101
|
The influence of sample quantity and lysis parameters on the success of ancient DNA extraction from skeletal remains. Biotechniques 2021; 71:376-381. [PMID: 34187204 DOI: 10.2144/btn-2020-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA extraction is of utmost importance in archaeobiology, as it determines the success of further DNA analyses. This study concentrates on the success of ancient DNA extraction using silica spin columns and PCR-based analysis from archaeological skeletal material and investigates the influence of sample quantity, lysis time and lysis temperature during sample preparation. The results show that lysis times ranging from 2 to 48 h are suitable, and that lysis should be carried out at a constant temperature of 56°C. Concerning sample quantity, 10 mg for mitochondrial DNA and 50 mg for chromosomal DNA are sufficient for high quality analyses. Thus invaluable sample material can be saved, and time of sample preparation can be reduced considerably.
Collapse
|
102
|
Ingman T, Eisenmann S, Skourtanioti E, Akar M, Ilgner J, Gnecchi Ruscone GA, le Roux P, Shafiq R, Neumann GU, Keller M, Freund C, Marzo S, Lucas M, Krause J, Roberts P, Yener KA, Stockhammer PW. Human mobility at Tell Atchana (Alalakh), Hatay, Turkey during the 2nd millennium BC: Integration of isotopic and genomic evidence. PLoS One 2021; 16:e0241883. [PMID: 34191795 PMCID: PMC8244877 DOI: 10.1371/journal.pone.0241883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
The Middle and Late Bronze Age, a period roughly spanning the 2nd millennium BC (ca. 2000-1200 BC) in the Near East, is frequently referred to as the first 'international age', characterized by intense and far-reaching contacts between different entities from the eastern Mediterranean to the Near East and beyond. In a large-scale tandem study of stable isotopes and ancient DNA of individuals excavated at Tell Atchana (Alalakh, located in Hatay, Turkey), we explored the role of mobility at the capital of a regional kingdom, named Mukish during the Late Bronze Age, which spanned the Amuq Valley and some areas beyond. We generated strontium and oxygen isotope data from dental enamel for 53 individuals and 77 individuals, respectively, and added ancient DNA data of 10 newly sequenced individuals to a dataset of 27 individuals published in 2020. Additionally, we improved the DNA coverage of one individual from this 2020 dataset. The DNA data revealed a very homogeneous gene pool. This picture of an overwhelmingly local ancestry was consistent with the evidence of local upbringing in most of the individuals indicated by the isotopic data, where only five were found to be non-local. High levels of contact, trade, and exchange of ideas and goods in the Middle and Late Bronze Ages, therefore, seem not to have translated into high levels of individual mobility detectable at Tell Atchana.
Collapse
Affiliation(s)
- Tara Ingman
- Koç University Research Center for Anatolian Civilizations (ANAMED), Koc University, Istanbul, Turkey
| | - Stefanie Eisenmann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Murat Akar
- Department of Archaeology, Mustafa Kemal University, Alahan-Antakya, Hatay, Turkey
| | - Jana Ilgner
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | | | - Petrus le Roux
- Department of Geological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Rula Shafiq
- Anthropology Department, Yeditepe University, Istanbul, Turkey
| | - Gunnar U. Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cäcilia Freund
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Sara Marzo
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Mary Lucas
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - K. Aslıhan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY, United States of America
| | - Philipp W. Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
103
|
Essel E, Korlević P, Meyer M. A method for the temperature-controlled extraction of DNA from ancient bones. Biotechniques 2021; 71:382-386. [PMID: 34164993 DOI: 10.2144/btn-2021-0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Contamination with microbial and other exogenous DNA poses a significant challenge in the generation of genome-wide sequence data from ancient skeletal remains. Here we describe a method for separating ancient DNA into multiple fractions during DNA extraction by sequential temperature-controlled release of DNA into sodium phosphate buffer. An evaluation of the effectiveness of the method using a set of three ancient bones resulted in between 1.6- and 32-fold enrichment of endogenous DNA compared with regular DNA extraction. For two bones, the method outperformed previous methods of decontaminating ancient bones, including hypochlorite treatment, which resulted in near-complete destruction of DNA in the worst-preserved sample. This extraction method expands the spectrum of methods available for depleting contaminant DNA from ancient skeletal remains.
Collapse
Affiliation(s)
- Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, D-04103, Germany
| | - Petra Korlević
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, D-04103, Germany.,Wellcome Genome Campus, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, D-04103, Germany
| |
Collapse
|
104
|
Zavala EI, Jacobs Z, Vernot B, Shunkov MV, Kozlikin MB, Derevianko AP, Essel E, de Fillipo C, Nagel S, Richter J, Romagné F, Schmidt A, Li B, O'Gorman K, Slon V, Kelso J, Pääbo S, Roberts RG, Meyer M. Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave. Nature 2021; 595:399-403. [PMID: 34163072 PMCID: PMC8277575 DOI: 10.1038/s41586-021-03675-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals1–4. The dozen hominin remains recovered from the deposits also include Neanderthals5,6 and the child of a Neanderthal and a Denisovan7, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages5,8–11. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly—possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments. Ancient mitochondrial DNA from sediments reveals the sequence of Denisovan, Neanderthal and faunal occupation of Denisova Cave, and evidence for the appearance of modern humans at least 45,000 years ago.
Collapse
Affiliation(s)
- Elena I Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Zenobia Jacobs
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia. .,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Benjamin Vernot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Fillipo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Frédéric Romagné
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Schmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Bo Li
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia.,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kieran O'Gorman
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Viviane Slon
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Shmunis Family Anthropology Institute, The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Richard G Roberts
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia. .,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
105
|
Kapp JD, Green RE, Shapiro B. A Fast and Efficient Single-stranded Genomic Library Preparation Method Optimized for Ancient DNA. J Hered 2021; 112:241-249. [PMID: 33768239 PMCID: PMC8141684 DOI: 10.1093/jhered/esab012] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/16/2021] [Indexed: 11/12/2022] Open
Abstract
We present a protocol to prepare extracted DNA for sequencing on the Illumina sequencing platform that has been optimized for ancient and degraded DNA. Our approach, the Santa Cruz Reaction or SCR, uses directional splinted ligation of Illumina’s P5 and P7 adapters to convert natively single-stranded DNA and heat denatured double-stranded DNA into sequencing libraries in a single enzymatic reaction. To demonstrate its efficacy in converting degraded DNA molecules, we prepare 5 ancient DNA extracts into sequencing libraries using the SCR and 2 of the most commonly used approaches for preparing degraded DNA for sequencing: BEST, which targets and converts double-stranded DNA, and ssDNA2.0, which targets and converts single-stranded DNA. We then compare the efficiency with which each approach recovers unique molecules, or library complexity, given a standard amount of DNA input. We find that the SCR consistently outperforms the BEST protocol in recovering unique molecules and, despite its relative simplicity to perform and low cost per library, has similar performance to ssDNA2.0 across a wide range of DNA inputs. The SCR is a cost- and time-efficient approach that minimizes the loss of unique molecules and makes accessible a taxonomically, geographically, and a temporally broader sample of preserved remains for genomic analysis.
Collapse
Affiliation(s)
- Joshua D Kapp
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA.,Genomics Institute, University of California Santa Cruz, Santa Cruz, CA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA.,Genomics Institute, University of California Santa Cruz, Santa Cruz, CA.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA
| |
Collapse
|
106
|
Martinón-Torres M, d'Errico F, Santos E, Álvaro Gallo A, Amano N, Archer W, Armitage SJ, Arsuaga JL, Bermúdez de Castro JM, Blinkhorn J, Crowther A, Douka K, Dubernet S, Faulkner P, Fernández-Colón P, Kourampas N, González García J, Larreina D, Le Bourdonnec FX, MacLeod G, Martín-Francés L, Massilani D, Mercader J, Miller JM, Ndiema E, Notario B, Pitarch Martí A, Prendergast ME, Queffelec A, Rigaud S, Roberts P, Shoaee MJ, Shipton C, Simpson I, Boivin N, Petraglia MD. Earliest known human burial in Africa. Nature 2021; 593:95-100. [PMID: 33953416 DOI: 10.1038/s41586-021-03457-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
The origin and evolution of hominin mortuary practices are topics of intense interest and debate1-3. Human burials dated to the Middle Stone Age (MSA) are exceedingly rare in Africa and unknown in East Africa1-6. Here we describe the partial skeleton of a roughly 2.5- to 3.0-year-old child dating to 78.3 ± 4.1 thousand years ago, which was recovered in the MSA layers of Panga ya Saidi (PYS), a cave site in the tropical upland coast of Kenya7,8. Recent excavations have revealed a pit feature containing a child in a flexed position. Geochemical, granulometric and micromorphological analyses of the burial pit content and encasing archaeological layers indicate that the pit was deliberately excavated. Taphonomical evidence, such as the strict articulation or good anatomical association of the skeletal elements and histological evidence of putrefaction, support the in-place decomposition of the fresh body. The presence of little or no displacement of the unstable joints during decomposition points to an interment in a filled space (grave earth), making the PYS finding the oldest known human burial in Africa. The morphological assessment of the partial skeleton is consistent with its assignment to Homo sapiens, although the preservation of some primitive features in the dentition supports increasing evidence for non-gradual assembly of modern traits during the emergence of our species. The PYS burial sheds light on how MSA populations interacted with the dead.
Collapse
Affiliation(s)
- María Martinón-Torres
- CENIEH (National Research Center on Human Evolution), Burgos, Spain. .,Anthropology Department, University College London, London, UK.
| | - Francesco d'Errico
- UMR 5199 CNRS De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Talence, France.,SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| | - Elena Santos
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Instituto de Salud Carlos III, Madrid, Spain.,Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales - Universidad de Alcalá), Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Ana Álvaro Gallo
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
| | - Noel Amano
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - William Archer
- Department of Archaeology and Anthropology, National Museum, Bloemfontein, South Africa.,Department of Archaeology, University of Cape Town, Cape Town, South Africa.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Simon J Armitage
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway.,Department of Geography, Royal Holloway, University of London, Egham, UK
| | - Juan Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Bermúdez de Castro
- CENIEH (National Research Center on Human Evolution), Burgos, Spain.,Anthropology Department, University College London, London, UK
| | - James Blinkhorn
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Department of Geography, Royal Holloway, University of London, Egham, UK.,Pan-African Evolution Research Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alison Crowther
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,School of Social Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Katerina Douka
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK
| | - Stéphan Dubernet
- UMR 5060 CNRS-Université Bordeaux Montaigne IRAMAT-CRP2A: Institut de recherche sur les Archéomatériaux - Centre de recherche en physique appliquée à l'archéologie, Maison de l'archéologie, Pessac, France
| | - Patrick Faulkner
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Faculty of Arts and Social Sciences, Department of Archaeology, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Nikos Kourampas
- Centre for Open Learning, University of Edinburgh, Edinburgh, UK.,Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Jorge González García
- 3D Applications Engineer and Heritage Specialist Digital Heritage and Humanities Collections, University of South Florida, Tampa, FL, USA
| | - David Larreina
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
| | - François-Xavier Le Bourdonnec
- UMR 5060 CNRS-Université Bordeaux Montaigne IRAMAT-CRP2A: Institut de recherche sur les Archéomatériaux - Centre de recherche en physique appliquée à l'archéologie, Maison de l'archéologie, Pessac, France
| | - George MacLeod
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Laura Martín-Francés
- CENIEH (National Research Center on Human Evolution), Burgos, Spain.,Anthropology Department, University College London, London, UK
| | - Diyendo Massilani
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julio Mercader
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer M Miller
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Emmanuel Ndiema
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,National Museums of Kenya, Department of Earth Sciences, Nairobi, Kenya
| | - Belén Notario
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
| | - Africa Pitarch Martí
- UMR 5199 CNRS De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Talence, France.,Seminari d'Estudis i Recerques Prehistòriques (SERP), Facultat de Geografia i Història, Departament d'Història i Arqueologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Alain Queffelec
- UMR 5199 CNRS De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Talence, France
| | - Solange Rigaud
- UMR 5199 CNRS De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Talence, France
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,School of Social Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Mohammad Javad Shoaee
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Ceri Shipton
- Institute of Archaeology, University College London, London, UK.,Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ian Simpson
- Centre for Open Learning, University of Edinburgh, Edinburgh, UK
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany. .,School of Social Science, The University of Queensland, Brisbane, Queensland, Australia. .,Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada. .,Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Michael D Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany. .,School of Social Science, The University of Queensland, Brisbane, Queensland, Australia. .,Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. .,Australian Research Centre for Human Evolution (ARCHE), Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
107
|
Zhang M, Cao P, Dai Q, Wang Y, Feng X, Wang H, Wu H, Ko AMS, Mao X, Liu Y, Yu L, Roos C, Nadler T, Xiao W, Bennett EA, Fu Q. Comparative analysis of DNA extraction protocols for ancient soft tissue museum samples. Zool Res 2021; 42:280-286. [PMID: 33855818 PMCID: PMC8175948 DOI: 10.24272/j.issn.2095-8137.2020.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
DNA studies of endangered or extinct species often rely on ancient or degraded remains. The majority of ancient DNA (aDNA) extraction protocols focus on skeletal elements, with skin and hair samples rarely explored. Similar to that found in bones and teeth, DNA extracted from historical or ancient skin and fur samples is also extremely fragmented with low endogenous content due to natural degradation processes. Thus, the development of effective DNA extraction methods is required for these materials. Here, we compared the performance of two DNA extraction protocols (commercial and custom laboratory aDNA methods) on hair and skin samples from decades-old museum specimens to Iron Age archaeological material. We found that apart from the impact sample-specific taphonomic and handling history has on the quantity and quality of DNA preservation, skin yielded more endogenous DNA than hair of the samples and protocols tested. While both methods recovered DNA from ancient soft tissue, the laboratory method performed better overall in terms of DNA yield and quality, which was primarily due to the poorer performance of the commercial binding buffer in recovering aDNA.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Yongqiang Wang
- Institute of cultural relics and archaeology in Xinjiang, Urumqi, Xinjiang 830011, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Hongru Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Tilo Nadler
- Wildlife Consultant, Cuc Phuong Commune, Nho Quan, Ninh Binh 430000, Vietnam
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan 671003, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China. E-mail:
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.,University of Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
108
|
Vernot B, Zavala EI, Gómez-Olivencia A, Jacobs Z, Slon V, Mafessoni F, Romagné F, Pearson A, Petr M, Sala N, Pablos A, Aranburu A, de Castro JMB, Carbonell E, Li B, Krajcarz MT, Krivoshapkin AI, Kolobova KA, Kozlikin MB, Shunkov MV, Derevianko AP, Viola B, Grote S, Essel E, Herráez DL, Nagel S, Nickel B, Richter J, Schmidt A, Peter B, Kelso J, Roberts RG, Arsuaga JL, Meyer M. Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments. Science 2021; 372:science.abf1667. [PMID: 33858989 DOI: 10.1126/science.abf1667] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.
