101
|
Jahantigh HR, Ahmadi N, Shahbazi B, Lovreglio P, Habibi M, Stufano A, Gouklani H, Ahmadi K. Evaluation of the dual effects of antiviral drugs on SARS-CoV-2 receptors and the ACE2 receptor using structure-based virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 2022:1-23. [DOI: 10.1080/07391102.2022.2103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hamid Reza Jahantigh
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
- Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Nahid Ahmadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Angela Stufano
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
- Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
102
|
Rathore K, Rathore HS, Singh P, Kumar P. Redefining aerosol in dentistry during COVID-19 pandemic. Dent Res J (Isfahan) 2022; 19:53. [PMID: 36159064 PMCID: PMC9490255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 10/17/2021] [Indexed: 11/15/2022] Open
Abstract
The corona virus malady 2019 (COVID-19) pandemic has rekindled the well established argument regarding the role of dental aerosol in transference of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). Aerosols and droplets are generated amid innumerable dental procedures. With the commencement of the COVID-19 pandemic droplet, a review of the infection/disease control strategies for aerosols is required. We do not know where this pandemic is directed. We do not have conclusive evidence for an optimal management strategy. Every day brings in varying information, so recognizing the hazard created by aerosols will help diminish the probability of infection transfer at the time of dental procedures. Hence, the author assessed the evidence-based medical and dental literature in relation to "aerosol' that documented the source of transmission of aerosol through various potential routes, addressed the risk potential to patients and the dental team, and assessed the additional measures that might minimize the viral transmission if regularly adopted. In this article, the author evaluated and compiled dental guidelines by various countries and various health-care associations in context to aerosol-generating procedures and has made recommendations for the restriction of dental aerosols and splatter in routine dental practice.
Collapse
Affiliation(s)
- Kanupriya Rathore
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,Address for correspondence: Dr. Kanupriya Rathore, Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India. E-mail:
| | | | - Pranshu Singh
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pravin Kumar
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
103
|
Leding C, Skov J, Uhrbrand K, Lisby JG, Hansen KP, Benfield T, Duncan LK. Detection of SARS-CoV-2 in exhaled breath from non-hospitalized COVID-19-infected individuals. Sci Rep 2022; 12:11151. [PMID: 35778461 PMCID: PMC9247943 DOI: 10.1038/s41598-022-15243-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
The diagnosis of COVID-19 is based on detection of SARS-CoV-2 in oro-/nasopharyngel swabs, but due to discomfort and minor risk during the swab procedure, detection of SARS-CoV-2 has been investigated in other biological matrixes. In this proof-of-concept study, individuals with confirmed SARS-CoV-2 infection performed a daily air sample for five days. Air samples were obtained through a non-invasive electrostatic air sampler. Detection of SARS-CoV-2 RNA was determined with qRT-PCR. The association of positive samples with different exposures was evaluated through mixed-effect models. We obtained 665 air samples from 111 included participants with confirmed SARS-CoV-2 infection. Overall, 52 individuals (46.8%) had at least one positive air sample, and 129 (19.4%) air samples were positive for SARS-CoV-2. Participants with symptoms or a symptom duration ≤ four days had significantly higher odds of having a positive air sample. Cycle threshold values were significantly lower in samples obtained ≤ 4 days from symptom onset. Neither variant of SARS-CoV-2 nor method of air sampling were associated with a positive air sample. We demonstrate that SARS-CoV-2 is detectable in human breath by electrostatic air sampling with the highest detection rate closest to symptom onset. We suggest further evaluation of the air sampling technique to increase sensitivity.
Collapse
Affiliation(s)
- Cæcilie Leding
- Department of Infectious Diseases, Center of Research and Disruption of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark.
| | | | - Katrine Uhrbrand
- Department of Human Diagnostics, FORCE Technology, Brøndby, Denmark
| | - Jan Gorm Lisby
- Department of Clinical Microbiology, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Katrine Pedersbæk Hansen
- Department of Infectious Diseases, Center of Research and Disruption of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Center of Research and Disruption of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
104
|
Held A, Dellweg D, Köhler D, Pfaender S, Scheuch G, Schumacher S, Steinmann E, Weingartner E, Weinzierl B, Asbach C. [Interdisciplinary Perspectives on the Role of Aerosol Transmission in SARS-CoV-2 Infections]. DAS GESUNDHEITSWESEN 2022; 84:566-574. [PMID: 35835094 DOI: 10.1055/a-1808-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The relevance of aerosols for the transmission of the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is still debated. However, over time, in addition to distancing and hygiene rules, aerosol physics-based measures such as wearing face masks and ventilating indoor spaces were found to be efficient in reducing infections. In an interdisciplinary workshop "Aerosol & SARS-CoV-2" of the Association for Aerosol Research (GAeF) in cooperation with the German Society for Pneumology and Respiratory Medicine (DGP), the Professional Association of General Air Technology of the VDMA, the German Society for Virology (GfV), the Health Technology Society (GG) and the International Society for Aerosols in Medicine (ISAM) under the auspices of the Robert Koch Institute (RKI) in March 2021, the need for research and coordination on this topic was addressed. Fundamental findings from the various disciplines as well as interdisciplinary perspectives on aerosol transmission of SARS-CoV-2 and infection mitigation measures are summarized here. Finally, open research questions and needs are presented.
Collapse
Affiliation(s)
- Andreas Held
- FG Umweltchemie und Luftreinhaltung, Technische Universität Berlin, Berlin, Germany
| | - Dominic Dellweg
- Pneumologie, Fachkrankenhaus Kloster Grafschaft GmbH, Schmallenberg, Germany
| | | | - Stephanie Pfaender
- Abteilung für Molekulare und Medizinische Virologie, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Stefan Schumacher
- Bereich Luftreinhaltung und Filtration, Institut für Energie- und Umwelttechnik e.V. (IUTA), Duisburg, Germany
| | - Eike Steinmann
- Abteilung für Molekulare und Medizinische Virologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Ernest Weingartner
- Fachgruppe Aerosolmesstechnik, Fachhochschule Nordwestschweiz FHNW, Windisch, Switzerland
| | | | - Christof Asbach
- Bereich Luftreinhaltung und Filtration, Institut für Energie- und Umwelttechnik e.V. (IUTA), Duisburg, Germany
| |
Collapse
|
105
|
Wang Q, Gu J, An T. The emission and dynamics of droplets from human expiratory activities and COVID-19 transmission in public transport system: A review. BUILDING AND ENVIRONMENT 2022; 219:109224. [PMID: 35645454 PMCID: PMC9126829 DOI: 10.1016/j.buildenv.2022.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The public transport system, containing a large number of passengers in enclosed and confined spaces, provides suitable conditions for the spread of respiratory diseases. Understanding how diseases are transmitted in public transport environment is of vital importance to public health. However, this is a highly multidisciplinary matter and the related physical processes including the emissions of respiratory droplets, the droplet dynamics and transport pathways, and subsequently, the infection risk in public transport, are poorly understood. To better grasp the complex processes involved, a synthesis of current knowledge is required. Therefore, we conducted a review on the behaviors of respiratory droplets in public transport system, covering a wide scope from the emission profiles of expiratory droplets, the droplet dynamics and transport, to the transmission of COVID-19 in public transport. The literature was searched using related keywords in Web of Science and PubMed and screened for suitability. The droplet size is a key parameter in determining the deposition and evaporation, which together with the exhaled air velocity largely determines the horizontal travel distance. The potential transmission route and transmission rate in public transport as well as the factors influencing the virus-laden droplet behaviors and virus viability (such as ventilation system, wearing personal protective equipment, air temperature and relative humidity) were also discussed. The review also suggests that future studies should address the uncertainties in droplet emission profiles associated with the measurement techniques, and preferably build a database based on a unified testing protocol. Further investigations based on field measurements and modeling studies into the influence of different ventilation systems on the transmission rate in public transport are also needed, which would provide scientific basis for controlling the transmission of diseases.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Institute for Environmental and Climate Research, Jinan University, 511443, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 511443, Guangzhou, China
| | - Jianwei Gu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| |
Collapse
|
106
|
Lee A, Fujiwara Y, Liker M, Yamamoto I, Takei Y, Gibbon F. Electropalatography (EPG) activities in Japan and the impact of the COVID-19 pandemic on EPG research and therapy: A report of presentations at the 7th EPG Symposium. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2022; 57:906-917. [PMID: 35307940 PMCID: PMC9111328 DOI: 10.1111/1460-6984.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND At the 7th Electropalatography Symposium in Japan, held online on the 24 January 2021, a few speakers were invited to talk about how the COVID-19 pandemic had impacted their research and/or speech therapy that involved the use of electropalatography (EPG) as well as the procedures adopted in order to continue their work in a safe manner. The information on protective measures when using instrumental techniques in speech research and therapy may be useful for colleagues in research and the clinic. AIMS The primary aims are: (1) to find out whether there are any published recommendations regarding protective measures for using EPG in research and clinic settings; (2) to discuss the impact of the pandemic and the corresponding restrictions and general protective measures directed (or advised) by local government and professional bodies at each stage of EPG work; and (3) to share experiences in using modified procedures for face-to-face EPG therapy sessions and combined EPG teletherapy. In addition, a brief overview of EPG and a summary of EPG research and clinical activities in Japan presented by one of the symposium organizers at the symposium are included. METHODS & PROCEDURES A review of the literature regarding protective measures recommended for using EPG for speech assessment and treatment or research, supplemented by a discussion of our own experiences. MAIN CONTRIBUTION The literature review showed that there are no guidelines regarding protective measures for using EPG, but there is some advice regarding speech recording using microphones. Most published articles related to speech and language therapy (SLT) service during COVID-19 are about telepractice or general clinical guidelines for face-to-face speech therapy sessions. The protective measures for using EPG developed based on the general guidelines recommended by local government and professional bodies (e.g., using visors, transparent acrylic board) were described. Using EPG in telepractice was discussed as well. CONCLUSIONS It has been challenging to continue EPG research and therapy during the pandemic. In order to deal with this crisis, available knowledge regarding infection control and recommendations from local government and professional bodies were applied to design methods and procedures that allowed EPG research and therapy to continue. WHAT THIS PAPER ADDS What is already known on the subject There are general protective measures recommended by local government and professional bodies regarding speech therapy sessions (e.g., using personal protective equipment (PPE), social distancing), but little is known about the measures for using instrumental techniques in speech research and therapy, particularly EPG. The equipment of each instrumental technique is different, so measures that are appropriate for one may not be suitable for others. Hence, specific recommendations are needed for EPG. What this paper adds to existing knowledge This paper provides pointers to information about recommendations regarding protective measures for speech research and therapy, supplemented with suggestions specific to EPG provided by experienced users based on actual experience. What are the potential or actual clinical implications of this work? In evaluating the impact of the COVID-19 pandemic on EPG research and therapy, an analytical approach was taken to break down the steps involved in carrying out those activities, and the challenges we faced and the possible alternatives for completing the tasks were discussed. A similar approach can be applied to evaluate other aspects of speech therapy service.
