101
|
Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021; 29:3107-3124. [PMID: 34509669 PMCID: PMC8571176 DOI: 10.1016/j.ymthe.2021.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recent advances in genome editing technologies have magnified the prospect of single-dose cures for many genetic diseases. For most genetic disorders, precise DNA correction is anticipated to best treat patients. To install desired DNA changes with high precision, our laboratory developed base editors (BEs), which can correct the four most common single-base substitutions, and prime editors, which can install any substitution, insertion, and/or deletion over a stretch of dozens of base pairs. Compared to nuclease-dependent editing approaches that involve double-strand DNA breaks (DSBs) and often result in a large percentage of uncontrolled editing outcomes, such as mixtures of insertions and deletions (indels), larger deletions, and chromosomal rearrangements, base editors and prime editors often offer greater efficiency with fewer byproducts in slowly dividing or non-dividing cells, such as those that make up most of the cells in adult animals. Both viral and non-viral in vivo delivery methods have now been used to deliver base editors and prime editors in animal models, establishing that base editors and prime editors can serve as effective agents for in vivo therapeutic genome editing in animals. This review summarizes examples of in vivo somatic cell (post-natal) base editing and prime editing and prospects for future development.
Collapse
Affiliation(s)
- Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02142 USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02142 USA.
| |
Collapse
|
102
|
Meneghini V, Peviani M, Luciani M, Zambonini G, Gritti A. Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Front Genome Ed 2021; 3:644319. [PMID: 34713256 PMCID: PMC8525379 DOI: 10.3389/fgeed.2021.644319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Glial cells (astrocytes, oligodendrocytes, and microglia) are emerging as key players in several physiological and pathological processes of the central nervous system (CNS). Astrocytes and oligodendrocytes are not only supportive cells that release trophic factors or regulate energy metabolism, but they also actively modulate critical neuronal processes and functions in the tripartite synapse. Microglia are defined as CNS-resident cells that provide immune surveillance; however, they also actively contribute to shaping the neuronal microenvironment by scavenging cell debris or regulating synaptogenesis and pruning. Given the many interconnected processes coordinated by glial cells, it is not surprising that both acute and chronic CNS insults not only cause neuronal damage but also trigger complex multifaceted responses, including neuroinflammation, which can critically contribute to the disease progression and worsening of symptoms in several neurodegenerative diseases. Overall, this makes glial cells excellent candidates for targeted therapies to treat CNS disorders. In recent years, the application of gene editing technologies has redefined therapeutic strategies to treat genetic and age-related neurological diseases. In this review, we discuss the advantages and limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based gene editing in the treatment of neurodegenerative disorders, focusing on the development of viral- and nanoparticle-based delivery methods for in vivo glial cell targeting.
Collapse
Affiliation(s)
- Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Zambonini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
103
|
Arora S, Sharma D, Layek B, Singh J. A Review of Brain-Targeted Nonviral Gene-Based Therapies for the Treatment of Alzheimer's Disease. Mol Pharm 2021; 18:4237-4255. [PMID: 34705472 DOI: 10.1021/acs.molpharmaceut.1c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diseases of the central nervous system (CNS) are difficult to treat owing to the complexity of the brain and the presence of a natural blood-brain-barrier (BBB). Alzheimer's disease (AD) is one of the major progressive and currently incurable neurodegenerative disorders of the CNS, which accounts for 60-80% of cases of dementia. The pathophysiology of AD involves the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. Additionally, synaptic loss and imbalance of neuronal signaling molecules are characterized as important markers of AD. Existing treatments of AD help in the management of its symptoms and aim toward the maintenance of cognitive functions, behavior, and attenuation of gradual memory loss. Over the past decade, nonviral gene therapy has attracted increasing interest due to its various advantages over its viral counterparts. Moreover, advancements in nonviral gene technology have led to their increasing contributions in clinical trials. However, brain-targeted nonviral gene delivery vectors come across various extracellular and intracellular barriers, limiting their ability to transfer the therapeutic gene into the target cells. Chief barriers to nonviral gene therapy have been discussed briefly in this review. We have also highlighted the rapid advancement of several nonviral gene therapies for AD, which are broadly categorized into physical and chemical methods. These methods aim to modulate Aβ, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), apolipoprotein E, or neurotrophic factors' expression in the CNS. Overall, this review discusses challenges and recent advancements of nonviral gene therapy for AD.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
104
|
Park H, Hwang Y, Kim J. Transcriptional activation with Cas9 activator nanocomplexes rescues Alzheimer's disease pathology. Biomaterials 2021; 279:121229. [PMID: 34739981 DOI: 10.1016/j.biomaterials.2021.121229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/02/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
CRISPR/Cas9-mediated gene activation is a potential therapeutic strategy that does not induce double-strand break (DSB) DNA damage. However, in vivo gene activation via a Cas9 activator remains a challenge, currently limiting its therapeutic applications. We developed a Cas9 activator nanocomplex that efficiently activates an endogenous gene in the brain in vivo, suggesting its possible application in novel therapeutics. We demonstrated a potential treatment application of the Cas9 activator nanocomplex by activating Adam10 in the mouse brain without introducing insertions and deletions (inDels). Remarkably, in vivo activation of Adam10 with the Cas9 activator nanocomplex improved cognitive deficits in an Alzheimer's disease (AD) mouse model. These results demonstrate the therapeutic potential of Cas9 activator nanocomplexes for a wide range of neurological diseases.
Collapse
Affiliation(s)
- Hanseul Park
- Laboratory of Cell Reprogramming & Gene Editing, Department of Chemistry & Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yerim Hwang
- Laboratory of Cell Reprogramming & Gene Editing, Department of Chemistry & Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Laboratory of Cell Reprogramming & Gene Editing, Department of Chemistry & Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
105
|
Vicente MM, Chaves-Ferreira M, Jorge JMP, Proença JT, Barreto VM. The Off-Targets of Clustered Regularly Interspaced Short Palindromic Repeats Gene Editing. Front Cell Dev Biol 2021; 9:718466. [PMID: 34604217 PMCID: PMC8484971 DOI: 10.3389/fcell.2021.718466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The repurposing of the CRISPR/Cas bacterial defense system against bacteriophages as simple and flexible molecular tools has revolutionized the field of gene editing. These tools are now widely used in basic research and clinical trials involving human somatic cells. However, a global moratorium on all clinical uses of human germline editing has been proposed because the technology still lacks the required efficacy and safety. Here we focus on the approaches developed since 2013 to decrease the frequency of unwanted mutations (the off-targets) during CRISPR-based gene editing.
Collapse
Affiliation(s)
- Manuel M Vicente
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - Miguel Chaves-Ferreira
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - João M P Jorge
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - João T Proença
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - Vasco M Barreto
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
106
|
Lennon MJ, Rigney G, Raymont V, Sachdev P. Genetic Therapies for Alzheimer's Disease: A Scoping Review. J Alzheimers Dis 2021; 84:491-504. [PMID: 34569966 DOI: 10.3233/jad-215145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effective, disease modifying therapies for Alzheimer's disease (AD) remain a quandary, following a panoply of expensive failures in human clinical trials. Given the stagnation in therapeutics, alternative approaches are needed. Recent successes of genetic therapies in other neurodegenerative diseases may highlight the way forward. This scoping review explores suggested targets of genetic therapy in AD, with a focus on vector-based approaches in pre-clinical and clinical trials. Putative targets of genetic therapies tested in pre-clinical trials include amyloid pathway intermediates and enzymes modulation, tau protein downregulation, APOE4 downregulation and APOE2 upregulation, neurotrophin expression (nerve growth factor (NGF) and brain-derived neurotrophic factor), and inflammatory cytokine alteration, among several other approaches. There have been three completed human clinical trials for genetic therapy in AD patients, all of which upregulated NGF in AD patients, showing some mixed evidence of benefit. Several impediments remain to be surpassed before genetic therapies can be successfully applied to AD, including the challenge of delivering monogenic genetic therapies for complex polygenic disorders, risks in the dominant delivery method (intracranial injection), stability of genetic therapies in vivo, poor translatability of pre-clinical AD models, and the expense of genetic therapy production. Genetic therapies represent an exciting opportunity within the world of AD therapeutics, but clinical applications likely remain a long term, rather than short term, possibility.