Collapse
Affiliation(s)
- Benjamin Vernot
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Elena I Zavala
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain.,Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain.,Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Zenobia Jacobs
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia.,Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Frédéric Romagné
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alice Pearson
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Martin Petr
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nohemi Sala
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain.,Centro Nacional de Investigación Sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Adrián Pablos
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain.,Centro Nacional de Investigación Sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Arantza Aranburu
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain.,Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain
| | | | - Eudald Carbonell
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Universitat Rovira i Virgili, Tarragona, Spain.,Àrea de Prehistòria, Universitat Rovira i Virgili, Tarragona, Spain
| | - Bo Li
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia.,Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Maciej T Krajcarz
- Institute of Geological Sciences, Polish Academy of Sciences, Warszawa, Poland
| | - Andrey I Krivoshapkin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Kseniya A Kolobova
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Steffi Grote
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Essel
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - David López Herráez
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Schmidt
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Peter
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Richard G Roberts
- Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia.,Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Juan-Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain.,Departamento de Paleontología, Facultad Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
109
|
Heterogeneous Hunter-Gatherer and Steppe-Related Ancestries in Late Neolithic and Bell Beaker Genomes from Present-Day France. Curr Biol 2021; 31:1072-1083.e10. [PMID: 33434506 DOI: 10.1016/j.cub.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The transition from the Late Neolithic to the Bronze Age has witnessed important population and societal changes in western Europe.1 These include massive genomic contributions of pastoralist herders originating from the Pontic-Caspian steppes2,3 into local populations, resulting from complex interactions between collapsing hunter-gatherers and expanding farmers of Anatolian ancestry.4-8 This transition is documented through extensive ancient genomic data from present-day Britain,9,10 Ireland,11,12 Iberia,13 Mediterranean islands,14,15 and Germany.8 It remains, however, largely overlooked in France, where most focus has been on the Middle Neolithic (n = 63),8,9,16 with the exception of one Late Neolithic genome sequenced at 0.05× coverage.16 This leaves the key transitional period covering ∼3,400-2,700 cal. years (calibrated years) BCE genetically unsampled and thus the exact time frame of hunter-gatherer persistence and arrival of steppe migrations unknown. To remediate this, we sequenced 24 ancient human genomes from France spanning ∼3,400-1,600 cal. years BCE. This reveals Late Neolithic populations that are genetically diverse and include individuals with dark skin, hair, and eyes. We detect heterogeneous hunter-gatherer ancestries within Late Neolithic communities, reaching up to ∼63.3% in some individuals, and variable genetic contributions of steppe herders in Bell Beaker populations. We provide an estimate as late as ∼3,800 years BCE for the admixture between Neolithic and Mesolithic populations and as early as ∼2,650 years BCE for the arrival of steppe-related ancestry. The genomic heterogeneity characterized underlines the complex history of human interactions even at the local scale.
Collapse
|
110
|
Reevaluating the timing of Neanderthal disappearance in Northwest Europe. Proc Natl Acad Sci U S A 2021; 118:2022466118. [PMID: 33798098 DOI: 10.1073/pnas.2022466118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Elucidating when Neanderthal populations disappeared from Eurasia is a key question in paleoanthropology, and Belgium is one of the key regions for studying the Middle to Upper Paleolithic transition. Previous radiocarbon dating placed the Spy Neanderthals among the latest surviving Neanderthals in Northwest Europe with reported dates as young as 23,880 ± 240 B.P. (OxA-8912). Questions were raised, however, regarding the reliability of these dates. Soil contamination and carbon-based conservation products are known to cause problems during the radiocarbon dating of bulk collagen samples. Employing a compound-specific approach that is today the most efficient in removing contamination and ancient genomic analysis, we demonstrate here that previous dates produced on Neanderthal specimens from Spy were inaccurately young by up to 10,000 y due to the presence of unremoved contamination. Our compound-specific radiocarbon dates on the Neanderthals from Spy and those from Engis and Fonds-de-Forêt demonstrate that they disappeared from Northwest Europe at 44,200 to 40,600 cal B.P. (at 95.4% probability), much earlier than previously suggested. Our data contribute significantly to refining models for Neanderthal disappearance in Europe and, more broadly, show that chronometric models regarding the appearance or disappearance of animal or hominin groups should be based only on radiocarbon dates obtained using robust pretreatment methods.
Collapse
|
111
|
Wang CC, Yeh HY, Popov AN, Zhang HQ, Matsumura H, Sirak K, Cheronet O, Kovalev A, Rohland N, Kim AM, Mallick S, Bernardos R, Tumen D, Zhao J, Liu YC, Liu JY, Mah M, Wang K, Zhang Z, Adamski N, Broomandkhoshbacht N, Callan K, Candilio F, Carlson KSD, Culleton BJ, Eccles L, Freilich S, Keating D, Lawson AM, Mandl K, Michel M, Oppenheimer J, Özdoğan KT, Stewardson K, Wen S, Yan S, Zalzala F, Chuang R, Huang CJ, Looh H, Shiung CC, Nikitin YG, Tabarev AV, Tishkin AA, Lin S, Sun ZY, Wu XM, Yang TL, Hu X, Chen L, Du H, Bayarsaikhan J, Mijiddorj E, Erdenebaatar D, Iderkhangai TO, Myagmar E, Kanzawa-Kiriyama H, Nishino M, Shinoda KI, Shubina OA, Guo J, Cai W, Deng Q, Kang L, Li D, Li D, Lin R, Nini, Shrestha R, Wang LX, Wei L, Xie G, Yao H, Zhang M, He G, Yang X, Hu R, Robbeets M, Schiffels S, Kennett DJ, Jin L, Li H, Krause J, Pinhasi R, Reich D. Genomic insights into the formation of human populations in East Asia. Nature 2021; 591:413-419. [PMID: 33618348 PMCID: PMC7993749 DOI: 10.1038/s41586-021-03336-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.
Collapse
Affiliation(s)
- Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Nanyang, Singapore
| | - Alexander N Popov
- Scientific Museum, Far Eastern Federal University, Vladivostok, Russia
| | - Hu-Qin Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | - Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Alexey Kovalev
- Institute of Archaeology, Russian Academy of Sciences, Moscow, Russia
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander M Kim
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Anthropology, Harvard University, Cambridge, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Dashtseveg Tumen
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Jing Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Chang Liu
- Institute of Archaeology, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Yu Liu
- Department of Anthropology, University of Washington, Seattle, WA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ke Wang
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Zhao Zhang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca Candilio
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Brendan J Culleton
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA
| | - Laurie Eccles
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Suzanne Freilich
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Denise Keating
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Shi Yan
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Richard Chuang
- Institute of Archaeology, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Jung Huang
- Institute of Archaeology, National Cheng Kung University, Tainan, Taiwan
| | - Hana Looh
- Institute of History and Philology, Institute of History and Philology, Academia Sinica, Taipei, Taiwan
| | - Chung-Ching Shiung
- Institute of Archaeology, National Cheng Kung University, Tainan, Taiwan
| | - Yuri G Nikitin
- Museum of Archaeology and Ethnology, Institute of History, Archaeology and Ethnology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Andrei V Tabarev
- Institute of Archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey A Tishkin
- Department of Archeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Song Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhou-Yong Sun
- Shaanxi Provincial Institute of Archaeology, Xi'an, China
| | - Xiao-Ming Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xi Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Chen
- School of Cultural Heritage, Northwest University, Xi'an, China
| | - Hua Du
- Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | | | - Enkhbayar Mijiddorj
- Department of Archaeology, Ulaanbaatar State University, Ulaanbaatar, Mongolia
| | | | | | - Erdene Myagmar
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | | | - Ken-Ichi Shinoda
- Department of Anthropology, National Museum of Nature and Science, Tsukuba, Japan
| | - Olga A Shubina
- Department of Archeology, Sakhalin Regional Museum, Yuzhno-Sakhalinsk, Russia
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Qiongying Deng
- Department of Human Anatomy and Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Ministry of Education, School of Medicine, Xizang Minzu University (Tibet University for Nationalities), Xianyang, China
| | - Dawei Li
- Institute for History and Culture of Science & Technology, Guangxi University for Nationalities, Nanning, China
| | - Dongna Li
- Department of Biology, Hainan Medical University, Haikou, China
| | - Rong Lin
- Department of Biology, Hainan Medical University, Haikou, China
| | - Nini
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Ministry of Education, School of Medicine, Xizang Minzu University (Tibet University for Nationalities), Xianyang, China
| | - Rukesh Shrestha
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling-Xiang Wang
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lanhai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guangmao Xie
- College of History, Culture and Tourism, Guangxi Normal University, Guilin, China
- Guangxi Institute of Cultural Relics Protection and Archaeology, Nanning, China
| | - Hongbing Yao
- Belt and Road Research Center for Forensic Molecular Anthropology, Key Laboratory of Evidence Science of Gansu Province, Gansu Institute of Political Science and Law, Lanzhou, China
| | - Manfei Zhang
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rong Hu
- Department of Anthropology and Ethnology, Institute of Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Martine Robbeets
- Eurasia3angle Research group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Douglas J Kennett
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
112
|
Harney É, Cheronet O, Fernandes DM, Sirak K, Mah M, Bernardos R, Adamski N, Broomandkhoshbacht N, Callan K, Lawson AM, Oppenheimer J, Stewardson K, Zalzala F, Anders A, Candilio F, Constantinescu M, Coppa A, Ciobanu I, Dani J, Gallina Z, Genchi F, Nagy EG, Hajdu T, Hellebrandt M, Horváth A, Király Á, Kiss K, Kolozsi B, Kovács P, Köhler K, Lucci M, Pap I, Popovici S, Raczky P, Simalcsik A, Szeniczey T, Vasilyev S, Virag C, Rohland N, Reich D, Pinhasi R. A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res 2021; 31:472-483. [PMID: 33579752 PMCID: PMC7919446 DOI: 10.1101/gr.267534.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.
