventually lost from the surviving host genomes by mutational processes and their defense systems can be co-opted when they provide an advantage to the cell. The abundance of defense systems in MGEs thus sheds new light on the role, effect, and fate of the so-called "cellular defense systems," whereby they are not only merely microbial defensive weapons in a 2-partner arms race, but also tools of intragenomic conflict between multiple genetic elements with divergent interests that shape cell fate and gene flow at the population level.
Collapse
Affiliation(s)
- Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, Synthetic Biology, Department of Microbiology, Paris, France
| |
Collapse
|
119
|
Cargo Genes of Tn 7-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. mBio 2021; 12:e0293821. [PMID: 34872347 PMCID: PMC8649781 DOI: 10.1128/mbio.02938-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposition is a major mechanism of horizontal gene mobility in prokaryotes. However, exploration of the genes mobilized by transposons (cargo) is hampered by the difficulty in delineating integrated transposons from their surrounding genetic context. Here, we present a computational approach that allowed us to identify the boundaries of 6,549 Tn7-like transposons. We found that 96% of these transposons carry at least one cargo gene. Delineation of distinct communities in a gene-sharing network demonstrates how transposons function as a conduit of genes between phylogenetically distant hosts. Comparative analysis of the cargo genes reveals significant enrichment of mobile genetic elements (MGEs) nested within Tn7-like transposons, such as insertion sequences and toxin-antitoxin modules, and of genes involved in recombination, anti-MGE defense, and antibiotic resistance. More unexpectedly, cargo also includes genes encoding central carbon metabolism enzymes. Twenty-two Tn7-like transposons carry both an anti-MGE defense system and antibiotic resistance genes, illustrating how bacteria can overcome these combined pressures upon acquisition of a single transposon. This work substantially expands the distribution of Tn7-like transposons, defines their evolutionary relationships, and provides a large-scale functional classification of prokaryotic genes mobilized by transposition.
Collapse
|
120
|
Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 2021; 600:116-120. [PMID: 34853457 DOI: 10.1038/s41586-021-04098-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is a canonical component of animal and plant immune systems1,2. In plants, intracellular pathogen sensing by immune receptors triggers their TIR domains to generate a molecule that is a variant of cyclic ADP-ribose3,4. This molecule is hypothesized to mediate plant cell death through a pathway that has yet to be resolved5. TIR domains have also been shown to be involved in a bacterial anti-phage defence system called Thoeris6, but the mechanism of Thoeris defence remained unknown. Here we show that phage infection triggers Thoeris TIR-domain proteins to produce an isomer of cyclic ADP-ribose. This molecular signal activates a second protein, ThsA, which then depletes the cell of the essential molecule nicotinamide adenine dinucleotide (NAD) and leads to abortive infection and cell death. We also show that, similar to eukaryotic innate immune systems, bacterial TIR-domain proteins determine the immunological specificity to the invading pathogen. Our results describe an antiviral signalling pathway in bacteria, and suggest that the generation of intracellular signalling molecules is an ancient immunological function of TIR domains that is conserved in both plant and bacterial immunity.
Collapse
|
121
|
Ofir G, Herbst E, Baroz M, Cohen D, Millman A, Doron S, Tal N, Malheiro DBA, Malitsky S, Amitai G, Sorek R. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 2021. [PMID: 34853457 DOI: 10.1101/2021.01.06.425286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is a canonical component of animal and plant immune systems1,2. In plants, intracellular pathogen sensing by immune receptors triggers their TIR domains to generate a molecule that is a variant of cyclic ADP-ribose3,4. This molecule is hypothesized to mediate plant cell death through a pathway that has yet to be resolved5. TIR domains have also been shown to be involved in a bacterial anti-phage defence system called Thoeris6, but the mechanism of Thoeris defence remained unknown. Here we show that phage infection triggers Thoeris TIR-domain proteins to produce an isomer of cyclic ADP-ribose. This molecular signal activates a second protein, ThsA, which then depletes the cell of the essential molecule nicotinamide adenine dinucleotide (NAD) and leads to abortive infection and cell death. We also show that, similar to eukaryotic innate immune systems, bacterial TIR-domain proteins determine the immunological specificity to the invading pathogen. Our results describe an antiviral signalling pathway in bacteria, and suggest that the generation of intracellular signalling molecules is an ancient immunological function of TIR domains that is conserved in both plant and bacterial immunity.