Collapse
Affiliation(s)
- Alice Lee
- Department of Speech and Hearing SciencesUniversity College CorkCorkIreland
| | - Yuri Fujiwara
- Department of Speech TherapyOsaka Health Science UniversityOsakaJapan
| | - Marko Liker
- Department of PhoneticsUniversity of ZagrebZagrebCroatia
| | | | - Yoshiko Takei
- Department of RehabilitationShowa UniversityShinagawa‐kuJapan
| | - Fiona Gibbon
- Department of Speech and Hearing SciencesUniversity College CorkCorkIreland
| |
Collapse
|
107
|
Helding L, Carroll TL, Nix J, Johns MM, LeBorgne WD, Meyer D. COVID-19 After Effects: Concerns for Singers. J Voice 2022; 36:586.e7-586.e14. [PMID: 32839055 PMCID: PMC7409791 DOI: 10.1016/j.jvoice.2020.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Lynn Helding
- Vocology and Voice Pedagogy University of Southern California, Thornton School of Music, Los Angeles, CA, USA
| | - Thomas L Carroll
- Department of Otolaryngology, Head and Neck Surgery Harvard Medical School, Boston, MA, USA
| | - John Nix
- Voice and Voice Pedagogy University of Texas at San Antonio, San Antonio, TX, USA
| | - Michael M Johns
- USC Voice Center Division Director, Laryngology Professor USC Caruso, Department of Otolaryngology Head and Neck Surgery, Los Angeles, CA, USA
| | - Wendy D LeBorgne
- The Blaine Block Institute for Voice Analysis and Rehabilitation, The Professional Voice Center of Greater Cincinnati University of Cincinnati, CIncinnati, OH, USA
| | - David Meyer
- Janette Ogg Voice Research Center, Shenandoah Conservatory, Winchester, VA, USA.
| |
Collapse
|
108
|
Numerical evaluation on indoor environment quality during high numbers of occupied passengers in the departure hall of an airport terminal. JOURNAL OF BUILDING ENGINEERING 2022; 51:104276. [PMCID: PMC8894729 DOI: 10.1016/j.jobe.2022.104276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/01/2023]
Abstract
The rapid development of airports and the rapid spread of coronavirus disease 2019 (COVID-19) have brought increased attention to indoor environment quality, airflow organization, key pollutant dispersion, and ventilation modes in airport terminals. However, the characteristics of these parameters, especially carbon dioxide (CO2) and aerosol diffusion, are not fully understood. Therefore, in this study, the airflow patterns; CO2 and aerosol dispersion; and several thermal environment indices, including temperature, wind velocity, and predicted mean vote (PMV), of an airport terminal departure hall with high numbers of occupied passenger were numerically evaluated using the realizable k-ε and passive scalar models. The efficacies of three common ventilation modes, namely, up-supply and up-return, up-supply and down-return with different sides, and up-supply and down-return with the same side, were evaluated based on the CO2 removal efficiency and spreading range of aerosols. The results indicated that under high numbers of occupied passenger conditions, these ventilation modes vary slightly, with respect to create a comfortable and healthy environment. In particular, the up-supply and down-return with different sides mode was the best among the modes considered, when comparing the indices of temperature, wind speed PMV, and CO2 emission efficiency. Conversely, with respect to decreasing the risk of aerosol exposure, the up-supply and down-return with the same side mode was the best. Overall, the results from this study provide fundamental information for predicting CO2 and aerosol exposure levels and will act as a reference for the design and operation of ventilation systems in airport terminal buildings.
Collapse
|
109
|
Duval D, Palmer JC, Tudge I, Pearce-Smith N, O'Connell E, Bennett A, Clark R. Long distance airborne transmission of SARS-CoV-2: rapid systematic review. BMJ 2022; 377:e068743. [PMID: 35768139 PMCID: PMC9240778 DOI: 10.1136/bmj-2021-068743] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To evaluate the potential for long distance airborne transmission of SARS-CoV-2 in indoor community settings and to investigate factors that might influence transmission. DESIGN Rapid systematic review and narrative synthesis. DATA SOURCES Medline, Embase, medRxiv, Arxiv, and WHO COVID-19 Research Database for studies published from 27 July 2020 to 19 January 2022; existing relevant rapid systematic review for studies published from 1 January 2020 to 27 July 2020; and citation analysis in Web of Science and Cocites. ELIGIBILITY CRITERIA FOR STUDY SELECTION Observational studies reporting on transmission events in indoor community (non-healthcare) settings in which long distance airborne transmission of SARS-CoV-2 was the most likely route. Studies such as those of household transmission where the main transmission route was likely to be close contact or fomite transmission were excluded. DATA EXTRACTION AND SYNTHESIS Data extraction was done by one reviewer and independently checked by a second reviewer. Primary outcomes were SARS-CoV-2 infections through long distance airborne transmission (>2 m) and any modifying factors. Methodological quality of included studies was rated using the quality criteria checklist, and certainty of primary outcomes was determined using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. Narrative synthesis was themed by setting. RESULTS 22 reports relating to 18 studies were identified (methodological quality was high in three, medium in five, and low in 10); all the studies were outbreak investigations. Long distance airborne transmission was likely to have occurred for some or all transmission events in 16 studies and was unclear in two studies (GRADE: very low certainty). In the 16 studies, one or more factors plausibly increased the likelihood of long distance airborne transmission, particularly insufficient air replacement (very low certainty), directional air flow (very low certainty), and activities associated with increased emission of aerosols, such as singing or speaking loudly (very low certainty). In 13 studies, the primary cases were reported as being asymptomatic, presymptomatic, or around symptom onset at the time of transmission. Although some of the included studies were well conducted outbreak investigations, they remain at risk of bias owing to study design and do not always provide the level of detail needed to fully assess transmission routes. CONCLUSION This rapid systematic review found evidence suggesting that long distance airborne transmission of SARS-CoV-2 might occur in indoor settings such as restaurants, workplaces, and venues for choirs, and identified factors such as insufficient air replacement that probably contributed to transmission. These results strengthen the need for mitigation measures in indoor settings, particularly the use of adequate ventilation. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021236762.
Collapse
Affiliation(s)
- Daphne Duval
- COVID-19 Rapid Evidence Service, UK Health Security Agency, London, UK
| | - Jennifer C Palmer
- COVID-19 Rapid Evidence Service, UK Health Security Agency, London, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Isobel Tudge
- COVID-19 Rapid Evidence Service, UK Health Security Agency, London, UK
| | | | - Emer O'Connell
- COVID-19 Advice and Guidance, UK Health Security Agency, London, UK
| | - Allan Bennett
- Biosafety, Air, and Water Microbiology Group, Research and Evaluation, UK Health Security Agency, Porton, UK
| | - Rachel Clark
- COVID-19 Rapid Evidence Service, UK Health Security Agency, London, UK
| |
Collapse
|
110
|
Hybrid measurement of respiratory aerosol reveals a dominant coarse fraction resulting from speech that remains airborne for minutes. Proc Natl Acad Sci U S A 2022; 119:e2203086119. [PMID: 35727979 PMCID: PMC9245670 DOI: 10.1073/pnas.2203086119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Respiratory droplets are widely recognized as the primary vehicle in viral respiratory disease transmission. Accurate information on their number and size distributions is important for appropriate mitigation strategies, for quantitative modeling of airborne disease transmission, and for evaluating the relative importance of droplets originating from saliva versus airway lining fluid. A straightforward experimental setup using inexpensive, readily available components is developed for simultaneous characterization of larger particles by video analysis of laser light scattering and monitoring of smaller sizes by an optical particle counter. Measurements indicate that in a healthy volunteer, the airborne mass of speech aerosol far exceeds that generated by breathing, even when accounting for faster sedimentation of the larger particles. Accurate measurements of the size and quantity of aerosols generated by various human activities in different environments are required for efficacious mitigation strategies and accurate modeling of respiratory disease transmission. Previous studies of speech droplets, using standard aerosol instrumentation, reported very few particles larger than 5 μm. This starkly contrasts with the abundance of such particles seen in both historical slide deposition measurements and more recent light scattering observations. We have reconciled this discrepancy by developing an alternative experimental approach that addresses complications arising from nucleated condensation. Measurements reveal that a large volume fraction of speech-generated aerosol has diameters in the 5- to 20-μm range, making them sufficiently small to remain airborne for minutes, not hours. This coarse aerosol is too large to penetrate the lower respiratory tract directly, and its relevance to disease transmission is consistent with the vast majority of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiating in the upper respiratory tract. Our measurements suggest that in the absence of symptoms such as coughing or sneezing, the importance of speech-generated aerosol in the transmission of respiratory diseases is far greater than generally recognized.