Collapse
Affiliation(s)
- Éadaoin Harney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- The Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, Massachusetts 02138, USA and Jena D-07745, Germany
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexandra Anders
- Institute of Archaeological Sciences, Eötvös Loránd University, 1088 Budapest, Hungary
| | - Francesca Candilio
- Superintendency of Archaeology, Fine Arts and Landscape for the City of Cagliari and the Provinces of Oristano and South Sardinia, 09121 Cagliari, Italy
| | | | - Alfredo Coppa
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
- Department of Environmental Biology, Sapienza University, 00185 Rome, Italy
| | - Ion Ciobanu
- Cultural-Natural Reserve "Orheiul Vechi", 3552 Orhei, Republic of Moldova
- Institute of Bioarchaeological and Ethnocultural Research, 2012 Chișinău, Republic of Moldova
| | | | - Zsolt Gallina
- Ásatárs Kulturális, Régészeti Szolgáltató és Kereskedelmi Limited, 6000 Kecskemét, Hungary
| | - Francesco Genchi
- Department of Environmental Biology, Sapienza University, 00185 Rome, Italy
| | | | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, 1171 Budapest, Hungary
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | | | | | - Ágnes Király
- Institute of Archaeology, Research Centre for the Humanities, 1097 Budapest, Hungary
| | - Krisztián Kiss
- Department of Biological Anthropology, Eötvös Loránd University, 1171 Budapest, Hungary
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | | | | | - Kitti Köhler
- Institute of Archaeology, Research Centre for the Humanities, 1097 Budapest, Hungary
| | - Michaela Lucci
- Department of History, Anthropology, Religion, Arts and Performing Arts, Sapienza University, 00185 Rome, Italy
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | - Sergiu Popovici
- National Agency for Archaeology, 2012 Chișinău, Republic of Moldova
| | - Pál Raczky
- Institute of Archaeological Sciences, Eötvös Loránd University, 1088 Budapest, Hungary
| | - Angela Simalcsik
- Institute of Bioarchaeological and Ethnocultural Research, 2012 Chișinău, Republic of Moldova
- Olga Necrasov Center for Anthropological Research, Romanian Academy, 700481 Iasi, Romania
| | - Tamás Szeniczey
- Department of Biological Anthropology, Eötvös Loránd University, 1171 Budapest, Hungary
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | - Sergey Vasilyev
- Institute of Ethnology and Anthropology of the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Egyptological Studies of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - David Reich
- The Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, Massachusetts 02138, USA and Jena D-07745, Germany
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
113
|
Fernandes DM, Sirak KA, Ringbauer H, Sedig J, Rohland N, Cheronet O, Mah M, Mallick S, Olalde I, Culleton BJ, Adamski N, Bernardos R, Bravo G, Broomandkhoshbacht N, Callan K, Candilio F, Demetz L, Carlson KSD, Eccles L, Freilich S, George RJ, Lawson AM, Mandl K, Marzaioli F, McCool WC, Oppenheimer J, Özdogan KT, Schattke C, Schmidt R, Stewardson K, Terrasi F, Zalzala F, Antúnez CA, Canosa EV, Colten R, Cucina A, Genchi F, Kraan C, La Pastina F, Lucci M, Maggiolo MV, Marcheco-Teruel B, Maria CT, Martínez C, París I, Pateman M, Simms TM, Sivoli CG, Vilar M, Kennett DJ, Keegan WF, Coppa A, Lipson M, Pinhasi R, Reich D. A genetic history of the pre-contact Caribbean. Nature 2021; 590:103-110. [PMID: 33361817 PMCID: PMC7864882 DOI: 10.1038/s41586-020-03053-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.
Collapse
Affiliation(s)
- Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Harald Ringbauer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Jakob Sedig
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Brendan J Culleton
- Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Guillermo Bravo
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Anthropology, University of California, Santa Cruz, CA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca Candilio
- Superintendency of Archaeology, Fine Arts and Landscape for the city of Cagliari and the provinces of Oristano and South Sardinia, Cagliari, Italy
| | - Lea Demetz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Laurie Eccles
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| | - Suzanne Freilich
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Richard J George
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Fabio Marzaioli
- Department of Mathematics and Physics, Campania University 'Luigi Vanvitelli', Caserta, Italy
| | - Weston C McCool
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Kadir T Özdogan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Constanze Schattke
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Ryan Schmidt
- CIBIO-InBIO, University of Porto, Vairão, Portugal
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Filippo Terrasi
- Department of Mathematics and Physics, Campania University 'Luigi Vanvitelli', Caserta, Italy
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Roger Colten
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Andrea Cucina
- Facultad de Ciencias Antropológicas, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Francesco Genchi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Claudia Kraan
- National Archaeological-Anthropological Memory Management (NAAM), Willemstad, Curaçao
| | | | - Michaela Lucci
- DANTE Laboratory of Diet and Ancient Technology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Ingeborg París
- Instituto de Investigaciones Bioantropológicas y Arqueológicas, Universidad de Los Andes, Mérida, Venezuela
| | - Michael Pateman
- Turks and Caicos National Museum Foundation, Cockburn Town, Turks and Caicos Islands
- AEX Bahamas Maritime Museum, Freeport, Bahamas
| | - Tanya M Simms
- Department of Biology, University of The Bahamas, Nassau, Bahamas
| | - Carlos Garcia Sivoli
- Instituto de Investigaciones Bioantropológicas y Arqueológicas, Universidad de Los Andes, Mérida, Venezuela
| | - Miguel Vilar
- National Geographic Society, Washington, DC, USA
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - William F Keegan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
114
|
Evaluation of DNA Extraction Methods Developed for Forensic and Ancient DNA Applications Using Bone Samples of Different Age. Genes (Basel) 2021; 12:genes12020146. [PMID: 33499220 PMCID: PMC7911526 DOI: 10.3390/genes12020146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
The efficient extraction of DNA from challenging samples, such as bones, is critical for the success of downstream genotyping analysis in molecular genetic disciplines. Even though the ancient DNA community has developed several protocols targeting small DNA fragments that are typically present in decomposed or old specimens, only recently forensic geneticists have started to adopt those protocols. Here, we compare an ancient DNA extraction protocol (Dabney) with a bone extraction method (Loreille) typically used in forensics. Real-time quantitative PCR and forensically representative typing methods including fragment size analysis and sequencing were used to assess protocol performance. We used four bone samples of different age in replicates to study the effects of both extraction methods. Our results confirm Loreille’s overall increased gain of DNA when enough tissue is available and Dabney’s improved efficiency for retrieving shorter DNA fragments that is beneficial when highly degraded DNA is present. The results suggest that the choice of extraction method needs to be based on available sample, degradation state, and targeted genotyping method. We modified the Dabney protocol by pooling parallel lysates prior to purification to study gain and performance in single tube typing assays and found that up to six parallel lysates lead to an almost linear gain of extracted DNA. These data are promising for further forensic investigations as the adapted Dabney protocol combines increased sensitivity for degraded DNA with necessary total DNA amount for forensic applications.
Collapse
|
115
|
Abstract
Humans reached the Mariana Islands in the western Pacific by ∼3,500 y ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2,000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2,000 y later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ∼2,200 y ago. Analyses of complete mitochondrial DNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.
Collapse
|
116
|
Nowaczewska W, Binkowski M, Benazzi S, Vazzana A, Nadachowski A, Stefaniak K, Żarski M, Talamo S, Compton T, Stringer CB, Hajdinjak M, Hublin JJ. New hominin teeth from Stajnia Cave, Poland. J Hum Evol 2021; 151:102929. [PMID: 33418451 DOI: 10.1016/j.jhevol.2020.102929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Wioletta Nowaczewska
- Department of Human Biology, University of Wrocław, Przybyszewskiego 63, Wrocław 51-148, Poland.
| | - Marcin Binkowski
- X-ray Microtomography Lab, Department of Biomedical Computer Systems, Institute of Computer Science, Faculty of Computer and Materials Science, University of Silesia, Będzińska 39, Chorzów 41-200, Poland
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, Ravenna 48121, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D-04103, Germany
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, Ravenna 48121, Italy
| | - Adam Nadachowski
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, Kraków 31-016, Poland
| | - Krzysztof Stefaniak
- Department of Paleozoology, Institute of Environmental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Marcin Żarski
- Polish Geological Institute-National Research Institute, Rakowiecka 4, Warsaw 00-975, Poland
| | - Sahra Talamo
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi, 2, Bologna 40126, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D-04103, Germany
| | - Tim Compton
- CHER, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Chris B Stringer
- CHER, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D-04103, Germany; International Chair of Paleoanthropology, Collège de France, 11 Place Marcelin Berthelot, Paris 75231, France
| |
Collapse
|
117
|
Loufouma Mbouaka A, Gamble M, Wurst C, Jäger HY, Maixner F, Zink A, Noedl H, Binder M. The elusive parasite: comparing macroscopic, immunological, and genomic approaches to identifying malaria in human skeletal remains from Sayala, Egypt (third to sixth centuries AD). ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2021; 13:115. [PMID: 34149953 PMCID: PMC8202054 DOI: 10.1007/s12520-021-01350-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
UNLABELLED Although malaria is one of the oldest and most widely distributed diseases affecting humans, identifying and characterizing its presence in ancient human remains continue to challenge researchers. We attempted to establish a reliable approach to detecting malaria in human skeletons using multiple avenues of analysis: macroscopic observations, rapid diagnostic tests, and shotgun-capture sequencing techniques, to identify pathological changes, Plasmodium antigens, and Plasmodium DNA, respectively. Bone and tooth samples from ten individuals who displayed skeletal lesions associated with anaemia, from a site in southern Egypt (third to sixth centuries AD), were selected. Plasmodium antigens were detected in five of the ten bone samples, and traces of Plasmodium aDNA were detected in six of the twenty bone and tooth samples. There was relatively good synchronicity between the biomolecular findings, despite not being able to authenticate the results. This study highlights the complexity and limitations in the conclusive identification of the Plasmodium parasite in ancient human skeletons. Limitations regarding antigen and aDNA preservation and the importance of sample selection are at the forefront of the search for malaria in the past. We confirm that, currently, palaeopathological changes such as cribra orbitalia are not enough to be certain of the presence of malaria. While biomolecular methods are likely the best chance for conclusive identification, we were unable to obtain results which correspond to the current authentication criteria of biomolecules. This study represents an important contribution in the refinement of biomolecular techniques used; also, it raises new insight regarding the consistency of combining several approaches in the identification of malaria in past populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12520-021-01350-z.
Collapse
Affiliation(s)
- Alvie Loufouma Mbouaka
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Michelle Gamble
- Bioarchaeology Department, Austrian Archaeological Institute at the Austrian Academy of Sciences, Franz Klein-Gasse 1, 1190 Vienna, Austria
- Present Address: Heritage and Archaeological Research Practice, 101 Rose Street South Lane, EH2 3JG Edinburgh, Scotland
| | - Christina Wurst
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Heidi Yoko Jäger
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Harald Noedl
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
- Present Address: Malaria Research Initiative Bandarban, Vienna, Austria
| | - Michaela Binder
- Bioarchaeology Department, Austrian Archaeological Institute at the Austrian Academy of Sciences, Franz Klein-Gasse 1, 1190 Vienna, Austria
- Present Address: Planen und Bauen im Bestand, Novetus, Belvederegasse 41, 1040 Vienna, Austria
| |
Collapse
|
118
|
Xu W, Lin Y, Zhao K, Li H, Tian Y, Ngatia JN, Ma Y, Sahu SK, Guo H, Guo X, Xu YC, Liu H, Kristiansen K, Lan T, Zhou X. An efficient pipeline for ancient DNA mapping and recovery of endogenous ancient DNA from whole-genome sequencing data. Ecol Evol 2021; 11:390-401. [PMID: 33437437 PMCID: PMC7790629 DOI: 10.1002/ece3.7056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next-generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole-genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA.
Collapse
Affiliation(s)
- Wenhao Xu
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yu Lin
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and WriteBGI‐ShenzhenShenzhenChina
| | - Keliang Zhao
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Haimeng Li
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yinping Tian
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | | | - Yue Ma
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Huabing Guo
- Forest Inventory and Planning Institute of Jilin ProvinceChangchunChina
| | - Xiaosen Guo
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Guangdong Provincial Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenShenzhenChina
| | - Yan Chun Xu
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Karsten Kristiansen
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Tianming Lan
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Xinying Zhou
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| |
Collapse
|
119
|
Lipson M, Spriggs M, Valentin F, Bedford S, Shing R, Zinger W, Buckley H, Petchey F, Matanik R, Cheronet O, Rohland N, Pinhasi R, Reich D. Three Phases of Ancient Migration Shaped the Ancestry of Human Populations in Vanuatu. Curr Biol 2020; 30:4846-4856.e6. [PMID: 33065004 DOI: 10.1016/j.cub.2020.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
The archipelago of Vanuatu has been at the crossroads of human population movements in the Pacific for the past three millennia. To help address several open questions regarding the history of these movements, we generated genome-wide data for 11 ancient individuals from the island of Efate dating from its earliest settlement to the recent past, including five associated with the Chief Roi Mata's Domain World Heritage Area, and analyzed them in conjunction with 34 published ancient individuals from Vanuatu and elsewhere in Oceania, as well as present-day populations. Our results outline three distinct periods of population transformations. First, the four earliest individuals, from the Lapita-period site of Teouma, are concordant with eight previously described Lapita-associated individuals from Vanuatu and Tonga in having almost all of their ancestry from a "First Remote Oceanian" source related to East and Southeast Asians. Second, both the Papuan ancestry predominating in Vanuatu for the past 2,500 years and the smaller component of Papuan ancestry found in Polynesians can be modeled as deriving from a single source most likely originating in New Britain, suggesting that the movement of people carrying this ancestry to Remote Oceania closely followed that of the First Remote Oceanians in time and space. Third, the Chief Roi Mata's Domain individuals descend from a mixture of Vanuatu- and Polynesian-derived ancestry and are related to Polynesian-influenced communities today in central, but not southern, Vanuatu, demonstrating Polynesian genetic input in multiple groups with independent histories.
