101
|
Abstract
Even with strict implementation of preventive measures, surgical site infections (SSIs) remain among the most prevalent health care-associated infections. New strategies to prevent SSIs would thus have a huge impact, also in light of increasing global rates of antimicrobial drug resistance. Considering the indispensable role of innate immune cells in host defense in surgical wounds, enhancing their function may represent a potential strategy for prevention of SSIs. Trained immunity is characterized by metabolic, epigenetic, and functional reprogramming of innate immune cells. These functional changes take place at multiple levels, namely, at the level of bone marrow precursors, circulating innate immune cells, and resident tissue macrophages. Experimental studies have shown that induction of trained immunity can protect against various infections. Increasing evidence suggests that it may also lower the risk and severity of SSIs. This may occur through several different mechanisms. First, trained immunity enhances local host defense against soft tissue infections, including those caused by Staphylococcus aureus, the most common cause of SSIs. Second, training effects on nonimmune cells such as fibroblasts have been shown to improve wound repair. Third, trained immunity may prevent or reverse the postoperative immunoparalysis that contributes to risk of infections following surgery. There are multiple approaches to inducing trained immunity, such as vaccination with the bacillus Calmette-Guérin (BCG) tuberculosis vaccine, topical administration of β-glucan, or treatment with the Toll-like receptor 7 agonist imiquimod. Clinical-experimental studies should establish if and how induction of trained immunity can best help prevent SSIs and what patient groups would most benefit.
Collapse
|
102
|
Karimpour M, Ravanbakhsh R, Maydanchi M, Rajabi A, Azizi F, Saber A. Cancer driver gene and non-coding RNA alterations as biomarkers of brain metastasis in lung cancer: A review of the literature. Biomed Pharmacother 2021; 143:112190. [PMID: 34560543 DOI: 10.1016/j.biopha.2021.112190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Brain metastasis (BM) is the most common event in patients with lung cancer. Despite multimodal treatments and advances in systemic therapies, development of BM remains one of the main factors associated with poor prognosis and mortality in patients with lung cancer. Therefore, better understanding of mechanisms involved in lung cancer brain metastasis (LCBM) is of great importance to suppress cancer cells and to improve the overall survival of patients. Several cancer-related genes such as EGFR and KRAS have been proposed as potential predictors of LCBM. In addition, there is ample evidence supporting crucial roles of non-coding RNAs (ncRNAs) in mediating LCBM. In this review, we provide comprehensive information on risk assessment, predictive, and prognostic panels for early detection of BM in patients with lung cancer. Moreover, we present an overview of LCBM molecular mechanisms, cancer driver genes, and ncRNAs which may predict the risk of BM in lung cancer patients. Recent clinical studies have focused on determining mechanisms involved in LCBM and their association with diagnosis, prognosis, and treatment outcomes. These studies have shown that alterations in EGFR, KRAS, BRAF, and ALK, as the most frequent coding gene alterations, and dysregulation of ncRNAs such as miR-423, miR-330-3p, miR-145, piR-651, and MALAT1 can be considered as potential biomarkers of LCBM.
Collapse
Affiliation(s)
- Mina Karimpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Melika Maydanchi
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Faezeh Azizi
- Genetics Office, Non-Communicable Disease Control Department, Public Health Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Saber
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran.
| |
Collapse
|
103
|
Abstract
PURPOSE OF REVIEW HIV-1 elite controllers encompass small populations of people infected with HIV-1 who can spontaneously control plasma viral loads below the limit of detection, in the absence of antiretroviral treatment. Antiviral immune responses are likely to contribute to such an impressive HIV-1 disease outcome. In this review, we discuss recent novel findings regarding antiviral innate and adaptive immune responses in elite controllers. RECENT FINDINGS Elite controllers maintain a pool of infected cells in which intact HIV-1 proviruses are more frequently integrated into noncoding regions of the host genome, likely conferring a state of deep latency. This atypical viral reservoir configuration is best explained by potent antiviral immune responses that can successfully eliminate virally infected cells in which proviruses are integrated into permissive chromatin. However, identifying the specific type and nature of this immune selection pressure represents a formidable challenge. Recent studies continue to support the role of HIV-1-specific CD8+ T cells as the main driver of elite immune control of HIV-1, however, increasing evidence suggests that their role is complemented by a fine-tuned interplay with innate immune cell subsets. Therefore, the combination of different immune effector mechanisms may shape antiviral immunity in elite controllers. SUMMARY Understanding the complex immune mechanisms responsible for natural, drug-free HIV-1 control represents a premier avenue to find and develop interventions for a cure of HIV-1 infection. Future single-cell assays designed to uncover the full genetic, epigenetic, transcriptional and functional complexity of antiviral immune responses in elite controllers may allow us to define correlates of antiviral immune protection in greater detail.
Collapse
Affiliation(s)
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA; 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
104
|
Cao S, Liu M, Sehrawat TS, Shah VH. Regulation and functional roles of chemokines in liver diseases. Nat Rev Gastroenterol Hepatol 2021; 18:630-647. [PMID: 33976393 PMCID: PMC9036964 DOI: 10.1038/s41575-021-00444-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/03/2023]
Abstract
Inflammation is a major contributor to the pathogenesis of almost all liver diseases. Low-molecular-weight proteins called chemokines are the main drivers of liver infiltration by immune cells such as macrophages, neutrophils and others during an inflammatory response. During the past 25 years, tremendous progress has been made in understanding the regulation and functions of chemokines in the liver. This Review summarizes three main aspects of the latest advances in the study of chemokine function in liver diseases. First, we provide an overview of chemokine biology, with a particular focus on the genetic and epigenetic regulation of chemokine transcription as well as on the cell type-specific production of chemokines by liver cells and liver-associated immune cells. Second, we highlight the functional roles of chemokines in liver homeostasis and their involvement in progression to disease in both human and animal models. Third, we discuss the therapeutic opportunities targeting chemokine production and signalling in the treatment of liver diseases, such as alcohol-associated liver disease and nonalcoholic steatohepatitis, including the relevant preclinical studies and ongoing clinical trials.
Collapse
|
105
|
Gokhale NS, Smith JR, Van Gelder RD, Savan R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol Rev 2021; 304:77-96. [PMID: 34405416 DOI: 10.1111/imr.13019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
From the initial sensing of viral nucleotides by pattern recognition receptors, through the induction of type I and III interferons (IFN), upregulation of antiviral effector proteins, and resolution of the inflammatory response, each step of innate immune signaling is under tight control. Though innate immunity is often associated with broad regulation at the level of gene transcription, RNA-centric post-transcriptional processes have emerged as critical mechanisms for ensuring a proper antiviral response. Here, we explore the diverse RNA regulatory mechanisms that modulate the innate antiviral immune response, with a focus on RNA sensing by RIG-I-like receptors (RLR), interferon (IFN) and IFN signaling pathways, viral pathogenesis, and host genetic variation that contributes to these processes. We address the post-transcriptional interactions with RNA-binding proteins, non-coding RNAs, transcript elements, and modifications that control mRNA stability, as well as alternative splicing events that modulate the innate immune antiviral response.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Julian R Smith
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Rachel D Van Gelder
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
106
|
Liu M, Cao S, He L, Gao J, Arab JP, Cui H, Xuan W, Gao Y, Sehrawat TS, Hamdan FH, Ventura-Cots M, Argemi J, Pomerantz WCK, Johnsen SA, Lee JH, Gao F, Ordog T, Mathurin P, Revzin A, Bataller R, Yan H, Shah VH. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nat Commun 2021; 12:4560. [PMID: 34315876 PMCID: PMC8316465 DOI: 10.1038/s41467-021-24843-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
Alcoholic hepatitis (AH) is associated with liver neutrophil infiltration through activated cytokine pathways leading to elevated chemokine expression. Super-enhancers are expansive regulatory elements driving augmented gene expression. Here, we explore the mechanistic role of super-enhancers linking cytokine TNFα with chemokine amplification in AH. RNA-seq and histone modification ChIP-seq of human liver explants show upregulation of multiple CXCL chemokines in AH. Liver sinusoidal endothelial cells (LSEC) are identified as an important source of CXCL expression in human liver, regulated by TNFα/NF-κB signaling. A super-enhancer is identified for multiple CXCL genes by multiple approaches. dCas9-KRAB-mediated epigenome editing or pharmacologic inhibition of Bromodomain and Extraterminal (BET) proteins, transcriptional regulators vital to super-enhancer function, decreases chemokine expression in vitro and decreases neutrophil infiltration in murine models of AH. Our findings highlight the role of super-enhancer in propagating inflammatory signaling by inducing chemokine expression and the therapeutic potential of BET inhibition in AH treatment.