Collapse
Affiliation(s)
- Matthew J Lennon
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK.,Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Grant Rigney
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
107
|
Gong S, Zhang S, Lu F, Pan W, Li N, Tang B. CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection. Anal Chem 2021; 93:11899-11909. [PMID: 34427091 DOI: 10.1021/acs.analchem.1c02533] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Timely diagnosis is of great benefit to improve the survival rate of cancer patients. Body fluid cancer biomarker detection is a critical kind of noninvasive method for cancer diagnosis. Nevertheless, traditional methods for cancer biomarker detection always rely on a large-scale instrument and involve sophisticated operation. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based in vitro diagnosis can simplify the detection procedures and improve sensitivity and specificity, holding great promise as the next-generation molecular diagnostic technology. In this Feature, we introduce the working mechanisms of different kinds of CRISPR/Cas systems for biosensing and CRISPR/Cas-mediated detection strategies for different kinds of cancer biomarkers including nucleic acids, proteins, and extracellular vesicles. In addition, the perspective and challenges of CRISPR/Cas-based strategies for cancer biomarkers are discussed.
Collapse
Affiliation(s)
- Shaohua Gong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Shiqi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
108
|
Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021; 22:9241. [PMID: 34502143 PMCID: PMC8430539 DOI: 10.3390/ijms22179241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Collapse
Affiliation(s)
- David Arango
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Amaury Bittar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Camila Ocasión
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Natasha I. Bloch
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| |
Collapse
|
109
|
Fu X, Zhu J, Duan Y, Lu P, Zhang K. CRISPR/Cas9 mediated somatic gene therapy for insertional mutations: the vibrator mouse model. PRECISION CLINICAL MEDICINE 2021; 4:168-175. [PMID: 35693220 PMCID: PMC8982555 DOI: 10.1093/pcmedi/pbab021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/25/2021] [Accepted: 08/11/2021] [Indexed: 01/20/2023] Open
Abstract
Somatic gene therapy remains technically challenging, especially in the central nervous system (CNS). Efficiency of gene delivery, efficacy in recipient cells, and proportion of cells required for overall benefit are the key points needed to be considered in any therapeutic approach. Recent efforts have demonstrated the efficacy of RNA-guided nucleases such as CRISPR/Cas9 in correcting point mutations or removing dominant mutations. Here we used viral delivered Cas9 plasmid and two guide RNAs to remove a recessive insertional mutation, vibrator (vb), in the mouse brain. The vb mice expressed ∼20% of normal levels of phosphatidylinositol transfer protein, α (PITPα) RNA and protein due to an endogenous retrovirus inserted in intron 4, resulting in early-onset tremor, degeneration of brainstem and spinal cord neurons, and juvenile death. The in situ CRISPR/Cas9 viral treatment effectively delayed neurodegeneration, attenuated tremor, and bypassed juvenile death. Our studies demonstrate the potential of CRISPR/Cas9-mediated gene therapy for insertional mutations in the postnatal brain.
Collapse
Affiliation(s)
- Xin Fu
- Spine Center, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jie Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yaou Duan
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Paul Lu
- VA-San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macao, China
| |
Collapse
|
110
|
Li X, Pan Y, Chen C, Gao Y, Liu X, Yang K, Luan X, Zhou D, Zeng F, Han X, Song Y. Hypoxia‐Responsive Gene Editing to Reduce Tumor Thermal Tolerance for Mild‐Photothermal Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xueqing Li
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Yongchun Pan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xinli Liu
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Kaiyong Yang
- School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Fei Zeng
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yujun Song
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| |
Collapse
|
111
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
112
|
Abulimiti A, Lai MSL, Chang RCC. Applications of adeno-associated virus vector-mediated gene delivery for neurodegenerative diseases and psychiatric diseases: Progress, advances, and challenges. Mech Ageing Dev 2021; 199:111549. [PMID: 34352323 DOI: 10.1016/j.mad.2021.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022]
Abstract
Neurodegeneration is the most common disease in the elderly population due to its slowly progressive nature of neuronal deterioration, eventually leading to executive dysfunction. The pathological markers of neurological disorders are relatively well-established, however, detailed molecular mechanisms of progression and therapeutic targets are needed to develop novel treatments in human patients. Treating known therapeutic targets of neurological diseases has been aided by recent advancements in adeno-associated virus (AAV) technology. AAVs are known for their low-immunogenicity, blood-brain barrier (BBB) penetrating ability, selective neuronal tropism, stable transgene expression, and pleiotropy. In addition, the usage of AAVs has enormous potential to be optimized. Therefore, AAV can be a powerful tool used to uncover the underlying pathophysiology of neurological disorders and to increase the success in human gene therapy. This review summarizes different optimization approaches of AAV vectors with their current applications in disease modeling, neural tracing and gene therapy, hence exploring progressive mechanisms of neurodegenerative diseases as well as effective therapy. Lastly, this review discusses the limitations and future perspectives of the AAV-mediated transgene delivery system.
Collapse
Affiliation(s)
- Amina Abulimiti
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
113
|
Behr M, Zhou J, Xu B, Zhang H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm Sin B 2021; 11:2150-2171. [PMID: 34522582 PMCID: PMC8424283 DOI: 10.1016/j.apsb.2021.05.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Within less than a decade since its inception, CRISPR-Cas9-based genome editing has been rapidly advanced to human clinical trials in multiple disease areas. Although it is highly anticipated that this revolutionary technology will bring novel therapeutic modalities to many diseases by precisely manipulating cellular DNA sequences, the low efficiency of in vivo delivery must be enhanced before its therapeutic potential can be fully realized. Here we discuss the most recent progress of in vivo delivery of CRISPR-Cas9 systems, highlight innovative viral and non-viral delivery technologies, emphasize outstanding delivery challenges, and provide the most updated perspectives.
Collapse
|
114
|
Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharm Sin B 2021; 11:2220-2242. [PMID: 34522585 PMCID: PMC8424222 DOI: 10.1016/j.apsb.2021.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Proteases have a fundamental role in maintaining physiological homeostasis, but their dysregulation results in severe activity imbalance and pathological conditions, including cancer onset, progression, invasion, and metastasis. This striking importance plus superior biological recognition and catalytic performance of proteases, combining with the excellent physicochemical characteristics of nanomaterials, results in enzyme-activated nano-drug delivery systems (nanoDDS) that perform theranostic functions in highly specific response to the tumor phenotype stimulus. In the tutorial review, the key advances of protease-responsive nanoDDS in the specific diagnosis and targeted treatment for malignancies are emphatically classified according to the effector biomolecule types, on the premise of summarizing the structure and function of each protease. Subsequently, the incomplete matching and recognition between enzyme and substrate, structural design complexity, volume production, and toxicological issues related to the nanocomposites are highlighted to clarify the direction of efforts in nanotheranostics. This will facilitate the promotion of nanotechnology in the management of malignant tumors.