Collapse
Affiliation(s)
- Gal Ofir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Herbst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Baroz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sergey Malitsky
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
122
|
Shomar H, Bokinsky G. Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules 2021; 26:molecules26226930. [PMID: 34834021 PMCID: PMC8617995 DOI: 10.3390/molecules26226930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.
Collapse
Affiliation(s)
- Helena Shomar
- INSERM U722, Faculté de Médecine, Université de Paris, Site Xavier Bichat, 75018 Paris, France
- Correspondence: (H.S.); (G.B.)
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Correspondence: (H.S.); (G.B.)
| |
Collapse
|
123
|
Shen L, Lan L, Zhu T, Chen H, Gu H, Wang C, Chen Y, Wang M, Tu H, Enghard P, Jiang H, Chen J. Identification and Validation of IFI44 as Key Biomarker in Lupus Nephritis. Front Med (Lausanne) 2021; 8:762848. [PMID: 34760904 PMCID: PMC8574154 DOI: 10.3389/fmed.2021.762848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Lupus nephritis (LN) is a common and severe organ manifestation of systemic lupus erythematosus (SLE) and is a major cause of SLE related deaths. Early diagnosis is essential to improve the prognosis of patients with LN. To screen the potential biomarkers associated with LN, we downloaded the gene expression profile of GSE99967 from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was utilized to construct a gene co-expression network and identify gene modules associated with LN. Gene Ontology (GO) analysis was also applied to explore the biological function of genes and identify the key module. Differentially expressed genes (DEGs) were identified and Maximal Clique Centrality (MCC) values were calculated to screen hub genes. Furthermore, we selected promising biomarkers for real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) validation in independent cohorts. Our results indicated that five hub genes, including IFI44, IFIT3, HERC5, RSAD2, and DDX60 play vital roles in the pathogenesis of LN. Importantly, IFI44 may considered as a key biomarker in LN for its diagnostic capabilities, which is also a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Lingling Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Lan Lan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Tingting Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hongjun Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Haifeng Gu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Ying Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Minmin Wang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haiyan Tu
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
124
|
Tal N, Morehouse BR, Millman A, Stokar-Avihail A, Avraham C, Fedorenko T, Yirmiya E, Herbst E, Brandis A, Mehlman T, Oppenheimer-Shaanan Y, Keszei AFA, Shao S, Amitai G, Kranzusch PJ, Sorek R. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 2021; 184:5728-5739.e16. [PMID: 34644530 DOI: 10.1016/j.cell.2021.09.031] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.
Collapse
Affiliation(s)
- Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin R Morehouse
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avigail Stokar-Avihail
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Carmel Avraham
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Taya Fedorenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ehud Herbst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7670001, Israel
| | - Tevie Mehlman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7670001, Israel
| | | | | | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
125
|
Duncan-Lowey B, McNamara-Bordewick NK, Tal N, Sorek R, Kranzusch PJ. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. Mol Cell 2021; 81:5039-5051.e5. [PMID: 34784509 DOI: 10.1016/j.molcel.2021.10.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Cyclic oligonucleotide-based antiphage signaling systems (CBASS) are antiviral defense operons that protect bacteria from phage replication. Here, we discover a widespread class of CBASS transmembrane (TM) effector proteins that respond to antiviral nucleotide signals and limit phage propagation through direct membrane disruption. Crystal structures of the Yersinia TM effector Cap15 reveal a compact 8-stranded β-barrel scaffold that forms a cyclic dinucleotide receptor domain that oligomerizes upon activation. We demonstrate that activated Cap15 relocalizes throughout the cell and specifically induces rupture of the inner membrane. Screening for active effectors, we identify the function of distinct families of CBASS TM effectors and demonstrate that cell death via disruption of inner-membrane integrity is a common mechanism of defense. Our results reveal the function of the most prominent class of effector protein in CBASS immunity and define disruption of the inner membrane as a widespread strategy of abortive infection in bacterial phage defense.