Collapse
Affiliation(s)
- Mengfei Liu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Li He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Juan P Arab
- Department of Gastroenterology and Hepatology, School of Medicine of the Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yandong Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Meritxell Ventura-Cots
- Department of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josepmaria Argemi
- Department of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Steven A Johnsen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fei Gao
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ramon Bataller
- Department of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huihuang Yan
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
107
|
Luo H, Bu D, Shao L, Li Y, Sun L, Wang C, Wang J, Yang W, Yang X, Dong J, Zhao Y, Li F. Single-cell Long Non-coding RNA Landscape of T Cells in Human Cancer Immunity. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:377-393. [PMID: 34284134 PMCID: PMC8864193 DOI: 10.1016/j.gpb.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/03/2020] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
The development of new biomarkers or therapeutic targets for cancer immunotherapies requires deep understanding of T cells. To date, the complete landscape and systematic characterization of long noncoding RNAs (lncRNAs) in T cells in cancer immunity are lacking. Here, by systematically analyzing full-length single-cell RNA sequencing (scRNA-seq) data of more than 20,000 libraries of T cells across three cancer types, we provided the first comprehensive catalog and the functional repertoires of lncRNAs in human T cells. Specifically, we developed a custom pipeline for de novotranscriptome assembly and obtained a novel lncRNA catalog containing 9433 genes. This increased the number of current human lncRNA catalog by 16% and nearly doubled the number of lncRNAs expressed in T cells. We found that a portion of expressed genes in single T cells were lncRNAs which had been overlooked by the majority of previous studies. Based on metacell maps constructed by the MetaCell algorithm that partitions scRNA-seq datasets into disjointed and homogenous groups of cells (metacells), 154 signature lncRNA genes were identified. They were associated with effector, exhausted, and regulatory T cell states. Moreover, 84 of them were functionally annotated based on the co-expression networks, indicating that lncRNAs might broadly participate in the regulation of T cell functions. Our findings provide a new point of view and resource for investigating the mechanisms of T cell regulation in cancer immunity as well as for novel cancer-immune biomarker development and cancer immunotherapies
Collapse
Affiliation(s)
- Haitao Luo
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Dechao Bu
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shao
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Liang Sun
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ce Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Jing Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Wei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Yi Zhao
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China; Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China.
| |
Collapse
|
108
|
Higashijima Y, Kanki Y. Potential roles of super enhancers in inflammatory gene transcription. FEBS J 2021; 289:5762-5775. [PMID: 34173323 DOI: 10.1111/febs.16089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
Acute and chronic inflammation is a basic pathological event that contributes to atherosclerosis, cancer, infectious diseases, and immune disorders. Inflammation is an adaptive process to both external and internal stimuli experienced by the human body. Although the mechanism of gene transcription is highly complicated and orchestrated in a timely and spatial manner, recent developments in next-generation sequencing, genome-editing, cryo-electron microscopy, and single cell-based technologies could provide us with insights into the roles of super enhancers (SEs). Initially, SEs were implicated in determining cell fate; subsequent studies have clarified that SEs are associated with various pathological conditions, including cancer and inflammatory diseases. Recent technological advances have unveiled the molecular mechanisms of SEs, which involve epigenetic histone modifications, chromatin three-dimensional structures, and phase-separated condensates. In this review, we discuss the relationship between inflammation and SEs and the therapeutic potential of SEs for inflammatory diseases.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Japan.,Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
109
|
Human Monocytes Plasticity in Neurodegeneration. Biomedicines 2021; 9:biomedicines9070717. [PMID: 34201693 PMCID: PMC8301413 DOI: 10.3390/biomedicines9070717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Monocytes play a crucial role in immunity and tissue homeostasis. They constitute the first line of defense during the inflammatory process, playing a role in the pathogenesis and progression of diseases, making them an attractive therapeutic target. They are heterogeneous in morphology and surface marker expression, which suggest different molecular and physiological properties. Recent evidences have demonstrated their ability to enter the brain, and, as a consequence, their hypothetical role in different neurodegenerative diseases. In this review, we will discuss the current knowledge about the correlation between monocyte dysregulation in the brain and/or in the periphery and neurological diseases in humans. Here we will focus on the most common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis.
Collapse
|
110
|
Khan A, Paneni F, Jandeleit-Dahm K. Cell-specific epigenetic changes in atherosclerosis. Clin Sci (Lond) 2021; 135:1165-1187. [PMID: 33988232 PMCID: PMC8314213 DOI: 10.1042/cs20201066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cerebrovascular and cardiovascular consequences such as heart failure and stroke and is a major contributor to cardiovascular-related mortality worldwide. Atherosclerosis development is a complex process that involves specific structural, functional and transcriptional changes in different vascular cell populations at different stages of the disease. The application of single-cell RNA sequencing (scRNA-seq) analysis has discovered not only disease-related cell-specific transcriptomic profiles but also novel subpopulations of cells once thought as homogenous cell populations. Vascular cells undergo specific transcriptional changes during the entire course of the disease. Epigenetics is the instruction-set-architecture in living cells that defines and maintains the cellular identity by regulating the cellular transcriptome. Although different cells contain the same genetic material, they have different epigenomic signatures. The epigenome is plastic, dynamic and highly responsive to environmental stimuli. Modifications to the epigenome are driven by an array of epigenetic enzymes generally referred to as writers, erasers and readers that define cellular fate and destiny. The reversibility of these modifications raises hope for finding novel therapeutic targets for modifiable pathological conditions including atherosclerosis where the involvement of epigenetics is increasingly appreciated. This article provides a critical review of the up-to-date research in the field of epigenetics mainly focusing on in vivo settings in the context of the cellular role of individual vascular cell types in the development of atherosclerosis.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Francesco Paneni
- Cardiovascular Epigenetics and Regenerative Medicine, Centre for Molecular Cardiology, University of Zurich, Switzerland
| | - Karin A.M. Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
111
|
Keating ST, Groh L, van der Heijden CDCC, Rodriguez H, Dos Santos JC, Fanucchi S, Okabe J, Kaipananickal H, van Puffelen JH, Helder L, Noz MP, Matzaraki V, Li Y, de Bree LCJ, Koeken VACM, Moorlag SJCFM, Mourits VP, Domínguez-Andrés J, Oosting M, Bulthuis EP, Koopman WJH, Mhlanga M, El-Osta A, Joosten LAB, Netea MG, Riksen NP. The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan. Cell Rep 2021; 31:107548. [PMID: 32320649 PMCID: PMC7184679 DOI: 10.1016/j.celrep.2020.107548] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Trained immunity confers a sustained augmented response of innate immune cells to a secondary challenge, via a process dependent on metabolic and transcriptional reprogramming. Because of its previous associations with metabolic and transcriptional memory, as well as the importance of H3 histone lysine 4 monomethylation (H3K4me1) to innate immune memory, we hypothesize that the Set7 methyltransferase has an important role in trained immunity induced by β-glucan. Using pharmacological studies of human primary monocytes, we identify trained immunity-specific immunometabolic pathways regulated by Set7, including a previously unreported H3K4me1-dependent plasticity in the induction of oxidative phosphorylation. Recapitulation of β-glucan training in vivo additionally identifies Set7-dependent changes in gene expression previously associated with the modulation of myelopoiesis progenitors in trained immunity. By revealing Set7 as a key regulator of trained immunity, these findings provide mechanistic insight into sustained metabolic changes and underscore the importance of characterizing regulatory circuits of innate immune memory. Set7 regulates enhanced cytokine production in trained immunity in vitro Set7 knockout mice are unable to mount trained immunity against endotoxin challenge Set7 modulates cellular respiration in β-glucan-trained macrophages Set7-dependent histone methylation regulates MDH2 and SDHB in trained cells
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo Groh
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte D C C van der Heijden
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanah Rodriguez
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Jéssica C Dos Santos
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Fanucchi
- Division of Chemical, Systems and Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Gene Expression and Biophysics Group, CSIR Biosciences, Pretoria, South Africa
| | - Jun Okabe
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jelmer H van Puffelen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marlies P Noz
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School, 30625 Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elianne P Bulthuis
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Musa Mhlanga
- Division of Chemical, Systems and Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia; Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong City, Hong Kong SAR
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
112
|
Devenish LP, Mhlanga MM, Negishi Y. Immune Regulation in Time and Space: The Role of Local- and Long-Range Genomic Interactions in Regulating Immune Responses. Front Immunol 2021; 12:662565. [PMID: 34046034 PMCID: PMC8144502 DOI: 10.3389/fimmu.2021.662565] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Mammals face and overcome an onslaught of endogenous and exogenous challenges in order to survive. Typical immune cells and barrier cells, such as epithelia, must respond rapidly and effectively to encountered pathogens and aberrant cells to prevent invasion and eliminate pathogenic species before they become overgrown and cause harm. On the other hand, inappropriate initiation and failed termination of immune cell effector function in the absence of pathogens or aberrant tissue gives rise to a number of chronic, auto-immune, and neoplastic diseases. Therefore, the fine control of immune effector functions to provide for a rapid, robust response to challenge is essential. Importantly, immune cells are heterogeneous due to various factors relating to cytokine exposure and cell-cell interaction. For instance, tissue-resident macrophages and T cells are phenotypically, transcriptionally, and functionally distinct from their circulating counterparts. Indeed, even the same cell types in the same environment show distinct transcription patterns at the single cell level due to cellular noise, despite being robust in concert. Additionally, immune cells must remain quiescent in a naive state to avoid autoimmunity or chronic inflammatory states but must respond robustly upon activation regardless of their microenvironment or cellular noise. In recent years, accruing evidence from next-generation sequencing, chromatin capture techniques, and high-resolution imaging has shown that local- and long-range genome architecture plays an important role in coordinating rapid and robust transcriptional responses. Here, we discuss the local- and long-range genome architecture of immune cells and the resultant changes upon pathogen or antigen exposure. Furthermore, we argue that genome structures contribute functionally to rapid and robust responses under noisy and distinct cellular environments and propose a model to explain this phenomenon.