Collapse
|
111
|
Bhattacharjee S, Bahl P, Chughtai AA, Heslop D, MacIntyre CR. Face masks and respirators: Towards sustainable materials and technologies to overcome the shortcomings and challenges. NANO SELECT 2022. [DOI: 10.1002/nano.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shovon Bhattacharjee
- Biosecurity Program The Kirby Institute, Faculty of Medicine University of New South Wales Kensington Sydney Australia
- Department of Applied Chemistry and Chemical Engineering Faculty of Engineering and Technology Noakhali Science and Technology University Noakhali Bangladesh
| | - Prateek Bahl
- School of Mechanical & Manufacturing Engineering University of New South Wales Sydney Australia
| | - Abrar Ahmad Chughtai
- School of Population Health Faculty of Medicine University of New South Wales Kensington Sydney Australia
| | - David Heslop
- School of Population Health Faculty of Medicine University of New South Wales Kensington Sydney Australia
| | - C. Raina MacIntyre
- Biosecurity Program The Kirby Institute, Faculty of Medicine University of New South Wales Kensington Sydney Australia
- College of Public Service and Community Solutions and College of Health Solutions Arizona State University Tempe Arizona USA
| |
Collapse
|
112
|
Liu F, Qian H. Uncertainty analysis of facemasks in mitigating SARS-CoV-2 transmission. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119167. [PMID: 35307493 PMCID: PMC8926848 DOI: 10.1016/j.envpol.2022.119167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
In the context of global spread of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2), there is a controversial issue on whether the use of facemasks is promising to control or mitigate the COVID-19 transmission. This study modeled the SARS-CoV-2 transmission process and analyzed the ability of surgical mask and N95 in reducing the infection risk with Sobol's analysis. Two documented outbreaks of COVID-19 with no involvers wearing face masks were reviewed in a restaurant in Guangzhou (China) and a choir rehearsal in Mount Vernon (USA), suggesting that the proposed model can be well validated when airborne transmission is assumed to dominate the virus transmission indoors. Subsequently, the uncertainty analysis of the protection efficiency of N95 and surgical mask were conducted with Monte Carlo simulations, with three main findings: (1) the uncertainty in infection risk is primarily apportioned by respiratory activities, virus dynamics, environment factors and individual exposures; (2) wearing masks can effectively reduce the SARS-CoV-2 infection risk to an acceptable level (< 10-3) by at least two orders of magnitude; (3) faceseal leakage can reduce protection efficiency by approximately 4% when the infector is speaking or coughing, and by approximately 28% when the infector is sneezing. This work indicates the effectiveness of non-pharmaceutical interventions during the pandemic, and implies the importance of the synergistic studies of medicine, environment, social policies and strategies, etc., on reducing hazards and risks of the pandemic.
Collapse
Affiliation(s)
- Fan Liu
- School of Energy and Environment, Southeast University, Nanjing, China; School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China; Engineering Research Center for Building Energy Environments & Equipments, Ministry of Education, China.
| |
Collapse
|
113
|
Hazard JM, Cappa CD. Performance of Valved Respirators to Reduce Emission of Respiratory Particles Generated by Speaking. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:557-560. [PMID: 37552726 PMCID: PMC9115886 DOI: 10.1021/acs.estlett.2c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 08/10/2023]
Abstract
Wearing of face coverings serves two purposes: reducing the concentration of ambient particles inhaled and reducing the emission of respiratory particles generated by the wearer. The efficiency of different face coverings depends on the material, design, and fit. Face coverings such as N95 respirators, when worn properly, are highly efficient at filtering ambient particles during inhalation. Some N95 respirators, as well as other face covering types, include a one-way valve to allow easier exhalation while still maintaining a high efficiency of filtration of inhaled ambient particles. The extent to which these valves decrease the efficiency of filtration of emitted respiratory particles is, however, not well established. Here, we show that different valved N95s exhibit highly variable filtration efficiencies for exhaled respiratory particles. As such, valved N95s may not provide reliable source control of respired particles and their use should be discouraged in situations in which such source control is needed.
Collapse
Affiliation(s)
- Jessica M. Hazard
- Department of Civil and Environmental Engineering, University of
California, Davis, California 95616, United
States
| | - Christopher D. Cappa
- Department of Civil and Environmental Engineering, University of
California, Davis, California 95616, United
States
| |
Collapse
|
114
|
Prentiss M, Chu A, Berggren KK. Finding the infectious dose for COVID-19 by applying an airborne-transmission model to superspreader events. PLoS One 2022; 17:e0265816. [PMID: 35679278 PMCID: PMC9182663 DOI: 10.1371/journal.pone.0265816] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
We probed the transmission of COVID-19 by applying an airborne transmission model to five well-documented case studies-a Washington state church choir, a Korean call center, a Korean exercise class, and two different Chinese bus trips. For all events the likely index patients were pre-symptomatic or mildly symptomatic, which is when infective patients are most likely to interact with large groups of people. Applying the model to those events yields results that suggest the following: (1) transmission was airborne; (2) superspreading events do not require an index patient with an unusually high viral load; (3) the viral loads for all of the index patients were of the same order of magnitude and consistent with experimentally measured values for patients at the onset of symptoms, even though viral loads across the population vary by a factor of >108. In particular we used a Wells-Riley exposure model to calculate q, the total average number of infectious quanta inhaled by a person at the event. Given the q value for each event, the simple airborne transmission model was used to determined Sq, the rate at which the index patient exhaled infectious quanta and N0, the characteristic number of COVID-19 virions needed to induce infection. Despite the uncertainties in the values of some parameters of the superspreading events, all five events yielded (N0∼300-2,000 virions), which is similar to published values for influenza. Finally, this work describes the conditions under which similar methods can provide actionable information on the transmission of other viruses.
Collapse
Affiliation(s)
- Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA, United States of America
| | - Arthur Chu
- QVT Family Office, New York, NY, United States of America
| | - Karl K. Berggren
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
115
|
Bauer K, Hardege R, Neumann S, Schwarze R, Fuchs M, Heinrich Pieper L. How Safe is Singing Under Pandemic Conditions? - CO 2-Measurements as Simple Method for Risk Estimation During Choir Rehearsals. J Voice 2022:S0892-1997(22)00136-9. [PMID: 35667988 DOI: 10.1016/j.jvoice.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The SARS-CoV-2 pandemic has forced choirs to pause or at least to restrict rehearsals and concerts. Nevertheless, an uncertainty about the risks of infection while singing remains, especially with regard to distances, duration of singing, number of singers and their positions in the room, size of the room as well as ventilation strategies. Based on the assumption that CO2 is a suitable indicator for the exhaled aerosols in a room, it is the aim of this study to deduce recommendations for a choir rehearsal with a minimum risk of infection. METHODS During two choir rehearsals in a typical, nonventilated classroom, we installed 30 CO2 sensors, which allow spatial and temporal evaluation of the CO2 dispersion during singing. Various singing and ventilation phases were applied and the rates of CO2 increase during singing as well as its decrease during ventilation phases were evaluated and compared for different scenarios. RESULTS The measurements reveal a linear relation between the duration of singing, size of the room and number of persons. For our size of the room of 200 m3 the average CO2 increase is 1.83 ppm/min per person. Masks or pure breathing without singing do - in contrast to aerosol dispersion - not influence the rate of CO2 increase. CO2 disperses fast and homogeneously on horizontal planes. However, a vertical layering with a maximum CO2 concentration is observed near the ceiling. Shock ventilation shows the largest CO2 decrease within the first 5 min, after 10 min of ventilation the outside base concentration of 400 ppm is reached again. CONCLUSION The evaluated relations allow to calculate safe singing times for a defined number of singers and size of the room until a critical threshold of 800 ppm is reached. Furthermore, in order to monitor the actual CO2 concentration during choir rehearsal, just one CO2 sensor is representative for the air quality and CO2 concentration of the whole room and thus considered sufficient. For an early warning, it should be installed near the ceiling. Direct singing into a sensor should be avoided. A ventilation time of just 5 min is recommended which represents a compromise between strong CO2 reduction and still sufficient room temperature during winter time.
Collapse
Affiliation(s)
- Katrin Bauer
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09599, Germany.
| | - Robert Hardege
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Sebastian Neumann
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Rüdiger Schwarze
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09599, Germany
| | - Michael Fuchs
- Division of Phoniatrics and Audiology, University of Leipzig, Liebigstrasse 10-14, Leipzig 04103, Germany; Institute for Musicians' Medicine, University of Leipzig, Liebigstrasse 10-14, Leipzig 04103, Germany
| | - Lennart Heinrich Pieper
- Division of Phoniatrics and Audiology, University of Leipzig, Liebigstrasse 10-14, Leipzig 04103, Germany; Institute for Musicians' Medicine, University of Leipzig, Liebigstrasse 10-14, Leipzig 04103, Germany
| |
Collapse
|
116
|
Wang L, Lin T, Da Costa H, Zhu S, Stockman T, Kumar A, Weaver J, Spede M, Milton DK, Hertzberg J, Toohey DW, Vance ME, Miller SL, Srebric J. Characterization of aerosol plumes from singing and playing wind instruments associated with the risk of airborne virus transmission. INDOOR AIR 2022; 32:e13064. [PMID: 35762243 PMCID: PMC9328346 DOI: 10.1111/ina.13064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The exhalation of aerosols during musical performances or rehearsals posed a risk of airborne virus transmission in the COVID-19 pandemic. Previous research studied aerosol plumes by only focusing on one risk factor, either the source strength or convective transport capability. Furthermore, the source strength was characterized by the aerosol concentration and ignored the airflow rate needed for risk analysis in actual musical performances. This study characterizes aerosol plumes that account for both the source strength and convective transport capability by conducting experiments with 18 human subjects. The source strength was characterized by the source aerosol emission rate, defined as the source aerosol concentration multiplied by the source airflow rate (brass 383 particle/s, singing 408 particle/s, and woodwind 480 particle/s). The convective transport capability was characterized by the plume influence distance, defined as the sum of the horizontal jet length and horizontal instrument length (brass 0.6 m, singing 0.6 m and woodwind 0.8 m). Results indicate that woodwind instruments produced the highest risk with approximately 20% higher source aerosol emission rates and 30% higher plume influence distances compared with the average of the same risk indicators for singing and brass instruments. Interestingly, the clarinet performance produced moderate source aerosol concentrations at the instrument's bell, but had the highest source aerosol emission rates due to high source airflow rates. Flute performance generated plumes with the lowest source aerosol emission rates but the highest plume influence distances due to the highest source airflow rate. Notably, these comprehensive results show that the source airflow is a critical component of the risk of airborne disease transmission. The effectiveness of masking and bell covering in reducing aerosol transmission is due to the mitigation of both source aerosol concentrations and plume influence distances. This study also found a musician who generated approximately five times more source aerosol concentrations than those of the other musicians who played the same instrument. Despite voice and brass instruments producing measurably lower average risk, it is possible to have an individual musician produce aerosol plumes with high source strength, resulting in enhanced transmission risk; however, our sample size was too small to make generalizable conclusions regarding the broad musician population.