Collapse
Affiliation(s)
- Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
126
|
Gao Y, Li C, Shi L, Wang F, Ye J, Lu YA, Liu XQ. Viperin_sv1 promotes RIG-I expression and suppresses SVCV replication through its radical SAM domain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104166. [PMID: 34116117 DOI: 10.1016/j.dci.2021.104166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
SVCV infection is known to activate the host's innate immune responses, including the production of interferon (IFN) and interferon-stimulated genes (ISGs). Viperin_sv1 is a novel splice variant of viperin, which is induced during SVCV infection and proves to positively regulate the IFN activation and production. However, the underlying mechanism remains unsolved. In this study, the P protein of SVCV was identified to be the key to induce the mRNA modification and production of viperin_sv1 during the virus infection. Besides, Viperin_sv1 was able to trigger the RLR signaling cascades to activate type-1 interferon response. Additional analysis revealed that viperin_sv1 promoted the stability and function of RIG-I, which result in the production of IFN and ISGs. Moreover, the central SAM domain of viperin_sv1 was demonstrated to be essential for regulating RIG-I protein expression and inducing IFN production. Furthermore, this study also showed that SVCV replication could be inhibited by the viperin_sv1 SAM domain. In conclusion, our study demonstrates that viperin_sv1 reduces the replication of SVCV by promoting the RIG-I protein expression. Our findings identified the antiviral function played by the SAM domain of viperin_sv1 and suggested an antiviral mechanism that is conserved among different species.
Collapse
Affiliation(s)
- Yan Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuan-An Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Xue-Qin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China.
| |
Collapse
|
127
|
Daskalov A, Glass NL. Gasdermin and Gasdermin-Like Pore-Forming Proteins in Invertebrates, Fungi and Bacteria. J Mol Biol 2021; 434:167273. [PMID: 34599942 DOI: 10.1016/j.jmb.2021.167273] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The gasdermin family of pore-forming proteins (PFPs) has recently emerged as key molecular players controlling immune-related cell death in mammals. Characterized mammalian gasdermins are activated through proteolytic cleavage by caspases or serine proteases, which remove an inhibitory carboxy-terminal domain, allowing the pore-formation process. Processed gasdermins form transmembrane pores permeabilizing the plasma membrane, which often results in lytic and inflammatory cell death. While the gasdermin-dependent cell death (pyroptosis) has been predominantly characterized in mammals, it now has become clear that gasdermins also control cell death in early vertebrates (teleost fish) and invertebrate animals such as corals (Cnidaria). Moreover, gasdermins and gasdermin-like proteins have been identified and characterized in taxa outside of animals, notably Fungi and Bacteria. Fungal and bacterial gasdermins share many features with mammalian gasdermins including their mode of activation through proteolysis. It has been shown that in some cases the proteolytic activation is executed by evolutionarily related proteases acting downstream of proteins resembling immune receptors controlling pyroptosis in mammals. Overall, these findings establish gasdermins and gasdermin-regulated cell death as an extremely ancient mechanism of cellular suicide and build towards an understanding of the evolution of regulated cell death in the context of immunology. Here, we review the broader gasdermin family, focusing on recent discoveries in invertebrates, fungi and bacteria.
Collapse
Affiliation(s)
- Asen Daskalov
- Institut de Biochimie et Génétique Cellulaires, University of Bordeaux, France.
| | - N Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720-3102, United States
| |
Collapse
|
128
|
Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJJ. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 2021; 46:6374866. [PMID: 34558600 PMCID: PMC8829019 DOI: 10.1093/femsre/fuab048] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
We are in the midst of a golden age of uncovering defense systems against bacteriophages. Apart from the fundamental interest in these defense systems, and revolutionary applications that have been derived from them (e.g. CRISPR-Cas9 and restriction endonucleases), it is unknown how defense systems contribute to resistance formation against bacteriophages in clinical settings. Bacteriophages are now being reconsidered as therapeutic agents against bacterial infections due the emergence of multidrug resistance. However, bacteriophage resistance through defense systems and other means could hinder the development of successful phage-based therapies. Here, we review the current state of the field of bacteriophage defense, highlight the relevance of bacteriophage defense for potential clinical use of bacteriophages as therapeutic agents and suggest new directions of research.