Collapse
Affiliation(s)
- Liam P Devenish
- Division of Chemical, Systems, and Synthetic Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yutaka Negishi
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
113
|
Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders PJ, Martens L, Kirk PDW, Richardson S, Smith GCS, Charnock-Jones DS. The RNA landscape of the human placenta in health and disease. Nat Commun 2021; 12:2639. [PMID: 33976128 PMCID: PMC8113443 DOI: 10.1038/s41467-021-22695-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The placenta is the interface between mother and fetus and inadequate function contributes to short and long-term ill-health. The placenta is absent from most large-scale RNA-Seq datasets. We therefore analyze long and small RNAs (~101 and 20 million reads per sample respectively) from 302 human placentas, including 94 cases of preeclampsia (PE) and 56 cases of fetal growth restriction (FGR). The placental transcriptome has the seventh lowest complexity of 50 human tissues: 271 genes account for 50% of all reads. We identify multiple circular RNAs and validate 6 of these by Sanger sequencing across the back-splice junction. Using large-scale mass spectrometry datasets, we find strong evidence of peptides produced by translation of two circular RNAs. We also identify novel piRNAs which are clustered on Chr1 and Chr14. PE and FGR are associated with multiple and overlapping differences in mRNA, lincRNA and circRNA but fewer consistent differences in small RNAs. Of the three protein coding genes differentially expressed in both PE and FGR, one encodes a secreted protein FSTL3 (follistatin-like 3). Elevated serum levels of FSTL3 in pregnant women are predictive of subsequent PE and FGR. To aid visualization of our placenta transcriptome data, we develop a web application ( https://www.obgyn.cam.ac.uk/placentome/ ).
Collapse
Affiliation(s)
- Sungsam Gong
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Justyna Dopierala
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Functional Genomics, GlaxoSmithKline Limited, Stevenage, Hertfordshire, UK
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma Cook
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pieter-Jan Volders
- Computational Omics and Systems Biology Group, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lennart Martens
- Computational Omics and Systems Biology Group, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Paul D W Kirk
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
114
|
Su H, Liang Z, Weng S, Sun C, Huang J, Zhang T, Wang X, Wu S, Zhang Z, Zhang Y, Gong Q, Xu Y. miR-9-5p regulates immunometabolic and epigenetic pathways in β-glucan-trained immunity via IDH3α. JCI Insight 2021; 6:144260. [PMID: 33986196 PMCID: PMC8262351 DOI: 10.1172/jci.insight.144260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/31/2021] [Indexed: 01/10/2023] Open
Abstract
Trained immunity, induced by β-glucan in monocytes, is mediated by activating metabolic pathways that result in epigenetic rewiring of cellular functional programs; however, molecular mechanisms underlying these changes remain unclear. Here, we report a key immunometabolic and epigenetic pathway mediated by the miR-9-5p-isocitrate dehydrogenase 3α (IDH3α) axis in trained immunity. We found that β-glucan-trained miR-9-5p-/- monocytes showed decreased IL-1β, IL-6, and TNF-α production after LPS stimulation. Trained miR-9-5p-/- mice produced decreased levels of proinflammatory cytokines upon rechallenge in vivo and had worse protection against Candida albicans infection. miR-9-5p targeted IDH3α and reduced α-ketoglutarate (α-KG) levels to stabilize HIF-1α, which promoted glycolysis. Accumulating succinate and fumarate via miR-9-5p action integrated immunometabolic circuits to induce histone modifications by inhibiting KDM5 demethylases. β-Glucan-trained monocytes exhibited low IDH3α levels, and IDH3α overexpression blocked the induction of trained immunity by monocytes. Monocytes with IDH3α variants from autosomal recessive retinitis pigmentosa patients showed a trained immunity phenotype at immunometabolic and epigenetic levels. These findings suggest that miR-9-5p and IDH3α act as critical metabolic and epigenetic switches in trained immunity.
Collapse
Affiliation(s)
- Haibo Su
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhongping Liang
- Department of General Surgery, The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, China
| | - ShuFeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Chaonan Sun
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Huang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - TianRan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Xialian Wang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Shanshan Wu
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Zhi Zhang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Yiqi Zhang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
115
|
Hartana CA, Rassadkina Y, Gao C, Martin-Gayo E, Walker BD, Lichterfeld M, Yu XG. Long noncoding RNA MIR4435-2HG enhances metabolic function of myeloid dendritic cells from HIV-1 elite controllers. J Clin Invest 2021; 131:146136. [PMID: 33938445 PMCID: PMC8087208 DOI: 10.1172/jci146136] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Restriction of HIV-1 replication in elite controllers (ECs) is frequently attributed to T cell-mediated immune responses, while the specific contribution of innate immune cells is less clear. Here, we demonstrate an upregulation of the host long noncoding RNA (lncRNA) MIR4435-2HG in primary myeloid dendritic cells (mDCs) from ECs. Elevated expression of this lncRNA in mDCs was associated with a distinct immunometabolic profile, characterized by increased oxidative phosphorylation and glycolysis activities in response to TLR3 stimulation. Using functional assays, we show that MIR4435-2HG directly influenced the metabolic state of mDCs, likely through epigenetic mechanisms involving H3K27ac enrichment at an intronic enhancer in the RPTOR gene locus, the main component of the mammalian target of rapamycin complex 1 (mTORC1). Together, these results suggest a role of MIR4435-2HG for enhancing immunometabolic activities of mDCs in ECs through targeted epigenetic modifications of a member of the mTOR signaling pathway.
Collapse
Affiliation(s)
| | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Enrique Martin-Gayo
- Immunology Unit, Universidad Autónoma de Madrid, Hospital Universitario la Princesa, Madrid, Spain
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Sciences, and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
116
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
117
|
Koeken VA, van Crevel R, Netea MG, Li Y. Resolving trained immunity with systems biology. Eur J Immunol 2021; 51:773-784. [PMID: 33570164 PMCID: PMC11298780 DOI: 10.1002/eji.202048882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Trained immunity is characterized by long-term functional reprogramming of innate immune cells following challenge with pathogens or microbial ligands during infection or vaccination. This cellular reprogramming leads to increased responsiveness upon restimulation, and is mediated through epigenetic and metabolic modifications. In this review, we describe how molecular mechanisms underlying trained immunity, for example, induced by β-glucan or Bacille Calmette-Guérin (BCG) vaccination, can be investigated by using and integrating different layers of information including genome, epigenome, transcriptome, proteome, metabolome, microbiome, immune cell phenotyping, and function. We also describe the most commonly used experimental and computational techniques. Finally, we provide a number of examples of how a systems biology approach was applied to study trained immunity to understand interindividual variation or the complex interplay between molecular layers. In conclusion, trained immunity represents an opportunity for regulating innate immune function, and understanding the complex interplay of mechanisms that mediate trained immunity might enable us to employ it as a clinical tool in the future.