Collapse
Affiliation(s)
- Lingzhe Wang
- Department of Mechanical EngineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Tong Lin
- Department of Mechanical EngineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Hevander Da Costa
- Department of Mechanical EngineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Shengwei Zhu
- Department of Mechanical EngineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Tehya Stockman
- Department of Civil, Environmental, and Architectural EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Abhishek Kumar
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - James Weaver
- National Federation of State High School AssociationsIndianapolisIndianaUSA
| | - Mark Spede
- Department of Performing ArtsClemson UniversityClemsonSouth CarolinaUSA
| | - Donald K. Milton
- Maryland Institute for Applied Environmental Health, School of Public HealthUniversity of MarylandCollege ParkMarylandUSA
| | - Jean Hertzberg
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Darin W. Toohey
- Department of Atmospheric and Oceanic SciencesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Marina E. Vance
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Shelly L. Miller
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Jelena Srebric
- Department of Mechanical EngineeringUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
117
|
Edgar M, Selvaraj SA, Lee KE, Caraballo-Arias Y, Harrell M, Rodriguez-Morales AJ. Healthcare workers, epidemic biological risks - recommendations based on the experience with COVID-19 and Ebolavirus. LE INFEZIONI IN MEDICINA 2022; 30:168-179. [PMID: 35693057 PMCID: PMC9177174 DOI: 10.53854/liim-3002-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Infectious disease outbreaks frequently cause illness and death among Healthcare Workers (HCWs). We compare strategies from recent, past and ongoing outbreak measures used to protect HCWs, including those facing additional challenges such as racial disparities, violence and stigmatization. Outbreaks and pandemics superimposed on countries with preexisting crises have also affected emergency response to these viral outbreaks. Strategies to protect HCWs include adherence to recommended infection prevention and control measures; new technology such as rapid point-of-care tests and remote monitoring; adopting national public health preparedness plans to ensure the supply and allocation of PPE, staff, and testing supplies; occupational health and mental health support services. Lessons learned from recent pandemics should be used by Infection Prevention and Control and Occupational Health staff to refine preparedness plans to protect HCWs better.
Collapse
Affiliation(s)
- Mia Edgar
- Independent Researcher, Honolulu, HI 96795, USA
| | | | - Karen E. Lee
- The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | | | - Mason Harrell
- School of Public Health, Harvard University, Boston, MA 02138, USA
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigacion Biomedicina, Faculty of Medicine, Fundacion Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
- Universidad Cientifica del Sur, Lima, Peru
| |
Collapse
|
118
|
Aerosol particle emission increases exponentially above moderate exercise intensity resulting in superemission during maximal exercise. Proc Natl Acad Sci U S A 2022; 119:e2202521119. [PMID: 35605123 PMCID: PMC9295808 DOI: 10.1073/pnas.2202521119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or other pathogens is probably increased during indoor exercise, but data on the emission of aerosol particles by an exercising individual are lacking. Here, we report that aerosol particle emission increases on average 132-fold from 580 ± 489 particles/min at rest to 76,200 ± 48,000 particles/min during maximal exercise. Aerosol particle emission increases moderately up to an exercise intensity of ≈2 W/kg and exponentially at higher exercise intensities. These data not only explain SARS-CoV-2 transmissions during indoor group exercise but also can be used to design better targeted mitigation measures for physical activity indoors such as physical education in school, dance events during weddings, or high-intensity gym classes such as spinning. Many airborne pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are transmitted indoors via aerosol particles. During exercise, pulmonary ventilation can increase over 10-fold, and therefore, exercisers will exhale a greater volume of aerosol-containing air. However, we currently do not know how exercise affects the concentration of aerosol particles in exhaled air and the overall emission of aerosol particles. Consequently, we developed a method to measure in parallel the concentration of aerosol particles in expired air, pulmonary ventilation, and aerosol particle emission at rest and during a graded exercise test to exhaustion. We used this method to test eight women and eight men in a descriptive study. We found that the aerosol particle concentration in expired air increased significantly from 56 ± 53 particles/liter at rest to 633 ± 422 particles/liter at maximal intensity. Aerosol particle emission per subject increased significantly by a factor of 132 from 580 ± 489 particles/min at rest to a super emission of 76,200 ± 48,000 particles/min during maximal exercise. There were no sex differences in aerosol particle emission, but endurance-training subjects emitted significantly more aerosol particles during maximal exercise than untrained subjects. Overall, aerosol particle emission increased moderately up to an exercise intensity of ∼2 W/kg and exponentially thereafter. Together, these data might partly explain superspreader events especially during high-intensity group exercise indoors and suggest that strong infection prevention measures are needed especially during exercise at an intensity that exceeds ∼2 W/kg. Investigations of influencing factors like airway and whole-body hydration status during exercise on aerosol particle generation are needed.
Collapse
|
119
|
Hekmati A, Luhar M, Krishnamachari B, Matarić M. Simulating COVID-19 classroom transmission on a university campus. Proc Natl Acad Sci U S A 2022; 119:e2116165119. [PMID: 35609196 PMCID: PMC9295731 DOI: 10.1073/pnas.2116165119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/21/2022] [Indexed: 01/07/2023] Open
Abstract
We study the airborne transmission risk associated with holding in-person classes on university campuses for the original strain and a more contagious variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adopt a model for airborne transmission risk in an enclosed room that considers room properties, mask efficiency, and initial infection probability of the occupants. Additionally, we study the effect of vaccination on the spread of the virus. The presented model has been evaluated in simulations using fall 2019 (prepandemic) and fall 2020 (hybrid instruction) course registration data of a large US university, allowing for assessing the difference in transmission risk between in-person and hybrid programs and the impact of occupancy reduction, mask-wearing, and vaccination. The simulations indicate that without vaccination, moving 90% of the classes online leads to a 17 to 18× reduction in new cases, and universal mask usage results in an ∼2.7 to 3.6× reduction in new infections through classroom interactions. Furthermore, the results indicate that for the original variant and using vaccines with efficacy greater than 90%, at least 23% (64%) of students need to be vaccinated with (without) mask usage in order to operate the university at full occupancy while preventing an increase in cases due to classroom interactions. For the more contagious variant, even with universal mask usage, at least 93% of the students need to be vaccinated to ensure the same conditions. We show that the model is able to predict trends observed in weekly infection rates for fall 2021.
Collapse
Affiliation(s)
- Arvin Hekmati
- Department of Computer Science, University of Southern California, Los Angeles, CA 90089
| | - Mitul Luhar
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
| | - Bhaskar Krishnamachari
- Department of Computer Science, University of Southern California, Los Angeles, CA 90089
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089
| | - Maja Matarić
- Department of Computer Science, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
120
|
Tzoutzas I, Karoussis I, Maltezou HC. Air Quality in Dental Care Facilities: Update to Current Management and Control Strategies Implementing New Technologies: A Comprehensive Review. Vaccines (Basel) 2022; 10:847. [PMID: 35746455 PMCID: PMC9227829 DOI: 10.3390/vaccines10060847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The quality of indoor air in healthcare facilities, with an emphasis on dental offices, attracted the attention of the scientific community in the late 1960s. Since then, it has become evident that the indoor air quality is critical in modern dental care facilities for limiting the spread of airborne infections, including vaccine-preventable diseases, and a key component of safety for healthcare personnel and patients. In the past decades, the role of indoor air quality has also been recognized in non-healthcare facilities, given the increasing time spent indoors by humans. During the provision of dental care services, mainly in the field of restorative dentistry, high-speed dental handpieces emitting air and water are used, producing large quantities of aerosol and hovering inside the operations area. In modern dental offices, new devices emitting air/powder for cavities improvement and cleaning as well as for periodontal prophylactic cleaning and aesthetics are used. In addition, a new therapeutic protocol for the removal of bacterial biofilm, targeting treatment for peri-implant diseases and conditions using air-abrasive decontamination technology, has been introduced in daily dental practice. The aim of this non-systemic review is to present the current state of knowledge on the nature and dynamics of air splatters and to provide an update to management and control strategies in dental care facilities, focusing on air purification and ultraviolet devices proposed and used. The findings arising from the limited number of related published articles documenting the reduction in levels of particular matter 2.5 (PM2.5), PM10 and volatile organic compounds, allow us to conclude that the continuous operation of air purifiers during and after treatment, contributes considerably to the improvement of the indoor air quality in dental care facilities. Moreover, the utilization of air purifiers is highly recommended in dental practice to mitigate spread of infections, including vaccine-preventable diseases. Frequent cleaning and maintenance of the purifier sieves and filters and frequent renovation of the indoor air through physical ventilation by mean of open windows is imperative. More research on environmental contamination and particularly on viral contamination under real dental care conditions is needed.
Collapse
Affiliation(s)
- Ioannis Tzoutzas
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (I.K.)
| | - Ioannis Karoussis
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (I.K.)
| | - Helena C. Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, 15123 Athens, Greece
| |
Collapse
|
121
|
Moeller L, Wallburg F, Kaule F, Schoenfelder S. Numerical Flow Simulation on the Virus Spread of SARS-CoV-2 Due to Airborne Transmission in a Classroom. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6279. [PMID: 35627815 PMCID: PMC9141221 DOI: 10.3390/ijerph19106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023]
Abstract
In order to continue using highly frequented rooms such as classrooms, seminar rooms, offices, etc., any SARS-CoV-2 virus concentration that may be present must be kept low or reduced through suitable ventilation measures. In this work, computational fluid dynamics (CFD) is used to develop a virtual simulation model for calculating and analysing the viral load due to airborne transmission in indoor environments aiming to provide a temporally and spatially-resolved risk assessment with explicit relation to the infectivity of SARS-CoV-2. In this work, the first results of the model and method are presented. In particular, the work focuses on a critical area of the education infrastructure that has suffered severely from the pandemic: classrooms. In two representative classroom scenarios (teaching and examination), the duration of stay for low risk of infection is investigated at different positions in the rooms for the case that one infectious person is present. The results qualitatively agree well with a documented outbreak in an elementary school but also show, in comparisons with other published data, how sensitive the assessment of the infection risk is to the amount of virus emitted on the individual amount of virus required for infection, as well as on the supply air volume. In this regard, the developed simulation model can be used as a useful virtual assessment for a detailed seat-related overview of the risk of infection, which is a significant advantage over established analytical models.