Collapse
|
115
|
Li X, Pan Y, Chen C, Gao Y, Liu X, Yang K, Luan X, Zhou D, Zeng F, Han X, Song Y. Hypoxia-Responsive Gene Editing to Reduce Tumor Thermal Tolerance for Mild-Photothermal Therapy. Angew Chem Int Ed Engl 2021; 60:21200-21204. [PMID: 34297462 DOI: 10.1002/anie.202107036] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 01/17/2023]
Abstract
Near-infrared (NIR)-light-triggered photothermal therapy (PTT) is usually associated with undesirable damage to healthy organs nearby due to the high temperatures (>50 °C) available for tumor ablation. Low-temperature PTT would therefore have tremendous value for clinical application. Here, we construct a hypoxia-responsive gold nanorods (AuNRs)-based nanocomposite of CRISPR-Cas9 for mild-photothermal therapy via tumor-targeted gene editing. AuNRs are modified with azobenzene-4,4'-dicarboxylic acid (p-AZO) to achieve on-demand release of CRISPR-Cas9 using hypoxia-responsive azo bonds. In the hypoxic tumor microenvironment, the azo groups of the hypoxia-activated CRISPR-Cas9 nanosystem based on gold nanorods (APACPs) are selectively reduced by the overexpression of reductases, leading to the release of Cas9 and subsequent gene editing. Owing to the knockout of HSP90α for reducing the thermal resistance of cancer cells, highly effective tumor ablation both in vitro and in vivo was achieved with APACPs under mild PTT.
Collapse
Affiliation(s)
- Xueqing Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xinli Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Kaiyong Yang
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
116
|
Abdeen AA, Cosgrove BD, Gersbach CA, Saha K. Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annu Rev Biomed Eng 2021; 23:493-516. [PMID: 33909475 DOI: 10.1146/annurev-bioeng-122019-121602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.
Collapse
Affiliation(s)
- Amr A Abdeen
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Brian D Cosgrove
- Department of Biomedical Engineering and Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27708, USA;
| | - Charles A Gersbach
- Department of Biomedical Engineering and Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27708, USA;
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- McPherson Eye Research Institute, Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA;
| |
Collapse
|
117
|
Patwardhan AG, Belemkar S. An update on Alzheimer's disease: Immunotherapeutic agents, stem cell therapy and gene editing. Life Sci 2021; 282:119790. [PMID: 34245772 DOI: 10.1016/j.lfs.2021.119790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is a chronic lifestyle ailment whose occurrence has come to light with the increasing life expectancy due to better healthcare. The patient burden for AD is set to double by the year 2060 and advancement in research is of utmost importance to combat this problem. AD is characterized by the pathological hallmarks of amyloid plaques and neurofibrillary tangles. The disease has been implicated to have a genetic predisposition. The current treatment strategies are at best ameliorative in nature and offer no substantive cure. Immunotherapeutic approaches employed have shown few therapeutic benefits but the accelerated approval of aducanumab by the US-FDA shows clinical benefit merit. In addition, newer therapeutic approaches are the need of the hour. This review aims to highlight the pathology of the disease, followed by an insight into newer approaches like stem cell therapy and gene editing, focusing on possible CRISPR mediated targets.
Collapse
Affiliation(s)
- Aryaman Girish Patwardhan
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management SVKM's NMIMS, Mumbai, India.
| | - Sateesh Belemkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management SVKM's NMIMS, Mumbai, India
| |
Collapse
|
118
|
Shen J, Lu Z, Wang J, Hao Q, Ji W, Wu Y, Peng H, Zhao R, Yang J, Li Y, Shi Z, Zhang X. Traceable Nano-Biohybrid Complexes by One-Step Synthesis as CRISPR-Chem Vectors for Neurodegenerative Diseases Synergistic Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101993. [PMID: 34046943 DOI: 10.1002/adma.202101993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Abnormal protein aggregations are essential pathological features of neurodegenerative diseases. Eliminating while inhibiting the regeneration of these protein aggregates is considered an effective treatment strategy. Herein, the CRISPR/Cas9 gene-editing tool is employed to inhibit the regeneration of disease-related proteins, while chemical drugs are applied to eliminate the proteins that are produced. To efficiently deliver CRISPR-chem drugs into brain lesions, traceable nano-biohybrid complexes (F-TBIO) are constructed by one-step synthesis and CRISPR/Cas9 plasmids (CF-TBIO) are loaded in a controllable manner. CF-TBIO can knock out the BACE1 gene and reduce the burden of amyloid-β, and thereby significantly improve the cognitive abilities of 2xTg-AD mice. In particular, by prolonging the dosing interval, the pathological damage and behavioral abilities of 2xTg-AD mice are still significantly improved. During the therapeutic process, CF-TBIO with a high relaxation rate provides accurate imaging signals in the complex brain physiological environment. The finding shows that CF-TBIO has great potential to serve as a CRISPR-chem drug-delivery platform for neurodegenerative diseases therapy.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianze Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiulian Hao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weihong Ji
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanyue Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huan Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhuyan Shi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
119
|
Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, Kumar P, Ambasta RK, Dureja H, Devkota HP, Gupta G, Chellappan DK, Singh SK, Dua K, Ruokolainen J, Kamal MA, Ojha S, Jha NK. CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. J Adv Res 2021; 40:207-221. [PMID: 36100328 PMCID: PMC9481950 DOI: 10.1016/j.jare.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations in APP, PSEN1 and PSEN2 are known factors for AD pathobiology. CRISPR/Cas9 genome editing approach hold promises in AD management. CRISPR/Cas9 is utilized to help correct anomalous genetic functions. Off-target mutations may impair the functionality of edited cells. Non-viral vectors show better efficacy and safety than viral vectors.
Background Alzheimer's disease (AD) is an insidious, irreversible, and progressive neurodegenerative health condition manifesting as cognitive deficits and amyloid beta (Aβ) plaques and neurofibrillary tangles. Approximately 50 million individuals are affected by AD, and the number is rapidly increasing globally. This review explores the role of CRISPR/Cas9 gene editing in the management of AD and its clinical manifestations. Aim of Review This review aims to provide a deep insight into the recent progress in CRISPR/Cas9-mediated genome editing and its use against neurodegenerative disorders, specifically AD. However, we have referred to its use against parkinsons’s disease (PD), Huntington’s disease (HD), and other human diseases, as is one of the most promising and emerging technologies for disease treatment. Key Scientific Concepts of Review The pathophysiology of AD is known to be linked with gene mutations, that is, presenilin (PSEN) and amyloid beta precursor protein (APP). However, clinical trials focused at the genetic level could not meet the desired efficiency. The CRISPR/Cas9 genome editing tool is one of the most powerful technologies for correcting inconsistent genetic signatures and now extensively used for AD management. It has significant potential for the correction of undesired gene mutations associated with AD. This technology has allowed the development of empirical AD models, therapeutic lines, and diagnostic approaches for better understanding the nervous system, from in vitro to in vivo models.