Collapse
Affiliation(s)
- Valerie A.C.M. Koeken
- Radboud Center for Infectious Diseases and Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between The Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Reinout van Crevel
- Radboud Center for Infectious Diseases and Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G. Netea
- Radboud Center for Infectious Diseases and Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES)University of Bonn, Bonn, Germany
| | - Yang Li
- Radboud Center for Infectious Diseases and Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between The Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
118
|
Drummer C, Saaoud F, Shao Y, Sun Y, Xu K, Lu Y, Ni D, Atar D, Jiang X, Wang H, Yang X. Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arterioscler Thromb Vasc Biol 2021; 41:1032-1046. [PMID: 33380171 PMCID: PMC7904591 DOI: 10.1161/atvbaha.120.315452] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022]
Abstract
Innate immune cells can develop exacerbated immunologic response and long-term inflammatory phenotype following brief exposure to endogenous or exogenous insults, which leads to an altered response towards a second challenge after the return to a nonactivated state. This phenomenon is known as trained immunity (TI). TI is not only important for host defense and vaccine response but also for chronic inflammations such as cardiovascular and metabolic diseases such as atherosclerosis. TI can occur in innate immune cells such as monocytes/macrophages, natural killer cells, endothelial cells (ECs), and nonimmune cells, such as fibroblast. In this brief review, we analyze the significance of TI in ECs, which are also considered as innate immune cells in addition to macrophages. TI can be induced by a variety of stimuli, including lipopolysaccharides, BCG (bacillus Calmette-Guerin), and oxLDL (oxidized low-density lipoprotein), which are defined as risk factors for cardiovascular and metabolic diseases. Furthermore, TI in ECs is functional for inflammation effectiveness and transition to chronic inflammation. Rewiring of cellular metabolism of the trained cells takes place during induction of TI, including increased glycolysis, glutaminolysis, increased accumulation of tricarboxylic acid cycle metabolites and acetyl-coenzyme A production, as well as increased mevalonate synthesis. Subsequently, this leads to epigenetic remodeling, resulting in important changes in chromatin architecture that enables increased gene transcription and enhanced proinflammatory immune response. However, TI pathways and inflammatory pathways are separated to ensure memory stays when inflammation undergoes resolution. Additionally, reactive oxygen species play context-dependent roles in TI. Therefore, TI plays significant roles in EC and macrophage pathology and chronic inflammation. However, further characterization of TI in ECs and macrophages would provide novel insights into cardiovascular disease pathogenesis and new therapeutic targets. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Charles Drummer
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yu Sun
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dong Ni
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Diana Atar
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
119
|
Can what have we learnt about BCG vaccination in the last 20 years help us to design a better tuberculosis vaccine? Vaccine 2021; 40:1525-1533. [PMID: 33583672 PMCID: PMC8899334 DOI: 10.1016/j.vaccine.2021.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/22/2023]
Abstract
The BCG vaccine provides variable protection against tuberculosis. Correlates of protection remain elusive, but IFNγ can measure immunogenicity. BCG vaccination induces innate immune training as well as antigen-specific immunity. Many factors may contribute to the variable responses to BCG vaccination. Prior BCG vaccination or factors modulating its efficacy may affect new TB vaccines. Innate training may also provide non-specific protection against infectious diseases. New TB vaccines should not lose BCG's beneficial non-specific effects.
The BCG vaccine will, in 2021, have been in use for 100 years. Much remains to be understood, including the reasons for its variable efficacy against pulmonary tuberculosis in adults. This review will discuss what has been learnt about the BCG vaccine in the last two decades, and whether this new information can be exploited to improve its efficacy, by enhancing its ability to induce either antigen-specific and/or non-specific effects. Many factors affect both the immunogenicity of BCG and its protective efficacy, highlighting the challenges of working with a live vaccine in man, but new insights may enable us to exploit better what BCG can do.
Collapse
|
120
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
121
|
Affiliation(s)
- Andrew R DiNardo
- From the Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital (A.R.D.), the Immigrant and Global Health Program, Department of Pediatrics (A.R.D.), and the Departments of Medicine and Molecular Virology and Microbiology (D.M.M.), Baylor College of Medicine, and the Medical Care Line, Infectious Disease Section, Michael E. DeBakey Veterans Affairs Medical Center (D.M.M.) - all in Houston; the Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands (M.G.N.); and the Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany (M.G.N.)
| | - Mihai G Netea
- From the Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital (A.R.D.), the Immigrant and Global Health Program, Department of Pediatrics (A.R.D.), and the Departments of Medicine and Molecular Virology and Microbiology (D.M.M.), Baylor College of Medicine, and the Medical Care Line, Infectious Disease Section, Michael E. DeBakey Veterans Affairs Medical Center (D.M.M.) - all in Houston; the Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands (M.G.N.); and the Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany (M.G.N.)
| | - Daniel M Musher
- From the Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital (A.R.D.), the Immigrant and Global Health Program, Department of Pediatrics (A.R.D.), and the Departments of Medicine and Molecular Virology and Microbiology (D.M.M.), Baylor College of Medicine, and the Medical Care Line, Infectious Disease Section, Michael E. DeBakey Veterans Affairs Medical Center (D.M.M.) - all in Houston; the Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands (M.G.N.); and the Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany (M.G.N.)
| |
Collapse
|
122
|
Suzuki A, Guerrini MM, Yamamoto K. Functional genomics of autoimmune diseases. Ann Rheum Dis 2021; 80:689-697. [PMID: 33408079 DOI: 10.1136/annrheumdis-2019-216794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
For more than a decade, genome-wide association studies have been applied to autoimmune diseases and have expanded our understanding on the pathogeneses. Genetic risk factors associated with diseases and traits are essentially causative. However, elucidation of the biological mechanism of disease from genetic factors is challenging. In fact, it is difficult to identify the causal variant among multiple variants located on the same haplotype or linkage disequilibrium block and thus the responsible biological genes remain elusive. Recently, multiple studies have revealed that the majority of risk variants locate in the non-coding region of the genome and they are the most likely to regulate gene expression such as quantitative trait loci. Enhancer, promoter and long non-coding RNA appear to be the main target mechanisms of the risk variants. In this review, we discuss functional genetics to challenge these puzzles.
Collapse
Affiliation(s)
- Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Matteo Maurizio Guerrini
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
123
|
Sohrabi Y, Dos Santos JC, Dorenkamp M, Findeisen H, Godfrey R, Netea MG, Joosten LAB. Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette-Guérin vaccine: mechanisms, challenges and perspectives. Clin Transl Immunology 2020; 9:e1228. [PMID: 33363733 PMCID: PMC7755499 DOI: 10.1002/cti2.1228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a severe health problem in many countries and has altered day-to-day life in the whole world. This infection is caused by the SARS-CoV-2 virus, and depending on age, sex and health status of the patient, it can present with variety of clinical symptoms such as mild infection, a very severe form or even asymptomatic course of the disease. Similarly to other viruses, innate immune response plays a vital role in protection against COVID-19. However, dysregulation of innate immunity could have a significant influence on the severity of the disease. Despite various efforts, there is no effective vaccine against the disease so far. Recent data have demonstrated that the Bacillus Calmette-Guérin (BCG) vaccine could reduce disease severity and the burden of several infectious diseases in addition to targeting its primary focus tuberculosis. There is growing evidence for the concept of beneficial non-specific boosting of immune responses by BCG or other microbial compounds termed trained immunity, which may protect against COVID-19. In this manuscript, we review data on how the development of innate immune memory due to microbial compounds specifically BCG can result in protection against SARS-CoV-2 infection. We also discuss possible mechanisms, challenges and perspectives of using innate immunity as an approach to reduce COVID-19 severity.
Collapse
Affiliation(s)
- Yahya Sohrabi
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
| | - Marc Dorenkamp
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Hannes Findeisen
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Rinesh Godfrey
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo AB Joosten
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Núcleo de Pesquisa da Faculdade da Polícia Militar (FPM) do Estado de GoiásGoiâniaBrazil
| |
Collapse
|
124
|
Abstract
Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
Collapse
|
125
|
RNA-Centric Methods: Toward the Interactome of Specific RNA Transcripts. Trends Biotechnol 2020; 39:890-900. [PMID: 33353763 DOI: 10.1016/j.tibtech.2020.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
RNA-protein interactions play an important role in numerous cellular processes in health and disease. In recent years, the global RNA-bound proteome has been extensively studied, uncovering many previously unknown RNA-binding proteins. However, little is known about which particular proteins bind to which specific RNA transcript. In this review, we provide an overview of methods to identify RNA-protein interactions, with a particular focus on strategies that provide insights into the interactome of specific RNA transcripts. Finally, we discuss challenges and future directions, including the potential of CRISPR-RNA targeting systems to investigate endogenous RNA-protein interactions.
Collapse
|
126
|
Ramírez-Colmenero A, Oktaba K, Fernandez-Valverde SL. Evolution of Genome-Organizing Long Non-coding RNAs in Metazoans. Front Genet 2020; 11:589697. [PMID: 33329735 PMCID: PMC7734150 DOI: 10.3389/fgene.2020.589697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important regulatory functions across eukarya. It is now clear that many of these functions are related to gene expression regulation through their capacity to recruit epigenetic modifiers and establish chromatin interactions. Several lncRNAs have been recently shown to participate in modulating chromatin within the spatial organization of the genome in the three-dimensional space of the nucleus. The identification of lncRNA candidates is challenging, as it is their functional characterization. Conservation signatures of lncRNAs are different from those of protein-coding genes, making identifying lncRNAs under selection a difficult task, and the homology between lncRNAs may not be readily apparent. Here, we review the evidence for these higher-order genome organization functions of lncRNAs in animals and the evolutionary signatures they display.