Collapse
Affiliation(s)
- Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Matthew Spriggs
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, ACT 2601, Australia; Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu.
| | | | - Stuart Bedford
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu; Department of Archaeology and Natural History, College of Asia-Pacific, The Australian National University, Canberra, ACT 2601, Australia; Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Richard Shing
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu
| | - Wanda Zinger
- Muséum national d'Histoire naturelle, UMR 7194 (HNHP), MNHN/CNRS/UPVD, Sorbonne Université, Musée de l'Homme, 75016 Paris, France
| | - Hallie Buckley
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Fiona Petchey
- Radiocarbon Dating Laboratory, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton 3240, New Zealand; ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Arts, Society and Education, James Cook University, Cairns, QLD 4878, Australia
| | - Richard Matanik
- Lelema World Heritage Committee and Vanuatu Cultural Centre, Port Vila, Vanuatu
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
120
|
Petr M, Hajdinjak M, Fu Q, Essel E, Rougier H, Crevecoeur I, Semal P, Golovanova LV, Doronichev VB, Lalueza-Fox C, de la Rasilla M, Rosas A, Shunkov MV, Kozlikin MB, Derevianko AP, Vernot B, Meyer M, Kelso J. The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science 2020; 369:1653-1656. [PMID: 32973032 DOI: 10.1126/science.abb6460] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
Ancient DNA has provided new insights into many aspects of human history. However, we lack comprehensive studies of the Y chromosomes of Denisovans and Neanderthals because the majority of specimens that have been sequenced to sufficient coverage are female. Sequencing Y chromosomes from two Denisovans and three Neanderthals shows that the Y chromosomes of Denisovans split around 700 thousand years ago from a lineage shared by Neanderthals and modern human Y chromosomes, which diverged from each other around 370 thousand years ago. The phylogenetic relationships of archaic and modern human Y chromosomes differ from the population relationships inferred from the autosomal genomes and mirror mitochondrial DNA phylogenies, indicating replacement of both the mitochondrial and Y chromosomal gene pools in late Neanderthals. This replacement is plausible if the low effective population size of Neanderthals resulted in an increased genetic load in Neanderthals relative to modern humans.
Collapse
Affiliation(s)
- Martin Petr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.,The Francis Crick Institute, NW1 1AT London, UK
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Hélène Rougier
- Department of Anthropology, California State University, Northridge, Northridge, CA 91330-8244, USA
| | | | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | | | | | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Marco de la Rasilla
- Área de Prehistoria, Departamento de Historia, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Antonio Rosas
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anatoli P Derevianko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| |
Collapse
|
121
|
Vinueza-Espinosa DC, Santos C, Martínez-Labarga C, Malgosa A. Human DNA extraction from highly degraded skeletal remains: How to find a suitable method? Electrophoresis 2020; 41:2149-2158. [PMID: 33002215 DOI: 10.1002/elps.202000171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 11/07/2022]
Abstract
Retrieving DNA from highly degraded human skeletal remains is still a challenge due to low concentration and fragmentation, which makes it difficult to extract and purify. Recent works showed that silica-based methods allow better DNA recovery and this fact may be attributed to the type of bones and the quality of the preserved tissue. However, more systematic studies are needed to evaluate the efficiency of the different silica-based extraction methods considering the type of bones. The main goal of the present study is to establish the best extraction method and the type of bone that can maximize the recovery of PCR-amplifiable DNA and the subsequent retrieval of mitochondrial and nuclear genetic information. Five individuals were selected from an archaeological site located in Catalonia-Spain dating from 5th to 11th centuries AD. For each individual, five samples from different skeletal regions were collected: petrous bone, pulp cavity and cementum of tooth, and rib and limb bones. Four extraction methods were tested, three silica-based (silica in-suspension, HE column and XS plasma column) and the classical method based on phenol-chloroform. Silica in-suspension method from petrous bone and pulp cavity showed the best results. However, the remains preservation will ultimately be the key to the molecular result success.
Collapse
Affiliation(s)
- Diana C Vinueza-Espinosa
- Biology Anthropology Research Group, Department of Animal Biology, Vegetal Biology and Ecology, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Cristina Santos
- Biology Anthropology Research Group, Department of Animal Biology, Vegetal Biology and Ecology, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Cristina Martínez-Labarga
- Department of Biology, Centre of Molecular Anthropology for Ancient DNA Studies, University of Rome Tor Vergata, Rome, Italy
| | - Assumpció Malgosa
- Biology Anthropology Research Group, Department of Animal Biology, Vegetal Biology and Ecology, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
122
|
Massilani D, Skov L, Hajdinjak M, Gunchinsuren B, Tseveendorj D, Yi S, Lee J, Nagel S, Nickel B, Devièse T, Higham T, Meyer M, Kelso J, Peter BM, Pääbo S. Denisovan ancestry and population history of early East Asians. Science 2020; 370:579-583. [DOI: 10.1126/science.abc1166] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Diyendo Massilani
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Laurits Skov
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Mateja Hajdinjak
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
- Francis Crick Institute, London NW1 1AT, UK
| | - Byambaa Gunchinsuren
- Institute of Archaeology, Mongolian Academy of Sciences, Ulaanbaatar 13343, Mongolia
| | | | - Seonbok Yi
- Department of Archaeology, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Jungeun Lee
- Department of Archaeology, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Birgit Nickel
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Thibaut Devièse
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Tom Higham
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Benjamin M. Peter
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| |
Collapse
|
123
|
Romandini M, Oxilia G, Bortolini E, Peyrégne S, Delpiano D, Nava A, Panetta D, Di Domenico G, Martini P, Arrighi S, Badino F, Figus C, Lugli F, Marciani G, Silvestrini S, Menghi Sartorio JC, Terlato G, Hublin JJ, Meyer M, Bondioli L, Higham T, Slon V, Peresani M, Benazzi S. A late Neanderthal tooth from northeastern Italy. J Hum Evol 2020; 147:102867. [DOI: 10.1016/j.jhevol.2020.102867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
|
124
|
Lopez L, Turner KG, Bellis ES, Lasky JR. Genomics of natural history collections for understanding evolution in the wild. Mol Ecol Resour 2020; 20:1153-1160. [DOI: 10.1111/1755-0998.13245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Lua Lopez
- Department of Biology California State University San Bernardino San Bernardino CaliforniaUSA
- Department of Biology Pennsylvania State University University Park PennsylvaniaUSA
| | - Kathryn G. Turner
- Department of Biology Pennsylvania State University University Park PennsylvaniaUSA
- Department of Biological Sciences Idaho State University Pocatello IdahoUSA
| | - Emily S. Bellis
- Department of Biology Pennsylvania State University University Park PennsylvaniaUSA
- Arkansas Biosciences Institute & Department of Computer Science Arkansas State University Jonesboro ArkansasUSA
| | - Jesse R. Lasky
- Department of Biology Pennsylvania State University University Park PennsylvaniaUSA
| |
Collapse
|
125
|
New perspectives on Neanderthal dispersal and turnover from Stajnia Cave (Poland). Sci Rep 2020; 10:14778. [PMID: 32901061 PMCID: PMC7479612 DOI: 10.1038/s41598-020-71504-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/17/2020] [Indexed: 02/03/2023] Open
Abstract
The Micoquian is the broadest and longest enduring cultural facies of the Late Middle Palaeolithic that spread across the periglacial and boreal environments of Europe between Eastern France, Poland, and Northern Caucasus. Here, we present new data from the archaeological record of Stajnia Cave (Poland) and the paleogenetic analysis of a Neanderthal molar S5000, found in a Micoquian context. Our results demonstrate that the mtDNA genome of Stajnia S5000 dates to MIS 5a making the tooth the oldest Neanderthal specimen from Central-Eastern Europe. Furthermore, S5000 mtDNA has the fewest number of differences to mtDNA of Mezmaiskaya 1 Neanderthal from Northern Caucasus, and is more distant from almost contemporaneous Neanderthals of Scladina and Hohlenstein-Stadel. This observation and the technological affinity between Poland and the Northern Caucasus could be the result of increased mobility of Neanderthals that changed their subsistence strategy for coping with the new low biomass environments and the increased foraging radius of gregarious animals. The Prut and Dniester rivers were probably used as the main corridors of dispersal. The persistence of the Micoquian techno-complex in South-Eastern Europe infers that this axis of mobility was also used at the beginning of MIS 3 when a Neanderthal population turnover occurred in the Northern Caucasus.
Collapse
|
126
|
Genetic Diversity of Historical and Modern Populations of Russian Cattle Breeds Revealed by Microsatellite Analysis. Genes (Basel) 2020; 11:genes11080940. [PMID: 32824045 PMCID: PMC7463645 DOI: 10.3390/genes11080940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/24/2023] Open
Abstract
Analysis of ancient and historical DNA has great potential to trace the genetic diversity of local cattle populations during their centuries-long development. Forty-nine specimens representing five cattle breeds (Kholmogor, Yaroslavl, Great Russian, Novgorod, and Holland), dated from the end of the 19th century to the first half of the 20th century, were genotyped for nine polymorphic microsatellite loci. Using a multiple-tube approach, we determined the consensus genotypes of all samples/loci analysed. Amplification errors, including allelic drop-out (ADO) and false alleles (FA), occurred with an average frequency of 2.35% and 0.79%, respectively. A significant effect of allelic length on ADO rate (r2 = 0.620, p = 0.05) was shown. We did not observe significant differences in genetic diversity among historical samples and modern representatives of Kholmogor and Yaroslavl breeds. The unbiased expected heterozygosity values were 0.726–0.774 and 0.708–0.739; the allelic richness values were 2.716–2.893 and 2.661–2.758 for the historical and modern samples, respectively. Analyses of FST and Jost’s D genetic distances, and the results of STRUCTURE clustering, showed the maintenance of a part of historical components in the modern populations of Kholmogor and Yaroslavl cattle. Our study contributes to the conservation of biodiversity in the local Russian genetic resources of cattle.
Collapse
|
127
|
Nakatsuka N, Luisi P, Motti JMB, Salemme M, Santiago F, D'Angelo Del Campo MD, Vecchi RJ, Espinosa-Parrilla Y, Prieto A, Adamski N, Lawson AM, Harper TK, Culleton BJ, Kennett DJ, Lalueza-Fox C, Mallick S, Rohland N, Guichón RA, Cabana GS, Nores R, Reich D. Ancient genomes in South Patagonia reveal population movements associated with technological shifts and geography. Nat Commun 2020; 11:3868. [PMID: 32747648 PMCID: PMC7400565 DOI: 10.1038/s41467-020-17656-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/10/2020] [Indexed: 01/30/2023] Open
Abstract
Archaeological research documents major technological shifts among people who have lived in the southern tip of South America (South Patagonia) during the last thirteen millennia, including the development of marine-based economies and changes in tools and raw materials. It has been proposed that movements of people spreading culture and technology propelled some of these shifts, but these hypotheses have not been tested with ancient DNA. Here we report genome-wide data from 20 ancient individuals, and co-analyze it with previously reported data. We reveal that immigration does not explain the appearance of marine adaptations in South Patagonia. We describe partial genetic continuity since ~6600 BP and two later gene flows correlated with technological changes: one between 4700-2000 BP that affected primarily marine-based groups, and a later one impacting all <2000 BP groups. From ~2200-1200 BP, mixture among neighbors resulted in a cline correlated to geographic ordering along the coast.