Collapse
Affiliation(s)
- Shanu Bhardwaj
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal road, Jagatpura, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| |
Collapse
|
120
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
121
|
Duarte F, Déglon N. Corrigendum: Genome Editing for CNS Disorders. Front Neurosci 2021; 15:698879. [PMID: 34122005 PMCID: PMC8187909 DOI: 10.3389/fnins.2021.698879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fábio Duarte
- Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Nicole Déglon
- Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
122
|
Abbasi S, Uchida S, Toh K, Tockary TA, Dirisala A, Hayashi K, Fukushima S, Kataoka K. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J Control Release 2021; 332:260-268. [PMID: 33647431 DOI: 10.1016/j.jconrel.2021.02.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022]
Abstract
Genome editing using CRISPR/Cas9 has attracted considerable attention for the treatment of genetic disorders and viral infections. Co-delivery of Cas9 mRNA and single guide (sg)RNA is a promising strategy to efficiently edit the genome of various cell types, including non-dividing cells, with minimal safety concerns. However, co-delivery of two RNA species with significantly different sizes, such as Cas9 mRNA (4.5 kb) and sgRNA (0.1 kb), is still challenging, especially in vivo. Here, we addressed this issue by using a PEGylated polyplex micelle (PM) condensing the RNA in its core. PM loading sgRNA alone released sgRNA at minimal dilution in buffer, while PM loading Cas9 mRNA alone was stable even at higher dilutions. Interestingly, co-encapsulating sgRNA with Cas9 mRNA in a single PM prevented sgRNA release upon dilution, which led to the enhanced tolerability of sgRNA against enzymatic degradation. Subsequently, PM with co-encapsulated RNA widely induced genome editing in parenchymal cells in the mouse brain, including neurons, astrocytes, and microglia, following intraparenchymal injection, at higher efficiency than that by co-delivery of PMs loaded with either Cas9 mRNA or sgRNA separately. To the best of our knowledge, this is the first report demonstrating the utility of RNA-based delivery of CRISPR/Cas9 in inducing genome editing in the brain parenchymal cells. Furthermore, the efficiency of genome editing using PMs was higher than using a non-PEGylated polyplex, due to the enhanced diffusion of PMs in the brain tissue. The results reported herein demonstrate the potential of using PMs to co-encapsulate Cas9 mRNA and sgRNA for in vivo genome editing.
Collapse
Affiliation(s)
- Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Theofilus A Tockary
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-1709, Japan.
| |
Collapse
|
123
|
Deng HX, Zhai H, Shi Y, Liu G, Lowry J, Liu B, Ryan ÉB, Yan J, Yang Y, Zhang N, Yang Z, Liu E, Ma YC, Siddique T. Efficacy and long-term safety of CRISPR/Cas9 genome editing in the SOD1-linked mouse models of ALS. Commun Biol 2021; 4:396. [PMID: 33767386 PMCID: PMC7994668 DOI: 10.1038/s42003-021-01942-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
CRISPR/Cas9-mediated genome editing provides potential for therapeutic development. Efficacy and long-term safety represent major concerns that remain to be adequately addressed in preclinical studies. Here we show that CRISPR/Cas9-mediated genome editing in two distinct SOD1-amyotrophic lateral sclerosis (ALS) transgenic mouse models prevented the development of ALS-like disease and pathology. The disease-linked transgene was effectively edited, with rare off-target editing events. We observed frequent large DNA deletions, ranging from a few hundred to several thousand base pairs. We determined that these large deletions were mediated by proximate identical sequences in Alu elements. No evidence of other diseases was observed beyond 2 years of age in these genome edited mice. Our data provide preclinical evidence of the efficacy and long-term safety of the CRISPR/Cas9 therapeutic approach. Moreover, the molecular mechanism of proximate identical sequences-mediated recombination provides mechanistic information to optimize therapeutic targeting design, and to avoid or minimize unintended and potentially deleterious recombination events.
Collapse
Affiliation(s)
- Han-Xiang Deng
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Hong Zhai
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yong Shi
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Guoxiang Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jessica Lowry
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Éanna B Ryan
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jianhua Yan
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi Yang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nigel Zhang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhihua Yang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erdong Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology and Physiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
124
|
Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci 2021; 78:2683-2708. [PMID: 33388855 PMCID: PMC11072787 DOI: 10.1007/s00018-020-03725-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system provides a groundbreaking genetic technology that allows scientists to modify genes by targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas system, it has been extensively applied in human genetic research as well as in agricultural applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system largely depends on the efficiency of introducing the system into cells or tissues, an efficient and specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in mammals, plants, and aquacultures. We further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas translatability.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
125
|
Bonnerjee D, Bagh S. Application of CRISPR-Cas systems in neuroscience. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:231-264. [PMID: 33685599 DOI: 10.1016/bs.pmbts.2020.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas systems have, over the years, emerged as indispensable tools for Genetic interrogation in contexts of clinical interventions, elucidation of genetic pathways and metabolic engineering and have pervaded almost every aspect of modern biology. Within this repertoire, the nervous system comes with its own set of perplexities and mysteries. Scientists have, over the years, tried to draw up a clearer genetic picture of the neuron and how it functions in a network, mainly in an endeavor to mitigate diseases of the human nervous system like Alzheimer's, Parkinson's, Huntington's, Autism Spectrum Disorder (ASD), etc. With most being progressive in nature, these diseases have plagued mankind for centuries. In spite of our immense progress in modern biology, we are yet to get a grasp over these diseases and unraveling their mechanisms is of utmost importance. Before CRISPR-Cas systems came along, the elucidation of the complex interactome of the mammalian nervous system was attempted with erstwhile existing electrophysiological, histological and pharmacological techniques coupled with Next Generation Sequencing and cell-specific targeting technologies. Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), imparted excellent sequence specific DNA targeting capabilities but came with their huge baggage of extensive protein engineering requirements, which practically rendered them unsuitable for high throughput exercises. With the discovery of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and CRISPR Associated proteins(CAS) systems by Ishino (1987)1, the era of extensive custom made endonuclease targeting was ushered in. For the first time in 2012, Jinek et al. (2012)2 repurposed the CRISPR-Cas mediated bacterial immune system for customizable mammalian gene editing. The CRISPR-Cas technology made it possible to easily customize Cas9 endonucleases to cleave near specifically targeted sequences, thereby facilitating knock-ins or knock-outs, silencing or activating or editing any gene, at any locus of the genome, both at the base-pair level or at the epigenetic level. With this enhanced degree of freedom, decrypting the nervous system and therapeutic interventions for neuropathies became significantly less cumbersome an exercise. Here we take a brisk walk through the several endeavors of research that show how the humble bacteria's CRISPR-Cas system gave us the "nerves" to "talk" to our nerves with ease.
Collapse
Affiliation(s)
- Deepro Bonnerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Kolkata, India.
| | - Sangram Bagh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Kolkata, India
| |
Collapse
|
126
|
Xiao D, Zhang W, Wang Q, Li X, Zhang Y, Rasouli J, Casella G, Ciric B, Curtis M, Rostami A, Zhang GX. CRISPR-mediated rapid generation of neural cell-specific knockout mice facilitates research in neurophysiology and pathology. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:755-764. [PMID: 33738329 PMCID: PMC7940702 DOI: 10.1016/j.omtm.2021.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Inducible conditional knockout mice are important tools for studying gene function and disease therapy, but their generation is costly and time-consuming. We introduced clustered regularly interspaced short palindromic repeats (CRISPR) and Cre into an LSL-Cas9 transgene-carrying mouse line by using adeno-associated virus (AAV)-PHP.eB to rapidly knockout gene(s) specifically in central nervous system (CNS) cells of adult mice. NeuN in neurons and GFAP in astrocytes were knocked out 2 weeks after an intravenous injection of vector, with an efficiency comparable to that of inducible Cre-loxP conditional knockout. For functional testing, we generated astrocyte-specific Act1 knockout mice, which exhibited a phenotype similar to mice with Cre-loxP-mediated Act1 knockout, in an animal model of multiple sclerosis (MS), an autoimmune disorder of the CNS. With this novel technique, neural cell-specific knockout can be induced rapidly (few weeks) and cost-effectively. Our study provides a new approach to building inducible conditional knockout mice, which would greatly facilitate research on CNS biology and disease.