Collapse
Affiliation(s)
| | | | | | - Stephan Schoenfelder
- Faculty of Engineering, Leipzig University of Applied Sciences, 04277 Leipzig, Germany; (L.M.); (F.W.); (F.K.)
| |
Collapse
|
122
|
Firle C, Steinmetz A, Stier O, Stengel D, Ekkernkamp A. Aerosol emission from playing wind instruments and related COVID-19 infection risk during music performance. Sci Rep 2022; 12:8598. [PMID: 35597808 PMCID: PMC9124212 DOI: 10.1038/s41598-022-12529-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
The pandemic of COVID-19 led to restrictions in all kinds of music activities. Airborne transmission of SARS-CoV-2 requires risk assessment of wind instrument playing in various situations. Previous studies focused on short-range transmission, whereas long-range transmission risk has not been assessed. The latter requires knowledge of aerosol emission rates from wind instrument playing. We measured aerosol concentrations in a hermetically closed chamber of 20 m3 in an operating theatre as resulting from 20 min standardized wind instrument playing (19 flute, 11 oboe, 1 clarinet, 1 trumpet players). We calculated aerosol emission rates showing uniform distribution for both instrument groups. Aerosol emission from wind instrument playing ranged from 11 ± 288 particles/second (P/s) up to 2535 ± 195 P/s, expectation value ± uncertainty standard deviation. The analysis of aerosol particle size distributions shows that 70-80% of emitted particles had a size of 0.25-0.8 µm and thus are alveolar. Masking the bell with a surgical mask did not reduce aerosol emission. Aerosol emission rates were higher from wind instrument playing than from speaking or breathing. Differences between instrumental groups could not be found but high interindividual variance, as expressed by uniform distribution of aerosol emission rates. Our findings indicate that aerosol emission depends on physiological factors and playing techniques rather than on the type of instrument, in contrast to some previous studies. Based on our results, we present transmission risk calculations for long-range transmission of COVID-19 for three typical woodwind playing situations.
Collapse
Affiliation(s)
- Carl Firle
- GP Practice, Dr. Claudia-Isabella Wildfeuer, 10715, Berlin, Germany.
| | - Anke Steinmetz
- Physical and Rehabilitation Medicine, Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Dirk Stengel
- BG Kliniken-Klinikverbund Der Gesetzlichen Unfallversicherung gGmbH, Berlin, Germany
- BG Klinikum Unfallkrankenhaus Berlin gGmbH, Berlin, Germany
| | - Axel Ekkernkamp
- Physical and Rehabilitation Medicine, Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Trauma, Reconstructive Surgery, and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
- BG Klinikum Unfallkrankenhaus Berlin gGmbH, Berlin, Germany
| |
Collapse
|
123
|
Aerodynamic Prediction of Time Duration to Becoming Infected with Coronavirus in a Public Place. FLUIDS 2022. [DOI: 10.3390/fluids7050176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The COVID-19 pandemic has caused panic and chaos that modern society has never seen before. Despite their paramount importance, the transmission routes of coronavirus SARS-CoV-2 remain unclear and a point of contention between the various sectors. Recent studies strongly suggest that COVID-19 could be transmitted via air in inadequately ventilated environments. The present study investigates the possibility of the aerosol transmission of coronavirus SARS-CoV-2 and illustrates the associated environmental conditions. The main objective of the current work is to accurately predict the time duration of getting an infection while sharing an indoor space with a patient of COVID-19 or similar viruses. We conducted a 3D computational fluid dynamics (CFD)-based investigation of indoor airflow and the associated aerosol transport in a restaurant setting, where likely cases of airflow-induced infection of COVID-19 caused by asymptomatic individuals were reported in Guangzhou, China. The Eulerian–Eulerian flow model coupled with the k-Ɛ turbulence approach was employed to resolve complex indoor processes, including human respiration activities, such as breathing, speaking, and sneezing. The predicted results suggest that 10 minutes are enough to become infected with COVID-19 when sharing a Table with coronavirus patients. The results also showed that although changing the ventilation rate will improve the quality of air within closed spaces, it will not be enough to protect a person from COVID-19. This model may be suitable for future engineering analyses aimed at reshaping public spaces and indoor common areas to face the spread of aerosols and droplets that may contain pathogens.
Collapse
|
124
|
Reliability of the Acoustic Voice Quality Index AVQI and the Acoustic Breathiness Index (ABI) when wearing CoViD-19 protective masks. Eur Arch Otorhinolaryngol 2022; 279:4617-4621. [PMID: 35522325 PMCID: PMC9073513 DOI: 10.1007/s00405-022-07417-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Investigating whether the Acoustic Voice Quality Index (AVQI) and the Acoustic Breathiness Index (ABI) are valid and comparable to previous unmasked measurements if the speaker wears a surgical mask or a FFP-2 mask to reduce the risk of transmitting air-borne viruses such as SARS-CoV-2. METHODS A convenience sample of 31 subjectively healthy participants was subjected to AVQI and ABI voice examination four times: Twice wearing no mask, once with a surgical mask and once with a FFP-2 mask as used regularly in our hospital. The order of the four mask conditions was randomized. The difference in the results between the two recordings without a mask was then compared to the differences between the recordings with each mask and one recording without a mask. RESULTS Sixty-two percent of the AVQI readings without a mask represented perfectly healthy voices, the largest AVQI without a mask value was 4.0. The mean absolute difference in AVQI was 0.45 between the measurements without masks, 0.48 between no mask and surgical mask and 0.51 between no mask and FFP-2 mask. The results were neither clinically nor statistically significant. For the ABI the resulting absolute differences (in the same order) were 0.48, 0.69 and 0.56, again neither clinically nor statistically different. CONCLUSION Based on a convenience sample of healthy or only mildly impaired voices wearing CoViD-19 protective masks does not substantially impair the results of either AVQI or ABI results.
Collapse
|
125
|
Baselga M, Güemes A, Alba JJ, Schuhmacher AJ. SARS-CoV-2 Droplet and Airborne Transmission Heterogeneity. J Clin Med 2022; 11:2607. [PMID: 35566733 PMCID: PMC9099777 DOI: 10.3390/jcm11092607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
The spread dynamics of the SARS-CoV-2 virus have not yet been fully understood after two years of the pandemic. The virus's global spread represented a unique scenario for advancing infectious disease research. Consequently, mechanistic epidemiological theories were quickly dismissed, and more attention was paid to other approaches that considered heterogeneity in the spread. One of the most critical advances in aerial pathogens transmission was the global acceptance of the airborne model, where the airway is presented as the epicenter of the spread of the disease. Although the aerodynamics and persistence of the SARS-CoV-2 virus in the air have been extensively studied, the actual probability of contagion is still unknown. In this work, the individual heterogeneity in the transmission of 22 patients infected with COVID-19 was analyzed by close contact (cough samples) and air (environmental samples). Viral RNA was detected in 2/19 cough samples from patient subgroups, with a mean Ct (Cycle Threshold in Quantitative Polymerase Chain Reaction analysis) of 25.7 ± 7.0. Nevertheless, viral RNA was only detected in air samples from 1/8 patients, with an average Ct of 25.0 ± 4.0. Viral load in cough samples ranged from 7.3 × 105 to 8.7 × 108 copies/mL among patients, while concentrations between 1.1-4.8 copies/m3 were found in air, consistent with other reports in the literature. In patients undergoing follow-up, no viral load was found (neither in coughs nor in the air) after the third day of symptoms, which could help define quarantine periods in infected individuals. In addition, it was found that the patient's Ct should not be considered an indicator of infectiousness, since it could not be correlated with the viral load disseminated. The results of this work are in line with proposed hypotheses of superspreaders, which can attribute part of the heterogeneity of the spread to the oversized emission of a small percentage of infected people.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
| | - Antonio Güemes
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
| | - Juan J. Alba
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto J. Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
126
|
Shang Y, Dong J, Tian L, He F, Tu J. An improved numerical model for epidemic transmission and infection risks assessment in indoor environment. JOURNAL OF AEROSOL SCIENCE 2022; 162:105943. [PMID: 35034977 PMCID: PMC8748225 DOI: 10.1016/j.jaerosci.2021.105943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 05/08/2023]
Abstract
Social distance will remain the key measure to contain COVID-19 before the global widespread vaccination coverage expected in 2024. Containing the virus outbreak in the office is prioritised to relieve socio-economic burdens caused by COVID-19 and potential pandemics in the future. However, "what is the transmissible distance of SARS-CoV-2" and "what are the appropriate ventilation rates in the office" have been under debate. Without quantitative evaluation of the infection risk, some studies challenged the current social distance policies of 1-2 m adopted by most countries and suggested that longer social distance rule is required as the maximum transmission distance of cough ejected droplets could reach 3-10 m. With the emergence of virus variants such as the Delta variant, the applicability of previous social distance rules are also in doubt. To address the above problem, this study conducted transient Computational Fluid Dynamics (CFD) simulations to evaluate the infection risks under calm and wind scenarios. The calculated Social Distance Index (SDI) indicates that lower humidity leads to a higher infection risk due to weaker evaporation. The infection risk in office was found more sensitive to social distance than ventilation rate. In standard ventilation conditions, social distance of 1.7 m-1.8 m is sufficient distances to reach low probability of infection (PI) target in a calm scenario when coughing is the dominant transmission route. However in the wind scenario (0.25 m/s indoor wind), distance of 2.8 m is required to contain the wild virus type and 3 m is insufficient to contain the spread of the Delta variant. The numerical methods developed in this study provide a framework to evaluate the COVID-19 infection risk in indoor environment. The predicted PI will be beneficial for governments and regulators to make appropriate social-distance and ventilation rules in the office.