Collapse
Affiliation(s)
- Nathan Nakatsuka
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, 02115, USA.
| | - Pierre Luisi
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| | - Josefina M B Motti
- NEIPHPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7631, Quequén, Argentina
| | - Mónica Salemme
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), 9410, Ushuaia, Tierra del Fuego, Argentina
- Instituto de Cultura, Sociedad y Estado (ICSE), Universidad Nacional de Tierra del Fuego, 9410, Ushuaia, Tierra del Fuego, Argentina
| | - Fernando Santiago
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), 9410, Ushuaia, Tierra del Fuego, Argentina
| | - Manuel D D'Angelo Del Campo
- NEIPHPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7631, Quequén, Argentina
- Laboratorio de Poblaciones del Pasado (LAPP), Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), E-28049, Madrid, Spain
| | - Rodrigo J Vecchi
- CONICET-Departamento de Humanidades, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - Yolanda Espinosa-Parrilla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
- School of Medicine and Laboratory of Molecular Medicine-LMM, Center for Education, Healthcare and Investigation-CADI, Universidad de Magallanes, Punta Arenas, Chile
| | - Alfredo Prieto
- Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas, Chile
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02446, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02446, USA
| | - Thomas K Harper
- Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Brendan J Culleton
- Institutes for Energy and the Environment, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02446, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ricardo A Guichón
- NEIPHPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7631, Quequén, Argentina
| | - Graciela S Cabana
- Molecular Anthropology Laboratories, Department of Anthropology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Rodrigo Nores
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02446, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
128
|
Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat Protoc 2020; 15:2279-2300. [PMID: 32612278 DOI: 10.1038/s41596-020-0338-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/17/2020] [Indexed: 01/20/2023]
Abstract
It has been shown that highly fragmented DNA is most efficiently converted into DNA libraries for sequencing if both strands of the DNA fragments are processed independently. We present an updated protocol for library preparation from single-stranded DNA, which is based on the splinted ligation of an adapter oligonucleotide to the 3' ends of single DNA strands, the synthesis of a complementary strand using a DNA polymerase and the addition of a 5' adapter via blunt-end ligation. The efficiency of library preparation is determined individually for each sample using a spike-in oligonucleotide. The whole workflow, including library preparation, quantification and amplification, requires two work days for up to 16 libraries. Alternatively, we provide documentation and electronic protocols enabling automated library preparation of 96 samples in parallel on a Bravo NGS Workstation (Agilent Technologies). After library preparation, molecules with uninformative short inserts (shorter than ~30-35 base pairs) can be removed by polyacrylamide gel electrophoresis if desired.
Collapse
|
129
|
Thakur IS, Roy D. Environmental DNA and RNA as Records of Human Exposome, Including Biotic/Abiotic Exposures and Its Implications in the Assessment of the Role of Environment in Chronic Diseases. Int J Mol Sci 2020; 21:ijms21144879. [PMID: 32664313 PMCID: PMC7402316 DOI: 10.3390/ijms21144879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Most of environment-related diseases often result from multiple exposures of abiotic and/or biotic stressors across various life stages. The application of environmental DNA/RNA (eDNA/eRNA) to advance ecological understanding has been very successfully used. However, the eminent extension of eDNA/eRNA-based approaches to estimate human exposure to biotic and/or abiotic environmental stressors to understand the environmental causes of chronic diseases has yet to start. Here, we introduce the potential of eDNA/eRNA for bio-monitoring of human exposome and health effects in the real environmental or occupational settings. This review is the first of its kind to discuss how eDNA/eRNA-based approaches can be applied for assessing the human exposome. eDNA-based exposome assessment is expected to rely on our ability to capture the genome- and epigenome-wide signatures left behind by individuals in the indoor and outdoor physical spaces through shedding, excreting, etc. Records of eDNA/eRNA exposome may reflect the early appearance, persistence, and presence of biotic and/or abiotic-exposure-mediated modifications in these nucleic acid molecules. Functional genome- and epigenome-wide mapping of eDNA offer great promise to help elucidate the human exposome. Assessment of longitudinal exposure to physical, biological, and chemical agents present in the environment through eDNA/eRNA may enable the building of an integrative causal dynamic stochastic model to estimate environmental causes of human health deficits. This model is expected to incorporate key biological pathways and gene networks linking individuals, their geographic locations, and random multi-hits of environmental factors. Development and validation of monitoring of eDNA/eRNA exposome should seriously be considered to introduce into safety and risk assessment and as surrogates of chronic exposure to environmental stressors. Here we highlight that eDNA/eRNA reflecting longitudinal exposure of both biotic and abiotic environmental stressors may serve as records of human exposome and discuss its application as molecular tools for understanding the toxicogenomics basis of environment-related health deficits.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| |
Collapse
|
130
|
Peyrégne S, Prüfer K. Present-Day DNA Contamination in Ancient DNA Datasets. Bioessays 2020; 42:e2000081. [PMID: 32648350 DOI: 10.1002/bies.202000081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Indexed: 01/06/2023]
Abstract
Present-day contamination can lead to false conclusions in ancient DNA studies. A number of methods are available to estimate contamination, which use a variety of signals and are appropriate for different types of data. Here an overview of currently available methods highlighting their strengths and weaknesses is provided, and a classification based on the signals used to estimate contamination is proposed. This overview aims at enabling researchers to choose the most appropriate methods for their dataset. Based on this classification, potential avenues for the further development of methods are discussed.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, 07745, Germany
| |
Collapse
|
131
|
Patzold F, Zilli A, Hundsdoerfer AK. Advantages of an easy-to-use DNA extraction method for minimal-destructive analysis of collection specimens. PLoS One 2020; 15:e0235222. [PMID: 32639972 PMCID: PMC7343169 DOI: 10.1371/journal.pone.0235222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
Here we present and justify an approach for minimal-destructive DNA extraction from historic insect specimens for next generation sequencing applications. An increasing number of studies use insects from museum collections for biodiversity research. However, the availability of specimens for molecular analyses has been limited by the degraded nature of the DNA gained from century-old museum material and the consumptive nature of most DNA extraction procedures. The method described in this manuscript enabled us to successfully extract DNA from specimens as old as 241 years using a minimal-destructive approach. The direct comparison of the DNeasy extraction Kit and the Monarch® PCR & DNA Clean-up Kit showed a significant increase of 17.3-fold higher DNA yield extracted with the Monarch Oligo protocol on average. By using an extraction protocol originally designed for oligonucleotide clean-up, we were able to combine overcoming the restrictions by target fragment size and strand state, with minimising time consumption and labour-intensity. The type specimens used for the minimal-destructive DNA extraction exhibited no significant external change or post-extraction damage, while sufficient DNA was retrieved for analyses.
Collapse
Affiliation(s)
- Franziska Patzold
- Museum of Zoology (Museum für Tierkunde), Senckenberg Natural History Collections Dresden, Dresden, Germany
| | - Alberto Zilli
- Division Insects, Department Life Sciences, Natural History Museum, London, United Kingdom
| | - Anna K. Hundsdoerfer
- Museum of Zoology (Museum für Tierkunde), Senckenberg Natural History Collections Dresden, Dresden, Germany
| |
Collapse
|
132
|
Olalde I, Posth C. Latest trends in archaeogenetic research of west Eurasians. Curr Opin Genet Dev 2020; 62:36-43. [PMID: 32610222 DOI: 10.1016/j.gde.2020.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 11/26/2022]
Abstract
During the past ten years, archaeogenetic research has exponentially grown to study the genetic history of human populations, using genome-wide data from large numbers of ancient individuals. Of the entire globe, Europe and the Near East are the regions where ancient DNA data is by far most abundant with over 2500 genomes published at present. In this review, we focus on archaeological contexts that have received less attention in the literature, specifically those associated with west Eurasian hunter-gatherers as well as populations from the Iron Age and later historical periods. In addition, we emphasize a recent shift from continent-wide to regional and even site-specific studies, which is starting to provide novel insights into sociocultural aspects of past societies.
Collapse
Affiliation(s)
- Iñigo Olalde
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany; Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen 72070, Germany.
| |
Collapse
|
133
|
Dolle D, Fages A, Mata X, Schiavinato S, Tonasso-Calvière L, Chauvey L, Wagner S, Der Sarkissian C, Fromentier A, Seguin-Orlando A, Orlando L. CASCADE: A Custom-Made Archiving System for the Conservation of Ancient DNA Experimental Data. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
134
|
Armbrecht L, Herrando-Pérez S, Eisenhofer R, Hallegraeff GM, Bolch CJS, Cooper A. An optimized method for the extraction of ancient eukaryote DNA from marine sediments. Mol Ecol Resour 2020; 20:906-919. [PMID: 32277584 DOI: 10.1111/1755-0998.13162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Marine sedimentary ancient DNA (sedaDNA) provides a powerful means to reconstruct marine palaeo-communities across the food web. However, currently there are few optimized sedaDNA extraction protocols available to maximize the yield of small DNA fragments typical of ancient DNA (aDNA) across a broad diversity of eukaryotes. We compared seven combinations of sedaDNA extraction treatments and sequencing library preparations using marine sediments collected at a water depth of 104 m off Maria Island, Tasmania, in 2018. These seven methods contrasted frozen versus refrigerated sediment, bead-beating induced cell lysis versus ethylenediaminetetraacetic acid (EDTA) incubation, DNA binding in silica spin columns versus in silica-solution, diluted versus undiluted DNA in shotgun library preparations to test potential inhibition issues during amplification steps, and size-selection of low molecular-weight (LMW) DNA to increase the extraction efficiency of sedaDNA. Maximum efficiency was obtained from frozen sediments subjected to a combination of EDTA incubation and bead-beating, DNA binding in silica-solution, and undiluted DNA in shotgun libraries, across 45 marine eukaryotic taxa. We present an optimized extraction protocol integrating these steps, with an optional post-library LMW size-selection step to retain DNA fragments of ≤500 base pairs. We also describe a stringent bioinformatic filtering approach for metagenomic data and provide a comprehensive list of contaminants as a reference for future sedaDNA studies. The new extraction and data-processing protocol should improve quantitative paleo-monitoring of eukaryotes from marine sediments, as well as other studies relying on the detection of highly fragmented and degraded eukaryote DNA in sediments.
Collapse
Affiliation(s)
- Linda Armbrecht
- School of Biological Sciences, Faculty of Sciences, Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA, Australia
| | - Salvador Herrando-Pérez
- School of Biological Sciences, Faculty of Sciences, Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA, Australia
| | - Raphael Eisenhofer
- School of Biological Sciences, Faculty of Sciences, Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA, Australia
| | - Gustaaf M Hallegraeff
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Christopher J S Bolch
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tas., Australia
| | - Alan Cooper
- South Australian Museum, Adelaide, SA, Australia
| |
Collapse
|
135
|
Kistler L, Bieker VC, Martin MD, Pedersen MW, Ramos Madrigal J, Wales N. Ancient Plant Genomics in Archaeology, Herbaria, and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:605-629. [PMID: 32119793 DOI: 10.1146/annurev-arplant-081519-035837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ancient DNA revolution of the past 35 years has driven an explosion in the breadth, nuance, and diversity of questions that are approachable using ancient biomolecules, and plant research has been a constant, indispensable facet of these developments. Using archaeological, paleontological, and herbarium plant tissues, researchers have probed plant domestication and dispersal, plant evolution and ecology, paleoenvironmental composition and dynamics, and other topics across related disciplines. Here, we review the development of the ancient DNA discipline and the role of plant research in its progress and refinement. We summarize our understanding of long-term plant DNA preservation and the characteristics of degraded DNA. In addition, we discuss challenges in ancient DNA recovery and analysis and the laboratory and bioinformatic strategies used to mitigate them. Finally, we review recent applications of ancient plant genomic research.
Collapse
Affiliation(s)
- Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway; ,
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway; ,
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark;
| | - Jazmín Ramos Madrigal
- Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark;
| | - Nathan Wales
- Department of Archaeology, University of York, York YO1 7EP, United Kingdom;
| |
Collapse
|
136
|
Cho S, Kim MY, Lee JH, Lee HY, Lee SD. Large-scale identification of human bone remains via SNP microarray analysis with reference SNP database. Forensic Sci Int Genet 2020; 47:102293. [PMID: 32276230 DOI: 10.1016/j.fsigen.2020.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are valuable markers complementary to conventional forensic short tandem repeat (STR) markers in genetic typing, with potential advantages in challenging forensic casework. With the advent of high-throughput technologies, such as microarrays and massively parallel sequencing, the use of SNP typing has now expanded to large-scale forensic applications. Herein, a forensic case is presented to demonstrate the usefulness of SNP typing in identifying large-scale human bone remains with reference database construction. A total of 402 bone remains were recovered from an island in the Jeju Province of Korea where a massive disaster occurred in 1948. The first phase of the identification process was accomplished via conventional DNA typing methods including autosomal and Y-chromosomal STR typing, and mitochondrial DNA sequencing, which resulted in the identification of 74 of 402 remains. The second phase of the identification involved the remaining 327 unidentified remains using SNP typing as a supplementary tool based on Affymetrix resequencing array. The SNP markers of 782 family members were also analyzed and a reference database was constructed for comparison. An additional 51 bone remains were identified in the second phase. SNP data obtained from the supplementary genotyping yielded additional genetic information as well as contributed to kinship testing to determine the second degrees of relationship. In addition SNPs are useful in discriminating ambiguous relationship when only STR data are available. A software program developed for SNP typing system enabled efficient kinship analysis for large-scale forensic identification. The results and the casework are described and discussed.