Collapse
Affiliation(s)
- Julia E Egido
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands.,Fagenbank, Delft, Netherlands
| | - Cristian Aparicio-Maldonado
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands.,Fagenbank, Delft, Netherlands
| |
Collapse
|
129
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
130
|
|
131
|
Arava YS, Béjà O. Phage biology: Stuck with dU. Curr Biol 2021; 31:R898-R900. [PMID: 34314715 DOI: 10.1016/j.cub.2021.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A new environmental study has discovered marine phages containing deoxyuridine instead of deoxythymidine in their DNA. The newly isolated viruses are phylogenetically distinct from any currently known double-stranded DNA phages.
Collapse
Affiliation(s)
- Yoav S Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
132
|
Lachowicz JC, Gizzi AS, Almo SC, Grove TL. Structural Insight into the Substrate Scope of Viperin and Viperin-like Enzymes from Three Domains of Life. Biochemistry 2021; 60:2116-2129. [PMID: 34156827 PMCID: PMC8672371 DOI: 10.1021/acs.biochem.0c00958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viperin is a member of the radical S-adenosylmethionine superfamily and has been shown to restrict the replication of a wide range of RNA and DNA viruses. We recently demonstrated that human viperin (HsVip) catalyzes the conversion of CTP to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP or ddh-synthase), which acts as a chain terminator for virally encoded RNA-dependent RNA polymerases from several flaviviruses. Viperin homologues also exist in non-chordate eukaryotes (e.g., Cnidaria and Mollusca), numerous fungi, and members of the archaeal and eubacterial domains. Recently, it was reported that non-chordate and non-eukaryotic viperin-like homologues are also ddh-synthases and generate a diverse range of ddhNTPs, including the newly discovered ddhUTP and ddhGTP. Herein, we expand on the catalytic mechanism of mammalian, fungal, bacterial, and archaeal viperin-like enzymes with a combination of X-ray crystallography and enzymology. We demonstrate that, like mammalian viperins, these recently discovered viperin-like enzymes operate through the same mechanism and can be classified as ddh-synthases. Furthermore, we define the unique chemical and physical determinants supporting ddh-synthase activity and nucleotide selectivity, including the crystallographic characterization of a fungal viperin-like enzyme that utilizes UTP as a substrate and a cnidaria viperin-like enzyme that utilizes CTP as a substrate. Together, these results support the evolutionary conservation of the ddh-synthase activity and its broad phylogenetic role in innate antiviral immunity.
Collapse
Affiliation(s)
- Jake C Lachowicz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Anthony S Gizzi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
133
|
Lewandowska M, Sharoni T, Admoni Y, Aharoni R, Moran Y. Functional characterization of the cnidarian antiviral immune response reveals ancestral complexity. Mol Biol Evol 2021; 38:4546-4561. [PMID: 34180999 PMCID: PMC8476169 DOI: 10.1093/molbev/msab197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animals evolved a broad repertoire of innate immune sensors and downstream effector cascades for defense against RNA viruses. Yet, this system varies greatly among different bilaterian animals, masking its ancestral state. In this study, we aimed to characterize the antiviral immune response of the cnidarian Nematostella vectensis and decipher the function of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) known to detect viral double-stranded RNA (dsRNA) in bilaterians but activate different antiviral pathways in vertebrates and nematodes. We show that polyinosinic:polycytidylic acid (poly(I:C)), a mimic of long viral dsRNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), triggers a complex antiviral immune response bearing features distinctive for both vertebrate and invertebrate systems. Importantly, a well-characterized agonist of the vertebrate RIG-I receptor does not induce a significant transcriptomic response that bears signature of the antiviral immune response, which experimentally supports the results of a phylogenetic analysis indicating clustering of the two N. vectensis RLR paralogs (NveRLRa and NveRLRb) with MDA5. Furthermore, the results of affinity assays reveal that NveRLRb binds poly(I:C) and long dsRNA and its knockdown impairs the expression of putative downstream effector genes including RNA interference components. Our study provides for the first time the functional evidence for the conserved role of RLRs in initiating immune response to dsRNA that originated before the cnidarian–bilaterian split and lay a strong foundation for future research on the evolution of the immune responses to RNA viruses.