Collapse
Affiliation(s)
- Yidan Shang
- College of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jingliang Dong
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Lin Tian
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Fajiang He
- College of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jiyuan Tu
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| |
Collapse
|
127
|
Stettler MEJ, Nishida RT, de Oliveira PM, Mesquita LCC, Johnson TJ, Galea ER, Grandison A, Ewer J, Carruthers D, Sykes D, Kumar P, Avital E, Obeysekara AIB, Doorly D, Hardalupas Y, Green DC, Coldrick S, Parker S, Boies AM. Source terms for benchmarking models of SARS-CoV-2 transmission via aerosols and droplets. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35592762 DOI: 10.6084/m9.figshare.c.5958950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
There is ongoing and rapid advancement in approaches to modelling the fate of exhaled particles in different environments relevant to disease transmission. It is important that models are verified by comparison with each other using a common set of input parameters to ensure that model differences can be interpreted in terms of model physics rather than unspecified differences in model input parameters. In this paper, we define parameters necessary for such benchmarking of models of airborne particles exhaled by humans and transported in the environment during breathing and speaking.
Collapse
Affiliation(s)
- Marc E J Stettler
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Robert T Nishida
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8
| | | | - Léo C C Mesquita
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Tyler J Johnson
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Edwin R Galea
- Fire Safety Engineering Group, University of Greenwich, London SE10 9LS, UK
| | - Angus Grandison
- Fire Safety Engineering Group, University of Greenwich, London SE10 9LS, UK
| | - John Ewer
- Fire Safety Engineering Group, University of Greenwich, London SE10 9LS, UK
| | - David Carruthers
- Cambridge Environmental Research Consultants Ltd, 3 Kings Parade, Cambridge CB2 1SJ, UK
| | | | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Eldad Avital
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Asiri I B Obeysekara
- Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Denis Doorly
- Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
| | - Yannis Hardalupas
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, Michael Uren Biomedical Engineering Hub, London, W12 OBZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, Michael Uren Biomedical Engineering Hub, London, W12 OBZ, UK
| | - Simon Coldrick
- Health and Safety Executive, Harpur Hill, Buxton, Derbyshire SK17 9JN UK
| | - Simon Parker
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Adam M Boies
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| |
Collapse
|
128
|
Blackley BH, Anderson KR, Panagakos F, Chipps T, Virji MA. Efficacy of dental evacuation systems for aerosol exposure mitigation in dental clinic settings. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:281-294. [PMID: 35289720 PMCID: PMC9365099 DOI: 10.1080/15459624.2022.2053140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dental personnel are ranked among the highest risk occupations for exposure to SARS-CoV-2 due to their close proximity to the patient's mouth and many aerosol generating procedures encountered in dental practice. One method to reduce aerosols in dental settings is the use of intraoral evacuation systems. Intraoral evacuation systems are placed directly into a patient's mouth and maintain a dry field during procedures by capturing liquid and aerosols. Although multiple intraoral dental evacuation systems are commercially available, the efficacy of these systems is not well understood. The objectives of this study were to evaluate the efficacy of four dental evacuation systems at mitigating aerosol exposures during simulated ultrasonic scaling and crown preparation procedures. We conducted real-time respirable (PM4) and thoracic (PM10) aerosol sampling during ultrasonic scaling and crown preparation procedures while using four commercially available evacuation systems: a high-volume evacuator (HVE) and three alternative intraoral systems (A, B, C). Four trials were conducted for each system. Respirable and thoracic mass concentrations were measured during procedures at three locations including (1) near the breathing zone (BZ) of the dentist, (2) edge of the dental operatory room approximately 0.9 m away from the mannequin mouth, and (3) hallway supply cabinet located approximately 1.5 m away from the mannequin mouth. Respirable and thoracic mass concentrations measured during each procedure were compared with background concentrations measured in each respective location. Use of System A or HVE reduced thoracic (System A) and respirable (HVE) mass concentrations near the dentist's BZ to median background concentrations most often during the ultrasonic scaling procedure. During the crown preparation, use of System B or HVE reduced thoracic (System B) and respirable (HVE or System B) near the dentist's BZ to median background concentrations most often. Although some differences in efficacy were noted during each procedure and aerosol size fraction, the difference in median mass concentrations among evacuation systems was minimal, ranging from 0.01 to 1.48 µg/m3 across both procedures and aerosol size fractions.
Collapse
Affiliation(s)
- Brie Hawley Blackley
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Kimberly R. Anderson
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Fotinos Panagakos
- School of Dentistry, West Virginia University, Morgantown, West Virginia
| | - Tammy Chipps
- School of Dentistry, West Virginia University, Morgantown, West Virginia
| | - M. Abbas Virji
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
129
|
Stettler MEJ, Nishida RT, de Oliveira PM, Mesquita LCC, Johnson TJ, Galea ER, Grandison A, Ewer J, Carruthers D, Sykes D, Kumar P, Avital E, Obeysekara AIB, Doorly D, Hardalupas Y, Green DC, Coldrick S, Parker S, Boies AM. Source terms for benchmarking models of SARS-CoV-2 transmission via aerosols and droplets. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212022. [PMID: 35592762 PMCID: PMC9066307 DOI: 10.1098/rsos.212022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/13/2022] [Indexed: 05/03/2023]
Abstract
There is ongoing and rapid advancement in approaches to modelling the fate of exhaled particles in different environments relevant to disease transmission. It is important that models are verified by comparison with each other using a common set of input parameters to ensure that model differences can be interpreted in terms of model physics rather than unspecified differences in model input parameters. In this paper, we define parameters necessary for such benchmarking of models of airborne particles exhaled by humans and transported in the environment during breathing and speaking.
Collapse
Affiliation(s)
- Marc E. J. Stettler
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Robert T. Nishida
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8
| | | | - Léo C. C. Mesquita
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Tyler J. Johnson
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Edwin R. Galea
- Fire Safety Engineering Group, University of Greenwich, London SE10 9LS, UK
| | - Angus Grandison
- Fire Safety Engineering Group, University of Greenwich, London SE10 9LS, UK
| | - John Ewer
- Fire Safety Engineering Group, University of Greenwich, London SE10 9LS, UK
| | - David Carruthers
- Cambridge Environmental Research Consultants Ltd, 3 Kings Parade, Cambridge CB2 1SJ, UK
| | | | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Eldad Avital
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Asiri I. B. Obeysekara
- Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Denis Doorly
- Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
| | - Yannis Hardalupas
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - David C. Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, Michael Uren Biomedical Engineering Hub, London, W12 OBZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, Michael Uren Biomedical Engineering Hub, London, W12 OBZ, UK
| | - Simon Coldrick
- Health and Safety Executive, Harpur Hill, Buxton, Derbyshire SK17 9JN UK
| | - Simon Parker
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Adam M. Boies
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| |
Collapse
|
130
|
Schoen CN, Morgan E, Leftwich HK, Rogers C, Soorneedi A, Suther C, Moore MD. Failure to Detect SARS-CoV-2 RNA in the Air During Active Labor in Mothers Who Recently Tested Positive. Front Public Health 2022; 10:881613. [PMID: 35570919 PMCID: PMC9093214 DOI: 10.3389/fpubh.2022.881613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
The risk of potential SARS-CoV-2 transmission by infected mothers during labor and delivery has not been investigated in-depth. This work collected air samples close to (respiratory droplets) and more distant from (aerosol generation) unvaccinated patients who had previously tested positive for SARS-CoV-2 during labor within 5 days of a positive test. All but one of the patients wore masks during the delivery, and delivery was carried out in either birthing or negative pressure isolation rooms. Our work failed to detect SARS-CoV-2 RNA in any air samples for all of the six patients who gave birth vaginally, despite validation of the limit of detection of the samplers. In sum, this brief report provides initial evidence that the risk of airborne transmission of SARS-CoV-2 during labor may be mitigated by the use of masks and high ventilation rates common in many modern U.S. medical facilities; however more work is needed to fully evaluate the risk of SARS-CoV-2 transmission during labor and maternal pushing.
Collapse
Affiliation(s)
- Corina N. Schoen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Massachusetts Medical School-Baystate, Springfield, MA, United States
| | - Elizabeth Morgan
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Massachusetts Medical School-Baystate, Springfield, MA, United States
| | - Heidi K. Leftwich
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Massachusetts Chan Medical School/UMASS Memorial Health, Worcester, MA, United States
| | - Christine Rogers
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Anand Soorneedi
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Cassandra Suther
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, United States
| |
Collapse
|
131
|
Dacunto P, Ng A, Moser D, Tovkach A, Scanlon S, Benson M. Effects of location, classroom orientation, and air change rate on potential aerosol exposure: an experimental and computational study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:557-566. [PMID: 35244126 DOI: 10.1039/d1em00434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study examined the dispersion of potentially infectious aerosols in classrooms by means of both a CO2 tracer gas, and multizone contaminant transport modeling. A total of 20 tests were conducted in three different university classrooms at multiple air change rates (4.4-9.7/h), each with two different room orientations: one with the tracer gas released from six student desks toward the air return, and one with the same tracer gas released away from it. Resulting tracer concentrations were measured by 19 different monitors arrayed throughout the room. Steady-state, mean tracer gas concentrations were calculated in six instructor zones (A-F) around the periphery of the room, with the results normalized by the concentration at the return, which was assumed to be representative of the well-mixed volume of the room. Across all classrooms, zones farthest from the return (C, D) had the lowest mean normalized concentrations (0.75), while those closest to the return (A, F) had the highest (0.95). This effect was consistent across room orientations (release both toward and away from the return), and air change rates. In addition, all zones around the periphery of the room had a significantly lower concentration than those adjacent to the sources. Increasing the ventilation rate reduced tracer gas concentrations significantly. Similar trends were observed via a novel approach to CONTAM modeling of the same rooms. These results indicate that informed selection of teaching location within the classroom could reduce instructor exposure.