Collapse
Affiliation(s)
- Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.,College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Qing Wang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xing Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yuan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark Curtis
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
127
|
Lubroth P, Colasante G, Lignani G. In vivo Genome Editing Therapeutic Approaches for Neurological Disorders: Where Are We in the Translational Pipeline? Front Neurosci 2021; 15:632522. [PMID: 33679313 PMCID: PMC7930815 DOI: 10.3389/fnins.2021.632522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
In vivo genome editing tools, such as those based on CRISPR, have been increasingly utilized in both basic and translational neuroscience research. There are currently nine in vivo non-CNS genome editing therapies in clinical trials, and the pre-clinical pipeline of major biotechnology companies demonstrate that this number will continue to grow. Several biotechnology companies commercializing in vivo genome editing and modification technologies are developing therapies for CNS disorders with accompanying large partnering deals. In this review, the authors discuss the current genome editing and modification therapy pipeline and those in development to treat CNS disorders. The authors also discuss the technical and commercial limitations to translation of these same therapies and potential avenues to overcome these hurdles.
Collapse
Affiliation(s)
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, Ospedale San Raffaele, Milan, Italy
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
128
|
Xu Y, Zhao M, Zhou D, Zheng T, Zhang H. The application of multifunctional nanomaterials in Alzheimer's disease: A potential theranostics strategy. Biomed Pharmacother 2021; 137:111360. [PMID: 33582451 DOI: 10.1016/j.biopha.2021.111360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
By virtue of their small size, nanomaterials can cross the blood-brain barrier and, when modified to target specific cells or regions, can achieve high bioavailability at the intended site of action. Modified nanomaterials are therefore promising agents for the diagnosis and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). Here we review the roles and mechanisms of action of nanomaterials in AD. First, we discuss the general characteristics of nanomaterials and their application to nanomedicine. Then, we summarize recent studies on the diagnosis and treatment of AD using modified nanomaterials. These studies indicate that using nanomaterials is a potential strategy for AD treatment by slowing the progression of AD through enhanced therapeutic effects.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou 310058, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
129
|
Kwak SE, Bae JH, Lee JH, Shin HE, Zhang D, Cho SC, Song W. Effects of exercise-induced beta-hydroxybutyrate on muscle function and cognitive function. Physiol Rep 2021; 9:e14497. [PMID: 33547753 PMCID: PMC7865404 DOI: 10.14814/phy2.14497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that exercise improves skeletal muscle and cognitive function by stimulating the secretion of numerous molecules. In particular, previous studies have suggested that exercise-induced beta-hydroxybutyrate (BHB) release might improve skeletal muscle and cognitive function, but to date these studies have been limited to cell and animal models. Therefore, we aimed to determine how an exercise-induced increase in BHB affects skeletal muscle and cognitive function at a cellular level, in an animal model, and in humans. The effects of BHB on skeletal muscle and cognitive function were determined by treating C2C12 and C6 cell lines with BHB, and by measuring the skeletal muscle and serum BHB concentrations in aged mice after endurance or resistance exercise. In addition, serum BHB concentration was measured before and after high-speed band exercise in elderly people, and its relationships with muscle and cognitive function were analyzed. We found that BHB increased cell viability and brain-derived neurotrophic factor expression level in C6 cells, and endurance exercise, but not resistance exercise, increased the muscle BHB concentration in aged mice. Furthermore, the BHB concentration was positively related to skeletal muscle and cognitive function. Exercise did not increase the serum BHB concentration in the elderly people and BHB did not correlate with cognitive function, but after excluding the five people with the highest preexisting serum concentrations of BHB, the BHB concentrations of the remaining participants were increased by exercise, and the concentration showed a tendency toward a positive correlation with cognitive function. Thus, the BHB released by skeletal muscle following endurance exercise may improve muscle and cognitive function in animals and humans.
Collapse
Affiliation(s)
- Seong Eun Kwak
- Institute of Sport ScienceSeoul National UniversitySeoulKorea
| | - Jun Hyun Bae
- Institute of Sport ScienceSeoul National UniversitySeoulKorea
| | - Ji Heun Lee
- Institute of Sport ScienceSeoul National UniversitySeoulKorea
| | - Hyung Eun Shin
- Institute of Sport ScienceSeoul National UniversitySeoulKorea
| | - DiDi Zhang
- Institute of Sport ScienceSeoul National UniversitySeoulKorea
| | | | - Wook Song
- Institute of Sport ScienceSeoul National UniversitySeoulKorea
- Institue on AgingSeoul National UniversitySeoulKorea
| |
Collapse
|
130
|
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer's disease. Life Sci 2021; 276:119129. [PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
Collapse
Affiliation(s)
- Ewen Se Thoe
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Ayesha Fauzi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Sunita Chamyuang
- School of Science, Mae Fah Luang University, Chaing Rai 57100, Thailand; Microbial Products and Innovation Research Group, Mae Fah Luang University, Chaing Rai 57100, Thailand
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia.
| |
Collapse
|
131
|
Ribarič S. Nanotechnology Therapy for Alzheimer's Disease Memory Impairment Attenuation. Int J Mol Sci 2021; 22:ijms22031102. [PMID: 33499311 PMCID: PMC7865945 DOI: 10.3390/ijms22031102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, there is no cure for Alzheimer's disease (AD) in humans; treatment is symptomatic only. Aging of the population, together with an unhealthy diet and lifestyle, contribute to the steady, global increase of AD patients. This increase creates significant health, societal and economical challenges even for the most developed countries. AD progresses from an asymptomatic stage to a progressively worsening cognitive impairment. The AD cognitive impairment is underpinned by progressive memory impairment, an increasing inability to recall recent events, to execute recently planned actions, and to learn. These changes prevent the AD patient from leading an independent and fulfilling life. Nanotechnology (NT) enables a new, alternative pathway for development of AD treatment interventions. At present, the NT treatments for attenuation of AD memory impairment are at the animal model stage. Over the past four years, there has been a steady increase in publications of AD animal models with a wide variety of original NT treatment interventions, able to attenuate memory impairment. NT therapy development, in animal models of AD, is faced with the twin challenges of the nature of AD, a chronic impairment, unique to human, of the tau protein and A β peptides that regulate several key physiological brain processes, and the incomplete understanding of AD's aetiology. This paper reviews the state-of-the-art in NT based treatments for AD memory impairment in animal models and discusses the future work for translation to the successful treatment of AD cognitive impairment in human.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
132
|
Grand Moursel L, Visser M, Servant G, Durmus S, Zuurmond AM. CRISPRing future medicines. Expert Opin Drug Discov 2021; 16:463-473. [PMID: 33322954 DOI: 10.1080/17460441.2021.1850687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The ability to engineer mammalian genomes in a quick and cost-effective way has led to rapid adaptation of CRISPR technology in biomedical research. CRISPR-based engineering has the potential to accelerate drug discovery, to support the reduction of high attrition rate in drug development and to enhance development of cell and gene-based therapies.Areas covered: How CRISPR technology is transforming drug discovery is discussed in this review. From target identification to target validation in both in vitro and in vivo models, CRISPR technology is positively impacting the early stages of drug development by providing a straightforward way to genome engineering. This property also attracted attention for CRISPR application in the cell and gene therapy area.Expert opinion: CRISPR technology is rapidly becoming the preferred tool for genome engineering and nowadays it is hard to imagine the drug discovery pipeline without this technology. With the years to come, CRISPR technology will undoubtedly be further refined and will flourish into a mature technology that will play a key role in supporting genome engineering requirements in the drug discovery pipeline as well as in cell and gene therapy development.