Collapse
Affiliation(s)
- Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yael Admoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
134
|
Uriu K, Kosugi Y, Suzuki N, Ito J, Sato K. Elucidation of the Complicated Scenario of Primate APOBEC3 Gene Evolution. J Virol 2021; 95:e00144-21. [PMID: 33789992 PMCID: PMC8316122 DOI: 10.1128/jvi.00144-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or "repertoire" of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates.IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.
Collapse
Affiliation(s)
- Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Narumi Suzuki
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
135
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
136
|
Lai JH, Wu DW, Wu CH, Hung LF, Huang CY, Ka SM, Chen A, Chang ZF, Ho LJ. Mitochondrial CMPK2 mediates immunomodulatory and antiviral activities through IFN-dependent and IFN-independent pathways. iScience 2021; 24:102498. [PMID: 34142025 PMCID: PMC8188380 DOI: 10.1016/j.isci.2021.102498] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Mitochondria regulate the immune response after dengue virus (DENV) infection. Microarray analysis of genes identified the upregulation of mitochondrial cytidine/uridine monophosphate kinase 2 (CMPK2) by DENV infection. We used small interfering RNA-mediated knockdown (KD) and CRISPR-Cas9 knockout (KO) approaches, to investigate the role of CMPK2 in mouse and human cells. The results showed that CMPK2 was critical in DENV-induced antiviral cytokine release and mitochondrial oxidative stress and mitochondrial DNA release to the cytosol. The DENV-induced activation of Toll-like receptor (TLR)-9, inflammasome pathway, and cell migration was suppressed by CMPK2 depletion; however, viral production increased under CMPK2 deficiency. Examining mouse bone marrow-derived dendritic cells from interferon-alpha (IFN-α) receptor-KO mice and signal transducer and activator of transcription 1 (STAT1)-KO mice, we confirmed that CMPK2-mediated antiviral activity occurred in IFN-dependent and IFN-independent manners. In sum, CMPK2 is a critical factor in DENV-induced immune responses to determine innate immunity.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, R.O.C
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, R.O.C
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, R.O.C
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, R.O.C
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, R.O.C
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, R.O.C
| |
Collapse
|
137
|
Luo R, Delaunay‐Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23:2339-2363. [PMID: 33769683 PMCID: PMC8251359 DOI: 10.1111/1462-2920.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.
Collapse
Affiliation(s)
- Ruibang Luo
- Department of Computer ScienceThe University of Hong KongBonham RoadPokfulamHong Kong
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint‐JacquesParis75014France
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadHong Kong
| |
Collapse
|
138
|
Blue TC, Davis KM. Computational Approaches: An Underutilized Tool in the Quest to Elucidate Radical SAM Dynamics. Molecules 2021; 26:molecules26092590. [PMID: 33946806 PMCID: PMC8124187 DOI: 10.3390/molecules26092590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022] Open
Abstract
Enzymes are biological catalysts whose dynamics enable their reactivity. Visualizing conformational changes, in particular, is technically challenging, and little is known about these crucial atomic motions. This is especially problematic for understanding the functional diversity associated with the radical S-adenosyl-L-methionine (SAM) superfamily whose members share a common radical mechanism but ultimately catalyze a broad range of challenging reactions. Computational chemistry approaches provide a readily accessible alternative to exploring the time-resolved behavior of these enzymes that is not limited by experimental logistics. Here, we review the application of molecular docking, molecular dynamics, and density functional theory, as well as hybrid quantum mechanics/molecular mechanics methods to the study of these enzymes, with a focus on understanding the mechanistic dynamics associated with turnover.