Collapse
Affiliation(s)
- P Dacunto
- United States Military Academy, Department of Geography and Environmental Engineering, West Point, NY 10996, USA.
| | - A Ng
- United States Military Academy, Department of Geography and Environmental Engineering, West Point, NY 10996, USA.
| | - D Moser
- United States Military Academy, Department of Civil and Mechanical Engineering, West Point, NY 10996, USA
| | - A Tovkach
- United States Military Academy, Department of Geography and Environmental Engineering, West Point, NY 10996, USA.
| | - S Scanlon
- United States Military Academy, Department of Civil and Mechanical Engineering, West Point, NY 10996, USA
| | - M Benson
- United States Military Academy, Department of Civil and Mechanical Engineering, West Point, NY 10996, USA
| |
Collapse
|
132
|
Gholamreza F, Nadaraja AV, Milani AS, Golovin K. Enhanced protection face masks do not adversely impact thermophysiological comfort. PLoS One 2022; 17:e0265126. [PMID: 35390014 PMCID: PMC8989302 DOI: 10.1371/journal.pone.0265126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
The World Health Organization has advocated mandatory face mask usage to combat the spread of COVID-19, with multilayer masks recommended for enhanced protection. However, this recommendation has not been widely adopted, with noncompliant persons citing discomfort during prolonged usage of face masks. And yet, a scientific understanding on how face mask fabrics/garment systems affect thermophysiological comfort remains lacking. We aimed to investigate how fabric/garment properties alter the thermal and evaporative resistances responsible for thermophysiological strain. We constructed 12 different layered facemasks (D1-D5, T1-T6, Q1) with various filters using commercially available fabrics. Three approaches were employed: (1) the evaporative and thermal resistances were measured in all the test face masks using the medium size to determine the effect of fabric properties; (2) the effect of face mask size by testing close-fitted (small), fitted (medium) and loose fitted (large) face mask T-6; (3) the effect of face mask fit by donning a large size face mask T-6, both loose and tightened using thermal manikin, Newton. ANOVA test revealed that the additional N95 middle layer filter has no significant effect on the thermal resistances of all the face masks, and evaporative resistances except for face masks T-2 and T-3 (P-values<0.05) whereas size significantly affected thermal and evaporative resistances (P-values<0.05). The correlation coefficient between the air gap size and the thermal and evaporative resistance of face masks T-6 were R2 = 0.96 and 0.98, respectively. The tight fit large face mask had superior performance in the dissipation of heat and moisture from the skin (P-values <0.05). Three-layer masks incorporating filters and water-resistant and antimicrobial/antiviral finishes did not increase discomfort. Interestingly, using face masks with fitters improved user comfort, decreasing thermal and evaporative resistances in direct opposition to the preconceived notion that safer masks decrease comfort.
Collapse
Affiliation(s)
- Farzan Gholamreza
- School of Engineering, University of British Columbia, Kelowna, Canada
| | | | - Abbas S. Milani
- School of Engineering, University of British Columbia, Kelowna, Canada
| | - Kevin Golovin
- School of Engineering, University of British Columbia, Kelowna, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
133
|
Kong M, Li L, Eilts SM, Li L, Hogan CJ, Pope ZC. Localized and Whole-Room Effects of Portable Air Filtration Units on Aerosol Particle Deposition and Concentration in a Classroom Environment. ACS ES&T ENGINEERING 2022; 2:653-669. [PMID: 37552723 PMCID: PMC8864773 DOI: 10.1021/acsestengg.1c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
In indoor environments with limited ventilation, recirculating portable air filtration (PAF) units may reduce COVID-19 infection risk via not only the direct aerosol route (i.e., inhalation) but also via an indirect aerosol route (i.e., contact with the surface where aerosol particles deposited). We systematically investigated the impact of PAF units in a mock classroom, as a supplement to background ventilation, on localized and whole-room surface deposition and particle concentration. Fluorescently tagged particles with a volumetric mean diameter near 2 μm were continuously introduced into the classroom environment via a breathing simulator with a prescribed inhalation-exhalation waveform. Deposition velocities were inferred on >50 horizontal and vertical surfaces throughout the classroom, while aerosol concentrations were spatially monitored via optical particle spectrometry. Results revealed a particle decay rate consistent with expectations based upon the reported clean air delivery rates of the PAF units. Additionally, the PAF units reduced peak concentrations by a factor of around 2.5 compared to the highest concentrations observed and led to a statistically significant reduction in deposition velocities for horizontal surfaces >2.5 m from the aerosol source. Our results not only confirm that PAF units can reduce particle concentrations but also demonstrate that they may lead to reduced particle deposition throughout an indoor environment when properly positioned with respect to the location of the particle source(s) within the room (e.g., where the largest group of students sit) and the predominant air distribution profile of the room.
Collapse
Affiliation(s)
- Meng Kong
- Well Living Lab, Rochester,
Minnesota 55902, United States
| | - Linhao Li
- Well Living Lab, Rochester,
Minnesota 55902, United States
| | - Stephanie M. Eilts
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Li Li
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Zachary C. Pope
- Well Living Lab, Rochester,
Minnesota 55902, United States
- Mayo Clinic, Department of Physiology and
Biomedical Engineering, Rochester, Minnesota 55905, United
States
| |
Collapse
|
134
|
Eames I, Flór JB. Spread of infectious agents through the air in complex spaces. Interface Focus 2022; 12:20210080. [PMID: 35261735 PMCID: PMC8831084 DOI: 10.1098/rsfs.2021.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
The fluid mechanical processes that govern the spread of infectious agents through the air in complex spaces are reviewed and the scientific gaps and challenges identified and discussed. Air, expelled from the nose and mouth, creates turbulent jets that form loosely coherent structures which quickly slow. For the transport and dispersion of aerosols, the suitability of the Eulerian as well as the Lagrangian approaches are brought into context. The effects of buoyancy and external turbulence are explored and shown to influence the horizontal extent of expulsion through distinct mechanisms which both inhibit penetration and enhance mixing. The general influence of inhomogeneous turbulence and stratification on the spread of infectious agents in enclosed complex spaces is discussed.
Collapse
Affiliation(s)
- Ian Eames
- Centre for Engineering in Extreme Environments, University College London, Gower Street, London WC1E 7JE, UK
| | - Jan-Bert Flór
- Laboratoire des Écoulements Géophysiques et Industriels (LEGI), CNRS, Université Grenoble Alpes, Grenoble INP, Grenoble 38000, France
| |
Collapse
|
135
|
Henriques A, Mounet N, Aleixo L, Elson P, Devine J, Azzopardi G, Andreini M, Rognlien M, Tarocco N, Tang J. Modelling airborne transmission of SARS-CoV-2 using CARA: risk assessment for enclosed spaces. Interface Focus 2022; 12:20210076. [PMID: 35261732 PMCID: PMC8831086 DOI: 10.1098/rsfs.2021.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for a proper risk assessment of respiratory pathogens in indoor settings. This paper documents the COVID Airborne Risk Assessment methodology, to assess the potential exposure of airborne SARS-CoV-2 viruses, with an emphasis on virological and immunological factors in the quantification of the risk. The model results from a multidisciplinary approach linking physical, mechanical and biological domains, enabling decision makers or facility managers to assess their indoor setting. The model was benchmarked against clinical data, as well as two real-life outbreaks, showing good agreement. A probability of infection is computed in several everyday-life settings and with various mitigation measures. The importance of super-emitters in airborne transmission is confirmed: 20% of infected hosts can emit approximately two orders of magnitude more viral-containing particles. The use of masks provides a fivefold reduction in viral emissions. Natural ventilation strategies are very effective to decrease the concentration of virions, although periodic venting strategies are not ideal in certain settings. Although vaccination is an effective measure against hospitalization, their effectiveness against transmission is not optimal, hence non-pharmaceutical interventions (ventilation, masks) should be actively supported. We also propose a critical threshold to define an acceptable risk level.
Collapse
Affiliation(s)
- Andre Henriques
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Nicolas Mounet
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Luis Aleixo
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Philip Elson
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - James Devine
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | | | - Marco Andreini
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Markus Rognlien
- NTNU (Norwegian University of Science and Technology), Torgarden, Norway
| | - Nicola Tarocco
- CERN (European Organization for Nuclear Research), Geneva, Switzerland
| | - Julian Tang
- Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
136
|
Archer J, McCarthy LP, Symons HE, Watson NA, Orton CM, Browne WJ, Harrison J, Moseley B, Philip KEJ, Calder JD, Shah PL, Bzdek BR, Costello D, Reid JP. Comparing aerosol number and mass exhalation rates from children and adults during breathing, speaking and singing. Interface Focus 2022; 12:20210078. [PMID: 35261733 PMCID: PMC8831083 DOI: 10.1098/rsfs.2021.0078] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Aerosol particles of respirable size are exhaled when individuals breathe, speak and sing and can transmit respiratory pathogens between infected and susceptible individuals. The COVID-19 pandemic has brought into focus the need to improve the quantification of the particle number and mass exhalation rates as one route to provide estimates of viral shedding and the potential risk of transmission of viruses. Most previous studies have reported the number and mass concentrations of aerosol particles in an exhaled plume. We provide a robust assessment of the absolute particle number and mass exhalation rates from measurements of minute ventilation using a non-invasive Vyntus Hans Rudolf mask kit with straps housing a rotating vane spirometer along with measurements of the exhaled particle number concentrations and size distributions. Specifically, we report comparisons of the number and mass exhalation rates for children (12-14 years old) and adults (19-72 years old) when breathing, speaking and singing, which indicate that child and adult cohorts generate similar amounts of aerosol when performing the same activity. Mass exhalation rates are typically 0.002-0.02 ng s-1 from breathing, 0.07-0.2 ng s-1 from speaking (at 70-80 dBA) and 0.1-0.7 ng s-1 from singing (at 70-80 dBA). The aerosol exhalation rate increases with increasing sound volume for both children and adults when both speaking and singing.