Collapse
Affiliation(s)
- Sohee Cho
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Moon-Young Kim
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwan Young Lee
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea; Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Soong Deok Lee
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea; Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
137
|
Sirak K, Fernandes D, Cheronet O, Harney E, Mah M, Mallick S, Rohland N, Adamski N, Broomandkhoshbacht N, Callan K, Candilio F, Lawson AM, Mandl K, Oppenheimer J, Stewardson K, Zalzala F, Anders A, Bartík J, Coppa A, Dashtseveg T, Évinger S, Farkaš Z, Hajdu T, Bayarsaikhan J, McIntyre L, Moiseyev V, Okumura M, Pap I, Pietrusewsky M, Raczky P, Šefčáková A, Soficaru A, Szeniczey T, Szőke BM, Van Gerven D, Vasilyev S, Bell L, Reich D, Pinhasi R. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res 2020. [PMID: 32098773 DOI: 10.1101/654749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA recovery from ancient human remains has revolutionized our ability to reconstruct the genetic landscape of the past. Ancient DNA research has benefited from the identification of skeletal elements, such as the cochlear part of the osseous inner ear, that provides optimal contexts for DNA preservation; however, the rich genetic information obtained from the cochlea must be counterbalanced against the loss of morphological information caused by its sampling. Motivated by similarities in developmental processes and histological properties between the cochlea and auditory ossicles, we evaluate the ossicles as an alternative source of ancient DNA. We show that ossicles perform comparably to the cochlea in terms of DNA recovery, finding no substantial reduction in data quantity and minimal differences in data quality across preservation conditions. Ossicles can be sampled from intact skulls or disarticulated petrous bones without damage to surrounding bone, and we argue that they should be used when available to reduce damage to human remains. Our results identify another optimal skeletal element for ancient DNA analysis and add to a growing toolkit of sampling methods that help to better preserve skeletal remains for future research while maximizing the likelihood that ancient DNA analysis will produce useable results.
Collapse
Affiliation(s)
- Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland
| | - Daniel Fernandes
- Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Olivia Cheronet
- Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
| | - Eadaoin Harney
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- The Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, Massachusetts 02138, USA and Jena, D-07745, Germany
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Francesca Candilio
- Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexandra Anders
- Institute of Archaeological Sciences, Eötvös Loránd University, H-1088 Budapest, Hungary
| | - Juraj Bartík
- Slovak National Museum-Archaeological Museum, 810 06 Bratislava 16, Slovak Republic
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome 00185, Italy
| | - Tumen Dashtseveg
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary
| | - Zdeněk Farkaš
- Slovak National Museum-Archaeological Museum, 810 06 Bratislava 16, Slovak Republic
| | - Tamás Hajdu
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science, Eötvös Loránd University Budapest, H-1117 Budapest, Hungary
| | - Jamsranjav Bayarsaikhan
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar 14200, Mongolia
- National Museum of Mongolia, Ulaanbaatar 210146, Mongolia
| | | | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Science, St. Petersburg 199034, Russia
| | - Mercedes Okumura
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária 05508-090 São Paulo, Brazil
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary
| | - Michael Pietrusewsky
- Department of Anthropology, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822, USA
| | - Pál Raczky
- Institute of Archaeological Sciences, Eötvös Loránd University, H-1088 Budapest, Hungary
| | - Alena Šefčáková
- Department of Anthropology, Slovak National Museum-Natural History Museum, 810 06 Bratislava 16, Slovak Republic
| | - Andrei Soficaru
- "Fr. J. Rainer" Institute of Anthropology, Romanian Academy, 050474 Bucharest, Romania
| | - Tamás Szeniczey
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science, Eötvös Loránd University Budapest, H-1117 Budapest, Hungary
| | - Béla Miklós Szőke
- Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, H-1097 Budapest, Hungary
| | - Dennis Van Gerven
- Department of Anthropology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Sergey Vasilyev
- Institute of Ethnology and Anthropology, RAS, Moscow, 119991, Russia
| | - Lynne Bell
- Centre for Forensic Research, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
138
|
Sirak K, Fernandes D, Cheronet O, Harney E, Mah M, Mallick S, Rohland N, Adamski N, Broomandkhoshbacht N, Callan K, Candilio F, Lawson AM, Mandl K, Oppenheimer J, Stewardson K, Zalzala F, Anders A, Bartík J, Coppa A, Dashtseveg T, Évinger S, Farkaš Z, Hajdu T, Bayarsaikhan J, McIntyre L, Moiseyev V, Okumura M, Pap I, Pietrusewsky M, Raczky P, Šefčáková A, Soficaru A, Szeniczey T, Szőke BM, Van Gerven D, Vasilyev S, Bell L, Reich D, Pinhasi R. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res 2020; 30:427-436. [PMID: 32098773 PMCID: PMC7111520 DOI: 10.1101/gr.260141.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022]
Abstract
DNA recovery from ancient human remains has revolutionized our ability to reconstruct the genetic landscape of the past. Ancient DNA research has benefited from the identification of skeletal elements, such as the cochlear part of the osseous inner ear, that provides optimal contexts for DNA preservation; however, the rich genetic information obtained from the cochlea must be counterbalanced against the loss of morphological information caused by its sampling. Motivated by similarities in developmental processes and histological properties between the cochlea and auditory ossicles, we evaluate the ossicles as an alternative source of ancient DNA. We show that ossicles perform comparably to the cochlea in terms of DNA recovery, finding no substantial reduction in data quantity and minimal differences in data quality across preservation conditions. Ossicles can be sampled from intact skulls or disarticulated petrous bones without damage to surrounding bone, and we argue that they should be used when available to reduce damage to human remains. Our results identify another optimal skeletal element for ancient DNA analysis and add to a growing toolkit of sampling methods that help to better preserve skeletal remains for future research while maximizing the likelihood that ancient DNA analysis will produce useable results.
Collapse
Affiliation(s)
- Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland
| | - Daniel Fernandes
- Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland.,Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria.,CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Olivia Cheronet
- Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland.,Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
| | - Eadaoin Harney
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,The Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, Massachusetts 02138, USA and Jena, D-07745, Germany
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Francesca Candilio
- Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexandra Anders
- Institute of Archaeological Sciences, Eötvös Loránd University, H-1088 Budapest, Hungary
| | - Juraj Bartík
- Slovak National Museum-Archaeological Museum, 810 06 Bratislava 16, Slovak Republic
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome 00185, Italy
| | - Tumen Dashtseveg
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary
| | - Zdeněk Farkaš
- Slovak National Museum-Archaeological Museum, 810 06 Bratislava 16, Slovak Republic
| | - Tamás Hajdu
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary.,Department of Biological Anthropology, Institute of Biology, Faculty of Science, Eötvös Loránd University Budapest, H-1117 Budapest, Hungary
| | - Jamsranjav Bayarsaikhan
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar 14200, Mongolia.,National Museum of Mongolia, Ulaanbaatar 210146, Mongolia
| | | | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Science, St. Petersburg 199034, Russia
| | - Mercedes Okumura
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária 05508-090 São Paulo, Brazil
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary
| | - Michael Pietrusewsky
- Department of Anthropology, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822, USA
| | - Pál Raczky
- Institute of Archaeological Sciences, Eötvös Loránd University, H-1088 Budapest, Hungary
| | - Alena Šefčáková
- Department of Anthropology, Slovak National Museum-Natural History Museum, 810 06 Bratislava 16, Slovak Republic
| | - Andrei Soficaru
- "Fr. J. Rainer" Institute of Anthropology, Romanian Academy, 050474 Bucharest, Romania
| | - Tamás Szeniczey
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary.,Department of Biological Anthropology, Institute of Biology, Faculty of Science, Eötvös Loránd University Budapest, H-1117 Budapest, Hungary
| | - Béla Miklós Szőke
- Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, H-1097 Budapest, Hungary
| | - Dennis Van Gerven
- Department of Anthropology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Sergey Vasilyev
- Institute of Ethnology and Anthropology, RAS, Moscow, 119991, Russia
| | - Lynne Bell
- Centre for Forensic Research, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
139
|
The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat Ecol Evol 2020; 4:334-345. [PMID: 32094539 PMCID: PMC7080320 DOI: 10.1038/s41559-020-1102-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/08/2020] [Indexed: 11/08/2022]
Abstract
Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.
Collapse
|
140
|
Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R, Mallick S, Lazaridis I, Nakatsuka N, Olalde I, Lipson M, Kim AM, Olivieri LM, Coppa A, Vidale M, Mallory J, Moiseyev V, Kitov E, Monge J, Adamski N, Alex N, Broomandkhoshbacht N, Candilio F, Callan K, Cheronet O, Culleton BJ, Ferry M, Fernandes D, Freilich S, Gamarra B, Gaudio D, Hajdinjak M, Harney É, Harper TK, Keating D, Lawson AM, Mah M, Mandl K, Michel M, Novak M, Oppenheimer J, Rai N, Sirak K, Slon V, Stewardson K, Zalzala F, Zhang Z, Akhatov G, Bagashev AN, Bagnera A, Baitanayev B, Bendezu-Sarmiento J, Bissembaev AA, Bonora GL, Chargynov TT, Chikisheva T, Dashkovskiy PK, Derevianko A, Dobeš M, Douka K, Dubova N, Duisengali MN, Enshin D, Epimakhov A, Fribus AV, Fuller D, Goryachev A, Gromov A, Grushin SP, Hanks B, Judd M, Kazizov E, Khokhlov A, Krygin AP, Kupriyanova E, Kuznetsov P, Luiselli D, Maksudov F, Mamedov AM, Mamirov TB, Meiklejohn C, Merrett DC, Micheli R, Mochalov O, Mustafokulov S, Nayak A, Pettener D, Potts R, Razhev D, Rykun M, Sarno S, Savenkova TM, Sikhymbaeva K, Slepchenko SM, Soltobaev OA, Stepanova N, Svyatko S, Tabaldiev K, Teschler-Nicola M, Tishkin AA, Tkachev VV, Vasilyev S, Velemínský P, Voyakin D, Yermolayeva A, Zahir M, Zubkov VS, Zubova A, Shinde VS, Lalueza-Fox C, Meyer M, Anthony D, Boivin N, Thangaraj K, Kennett DJ, Frachetti M, Pinhasi R, Reich D. The formation of human populations in South and Central Asia. Science 2019; 365:365/6457/eaat7487. [PMID: 31488661 DOI: 10.1126/science.aat7487] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 02/19/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.