Collapse
|
139
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
140
|
Danchin A. Three overlooked key functional classes for building up minimal synthetic cells. Synth Biol (Oxf) 2021; 6:ysab010. [PMID: 35174295 PMCID: PMC8842674 DOI: 10.1093/synbio/ysab010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Assembly of minimal genomes revealed many genes encoding unknown functions. Three overlooked functional categories account for some of them. Cells are prone to make errors and age. As a first key function, discrimination between proper and changed entities is indispensable. Discrimination requires management of information, an authentic, yet abstract, currency of reality. For example proteins age, sometimes very fast. The cell must identify, then get rid of old proteins without destroying young ones. Implementing discrimination in cells leads to the second set of functions, usually ignored. Being abstract, information must nevertheless be embodied into material entities, with unavoidable idiosyncratic properties. This brings about novel unmet needs. Hence, the buildup of cells elicits specific but awkward material implementations, ‘kludges’ that become essential under particular settings, while difficult to identify. Finally, a third functional category characterizes the need for growth, with metabolic implementations allowing the cell to put together the growth of its cytoplasm, membranes, and genome, spanning different spatial dimensions. Solving this metabolic quandary, critical for engineering novel synthetic biology chassis, uncovered an unexpected role for CTP synthetase as the coordinator of nonhomothetic growth. Because a significant number of SynBio constructs aim at creating cell factories we expect that they will be attacked by viruses (it is not by chance that the function of the CRISPR system was identified in industrial settings). Substantiating the role of CTP, natural selection has dealt with this hurdle via synthesis of the antimetabolite 3′‐deoxy‐3′,4′‐didehydro‐CTP, recruited for antiviral immunity in all domains of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos Labs/Stellate Therapeutics, Institut Cochin, Paris, France
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam, SAR Hong Kong, China
| |
Collapse
|
141
|
Ou Z, Ouzounis C, Wang D, Sun W, Li J, Chen W, Marlière P, Danchin A. A Path toward SARS-CoV-2 Attenuation: Metabolic Pressure on CTP Synthesis Rules the Virus Evolution. Genome Biol Evol 2020; 12:2467-2485. [PMID: 33125064 PMCID: PMC7665462 DOI: 10.1093/gbe/evaa229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the context of the COVID-19 pandemic, we describe here the singular metabolic background that constrains enveloped RNA viruses to evolve toward likely attenuation in the long term, possibly after a step of increased pathogenicity. Cytidine triphosphate (CTP) is at the crossroad of the processes allowing SARS-CoV-2 to multiply, because CTP is in demand for four essential metabolic steps. It is a building block of the virus genome, it is required for synthesis of the cytosine-based liponucleotide precursors of the viral envelope, it is a critical building block of the host transfer RNAs synthesis and it is required for synthesis of dolichol-phosphate, a precursor of viral protein glycosylation. The CCA 3'-end of all the transfer RNAs required to translate the RNA genome and further transcripts into the proteins used to build active virus copies is not coded in the human genome. It must be synthesized de novo from CTP and ATP. Furthermore, intermediary metabolism is built on compulsory steps of synthesis and salvage of cytosine-based metabolites via uridine triphosphate that keep limiting CTP availability. As a consequence, accidental replication errors tend to replace cytosine by uracil in the genome, unless recombination events allow the sequence to return to its ancestral sequences. We document some of the consequences of this situation in the function of viral proteins. This unique metabolic setup allowed us to highlight and provide a raison d'être to viperin, an enzyme of innate antiviral immunity, which synthesizes 3'-deoxy-3',4'-didehydro-CTP as an extremely efficient antiviral nucleotide.
Collapse
Affiliation(s)
- Zhihua Ou
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Christos Ouzounis
- Biological Computation and Process Laboratory, Centre for Research and Technology Hellas, Chemical Process and Energy Resources Institute, Thessalonica, Greece
| | - Daxi Wang
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Wanying Sun
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Weijun Chen
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China.,BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, Paris, France
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, Paris, France.,School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam, Hong Kong
| |
Collapse
|