Collapse
Affiliation(s)
| | - Mijke Visser
- Charles River Laboratories, Leiden, The Netherlands
| | | | - Selvi Durmus
- Charles River Laboratories, Leiden, The Netherlands
| | | |
Collapse
|
133
|
Li J, Røise JJ, He M, Das R, Murthy N. Non-viral strategies for delivering genome editing enzymes. Adv Drug Deliv Rev 2021; 168:99-117. [PMID: 32931860 DOI: 10.1016/j.addr.2020.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Genome-editing tools such as Cre recombinase (Cre), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biomedical research, agriculture, microbial engineering, and therapeutic development. Direct delivery of genome editing enzymes, as opposed to their corresponding DNA and mRNA precursors, is advantageous since they do not require transcription and/or translation. In addition, prolonged overexpression is a problem when delivering viral vector or plasmid DNA which is bypassed when delivering whole proteins. This lowers the risk of insertional mutagenesis and makes for relatively easier manufacturing. However, a major limitation of utilizing genome editing proteins in vivo is their low delivery efficiency, and currently the most successful strategy involves using potentially immunogenic viral vectors. This lack of safe and effective non-viral delivery systems is still a big hurdle for the clinical translation of such enzymes. This review discusses the challenges of non-viral delivery strategies of widely used genome editing enzymes, including Cre recombinase, ZFNs and TALENs, CRISPR/Cas9, and Cas12a (Cpf1) in their protein format and highlights recent innovations of non-viral delivery strategies which have the potential to overcome current delivery limitations and advance the clinical translation of genome editing.
Collapse
|
134
|
Xu CF, Chen GJ, Luo YL, Zhang Y, Zhao G, Lu ZD, Czarna A, Gu Z, Wang J. Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev 2021; 168:3-29. [PMID: 31759123 DOI: 10.1016/j.addr.2019.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The CRISPR-Cas system initiated a revolution in genome editing when it was, for the first time, demonstrated success in the mammalian cells. Today, scientists are able to readily edit genomes, regulate gene transcription, engineer posttranscriptional events, and image nucleic acids using CRISPR-Cas-based tools. However, to efficiently transport CRISPR-Cas into target tissues/cells remains challenging due to many extra- and intra-cellular barriers, therefore largely limiting the applications of CRISPR-based therapeutics in vivo. In this review, we summarize the features of plasmid-, RNA- and ribonucleoprotein (RNP)-based CRISPR-Cas therapeutics. Then, we survey the current in vivo delivery systems. We specify the requirements for efficient in vivo delivery in clinical settings, and highlight both efficiency and safety for different CRISPR-Cas tools.
Collapse
|
135
|
Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing. Pharmaceutics 2020; 12:pharmaceutics12121233. [PMID: 33353099 PMCID: PMC7766488 DOI: 10.3390/pharmaceutics12121233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-editing technology has emerged as a potential tool for treating incurable diseases for which few therapeutic modalities are available. In particular, discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system together with the design of single-guide RNAs (sgRNAs) has sparked medical applications of genome editing. Despite the great promise of the CRISPR/Cas system, its clinical application is limited, in large part, by the lack of adequate delivery technology. To overcome this limitation, researchers have investigated various systems, including viral and nonviral vectors, for delivery of CRISPR/Cas and sgRNA into cells. Among nonviral delivery systems that have been studied are nanovesicles based on lipids, polymers, peptides, and extracellular vesicles. These nanovesicles have been designed to increase the delivery of CRISPR/Cas and sgRNA through endosome escape or using various stimuli such as light, pH, and environmental features. This review covers the latest research trends in nonviral, nanovesicle-based delivery systems that are being applied to genome-editing technology and suggests directions for future progress.
Collapse
|
136
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
137
|
Barman NC, Khan NM, Islam M, Nain Z, Roy RK, Haque A, Barman SK. CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease-A Narrative Review. Neurol Ther 2020; 9:419-434. [PMID: 33089409 PMCID: PMC7606404 DOI: 10.1007/s40120-020-00218-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder characterized by cognitive deficiency and development of amyloid-β (Aβ) plaques and neurofibrillary tangles, comprising hyperphosphorylated tau. The number of patients with AD is alarmingly increasing worldwide; currently, at least 50 million people are thought to be living with AD. The mutations or alterations in amyloid-β precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2) genes are known to be associated with the pathophysiology of AD. Effective medication for AD is still elusive and many gene-targeted clinical trials have failed to meet the expected efficiency standards. The genome editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has been emerging as a powerful technology to correct anomalous genetic functions and is now widely applied to the study of AD. This simple yet powerful tool for editing genes showed the huge potential to correct the unwanted mutations in AD-associated genes such as APP, PSEN1, and PSEN2. So, it has opened a new door for the development of empirical AD models, diagnostic approaches, and therapeutic lines in studying the complexity of the nervous system ranging from different cell types (in vitro) to animals (in vivo). This review was undertaken to study the related mechanisms and likely applications of CRISPR-Cas9 as an effective therapeutic tool in treating AD.
Collapse
Affiliation(s)
- Nirmal Chandra Barman
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh.
| | - Niuz Morshed Khan
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Maidul Islam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Zulkar Nain
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Rajib Kanti Roy
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Anwarul Haque
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Shital Kumar Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
138
|
Beutel T, Dzimiera J, Kapell H, Engelhardt M, Gass A, Schirmer L. Cortical projection neurons as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1211-1224. [PMID: 33103501 DOI: 10.1080/14728222.2020.1842358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory-demyelinating disease of the central nervous system associated with lesions of the cortical gray matter and subcortical white matter. Recently, cortical lesions have become a major focus of research because cortical pathology and neuronal damage are critical determinants of irreversible clinical progression. Recent transcriptomic studies point toward cell type-specific changes in cortical neurons in MS with a selective vulnerability of excitatory projection neuron subtypes. AREAS COVERED We discuss the cortical mapping and the molecular properties of excitatory projection neurons and their role in MS lesion pathology while placing an emphasis on their subtype-specific transcriptomic changes and levels of vulnerability. We also examine the latest magnetic resonance imaging techniques to study cortical MS pathology as a key tool for monitoring disease progression and treatment efficacy. Finally, we consider possible therapeutic avenues and novel strategies to protect excitatory cortical projection neurons. Literature search methodology: PubMed articles from 2000-2020. EXPERT OPINION Excitatory cortical projection neurons are an emerging therapeutic target in the treatment of progressive MS. Understanding neuron subtype-specific molecular pathologies and their exact spatial mapping will help establish starting points for the development of novel cell type-specific therapies and biomarkers in MS.
Collapse
Affiliation(s)
- Tatjana Beutel
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Julia Dzimiera
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Hannah Kapell
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| |
Collapse
|
139
|
Duarte F, Déglon N. Genome Editing for CNS Disorders. Front Neurosci 2020; 14:579062. [PMID: 33192264 PMCID: PMC7642486 DOI: 10.3389/fnins.2020.579062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) disorders have a social and economic burden on modern societies, and the development of effective therapies is urgently required. Gene editing may prevent or cure a disease by inducing genetic changes at endogenous loci. Genome editing includes not only the insertion, deletion or replacement of nucleotides, but also the modulation of gene expression and epigenetic editing. Emerging technologies based on ZFs, TALEs, and CRISPR/Cas systems have extended the boundaries of genome manipulation and promoted genome editing approaches to the level of promising strategies for counteracting genetic diseases. The parallel development of efficient delivery systems has also increased our access to the CNS. In this review, we describe the various tools available for genome editing and summarize in vivo preclinical studies of CNS genome editing, whilst considering current limitations and alternative approaches to overcome some bottlenecks.