Collapse
Affiliation(s)
| | - Nick Patterson
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. .,Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA 02138, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Nakatsuka
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander M Kim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Luca M Olivieri
- ISMEO - International Association of Mediterranean and Oriental Studies, Italian Archaeological Mission in Pakistan, 19200 Saidu Sharif (Swat), Pakistan
| | - Alfredo Coppa
- Department of Environmental Biology, Sapienza University, Rome 00185, Italy
| | - Massimo Vidale
- ISMEO - International Association of Mediterranean and Oriental Studies, Italian Archaeological Mission in Pakistan, 19200 Saidu Sharif (Swat), Pakistan.,Department of Cultural Heritage: Archaeology and History of Art, Cinema and Music, University of Padua, Padua 35139, Italy
| | - James Mallory
- School of Natural and Built Environment, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Science, St. Petersburg 199034, Russia
| | - Egor Kitov
- Center of Physical Anthropology, Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow 119991, Russia.,A.Kh. Margulan Institute of Archaeology, Almaty 050010, Kazakhstan.,Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Janet Monge
- University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia, PA 19104, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Neel Alex
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Francesca Candilio
- Earth Institute, University College Dublin, Dublin 4, Ireland.,Soprintendenza Archeologia, Belle Arti e Paesaggio per la Città Metropolitana di Cagliari e le Province di Oristano e Sud Sardegna, Cagliari 09124, Italy
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Cheronet
- Earth Institute, University College Dublin, Dublin 4, Ireland.,School of Archaeology, University College Dublin, Dublin 4, Ireland.,Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Brendan J Culleton
- Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Ferry
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Fernandes
- Earth Institute, University College Dublin, Dublin 4, Ireland.,School of Archaeology, University College Dublin, Dublin 4, Ireland.,Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Suzanne Freilich
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Beatriz Gamarra
- Earth Institute, University College Dublin, Dublin 4, Ireland.,School of Archaeology, University College Dublin, Dublin 4, Ireland.,Catalan Institute of Human Paleoecology and Social Evolution (IPHES), Tarragona 43007, Spain
| | - Daniel Gaudio
- Earth Institute, University College Dublin, Dublin 4, Ireland.,School of Archaeology, University College Dublin, Dublin 4, Ireland
| | - Mateja Hajdinjak
- Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Éadaoin Harney
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas K Harper
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Denise Keating
- Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mario Novak
- Earth Institute, University College Dublin, Dublin 4, Ireland.,Institute for Anthropological Research, Zagreb 10000, Croatia
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Niraj Rai
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India.,Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India
| | - Kendra Sirak
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Earth Institute, University College Dublin, Dublin 4, Ireland.,Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Viviane Slon
- Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zhao Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gaziz Akhatov
- A.Kh. Margulan Institute of Archaeology, Almaty 050010, Kazakhstan
| | - Anatoly N Bagashev
- Tyumen Scientific Centre SB RAS, Institute of the Problems of Northern Development, Tyumen 625003, Russia
| | - Alessandra Bagnera
- ISMEO - International Association of Mediterranean and Oriental Studies, Italian Archaeological Mission in Pakistan, 19200 Saidu Sharif (Swat), Pakistan
| | | | - Julio Bendezu-Sarmiento
- CNRS-EXT500, Directeur de la Delegation Archaologique Francaise en Afghanistan (DAFA), Embassy of France in Kabul, Afghanistan
| | - Arman A Bissembaev
- A.Kh. Margulan Institute of Archaeology, Almaty 050010, Kazakhstan.,Aktobe Regional Historical Museum, Aktobe 030006, Kazakhstan
| | - Gian Luca Bonora
- Archaeology of Asia Department, ISMEO - International Association of Mediterranean and Oriental Studies, Rome RM00186, Italy
| | | | - Tatiana Chikisheva
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr K Dashkovskiy
- Department of Political History, National and State-Confessional Relations, Altai State University, Barnaul 656049, Russia
| | - Anatoly Derevianko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Miroslav Dobeš
- Institute of Archaeology, Czech Academy of Sciences, Prague 118 01, Czech Republic
| | - Katerina Douka
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena 07745, Germany.,Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Nadezhda Dubova
- Center of Physical Anthropology, Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Dmitry Enshin
- Tyumen Scientific Centre SB RAS, Institute of the Problems of Northern Development, Tyumen 625003, Russia
| | - Andrey Epimakhov
- Institute of History and Archaeology, Ural Branch RAS, Yekaterinburg 620990, Russia.,South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey V Fribus
- Department of Archaeology, Kemerovo State University, Kemerovo 650043, Russia
| | - Dorian Fuller
- Institute of Archaeology, University College London, London WC1H 0PY, UK.,School of Cultural Heritage, Northwest University, Shanxi, 710069, China
| | - Alexander Goryachev
- Tyumen Scientific Centre SB RAS, Institute of the Problems of Northern Development, Tyumen 625003, Russia
| | - Andrey Gromov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Science, St. Petersburg 199034, Russia
| | - Sergey P Grushin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul 656049, Russia
| | - Bryan Hanks
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Margaret Judd
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Erlan Kazizov
- A.Kh. Margulan Institute of Archaeology, Almaty 050010, Kazakhstan
| | - Aleksander Khokhlov
- Samara State University of Social Sciences and Education, Samara 443099, Russia
| | - Aleksander P Krygin
- West Kazakhstan Regional Center for History and Archaeology, Uralsk 090000, Kazakhstan
| | - Elena Kupriyanova
- Scientific and Educational Center of Study on the Problem of Nature and Man, Chelyabinsk State University, Chelyabinsk 454021, Russia
| | - Pavel Kuznetsov
- Samara State University of Social Sciences and Education, Samara 443099, Russia
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy
| | - Farhod Maksudov
- Institute for Archaeological Research, Uzbekistan Academy of Sciences, Samarkand 140151, Uzbekistan
| | - Aslan M Mamedov
- Center for Research, Restoration and Protection of Historical and Cultural Heritage of Aktobe Region, Aktobe 030007, Kazakhstan
| | - Talgat B Mamirov
- A.Kh. Margulan Institute of Archaeology, Almaty 050010, Kazakhstan
| | | | - Deborah C Merrett
- Department of Archaeology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Roberto Micheli
- ISMEO - International Association of Mediterranean and Oriental Studies, Italian Archaeological Mission in Pakistan, 19200 Saidu Sharif (Swat), Pakistan.,MiBAC - Ministero per i Beni e le Attività Culturali - Soprintendenza Archeologia, belle arti e paesaggio del Friuli Venezia Giulia, 34135 Trieste, Italy
| | - Oleg Mochalov
- Samara State University of Social Sciences and Education, Samara 443099, Russia
| | - Samariddin Mustafokulov
- Institute for Archaeological Research, Uzbekistan Academy of Sciences, Samarkand 140151, Uzbekistan.,Afrosiab Museum, Samarkand 140151, Uzbekistan
| | - Ayushi Nayak
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Richard Potts
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Dmitry Razhev
- Tyumen Scientific Centre SB RAS, Institute of the Problems of Northern Development, Tyumen 625003, Russia
| | - Marina Rykun
- National Research Tomsk State University, Tomsk 634050, Russia
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Tatyana M Savenkova
- F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Kulyan Sikhymbaeva
- Central State Museum Republic of Kazakhstan, Samal-1 Microdistrict, Almaty 050010, Kazakhstan
| | - Sergey M Slepchenko
- Tyumen Scientific Centre SB RAS, Institute of the Problems of Northern Development, Tyumen 625003, Russia
| | | | - Nadezhda Stepanova
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Svetlana Svyatko
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Science, St. Petersburg 199034, Russia.,CHRONO Centre for Climate, the Environment, and Chronology, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | | | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.,Department of Anthropology, Natural History Museum Vienna, 1010 Vienna, Austria
| | - Alexey A Tishkin
- Department of Archaeology, Ethnography and Museology, The Laboratory of Interdisciplinary Studies in Archaeology of Western Siberia and Altai, Altai State University, Barnaul 656049, Russia
| | | | - Sergey Vasilyev
- Center of Physical Anthropology, Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow 119991, Russia.,Center for Egyptological Studies RAS, Moscow 119991, Russia
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague 115 79, Czech Republic
| | - Dmitriy Voyakin
- A.Kh. Margulan Institute of Archaeology, Almaty 050010, Kazakhstan.,Archaeological Expertise LLP, Almaty 050060, Kazakhstan
| | | | - Muhammad Zahir
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena 07745, Germany.,Department of Archaeology, Hazara University, Mansehra 21300, Pakistan
| | - Valery S Zubkov
- N.F. Katanov Khakassia State University, Abakan 655017, Russia
| | - Alisa Zubova
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Science, St. Petersburg 199034, Russia
| | - Vasant S Shinde
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - David Anthony
- Anthropology Department, Hartwick College, Oneonta, NY 13820, USA
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | | | - Douglas J Kennett
- Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA.,Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.,Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
| | - Michael Frachetti
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63112, USA. .,Spatial Analysis, Interpretation, and Exploration Laboratory, Washington University in St. Louis, St. Louis, MO 63112, USA
| | - Ron Pinhasi
- Earth Institute, University College Dublin, Dublin 4, Ireland. .,Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.,Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, MA 02138, USA
| |
Collapse
|
141
|
Palomo-Díez S, Gomes C, López-Parra A, Baeza-Richer C, Cuscó I, Raffone C, García-Arumí E, Vinueza-Espinosa D, Santos C, Montes N, Rasal R, Escala O, Cuellar J, Subirá E, Casals F, Malgosa A, Tizzano E, Tartera E, Domenech G, Arroyo-Pardo E. Genetic identification of Spanish civil war victims. The state of the art in Catalonia (Northeastern Spain). FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
142
|
Vinueza-Espinosa DC, Santos C, Martínez-Labarga C, Malgosa A. Assessing DNA recovery from highly degraded skeletal remains by using silica-based extraction methods. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
143
|
Gokcumen O. Archaic hominin introgression into modern human genomes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171 Suppl 70:60-73. [PMID: 31702050 DOI: 10.1002/ajpa.23951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
Ancient genomes from multiple Neanderthal and the Denisovan individuals, along with DNA sequence data from diverse contemporary human populations strongly support the prevalence of gene flow among different hominins. Recent studies now provide evidence for multiple gene flow events that leave genetic signatures in extant and ancient human populations. These events include older gene flow from an unknown hominin in Africa predating out-of-Africa migrations, and in the last 50,000-100,000 years, multiple gene flow events from Neanderthals into ancestral Eurasian human populations, and at least three distinct introgression events from a lineage close to Denisovans into ancestors of extant Southeast Asian and Oceanic populations. Some of these introgression events may have happened as late as 20,000 years before present and reshaped the way in which we think about human evolution. In this review, I aim to answer anthropologically relevant questions with regard to recent research on ancient hominin introgression in the human lineage. How have genomic data from archaic hominins changed our view of human evolution? Is there any doubt about whether introgression from ancient hominins to the ancestors of present-day humans occurred? What is the current view of human evolutionary history from the genomics perspective? What is the impact of introgression on human phenotypes?
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, North Campus, University at Buffalo, Buffalo, New York
| |
Collapse
|
144
|
Shinde V, Narasimhan VM, Rohland N, Mallick S, Mah M, Lipson M, Nakatsuka N, Adamski N, Broomandkhoshbacht N, Ferry M, Lawson AM, Michel M, Oppenheimer J, Stewardson K, Jadhav N, Kim YJ, Chatterjee M, Munshi A, Panyam A, Waghmare P, Yadav Y, Patel H, Kaushik A, Thangaraj K, Meyer M, Patterson N, Rai N, Reich D. An Ancient Harappan Genome Lacks Ancestry from Steppe Pastoralists or Iranian Farmers. Cell 2019; 179:729-735.e10. [PMID: 31495572 PMCID: PMC6800651 DOI: 10.1016/j.cell.2019.08.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
We report an ancient genome from the Indus Valley Civilization (IVC). The individual we sequenced fits as a mixture of people related to ancient Iranians (the largest component) and Southeast Asian hunter-gatherers, a unique profile that matches ancient DNA from 11 genetic outliers from sites in Iran and Turkmenistan in cultural communication with the IVC. These individuals had little if any Steppe pastoralist-derived ancestry, showing that it was not ubiquitous in northwest South Asia during the IVC as it is today. The Iranian-related ancestry in the IVC derives from a lineage leading to early Iranian farmers, herders, and hunter-gatherers before their ancestors separated, contradicting the hypothesis that the shared ancestry between early Iranians and South Asians reflects a large-scale spread of western Iranian farmers east. Instead, sampled ancient genomes from the Iranian plateau and IVC descend from different groups of hunter-gatherers who began farming without being connected by substantial movement of people.
Collapse
Affiliation(s)
- Vasant Shinde
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India.
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Nakatsuka
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Ferry
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nilesh Jadhav
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India
| | - Yong Jun Kim
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India
| | - Malavika Chatterjee
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India
| | - Avradeep Munshi
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India
| | - Amrithavalli Panyam
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India
| | - Pranjali Waghmare
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India
| | - Yogesh Yadav
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune 411006, India
| | - Himani Patel
- Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India
| | - Amit Kaushik
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | | | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Nick Patterson
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
145
|
Tsai WLE, Schedl ME, Maley JM, McCormack JE. More than skin and bones: Comparing extraction methods and alternative sources of DNA from avian museum specimens. Mol Ecol Resour 2019; 20:1220-1227. [PMID: 31478338 DOI: 10.1111/1755-0998.13077] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022]
Abstract
Next-generation sequencing has greatly expanded the utility and value of museum collections by revealing specimens as genomic resources. As the field of museum genomics grows, so does the need for extraction methods that maximize DNA yields. For avian museum specimens, the established method of extracting DNA from toe pads works well for most specimens. However, for some specimens, especially those of birds that are very small or very large, toe pads can be a poor source of DNA. In this study, we apply two DNA extraction methods (phenol-chloroform and silica column) to three different sources of DNA (toe pad, skin punch and bone) from 10 historical avian museum specimens. We show that a modified phenol-chloroform protocol yielded significantly more DNA than a silica column protocol (e.g., Qiagen DNeasy Blood & Tissue Kit) across all tissue types. However, extractions using the silica column protocol contained longer fragments on average than those using the phenol-chloroform protocol, probably as a result of loss of small fragments through the silica column. While toe pads yielded more DNA than skin punches and bone fragments, skin punches proved to be a reliable alternative source of DNA and might be especially appealing when toe pad extractions are impractical. Overall, we found that historical bird museum specimens contain substantial amounts of DNA for genomic studies under most extraction scenarios, but that a phenol-chloroform protocol consistently provides the high quantities of DNA required for most current genomic protocols.