Collapse
Affiliation(s)
- América Ramírez-Colmenero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
127
|
Sun N, Chen H, Ma Y, Pang W, Wang X, Zhang Q, Gao L, Li W. H3K4me3-Mediated Upregulation of LncRNA-HEIPP in Preeclampsia Placenta Affects Invasion of Trophoblast Cells. Front Genet 2020; 11:559478. [PMID: 33424915 PMCID: PMC7793904 DOI: 10.3389/fgene.2020.559478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-related disease defined as onset of hypertension and proteinuria after the 20th week of pregnancy, which causes most maternal and perinatal morbidity and mortality. Although placental dysfunction is considered as the main cause of PE, the exact pathogenesis of PE is not yet fully understood. Long non-coding RNAs (lncRNAs) are implicated in a broad range of physiological and pathological processes, including the occurrence of PE. In this study, we investigated the expression and functions of HIF-1α pathway-related lncRNA-HEIPP (high expression in PE placenta) in the pathogenesis of PE. The expression of lncRNA-HEIPP in the placenta from women who underwent PE was screened by lncRNA microarray and then verified using real-time polymerase chain reaction. Then, the methylation profile of the lncRNA-HEIPP promoter and the enrichment of H3K4me3 binding were assessed by bisulfite pyrosequencing and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction (qPCR) assay, respectively. It was found that the level of lncRNA-HEIPP in the PE placenta was significantly higher than that in normal placenta and was increased in HTR-8/SVneo human trophoblast cells upon hypoxia treatment. Moreover, we reported that H3K4me3 manifested significantly higher promoter occupancy on lncRNA-HEIPP promoter in HTR-8/SVneo cells upon hypoxia treatment and found that the downregulation of lncRNA-HEIPP promoted trophoblast invasion. Our findings suggested that the hypoxia-induced expression of lncRNA-HEIPP mediated by H3K4me3 modification in trophoblast may contribute to the pathogenesis of PE.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Reproductive Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huaiyan Chen
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yan Ma
- Department of Reproductive Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenjuan Pang
- Department of Reproductive Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiang Wang
- Department of Reproductive Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qing Zhang
- Department of Reproductive Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, China.,School of Medicine, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen Li
- Department of Reproductive Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
128
|
LncRNA lncLy6C induced by microbiota metabolite butyrate promotes differentiation of Ly6C high to Ly6C int/neg macrophages through lncLy6C/C/EBPβ/Nr4A1 axis. Cell Discov 2020; 6:87. [PMID: 33298871 PMCID: PMC7683537 DOI: 10.1038/s41421-020-00211-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are mainly divided into two populations, which play a different role in physiological and pathological conditions. The differentiation of these cells may be regulated by transcription factors. However, it is unclear how to modulate these transcription factors to affect differentiation of these cells. Here, we found that lncLy6C, a novel ultraconserved lncRNA, promotes differentiation of Ly6Chigh inflammatory monocytes into Ly6Clow/neg resident macrophages. We demonstrate that gut microbiota metabolites butyrate upregulates the expression of lncLy6C. LncLy6C deficient mice had markedly increased Ly6Chigh pro-inflammatory monocytes and reduced Ly6Cneg resident macrophages. LncLy6C not only bound with transcription factor C/EBPβ but also bound with multiple lysine methyltransferases of H3K4me3 to specifically promote the enrichment of C/EBPβ and H3K4me3 marks on the promoter region of Nr4A1, which can promote Ly6Chigh into Ly6Cneg macrophages. As a result, lncLy6C causes the upregulation of Nr4A1 to promote Ly6Chigh inflammatory monocytes to differentiate into Ly6Cint/neg resident macrophages.
Collapse
|
129
|
Fanucchi S, Domínguez-Andrés J, Joosten LAB, Netea MG, Mhlanga MM. The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity 2020; 54:32-43. [PMID: 33220235 DOI: 10.1016/j.immuni.2020.10.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
The last few years have witnessed an increasing body of evidence that challenges the traditional view that immunological memory is an exclusive trait of the adaptive immune system. Myeloid cells can show increased responsiveness upon subsequent stimulation with the same or a different stimulus, well after the initial challenge. This de facto innate immune memory has been termed "trained immunity" and is involved in infections, vaccination and inflammatory diseases. Trained immunity is based on two main pillars: the epigenetic and metabolic reprogramming of cells. In this review we discuss the latest insights into the epigenetic mechanisms behind the induction of trained immunity, as well as the role of different cellular metabolites and metabolic networks in the induction, regulation and maintenance of trained immunity.
Collapse
Affiliation(s)
- Stephanie Fanucchi
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Anzio Road Observatory, 7925 Cape Town, South Africa; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
130
|
Abstract
RNA, the transcriptional output of genomes, not only templates protein synthesis or directly engages in catalytic functions, but can feed back to the genome and serve as regulatory input for gene expression. Transcripts affecting the RNA abundance of other genes act by mechanisms similar to and in concert with protein factors that control transcription. Through recruitment or blocking of activating and silencing complexes to specific genomic loci, RNA and protein factors can favor transcription or lower the local gene expression potential. Most regulatory proteins enter nuclei from all directions to start the search for increased affinity to specific DNA sequences or to other proteins nearby genuine gene targets. In contrast, RNAs emerge from spatial point sources within nuclei, their encoding genes. A transcriptional burst can result in the local appearance of multiple nascent RNA copies at once, in turn increasing local nucleic acid density and RNA motif abundance before diffusion into the nuclear neighborhood. The confined initial localization of regulatory RNAs causing accumulation of protein co-factors raises the intriguing possibility that target specificity of non-coding, and probably coding, RNAs is achieved through gene/RNA positioning and spatial proximity to regulated genomic regions. Here we review examples of positional cis conservation of regulatory RNAs with respect to target genes, spatial proximity of enhancer RNAs to promoters through DNA looping and RNA-mediated formation of membrane-less structures to control chromatin structure and expression. We speculate that linear and spatial proximity between regulatory RNA-encoding genes and gene targets could possibly ease the evolutionary pressure on maintaining regulatory RNA sequence conservation.
Collapse
Affiliation(s)
- Jörg Morf
- Jeffrey Cheah Biomedical Centre, Wellcome - Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Srinjan Basu
- Jeffrey Cheah Biomedical Centre, Wellcome - Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Paulo P Amaral
- Jeffrey Cheah Biomedical Centre, The Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
131
|
Yang X, Hu X, Liu J, Wang R, Zhang C, Han F, Chen Y, Ma D. N6-methyladenine modification in noncoding RNAs and its function in cancer. Biomark Res 2020; 8:61. [PMID: 33292652 PMCID: PMC7653994 DOI: 10.1186/s40364-020-00244-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs are the main component of the extensive transcription results of the mammalian genome. They are not transcribed into proteins but play critical roles in regulating multiple biological processes and affecting cancer progression. m6A modification is one of the most abundant internal RNA modification of mammalian cells, and it involves almost all aspects of RNA metabolism. Recent research revealed tight correlations between m6A modification and ncRNAs and indicated the interaction between m6A and ncRNAs act a pivotal part in the development of cancer. The correlation between m6A modification and ncRNAs provides a new perspective for exploring the potential regulatory mechanism of tumor gene expression, and suggest that m6A modification and ncRNAs may be important prognostic markers and therapeutic targets for multiple cancers. In this review, we summarize the potential regulatory mechanisms between m6A methylation and ncRNAs, highlighting how their relationship affects biological functions in cancer.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Yuhong Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China. .,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
132
|
Siwek W, Tehrani SSH, Mata JF, Jansen LET. Activation of Clustered IFNγ Target Genes Drives Cohesin-Controlled Transcriptional Memory. Mol Cell 2020; 80:396-409.e6. [PMID: 33108759 PMCID: PMC7657446 DOI: 10.1016/j.molcel.2020.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Cytokine activation of cells induces gene networks involved in inflammation and immunity. Transient gene activation can have a lasting effect even in the absence of ongoing transcription, known as long-term transcriptional memory. Here we explore the nature of the establishment and maintenance of interferon γ (IFNγ)-induced priming of human cells. We find that, although ongoing transcription and local chromatin signatures are short-lived, the IFNγ-primed state stably propagates through at least 14 cell division cycles. Single-cell analysis reveals that memory is manifested by an increased probability of primed cells to engage in target gene expression, correlating with the strength of initial gene activation. Further, we find that strongly memorized genes tend to reside in genomic clusters and that long-term memory of these genes is locally restricted by cohesin. We define the duration, stochastic nature, and molecular mechanisms of IFNγ-induced transcriptional memory, relevant to understanding enhanced innate immune signaling.
Collapse
Affiliation(s)
- Wojciech Siwek
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| | - Sahar S H Tehrani
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - João F Mata
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
133
|
Moorlag SJCFM, Rodriguez-Rosales YA, Gillard J, Fanucchi S, Theunissen K, Novakovic B, de Bont CM, Negishi Y, Fok ET, Kalafati L, Verginis P, Mourits VP, Koeken VACM, de Bree LCJ, Pruijn GJM, Fenwick C, van Crevel R, Joosten LAB, Joosten I, Koenen H, Mhlanga MM, Diavatopoulos DA, Chavakis T, Netea MG. BCG Vaccination Induces Long-Term Functional Reprogramming of Human Neutrophils. Cell Rep 2020; 33:108387. [PMID: 33207187 PMCID: PMC7672522 DOI: 10.1016/j.celrep.2020.108387] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
The tuberculosis vaccine bacillus Calmette-Guérin (BCG) protects against some heterologous infections, probably via induction of non-specific innate immune memory in monocytes and natural killer (NK) cells, a process known as trained immunity. Recent studies have revealed that the induction of trained immunity is associated with a bias toward granulopoiesis in bone marrow hematopoietic progenitor cells, but it is unknown whether BCG vaccination also leads to functional reprogramming of mature neutrophils. Here, we show that BCG vaccination of healthy humans induces long-lasting changes in neutrophil phenotype, characterized by increased expression of activation markers and antimicrobial function. The enhanced function of human neutrophils persists for at least 3 months after vaccination and is associated with genome-wide epigenetic modifications in trimethylation at histone 3 lysine 4. Functional reprogramming of neutrophils by the induction of trained immunity might offer novel therapeutic strategies in clinical conditions that could benefit from modulation of neutrophil effector function.