Collapse
Affiliation(s)
- Fábio Duarte
- Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Nicole Déglon
- Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
140
|
Iqubal A, Iqubal MK, Khan A, Ali J, Baboota S, Haque SE. Gene Therapy, A Novel Therapeutic Tool for Neurological Disorders: Current Progress, Challenges and Future Prospective. Curr Gene Ther 2020; 20:184-194. [DOI: 10.2174/1566523220999200716111502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
:
Neurological disorders are one of the major threat for health care system as they put enormous
socioeconomic burden. All aged populations are susceptible to one or other neurological problems
with symptoms of neuroinflammation, neurodegeneration and cognitive dysfunction. At present,
available pharmacotherapeutics are insufficient to treat these diseased conditions and in most cases,
they provide only palliative effect. It was also found that the molecular etiology of neurological disorders
is directly linked with the alteration in genetic makeup, which can be inherited or triggered by the
injury, environmental toxins and by some existing disease. Therefore, to take care of this situation,
gene therapy has emerged as an advanced modality that claims to permanently cure the disease by deletion,
silencing or edition of faulty genes and by insertion of healthier genes. In this modality, vectors
(viral and non-viral) are used to deliver targeted gene into a specific region of the brain via various
routes. At present, gene therapy has shown positive outcomes in complex neurological disorders, such
as Parkinson's disease, Alzheimer's disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral
sclerosis and in lysosomal storage disease. However, there are some limitations such as immunogenic
reactions non-specificity of viral vectors and a lack of effective biomarkers to understand the efficacy
of therapy. Considerable progress has been made to improve vector design, gene selection and
targeted delivery. This review article deals with the current status of gene therapy in neurological disorders
along with its clinical relevance, challenges and future prospective.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Aamir Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
141
|
Schrauben M, Dempster E, Lunnon K. Applying gene-editing technology to elucidate the functional consequence of genetic and epigenetic variation in Alzheimer's disease. Brain Pathol 2020; 30:992-1004. [PMID: 32654206 PMCID: PMC8018012 DOI: 10.1111/bpa.12881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Recent studies have highlighted a potential role of genetic and epigenetic variation in the development of Alzheimer's disease. Application of the CRISPR-Cas genome-editing platform has enabled investigation of the functional impact that Alzheimer's disease-associated gene mutations have on gene expression. Moreover, recent advances in the technology have led to the generation of CRISPR-Cas-based tools that allow for high-throughput interrogation of different risk variants to elucidate the interplay between genomic regulatory features, epigenetic modifications, and chromatin structure. In this review, we examine the various iterations of the CRISPR-Cas system and their potential application for exploring the complex interactions and disruptions in gene regulatory circuits that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
| | - Emma Dempster
- University of Exeter Medical SchoolExeter UniversityExeterUK
| | - Katie Lunnon
- University of Exeter Medical SchoolExeter UniversityExeterUK
| |
Collapse
|
142
|
Hanafy AS, Schoch S, Lamprecht A. CRISPR/Cas9 Delivery Potentials in Alzheimer's Disease Management: A Mini Review. Pharmaceutics 2020; 12:pharmaceutics12090801. [PMID: 32854251 PMCID: PMC7559557 DOI: 10.3390/pharmaceutics12090801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common dementia disorder. While genetic mutations account for only 1% of AD cases, sporadic AD resulting from a combination of genetic and risk factors constitutes >90% of the cases. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein (Cas9) is an impactful gene editing tool which identifies a targeted gene sequence, creating a double-stranded break followed by gene inactivation or correction. Although CRISPR/Cas9 can be utilized to irreversibly inactivate or correct faulty genes in AD, a safe and effective delivery system stands as a challenge against the translation of CRISPR therapeutics from bench to bedside. While viral vectors are efficient in CRISPR/Cas9 delivery, they might introduce fatal side effects and immune responses. As non-viral vectors offer a better safety profile, cost-effectiveness and versatility, they can be promising for the in vivo delivery of CRISPR/Cas9 therapeutics. In this minireview, we present an overview of viral and non-viral vector based CRISPR/Cas9 therapeutic strategies that are being evaluated on pre-clinical AD models. Other promising non-viral vectors that can be used for genome editing in AD, such as nanoparticles, nanoclews and microvesicles, are also discussed. Finally, we list the formulation and technical aspects that must be considered in order to develop a successful non-viral CRISPR/Cas9 delivery vehicle.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21615, Egypt
- Correspondence: or ; Tel.: +20-3-3877394
| | - Susanne Schoch
- Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany;
| |
Collapse
|
143
|
Wei T, Cheng Q, Farbiak L, Anderson DG, Langer R, Siegwart DJ. Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for In Vivo CRISPR/Cas-Based Genome Editing. ACS NANO 2020; 14:9243-9262. [PMID: 32697075 PMCID: PMC7996671 DOI: 10.1021/acsnano.0c04707] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CRISPR/Cas9-based genome editing has quickly emerged as a powerful breakthrough technology for use in diverse settings across biomedical research and therapeutic development. Recent efforts toward understanding gene modification methods in vitro have led to substantial improvements in ex vivo genome editing efficiency. Because disease targets for genomic correction are often localized in specific organs, realization of the full potential of genomic medicines will require delivery of CRISPR/Cas9 systems targeting specific tissues and cells directly in vivo. In this Perspective, we focus on progress toward in vivo delivery of CRISPR/Cas components. Viral and nonviral delivery systems are both promising for gene editing in diverse tissues via local injection and systemic injection. We describe the various viral vectors and synthetic nonviral materials used for in vivo gene editing and applications to research and therapeutic models, and summarize opportunities and progress to date for both methods. We also discuss challenges for viral delivery, including overcoming limited packaging capacity, immunogenicity associated with multiple dosing, and the potential for off-target effects, and nonviral delivery, including efforts to increase efficacy and to expand utility of nonviral carriers for use in extrahepatic tissues and cancer. Looking ahead, additional advances in the safety and efficiency of viral and nonviral delivery systems for tissue- and cell-type-specific gene editing will be required to enable broad clinical translation. We provide a summary of current delivery systems used for in vivo genome editing, organized with respect to route of administration, and highlight immediate opportunities for biomedical research and applications. Furthermore, we discuss current challenges for in vivo delivery of CRISPR/Cas9 systems to guide the development of future therapies.
Collapse
Affiliation(s)
- Tuo Wei
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Qiang Cheng
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Lukas Farbiak
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Daniel G. Anderson
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel J. Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
144
|
Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B. Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Front Mol Neurosci 2020; 13:148. [PMID: 32903507 PMCID: PMC7437156 DOI: 10.3389/fnmol.2020.00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Diseases of the central nervous system (CNS) have historically been among the most difficult to treat using conventional pharmacological approaches. This is due to a confluence of factors, including the limited regenerative capacity and overall complexity of the brain, problems associated with repeated drug administration, and difficulties delivering drugs across the blood-brain barrier (BBB). Viral-mediated gene transfer represents an attractive alternative for the delivery of therapeutic cargo to the nervous system. Crucially, it usually requires only a single injection, whether that be a gene replacement strategy for an inherited disorder or the delivery of a genome- or epigenome-modifying construct for treatment of CNS diseases and disorders. It is thus understandable that considerable effort has been put towards the development of improved vector systems for gene transfer into the CNS. Different viral vectors are of course tailored to their specific applications, but they generally should share several key properties. The ideal viral vector incorporates a high-packaging capacity, efficient gene transfer paired with robust and sustained expression, lack of oncogenicity, toxicity and pathogenicity, and scalable manufacturing for clinical applications. In this review, we will devote attention to viral vectors derived from human immunodeficiency virus type 1 (lentiviral vectors; LVs) and adeno-associated virus (AAVs). The high interest in these viral delivery systems vectors is due to: (i) robust delivery and long-lasting expression; (ii) efficient transduction into postmitotic cells, including the brain; (iii) low immunogenicity and toxicity; and (iv) compatibility with advanced manufacturing techniques. Here, we will outline basic aspects of LV and AAV biology, particularly focusing on approaches and techniques aiming to enhance viral safety. We will also allocate a significant portion of this review to the development and use of LVs and AAVs for delivery into the CNS, with a focus on the genome and epigenome-editing tools based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas 9) and the development of novel strategies for the treatment of neurodegenerative diseases (NDDs).