Collapse
Affiliation(s)
- Whitney L E Tsai
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California
| | - Margaret E Schedl
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California
| | - James M Maley
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California.,Biology Department, Occidental College, Los Angeles, California
| |
Collapse
|
146
|
Olalde I, Mallick S, Patterson N, Rohland N, Villalba-Mouco V, Silva M, Dulias K, Edwards CJ, Gandini F, Pala M, Soares P, Ferrando-Bernal M, Adamski N, Broomandkhoshbacht N, Cheronet O, Culleton BJ, Fernandes D, Lawson AM, Mah M, Oppenheimer J, Stewardson K, Zhang Z, Jiménez Arenas JM, Toro Moyano IJ, Salazar-García DC, Castanyer P, Santos M, Tremoleda J, Lozano M, García Borja P, Fernández-Eraso J, Mujika-Alustiza JA, Barroso C, Bermúdez FJ, Viguera Mínguez E, Burch J, Coromina N, Vivó D, Cebrià A, Fullola JM, García-Puchol O, Morales JI, Oms FX, Majó T, Vergès JM, Díaz-Carvajal A, Ollich-Castanyer I, López-Cachero FJ, Silva AM, Alonso-Fernández C, Delibes de Castro G, Jiménez Echevarría J, Moreno-Márquez A, Pascual Berlanga G, Ramos-García P, Ramos-Muñoz J, Vijande Vila E, Aguilella Arzo G, Esparza Arroyo Á, Lillios KT, Mack J, Velasco-Vázquez J, Waterman A, Benítez de Lugo Enrich L, Benito Sánchez M, Agustí B, Codina F, de Prado G, Estalrrich A, Fernández Flores Á, Finlayson C, Finlayson G, Finlayson S, Giles-Guzmán F, Rosas A, Barciela González V, García Atiénzar G, Hernández Pérez MS, Llanos A, Carrión Marco Y, Collado Beneyto I, López-Serrano D, Sanz Tormo M, Valera AC, Blasco C, Liesau C, Ríos P, Daura J, de Pedro Michó MJ, Diez-Castillo AA, Flores Fernández R, Francès Farré J, Garrido-Pena R, Gonçalves VS, Guerra-Doce E, Herrero-Corral AM, Juan-Cabanilles J, López-Reyes D, McClure SB, Merino Pérez M, Oliver Foix A, Sanz Borràs M, Sousa AC, Vidal Encinas JM, Kennett DJ, Richards MB, Werner Alt K, Haak W, Pinhasi R, Lalueza-Fox C, Reich D. The genomic history of the Iberian Peninsula over the past 8000 years. Science 2019; 363:1230-1234. [PMID: 30872528 DOI: 10.1126/science.aav4040] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.
Collapse
Affiliation(s)
- Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Vanessa Villalba-Mouco
- Max Planck Institute for the Science of Human History, Jena, Germany.,Departamento de Ciencias de la Antigüedad, Grupo Primeros Pobladores del Valle del Ebro (PPVE), Instituto de Investigación en Ciencias Ambientales (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Marina Silva
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Katharina Dulias
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Ceiridwen J Edwards
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Francesca Gandini
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Maria Pala
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Pedro Soares
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | | | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Brendan J Culleton
- Department of Anthropology and Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Research Center for Anthropology and Health, Department of Life Science, University of Coimbra, Coimbra, Portugal
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Zhao Zhang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Juan Manuel Jiménez Arenas
- Departamento de Prehistoria y Arqueología, Universidad de Granada, Granada, Spain.,Instituto Universitario de la Paz y los Conflictos, Universidad de Granada, Granada, Spain.,Department of Anthropology - Anthropologisches Institut and Museum, Universität Zürich, Zürich, Switzerland
| | | | - Domingo C Salazar-García
- Departamento de Geografía, Prehistoria y Arqueología, Grupo de Investigación en Prehistoria, (UPV-EHU)/IKERBASQUE-Basque Foundation for Science, Vitoria, Spain
| | - Pere Castanyer
- Museu d'Arqueologia de Catalunya-Empúries, L'Escala, Spain
| | - Marta Santos
- Museu d'Arqueologia de Catalunya-Empúries, L'Escala, Spain
| | | | - Marina Lozano
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Tarragona, Spain.,Àrea de Prehistòria, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Pablo García Borja
- Departamento de Prehistoria e Historia Antigua, Universidad Nacional de Educación a Distancia, Valencia, Spain
| | - Javier Fernández-Eraso
- Departamento de Geografía, Prehistoria y Arqueología, Universidad del País Vasco, Vitoria, Spain
| | | | - Cecilio Barroso
- Fundación Instituto de Investigación de Prehistoria y Evolución Humana (FIPEH), Lucena, Spain
| | - Francisco J Bermúdez
- Fundación Instituto de Investigación de Prehistoria y Evolución Humana (FIPEH), Lucena, Spain
| | | | - Josep Burch
- Institut de Recerca Històrica, Universitat de Girona, Girona, Spain
| | - Neus Coromina
- Institut de Recerca Històrica, Universitat de Girona, Girona, Spain
| | - David Vivó
- Institut de Recerca Històrica, Universitat de Girona, Girona, Spain
| | - Artur Cebrià
- SERP, Departament d'Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Barcelona, Spain
| | - Josep Maria Fullola
- SERP, Departament d'Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Barcelona, Spain
| | - Oreto García-Puchol
- PREMEDOC Research Group, Departament de Prehistòria, Arqueologia i Historia Antiga, Universitat de València, València, Spain
| | - Juan Ignacio Morales
- SERP, Departament d'Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Barcelona, Spain
| | - F Xavier Oms
- SERP, Departament d'Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Barcelona, Spain
| | - Tona Majó
- Archaeom. Departament de Prehistòria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Josep Maria Vergès
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Tarragona, Spain.,Àrea de Prehistòria, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | | | | | - F Javier López-Cachero
- SERP, Departament d'Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Barcelona, Spain
| | - Ana Maria Silva
- Laboratory of Prehistory, Research Center for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,UNIARQ, Faculdade de Letras, Universidade de Lisboa, Lisboa, Portugal.,CEF, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Germán Delibes de Castro
- Departamento de Prehistoria, Facultad de Filosofía y Letras, Universidad de Valladolid, Valladolid, Spain
| | | | - Adolfo Moreno-Márquez
- Departamento de Historia, Geografía y Filosofía, Universidad de Cádiz, Cádiz, Spain.,Departamento de Geografía, Historia y Humanidades, Universidad de Almería, Almería, Spain
| | | | | | - José Ramos-Muñoz
- Departamento de Historia, Geografía y Filosofía, Universidad de Cádiz, Cádiz, Spain
| | - Eduardo Vijande Vila
- Departamento de Historia, Geografía y Filosofía, Universidad de Cádiz, Cádiz, Spain
| | - Gustau Aguilella Arzo
- Servicio de Investigaciones Arqueológicas y Prehistóricas de la Diputación de Castellón, Castelló de la Plana, Spain
| | - Ángel Esparza Arroyo
- GIR PrehUSAL, Departamento de Prehistoria, Historia Antigua y Arqueología, Universidad de Salamanca, Salamanca, Spain
| | - Katina T Lillios
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Jennifer Mack
- Office of the State Archaeologist, University of Iowa, Iowa City, IA, USA
| | - Javier Velasco-Vázquez
- Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | - Luis Benítez de Lugo Enrich
- Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Prehistoria y Arqueología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - María Benito Sánchez
- Departamento de Medicina Legal, Psiquiatría y Anatomía Patológica, Universidad Complutense de Madrid, Madrid, Spain
| | - Bibiana Agustí
- INSITU S.C.P., Centelles, Spain.,Museu d'Arqueologia de Catalunya-Ullastret, Ullastret, Spain
| | - Ferran Codina
- Museu d'Arqueologia de Catalunya-Ullastret, Ullastret, Spain
| | | | - Almudena Estalrrich
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria IIIPC (Universidad de Cantabria-Gobierno de Cantabria-Santander), Santander, Spain
| | | | - Clive Finlayson
- The Gibraltar National Museum, Gibraltar.,Department of Anthropology, University of Toronto, Toronto, ON, Canada.,School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.,Institute of Life and Earth Sciences, University of Gibraltar, Gibraltar
| | - Geraldine Finlayson
- The Gibraltar National Museum, Gibraltar.,School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.,Institute of Life and Earth Sciences, University of Gibraltar, Gibraltar
| | - Stewart Finlayson
- The Gibraltar National Museum, Gibraltar.,Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Antonio Rosas
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Virginia Barciela González
- Departamento de Prehistoria, Arqueología e Historia Antigua, Facultad de Filosofía y Letras, Universidad de Alicante, San Vicente del Raspeig, Spain.,Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico (INAPH), San Vicente del Raspeig, Spain
| | - Gabriel García Atiénzar
- Departamento de Prehistoria, Arqueología e Historia Antigua, Facultad de Filosofía y Letras, Universidad de Alicante, San Vicente del Raspeig, Spain.,Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico (INAPH), San Vicente del Raspeig, Spain
| | - Mauro S Hernández Pérez
- Departamento de Prehistoria, Arqueología e Historia Antigua, Facultad de Filosofía y Letras, Universidad de Alicante, San Vicente del Raspeig, Spain.,Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico (INAPH), San Vicente del Raspeig, Spain
| | | | - Yolanda Carrión Marco
- Departament de Prehistòria, Arqueologia i Historia Antiga, Universitat de València, València, Spain
| | | | | | | | | | - Concepción Blasco
- Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Corina Liesau
- Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia Ríos
- Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joan Daura
- SERP, Departament d'Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Barcelona, Spain
| | | | - Agustín A Diez-Castillo
- GRAM Research Group, Departament de Prehistòria, Arqueologia i Historia Antiga, Universitat de València, València, Spain
| | | | | | - Rafael Garrido-Pena
- Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Elisa Guerra-Doce
- Departamento de Prehistoria, Facultad de Filosofía y Letras, Universidad de Valladolid, Valladolid, Spain
| | | | | | | | - Sarah B McClure
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Marta Merino Pérez
- Unitat d'Antropologia Física, Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Arturo Oliver Foix
- Servicio de Investigaciones Arqueológicas y Prehistóricas de la Diputación de Castellón, Castelló de la Plana, Spain
| | - Montserrat Sanz Borràs
- SERP, Departament d'Història i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Barcelona, Spain
| | | | | | - Douglas J Kennett
- Department of Anthropology and Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA, USA.,Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Martin B Richards
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Kurt Werner Alt
- Center of Natural and Cultural Human History, Danube Private University, Krems, Austria.,Department of Biomedical Engineering and Integrative Prehistory and Archaeological Science, Basel University, Basel, Switzerland
| | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Jena, Germany.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
147
|
Prendergast ME, Lipson M, Sawchuk EA, Olalde I, Ogola CA, Rohland N, Sirak KA, Adamski N, Bernardos R, Broomandkhoshbacht N, Callan K, Culleton BJ, Eccles L, Harper TK, Lawson AM, Mah M, Oppenheimer J, Stewardson K, Zalzala F, Ambrose SH, Ayodo G, Gates HL, Gidna AO, Katongo M, Kwekason A, Mabulla AZP, Mudenda GS, Ndiema EK, Nelson C, Robertshaw P, Kennett DJ, Manthi FK, Reich D. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 2019; 365:science.aaw6275. [PMID: 31147405 DOI: 10.1126/science.aaw6275] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
How food production first entered eastern Africa ~5000 years ago and the extent to which people moved with livestock is unclear. We present genome-wide data from 41 individuals associated with Later Stone Age, Pastoral Neolithic (PN), and Iron Age contexts in what are now Kenya and Tanzania to examine the genetic impacts of the spreads of herding and farming. Our results support a multiphase model in which admixture between northeastern African-related peoples and eastern African foragers formed multiple pastoralist groups, including a genetically homogeneous PN cluster. Additional admixture with northeastern and western African-related groups occurred by the Iron Age. These findings support several movements of food producers while rejecting models of minimal admixture with foragers and of genetic differentiation between makers of distinct PN artifacts.
Collapse
Affiliation(s)
- Mary E Prendergast
- Division of Humanities, Saint Louis University, 28003 Madrid, Spain. .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Elizabeth A Sawchuk
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11790, USA.
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christine A Ogola
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brendan J Culleton
- Institutes for Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA
| | - Laurie Eccles
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas K Harper
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stanley H Ambrose
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - George Ayodo
- Department of Public and Community Health, School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Henry Louis Gates
- Hutchins Center for African and African American Research, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Emmanuel K Ndiema
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - Charles Nelson
- Academy for Lifelong Learning, Western Washington University, Bellingham, WA 98225, USA
| | - Peter Robertshaw
- Department of Anthropology, California State University, San Bernardino, CA 92407, USA
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
| | - Fredrick K Manthi
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
148
|
Pinhasi R, Fernandes DM, Sirak K, Cheronet O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat Protoc 2019; 14:1194-1205. [DOI: 10.1038/s41596-019-0137-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
|