Collapse
Affiliation(s)
- Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yessica Alina Rodriguez-Rosales
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
| | - Stephanie Fanucchi
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Theunissen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Novakovic
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Cynthia M de Bont
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Epigenomics & Single Cell Biophysics Group, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ezio T Fok
- Epigenomics & Single Cell Biophysics Group, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, the Netherlands
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Musa M Mhlanga
- Epigenomics & Single Cell Biophysics Group, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
134
|
Tercan H, Riksen NP, Joosten LAB, Netea MG, Bekkering S. Trained Immunity: Long-Term Adaptation in Innate Immune Responses. Arterioscler Thromb Vasc Biol 2020; 41:55-61. [PMID: 33086868 DOI: 10.1161/atvbaha.120.314212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adaptive immune responses are characterized by antigen specificity and induction of lifelong immunologic memory. Recently, it has been reported that innate immune cells can also build immune memory characteristics-a process termed trained immunity. Trained immunity describes the persistent hyperresponsive phenotype that innate immune cells can develop after brief stimulation. Pathogenic stimuli such as microorganisms, and also endogenous molecules including uric acid, oxidized LDL (low-density lipoprotein), and catecholamines, are capable of inducing memory in monocytes and macrophages. While trained immunity provides favorable cross-protection in the context of infectious diseases, the heightened immune response can be maladaptive in diseases driven by chronic systemic inflammation, such as atherosclerosis. Trained immunity is maintained by distinct epigenetic and metabolic mechanisms and persists for at least several months in vivo due to reprogramming of myeloid progenitor cells. Additionally, certain nonimmune cells are also found to exhibit trained immunity characteristics. Thus, trained immunity presents an exciting framework to develop new approaches to vaccination and also novel pharmacological targets in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Helin Tercan
- Department of Internal Medicine and Research Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (H.T., N.P.R., L.A.B.J., M.G.N., S.B.)
| | - Niels P Riksen
- Department of Internal Medicine and Research Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (H.T., N.P.R., L.A.B.J., M.G.N., S.B.)
| | - Leo A B Joosten
- Department of Internal Medicine and Research Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (H.T., N.P.R., L.A.B.J., M.G.N., S.B.).,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania (L.A.B.J.)
| | - Mihai G Netea
- Department of Internal Medicine and Research Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (H.T., N.P.R., L.A.B.J., M.G.N., S.B.).,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Germany (M.G.N.)
| | - Siroon Bekkering
- Department of Internal Medicine and Research Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (H.T., N.P.R., L.A.B.J., M.G.N., S.B.)
| |
Collapse
|
135
|
Italiani P, Della Camera G, Boraschi D. Induction of Innate Immune Memory by Engineered Nanoparticles in Monocytes/Macrophages: From Hypothesis to Reality. Front Immunol 2020; 11:566309. [PMID: 33123137 PMCID: PMC7573069 DOI: 10.3389/fimmu.2020.566309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
The capacity of engineered nanoparticles to activate cells of the innate immune system, in particular monocytes and macrophages, is considered at the basis of their toxic/inflammatory effects. It is, however, evident that even nanoparticles that do not directly induce inflammatory activation, and are therefore considered as safe, can nevertheless induce epigenetic modifications and affect metabolic pathways in monocytes and macrophages. Since epigenetic and metabolic changes are the main mechanisms of innate memory, we had previously proposed that nanoparticles can induce/modulate innate memory, that is, have the ability of shaping the secondary response to inflammatory challenges. In light of new data, it is now possible to support the original hypothesis and show that different types of nanoparticles can both directly induce innate memory, priming macrophages for a more potent response to subsequent stimuli, and modulate bacteria-induced memory by attenuating the priming-induced enhancement. This evidence raises two important issues. First, in addition to overt toxic/inflammatory effects, we should consider evaluating the capacity to induce innate memory and the related epigenetic and metabolic changes in the immunosafety assessment of nanomaterials, since modulation of innate memory may be at the basis of long-term unwanted immunological effects. The other important consideration is that this capacity of nanomaterials could open a new avenue in immunomodulation and the possibility of using engineered nanomaterials for improving immune responses to vaccines and resistance to infections, and modulate anomalous immune/inflammatory reactions in chronic inflammatory diseases, autoimmunity, and a range of other immune-related pathologies.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
| | - Giacomo Della Camera
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
| |
Collapse
|
136
|
Suarez B, Prats-Mari L, Unfried JP, Fortes P. LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 2020; 21:E6447. [PMID: 32899429 PMCID: PMC7503479 DOI: 10.3390/ijms21176447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
The proper functioning of the immune system requires a robust control over a delicate equilibrium between an ineffective response and immune overactivation. Poor responses to viral insults may lead to chronic or overwhelming infection, whereas unrestrained activation can cause autoimmune diseases and cancer. Control over the magnitude and duration of the antiviral immune response is exerted by a finely tuned positive or negative regulation at the DNA, RNA, and protein level of members of the type I interferon (IFN) signaling pathways and on the expression and activity of antiviral and proinflammatory factors. As summarized in this review, committed research during the last decade has shown that several of these processes are exquisitely regulated by long non-coding RNAs (lncRNAs), transcripts with poor coding capacity, but highly versatile functions. After infection, viruses, and the antiviral response they trigger, deregulate the expression of a subset of specific lncRNAs that function to promote or repress viral replication by inactivating or potentiating the antiviral response, respectively. These IFN-related lncRNAs are also highly tissue- and cell-type-specific, rendering them as promising biomarkers or therapeutic candidates to modulate specific stages of the antiviral immune response with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Suarez
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Laura Prats-Mari
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Juan P. Unfried
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Puri Fortes
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
137
|
Riksen NP, Netea MG. Immunometabolic control of trained immunity. Mol Aspects Med 2020; 77:100897. [PMID: 32891423 PMCID: PMC7466946 DOI: 10.1016/j.mam.2020.100897] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Innate immune cells can adopt long-term inflammatory phenotypes following brief encounters with exogenous (microbial) or endogenous stimuli. This phenomenon is named trained immunity and can improve host defense against (recurrent) infections. In contrast, trained immunity can also be maladaptive in the context of chronic inflammatory disorders, such as atherosclerosis. Key to future therapeutic exploitation of this mechanism is thorough knowledge of the mechanisms driving trained immunity, which can be used as pharmacological targets. These mechanisms include profound changes in intracellular metabolism, which are closely intertwined with epigenetic reprogramming at the level of histone modifications. Glycolysis, glutamine replenishment of the tricarboxylic acid cycle with accumulation of fumarate, and the mevalonate pathway have all been identified as critical pathways for trained immunity in monocytes and macrophages. In this review, we provide a state-of-the-art overview of how these metabolic pathways interact with epigenetic programs to develop trained immunity.
Collapse
Affiliation(s)
- Niels P Riksen
- Dept. of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Mihai G Netea
- Dept. of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands
| |
Collapse
|
138
|
Pyfrom SC, Quinn CC, Dorando HK, Luo H, Payton JE. BCALM (AC099524.1) Is a Human B Lymphocyte-Specific Long Noncoding RNA That Modulates B Cell Receptor-Mediated Calcium Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:595-607. [PMID: 32571842 PMCID: PMC7372127 DOI: 10.4049/jimmunol.2000088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Of the thousands of long noncoding RNAs (lncRNA) identified in lymphocytes, very few have defined functions. In this study, we report the discovery and functional elucidation of a human B cell-specific lncRNA with high levels of expression in three types of B cell cancer and normal B cells. The AC099524.1 gene is upstream of the gene encoding the B cell-specific phospholipase C γ 2 (PLCG2), a B cell-specific enzyme that stimulates intracellular Ca2+ signaling in response to BCR activation. AC099524.1 (B cell-associated lncRNA modulator of BCR-mediated Ca+ signaling [BCALM]) transcripts are localized in the cytoplasm and, as expected, CRISPR/Cas9 knockout of AC099524.1 did not affect PLCG2 mRNA or protein expression. lncRNA interactome, RNA immunoprecipitation, and coimmunoprecipitation studies identified BCALM-interacting proteins in B cells, including phospholipase D 1 (PLD1), and kinase adaptor proteins AKAP9 (AKAP450) and AKAP13 (AKAP-Lbc). These two AKAP proteins form signaling complexes containing protein kinases A and C, which phosphorylate and activate PLD1 to produce phosphatidic acid (PA). BCR stimulation of BCALM-deficient B cells resulted in decreased PLD1 phosphorylation and increased intracellular Ca+ flux relative to wild-type cells. These results suggest that BCALM promotes negative feedback that downmodulates BCR-mediated Ca+ signaling by promoting phosphorylation of PLD1 by AKAP-associated kinases, enhancing production of PA. PA activates SHP-1, which negatively regulates BCR signaling. We propose the name BCALM for B-Cell Associated LncRNA Modulator of BCR-mediated Ca+ signaling. Our findings suggest a new, to our knowledge, paradigm for lncRNA-mediated modulation of lymphocyte activation and signaling, with implications for B cell immune response and BCR-dependent cancers.