Collapse
Affiliation(s)
- Joseph Edward Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Malik Moncalvo
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Ornit Chiba-Falek
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
145
|
Gao Y, Gao K, Yang H. CRISPR/Cas: a potential gene-editing tool in the nervous system. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:12. [PMID: 32761306 PMCID: PMC7406588 DOI: 10.1186/s13619-020-00044-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
The rapidly developmental RNA-guided CRISPR/Cas system is a powerful tool for RNA and DNA editing in a variety of cells from different species and makes a great contribution to gene function research, disease model generation and gene therapy development in the past few years. The ease of use, low cost and high efficiency of CRISPR/Cas make it commonly used in various conditions. In this review, we introduce the CRISPR/Cas system and its diverse applications in nervous system briefly, which provides a better understanding for its potential application values.
Collapse
Affiliation(s)
- Yanxia Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kexin Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
146
|
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020; 10:1347-1359. [PMID: 32963936 PMCID: PMC7488363 DOI: 10.1016/j.apsb.2020.01.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is rapidly emerging as a powerful therapeutic strategy for a wide range of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Some early clinical trials have failed to achieve satisfactory therapeutic effects. Efforts to enhance effectiveness are now concentrating on three major fields: identification of new vectors, novel therapeutic targets, and reliable of delivery routes for transgenes. These approaches are being assessed closely in preclinical and clinical trials, which may ultimately provide powerful treatments for patients. Here, we discuss advances and challenges of gene therapy for neurodegenerative disorders, highlighting promising technologies, targets, and future prospects.
Collapse
Key Words
- AADC, aromatic-l-amino-acid
- AAVs, adeno-associated viruses
- AD, Alzheimer's disease
- ARSA, arylsulfatase A
- ASOs, antisense oligonucleotides
- ASPA, aspartoacylase
- Adeno-associated viruses
- Adv, adenovirus
- BBB, blood–brain barrier
- BCSFB, blood–cerebrospinal fluid barrier
- BRB, blood–retina barrier
- Bip, glucose regulated protein 78
- CHOP, CCAAT/enhancer binding homologous protein
- CLN6, ceroidlipofuscinosis neuronal protein 6
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Central nervous system
- Delivery routes
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- GAA, lysosomal acid α-glucosidase
- GAD, glutamic acid decarboxylase
- GDNF, glial derived neurotrophic factor
- Gene therapy
- HD, Huntington's disease
- HSPGs, heparin sulfate proteoglycans
- HTT, mutant huntingtin
- IDS, iduronate 2-sulfatase
- LVs, retrovirus/lentivirus
- Lamp2a, lysosomal-associated membrane protein 2a
- NGF, nerve growth factor
- Neurodegenerative disorders
- PD, Parkinson's disease
- PGRN, Progranulin
- PINK1, putative kinase 1
- PTEN, phosphatase and tensin homolog
- RGCs, retinal ganglion cells
- RNAi, RNA interference
- RPE, retinal pigmented epithelial
- SGSH, lysosomal heparan-N-sulfamidase gene
- SMN, survival motor neuron
- SOD, superoxide dismutase
- SUMF, sulfatase-modifying factor
- TFEB, transcription factor EB
- TPP1, tripeptidyl peptidase 1
- TREM2, triggering receptor expressed on myeloid cells 2
- UPR, unfolded protein response
- ZFPs, zinc finger proteins
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| |
Collapse
|
147
|
Tay LS, Palmer N, Panwala R, Chew WL, Mali P. Translating CRISPR-Cas Therapeutics: Approaches and Challenges. CRISPR J 2020; 3:253-275. [PMID: 32833535 PMCID: PMC7469700 DOI: 10.1089/crispr.2020.0025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CRISPR-Cas clinical trials have begun, offering a first glimpse at how DNA and RNA targeting could enable therapies for many genetic and epigenetic human diseases. The speedy progress of CRISPR-Cas from discovery and adoption to clinical use is built on decades of traditional gene therapy research and belies the multiple challenges that could derail the successful translation of these new modalities. Here, we review how CRISPR-Cas therapeutics are translated from technological systems to therapeutic modalities, paying particular attention to the therapeutic cascade from cargo to delivery vector, manufacturing, administration, pipelines, safety, and therapeutic target profiles. We also explore potential solutions to some of the obstacles facing successful CRISPR-Cas translation. We hope to illuminate how CRISPR-Cas is brought from the academic bench toward use in the clinic.
Collapse
Affiliation(s)
- Lavina Sierra Tay
- Laboratory of Synthetic Biology and Genome Editing Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nathan Palmer
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Wei Leong Chew
- Laboratory of Synthetic Biology and Genome Editing Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
148
|
CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci 2020; 259:118165. [PMID: 32735884 DOI: 10.1016/j.lfs.2020.118165] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic Repeats)/Cas9 is a new genetic editing technology that can be a beneficial method to advance gene therapy. CRISPR technology is a defense system of some bacteria against invading viruses. Genome editing based on the CRISPR/Cas9 system is an efficient and potential technology that can be a viable alternative to traditional methods. This system is a compound of a short guide RNAs (gRNAs) for identifying the target DNA sequence and Cas9 protein as nuclease for breaking and cutting of DNA. In this review, recent advances in the CRISPR/Cas9-mediated genome editing tools are presented as well as their use in gene therapy strategies for the treatment of neurological disorders including Parkinson's disease, Alzheimer's disease, and Huntington's disease.
Collapse
|
149
|
Tozzo P, Zullo S, Caenazzo L. Science Runs and the Debate Brakes: Somatic Gene-Editing as a New Tool for Gender-Specific Medicine in Alzheimer's Disease. Brain Sci 2020; 10:brainsci10070421. [PMID: 32630809 PMCID: PMC7408320 DOI: 10.3390/brainsci10070421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Gender-specific medicine is a discipline that studies the influence of sex and gender on physiology, pathophysiology, and diseases. One example in light of how a genetic-based disease among other diseases, that impact on sex, can be represented by the risk of developing dementia or Alzheimer's disease. The question that comes into focus is whether gene-editing can represent a new line of investigation to be explored in the development of personalized, gender-specific medicine that guarantees gender equity in health policies. This article aims to discuss the relevance of adopting a gender-specific focus on gene-editing research, considered as a way of contributing to the advance of medicine's understanding, treatment, and prevention of dementia, particularly Alzheimer's disease. The development or improvement of cures could take advantage of the knowledge of the gender diversity in order to ascertain and develop differential interventions also at the genetic level between women and men, and this deserves special attention and deep ethical reflection.
Collapse
Affiliation(s)
- Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
- Correspondence: ; Tel.: +39-04-9827-2234
| | - Silvia Zullo
- Department of Legal Studies, University of Bologna, 40121 Bologna, Italy;
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
| |
Collapse
|
150
|
Stepanichev M. Gene Editing and Alzheimer's Disease: Is There Light at the End of the Tunnel? Front Genome Ed 2020; 2:4. [PMID: 34713213 PMCID: PMC8525398 DOI: 10.3389/fgeed.2020.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease continues to be a fatal, incurable neurodegenerative disease, despite many years of efforts to find approaches to its treatment. Here we review recent studies on Alzheimer's disease as a target for gene therapy and specifically, gene editing technology. We also review the opportunities and limitations of modern methods of gene therapy based on the CRISPR editing system. The opportunities of using this approach for modeling, including cellular and animal models, studying on pathogenesis and disease correction mechanisms, as well as limitations for its therapeutic use are discussed.
Collapse
Affiliation(s)
- Mikhail Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|