Collapse
Affiliation(s)
- Sarah C Pyfrom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Chaz C Quinn
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Hong Luo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
139
|
Flores-Concha M, Oñate ÁA. Long Non-coding RNAs in the Regulation of the Immune Response and Trained Immunity. Front Genet 2020; 11:718. [PMID: 32793280 PMCID: PMC7393263 DOI: 10.3389/fgene.2020.00718] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 01/04/2023] Open
Affiliation(s)
- Manuel Flores-Concha
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Ángel A Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
140
|
Geller A, Yan J. Could the Induction of Trained Immunity by β-Glucan Serve as a Defense Against COVID-19? Front Immunol 2020; 11:1782. [PMID: 32760409 PMCID: PMC7372085 DOI: 10.3389/fimmu.2020.01782] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
As the SARS-CoV-2 virus wreaks havoc on the populations, health care infrastructures and economies of nations around the world, finding ways to protect health care workers and bolster immune responses in the general population while we await an effective vaccine will be the difference between life and death for many people. Recent studies show that innate immune populations may possess a form of memory, termed Trained Immunity (TRIM), where innate immune cells undergo metabolic, mitochondrial, and epigenetic reprogramming following exposure to an initial stimulus that results in a memory phenotype of enhanced immune responses when exposed to a secondary, heterologous, stimulus. Throughout the literature, it has been shown that the induction of TRIM using such inducers as the BCG vaccine and β-glucan can provide protection through altered immune responses against a range of viral infections. Here we hypothesize a potential role for β-glucan in decreasing worldwide morbidity and mortality due to COVID-19, and posit several ideas as to how TRIM may actually shape the observed epidemiological phenomena related to COVID-19. We also evaluate the potential effects of β-glucan in relation to the immune dysregulation and cytokine storm observed in COVID-19. Ultimately, we hypothesize that the use of oral β-glucan in a prophylactic setting could be an effective way to boost immune responses and abrogate symptoms in COVID-19, though clinical trials are necessary to confirm the efficacy of this treatment and to further examine differential effects of β-glucan's from various sources.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
141
|
Sun F, Wu K, Yao Z, Mu X, Zheng Z, Sun M, Wang Y, Liu Z, Zhu Y. Long noncoding RNA LINC00963 induces NOP2 expression by sponging tumor suppressor miR-542-3p to promote metastasis in prostate cancer. Aging (Albany NY) 2020; 12:11500-11516. [PMID: 32554858 PMCID: PMC7343457 DOI: 10.18632/aging.103236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Metastatic disease caused by castration-resistant prostate cancer (CRPC) is the principal cause of prostate cancer (PCa)-related mortality. CRPC occurs within 2-3 years of initiation of androgen deprivation therapy (ADT), which is an important factor of influencing PCa metastasis. Recent studies have revealed that non-coding RNAs in PCa can enhance metastasis and progression, while the mechanisms are still unclear. In this study, we reported that the long noncoding RNA-LINC00963 was increased in CRPC tissues and promoted migration of PCa cells in vitro and their metastasis in vivo. High levels of LINC00963 significantly decreased tumor suppressor miR-542-3p, whose levels in metastasis tissues were low compared to those in non-metastasis tissues. LINC00963 promotes and miR-542-3p inhibits metastasis. Furthermore, the expression levels of LINC00963 and miR-542-3p were positively and negatively associated with the expression of NOP2. We demonstrated that NOP2 promoted PCa by activating the epithelial-mesenchymal transition (EMT) pathway. For specific mechanism, dual luciferase reporter assays showed that miR-542-3p directly binds to both 3'-untranslated region (UTR) of LINC00963 and NOP2 mRNA. Taken together, our results show that LINC00963 acts as an inducer of PCa metastasis by binding miR-542-3p, thereby promoting NOP2. This axis may have diagnostic and therapeutic potential for advanced PCa.
Collapse
Affiliation(s)
- Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhong Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Menghao Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yong Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiyong Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
142
|
Imran S, Neeland MR, Shepherd R, Messina N, Perrett KP, Netea MG, Curtis N, Saffery R, Novakovic B. A Potential Role for Epigenetically Mediated Trained Immunity in Food Allergy. iScience 2020; 23:101171. [PMID: 32480123 PMCID: PMC7262566 DOI: 10.1016/j.isci.2020.101171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of IgE-mediated food allergy is increasing at a rapid pace in many countries. The association of high food allergy rates with Westernized lifestyles suggests the role of gene-environment interactions, potentially underpinned by epigenetic variation, in mediating this process. Recent studies have implicated innate immune system dysfunction in the development and persistence of food allergy. These responses are characterized by increased circulating frequency of innate immune cells and heightened inflammatory responses to bacterial stimulation in food allergic patients. These signatures mirror those described in trained immunity, whereby innate immune cells retain a “memory” of earlier microbial encounters, thus influencing subsequent immune responses. Here, we propose that a robust multi-omics approach that integrates immunological, transcriptomic, and epigenomic datasets, combined with well-phenotyped and longitudinal food allergy cohorts, can inform the potential role of trained immunity in food allergy.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Rebecca Shepherd
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Nicole Messina
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Nigel Curtis
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia.
| |
Collapse
|
143
|
Tachiwana H, Yamamoto T, Saitoh N. Gene regulation by non-coding RNAs in the 3D genome architecture. Curr Opin Genet Dev 2020; 61:69-74. [PMID: 32387763 DOI: 10.1016/j.gde.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023]
Abstract
Appropriate gene expression is essential for producing the correct amount of proteins at the right time, which is critical for living organisms. In the three-dimensional (3D) space of the nucleus, genomes are folded into higher order chromatin structures that are intimately associated with epigenetic factors, including histone modifications and nuclear long non-coding RNAs (lncRNAs). LncRNAs regulate transcription for both activation and repression, either in cis or in trans. Many ncRNAs are expressed in development-specific, differentiation-specific, and disease-specific manners, suggesting that they are critical regulators for organ generation and maintenance. In this review, we mainly describe the following ncRNAs: Xist, involved in X chromosome inactivation, Firre, which serves as a platform for trans-chromosomal associations, and UMLILO and ELEANORS, which co-regulate genes involved in the immune response and breast cancer, respectively. These ncRNAs are gene regulators in the context of the 3D genome structure.
Collapse
Affiliation(s)
- Hiroaki Tachiwana
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
144
|
Guo G, Dai S, Chen Q. Long Noncoding RNA LINC00261 Reduces Proliferation and Migration of Breast Cancer Cells via the NME1-EMT Pathway. Cancer Manag Res 2020; 12:3081-3089. [PMID: 32440206 PMCID: PMC7210026 DOI: 10.2147/cmar.s237197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Long noncoding RNAs (lncRNAs) are emerging as a class of important biological regulators. lncRNAs participate in diverse biological functions and disease processes, especially those leading to tumorigenesis. In this study, we investigate the role of linc00261 in the pathogenesis of breast cancer. Methods linc00261 and NME1 expression levels were determined in breast cancer tissue and adjacent normal tissue using qRT-PCR. Cell proliferation and migration were analyzed using MTT and transwell assays, respectively. Epithelial–mesenchymal transition markers were examined via Western blotting assay. RNA pull-down was used to examine the interaction between linc00261 and the NME1 mRNA transcript. Results linc00261 is expressed in lower levels on breast cancer tissues than in para-carcinoma tissues. Reintroduction of linc00261 can inhibit the migration of breast cancer cells and arrest their proliferation. Additionally, linc00261 knockdown is sufficient to cause breast carcinoma tumorigenesis. We also found that linc00261 interacts with NME1 mRNA, protecting it from degradation. This protection leads to increased cellular levels of NME1, which functions as suppressor of tumor metastasis. Conclusion Taken together, these data demonstrate detailed mechanistic links between the linc00261/NME1 axis and tumorigenesis and show that linc00261 might serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Guangxiu Guo
- Department of Pathology, The People's Hospital of Ganzhou, Gannan, People's Republic of China
| | - Sujuan Dai
- Department of Pathology, The People's Hospital of Ganzhou, Gannan, People's Republic of China
| | - Qing Chen
- Department of Pathology, The People's Hospital of Ganzhou, Gannan, People's Republic of China
| |
Collapse
|
145
|
Ordovas-Montanes J, Beyaz S, Rakoff-Nahoum S, Shalek AK. Distribution and storage of inflammatory memory in barrier tissues. Nat Rev Immunol 2020; 20:308-320. [PMID: 32015472 PMCID: PMC7547402 DOI: 10.1038/s41577-019-0263-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
Memories of previous immune events enable barrier tissues to rapidly recall distinct environmental exposures. To effectively inform future responses, these past experiences can be stored in cell types that are long-term residents or essential constituents of tissues. There is an emerging understanding that, in addition to antigen-specific immune cells, diverse haematopoietic, stromal, parenchymal and neuronal cell types can store inflammatory memory. Here, we explore the impact of previous immune activity on various cell lineages with the goal of presenting a unified view of inflammatory memory to environmental exposures (such as allergens, antigens, noxious agents and microorganisms) at barrier tissues. We propose that inflammatory memory is distributed across diverse cell types and stored through shifts in cell states, and we provide a framework to guide future experiments. This distribution and storage may promote adaptation or maladaptation in homeostatic, maintenance and disease settings - especially if the distribution of memory favours cellular cooperation during storage or recall.
Collapse
Affiliation(s)
- Jose Ordovas-Montanes
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, USA.
- Department of Chemistry, MIT, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Seth Rakoff-Nahoum
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Alex K Shalek
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
| |
Collapse
|
146
|
Jiang H. The complex activities of the SET1/MLL complex core subunits in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194560. [PMID: 32302696 DOI: 10.1016/j.bbagrm.2020.194560] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
In mammalian cells, the SET1/MLL complexes are the main writers of the H3K4 methyl mark that is associated with active gene expression. The activities of these complexes are critically dependent on the association of the catalytic subunit with their shared core subunits, WDR5, RBBP5, ASH2L, and DPY30, collectively referred as WRAD. In addition, some of these core subunits can bind to proteins other than the SET1/MLL complex components. This review starts with discussion of the molecular activities of these core subunits, with an emphasis on DPY30 in organizing the assembly of the SET1/MLL complexes with other associated factors. This review then focuses on the roles of the core subunits in stem cells and development, as well as in diseased cell states, mainly cancer, and ends with discussion on dissecting the responsible activities of the core subunits and how we may target them for potential disease treatment. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
147
|
Angelidou A, Diray-Arce J, Conti MG, Smolen KK, van Haren SD, Dowling DJ, Husson RN, Levy O. BCG as a Case Study for Precision Vaccine Development: Lessons From Vaccine Heterogeneity, Trained Immunity, and Immune Ontogeny. Front Microbiol 2020; 11:332. [PMID: 32218774 PMCID: PMC7078104 DOI: 10.3389/fmicb.2020.00332] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccines have been traditionally developed with the presumption that they exert identical immunogenicity regardless of target population and that they provide protection solely against their target pathogen. However, it is increasingly appreciated that vaccines can have off-target effects and that vaccine immunogenicity can vary substantially with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents a key example of these concepts. BCG vaccines are manufactured under different conditions across the globe generating divergent formulations. Epidemiologic studies have linked early life immunization with certain BCG formulations to an unanticipated reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly exceeding that attributable to TB prevention. This mortality benefit has been related to prevention of sepsis and respiratory infections suggesting that BCG induces "heterologous" protection against unrelated pathogens. Proposed mechanisms for heterologous protection include vaccine-induced immunometabolic shifts, epigenetic reprogramming of innate cell populations, and modulation of hematopoietic stem cell progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed "trained immunity." In addition to genetic differences, licensed BCG formulations differ markedly in content of viable mycobacteria key for innate immune activation, potentially contributing to differences in the ability of these diverse formulations to induce TB-specific and heterologous protection. BCG immunomodulatory properties have also sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists can mimic some of BCG's innate immune activation, suggesting that aspects of BCG's effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm for precision vaccinology, lessons from which will help inform next generation vaccines.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Division of Newborn Medicine, Boston Children’s Hospital and Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Maria Giulia Conti
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Simon Daniël van Haren
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Robert N. Husson
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
148
|
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020; 20:375-388. [PMID: 32132681 PMCID: PMC7186935 DOI: 10.1038/s41577-020-0285-6] [Citation(s) in RCA: 1364] [Impact Index Per Article: 341.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed ‘trained immunity’, a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define ‘trained immunity’ as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity. Here a group of leaders in the field define our current understanding of ‘trained immunity’, which refers to the memory-type responses that occur in the innate immune system. The authors discuss our current understanding of the key epigenetic and metabolic processes involved in trained immunity and consider its relevance in immune-mediated diseases and cancer.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands. .,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands. .,Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, QC, Canada.,Department of Pediatrics, University of Montreal, Montreal, QC, Canada.,Genetics Section, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Musa M Mhlanga
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andreas Schlitzer
- Myeloid Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany. .,Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA. .,German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
149
|
Bonetti A, Agostini F, Suzuki AM, Hashimoto K, Pascarella G, Gimenez J, Roos L, Nash AJ, Ghilotti M, Cameron CJF, Valentine M, Medvedeva YA, Noguchi S, Agirre E, Kashi K, Samudyata, Luginbühl J, Cazzoli R, Agrawal S, Luscombe NM, Blanchette M, Kasukawa T, Hoon MD, Arner E, Lenhard B, Plessy C, Castelo-Branco G, Orlando V, Carninci P. RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions. Nat Commun 2020; 11:1018. [PMID: 32094342 PMCID: PMC7039879 DOI: 10.1038/s41467-020-14337-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian genomes encode tens of thousands of noncoding RNAs. Most noncoding transcripts exhibit nuclear localization and several have been shown to play a role in the regulation of gene expression and chromatin remodeling. To investigate the function of such RNAs, methods to massively map the genomic interacting sites of multiple transcripts have been developed; however, these methods have some limitations. Here, we introduce RNA And DNA Interacting Complexes Ligated and sequenced (RADICL-seq), a technology that maps genome-wide RNA-chromatin interactions in intact nuclei. RADICL-seq is a proximity ligation-based methodology that reduces the bias for nascent transcription, while increasing genomic coverage and unique mapping rate efficiency compared with existing methods. RADICL-seq identifies distinct patterns of genome occupancy for different classes of transcripts as well as cell type-specific RNA-chromatin interactions, and highlights the role of transcription in the establishment of chromatin structure.
Collapse
Affiliation(s)
- Alessandro Bonetti
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | - Ana Maria Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Department of Medicine (H7), Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Giovanni Pascarella
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Juliette Gimenez
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Leonie Roos
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Alex J Nash
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Marco Ghilotti
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Christopher J F Cameron
- School of Computer Science, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Matthew Valentine
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Science, 117312, Moscow, Russia
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, 119991, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kaori Kashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Samudyata
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Riccardo Cazzoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
- Okinawa Institute of Science and Technology, Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | | | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Boris Lenhard
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008, Bergen, Norway
| | - Charles Plessy
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Valerio Orlando
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
- KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), Division of Biological Environmental Sciences and Engineering, 23955-6900, Thuwal, Saudi Arabia.
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
150
|
Zhong C, Yang X, Feng Y, Yu J. Trained Immunity: An Underlying Driver of Inflammatory Atherosclerosis. Front Immunol 2020; 11:284. [PMID: 32153588 PMCID: PMC7046758 DOI: 10.3389/fimmu.2020.00284] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/04/2020] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the arterial wall, is among the leading causes of morbidity and mortality worldwide. The persistence of low-grade vascular inflammation has been considered to fuel the development of atherosclerosis. However, fundamental mechanistic understanding of the establishment of non-resolving low-grade inflammation is lacking, and a large number of atherosclerosis-related cardiovascular complications cannot be prevented by current therapeutic regimens. Trained immunity is an emerging new concept describing a prolonged hyperactivation of the innate immune system after exposure to certain stimuli, leading to an augmented immune response to a secondary stimulus. While it exerts beneficial effects for host defense against invading pathogens, uncontrolled persistent innate immune activation causes chronic inflammatory diseases. In light of the above, the long-term over-activation of the innate immune system conferred by trained immunity has been recently hypothesized to serve as a link between non-resolving vascular inflammation and atherosclerosis. Here, we provide an overview of current knowledge on trained immunity triggered by various exogenous and endogenous inducers, with particular emphasis on its pro-atherogenic effects and the underlying intracellular mechanisms that act at both the cellular level and systems level. We also discuss how trained immunity could be mechanistically linked to atherosclerosis from both preclinical and clinical perspectives. This review details the mechanisms underlying the induction of trained immunity by different stimuli, and highlights that the intracellular training programs can be different, though partly overlapping, depending on the stimulus and the biological system. Thus, clinical investigation of risk factor specific innate immune memory is necessary for future use of trained immunity-based therapy in atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Center for Translational Medicine, School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yulin Feng
- National Pharmaceutical Engineering Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|