Collapse
Affiliation(s)
| | | | | | - Natalie A. Watson
- Department of Ear, Nose and Throat Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Christopher M. Orton
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
- Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, London, UK
| | | | | | - Benjamin Moseley
- Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, UK
| | - Keir E. J. Philip
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, London, UK
| | - James D. Calder
- Department of Bioengineering, Imperial College London, London, UK
- Fortius Clinic, Fitzhardinge Street, London, UK
| | - Pallav L. Shah
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
- Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, London, UK
| | | | - Declan Costello
- Ear, Nose and Throat Department, Wexham Park Hospital, Slough, UK
| | | |
Collapse
|
137
|
Dumont-Leblond N, Duchaine C, Veillette M, Pen V, Bergevin M. A case of primary COVID-19 pneumonia: plausible airborne transmission of SARS-CoV-2. Eur J Med Res 2022; 27:50. [PMID: 35379338 PMCID: PMC8977185 DOI: 10.1186/s40001-022-00668-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The different clinical manifestations, from none to severe, and the variability in efficacy of SARS-CoV-2 diagnosis by upper respiratory tract testing, make diagnosis of COVID-19 and prevention of transmission especially challenging. In addition, the ways by which the virus can most efficiently transmit still remain unclear.
Case Presentation
We report the case a 48-year-old man who presents primary COVID-19 pneumonia. He was initially admitted for cholecystitis but, upon review of his abdominal CT scan, a segmental zone of ground glass opacity was identified in the right lower lobe. A bronchoalveolar lavage proved positive to SARS-CoV-2 by RT-qPCR, even if he tested negative by oro-nasopharyngeal swab at admission and the day after he underwent bronchoscopy. The near absence of the virus in his saliva 2 days after, combined with a very sharp increase in salivary viral load on the third day, also rule out the possibility of prior viral replication in the upper airway and clearance. In addition, rapidly increasing bilateral alveolar lung infiltrates appeared as the upper respiratory tests begin to detect the virus.
Conclusions
For this patient to have developed primary COVID-19 pneumonia, a contagious aerosol must have traveled to the lower respiratory system. This case gives indirect but compelling evidence that aerosol may spread the virus. It also highlights the limitations of oral and nasal testing methods and the importance of anatomical considerations when studying infections by SARS-CoV-2.
Collapse
|
138
|
Finci I, Siebenbaum R, Richtzenhain J, Edwards A, Rau C, Ehrhardt J, Koiou L, Joggerst B, Brockmann SO. Risk factors associated with an outbreak of COVID-19 in a meat processing plant in southern Germany, April to June 2020. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35362409 PMCID: PMC8973015 DOI: 10.2807/1560-7917.es.2022.27.13.2100354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Meat processing plants have been prominent hotspots for coronavirus disease (COVID-19) outbreaks around the world. We describe infection prevention measures and risk factors for infection spread at a meat processing plant in Germany with a COVID-19 outbreak from April to June 2020. We analysed a cohort of all employees and defined cases as employees with either a PCR or ELISA positive result. Of 1,270 employees, 453 (36%) had evidence of SARS-CoV-2 infection. The highest attack rates were observed in meat processing and slaughtering areas. Multivariable analysis revealed that being a subcontracted employee (adjusted risk ratio (aRR)): 1.43, 95% CI: 1.06–1.96), working in the meat cutting area (aRR: 2.44, 95% CI: 1.45–4.48), working in the slaughtering area (aRR: 2.35, 95% CI: 1.32–4.45) and being a veterinary inspector (aRR: 4.77, 95% CI: 1.16–23.68) increased infection risk. Sharing accommodation or transportation were not identified as risk factors for infection. Our results suggest that workplace was the main risk factor for infection spread. These results highlight the importance of implementing preventive measures targeting meat processing plants. Face masks, distancing, staggering breaks, increased hygiene and regular testing for SARS-CoV2 helped limit this outbreak, as the plant remained open throughout the outbreak.
Collapse
Affiliation(s)
- Iris Finci
- European Programme for Intervention Epidemiology Training (EPIET), ECDC, Stockholm, Sweden.,Baden-Württemberg State Health Office, Stuttgart, Germany
| | | | | | | | - Carina Rau
- Baden-Württemberg State Health Office, Stuttgart, Germany
| | - Jonas Ehrhardt
- Baden-Württemberg State Health Office, Stuttgart, Germany
| | - Linda Koiou
- Consumer Protection and Veterinary Office Enzkreis, Pforzheim, Germany
| | | | | |
Collapse
|
139
|
Oksanen L, Sanmark E, Sofieva S, Rantanen N, Lahelma M, Anttila V, Lehtonen L, Atanasova N, Pesonen E, Geneid A, Hyvärinen A. Aerosol generation during general anesthesia is comparable to coughing: An observational clinical study. Acta Anaesthesiol Scand 2022; 66:463-472. [PMID: 34951703 PMCID: PMC9303240 DOI: 10.1111/aas.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Intubation, laryngoscopy, and extubation are considered highly aerosol-generating procedures, and additional safety protocols are used during COVID-19 pandemic in these procedures. However, previous studies are mainly experimental and have neither analyzed staff exposure to aerosol generation in the real-life operating room environment nor compared the exposure to aerosol concentrations generated during normal patient care. To assess operational staff exposure to potentially infectious particle generation during general anesthesia, we measured particle concentration and size distribution with patients undergoing surgery with Optical Particle Sizer. METHODS A single-center observative multidisciplinary clinical study in Helsinki University Hospital with 39 adult patients who underwent general anesthesia with tracheal intubation. Mean particle concentrations during different anesthesia procedures were statistically compared with cough control data collected from 37 volunteers to assess the differences in particle generation. RESULTS This study measured 25 preoxygenations, 30 mask ventilations, 28 intubations, and 24 extubations. The highest total aerosol concentration of 1153 particles (p)/cm³ was observed during mask ventilation. Preoxygenations, mask ventilations, and extubations as well as uncomplicated intubations generated mean aerosol concentrations statistically comparable to coughing. It is noteworthy that difficult intubation generated significantly fewer aerosols than either uncomplicated intubation (p = .007) or coughing (p = 0.006). CONCLUSIONS Anesthesia induction generates mainly small (<1 µm) aerosol particles. Based on our results, general anesthesia procedures are not highly aerosol-generating compared with coughing. Thus, their definition as high-risk aerosol-generating procedures should be re-evaluated due to comparable exposures during normal patient care. IMPLICATION STATEMENT The list of aerosol-generating procedures guides the use of protective equipments in hospitals. Intubation is listed as a high-risk aerosol-generating procedure, however, aerosol generation has not been measured thoroughly. We measured aerosol generation during general anesthesia. None of the general anesthesia procedures generated statistically more aerosols than coughing and thus should not be considered as higher risk compared to normal respiratory activities.
Collapse
Affiliation(s)
- Lotta‐Maria Oksanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics—Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Enni Sanmark
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics—Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Svetlana Sofieva
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Noora Rantanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics—Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Mari Lahelma
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics—Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of Science, Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
| | - Veli‐Jukka Anttila
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Inflammation CentreHelsinki University HospitalHelsinkiFinland
| | - Lasse Lehtonen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic CentreHUSLABHelsinki University HospitalHelsinkiFinland
| | - Nina Atanasova
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Finnish Meteorological InstituteHelsinkiFinland
| | - Eero Pesonen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Anesthesiology, Intensive Care and Pain MedicineHelsinki University HospitalHelsinkiFinland
| | - Ahmed Geneid
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics—Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | | |
Collapse
|
140
|
Ding S, Lee JS, Mohamed MA, Ng BF. Infection risk of SARS-CoV-2 in a dining setting: Deposited droplets and aerosols. BUILDING AND ENVIRONMENT 2022; 213:108888. [PMID: 35169378 PMCID: PMC8828387 DOI: 10.1016/j.buildenv.2022.108888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 05/06/2023]
Abstract
Considering that safe-distancing and mask-wearing measures are not strictly enforced in dining settings in the context of SARS-CoV-2, the infection risks of patrons in a dining outlet (e.g., a cafe) is assessed in this study. The size-resolved aerosol emission rate (AER) and droplets deposition rate (DDR) on dining plates from speaking were obtained through chamber measurements and droplet deposition visualization via fluorescent imaging technique (FIT), respectively. The AER from speaking was 24698 #/min in the size range of 0.3-5.5 μm, while the DDR was 365 #/min in the size range of 43-2847 μm. Furthermore, an infection risk model was adopted and revised to evaluate the infection risk of 120 diners for a "3-h event" in the cafe. In a four-person dining setting around a rectangular table, a diner seated diagonally across an infected person posed the least infection risk due to the deposited droplets on dining plates. The deposited droplets on a dining plate were dominant in possible viral transmission as compared to the long-range airborne route when a diner shared a table with the infected person. Yet, long-range airborne transmission had the potential to infect other diners in the cafe, even resulting in super-spreading events. A fresh air supply of 12.1-17.0 L/s per person is recommended for the cafe to serve 4-20 diners concurrently to minimize infection risks due to aerosols. Current ventilation standards (e.g., 8-10 L/s per person) for a cafe are not enough to avoid the airborne transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Shirun Ding
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Jia Shing Lee
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Mohamed Arif Mohamed
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bing Feng Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
141
|
Kumar R, Munjal SK, Sharma A, Alam MN, Panda NK. Effect of Face Masks on Speech Understanding: A Clinical Perspective during Speech Audiometry. J Otol 2022; 17:140-145. [PMID: 35847571 PMCID: PMC9270560 DOI: 10.1016/j.joto.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022] Open
|
142
|
Impact of natural ventilation on exposure to SARS-CoV 2 in indoor/semi-indoor terraces using CO 2 concentrations as a proxy. JOURNAL OF BUILDING ENGINEERING 2022; 46:103725. [PMCID: PMC8632854 DOI: 10.1016/j.jobe.2021.103725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 06/16/2023]
Abstract
Nowadays, it is necessary a better airborne transmission understanding of respiratory diseases in shared indoor and semi-indoor environments with natural ventilation in order to adopt effective people's health protection measures. The aim of this work is to evaluate the relative exposure to SARS-CoV 2 in a set of virtual scenarios representing enclosed and semi-enclosed terraces under different outdoor meteorological conditions. For this purpose, indoor CO2 concentration is used as a proxy for the risk assessment. Airflow and people exhaled CO2 in different scenarios are simulated through Computational Fluid Dynamics (CFD) modelling with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. Both spatial average concentrations and local concentrations are analyzed. In general, spatial average concentrations decrease as ventilation increases, however, depending on the people arrangement inside the terrace, spatial average concentrations and local concentrations can be very different. Therefore, for assessing the relative exposure to SARS-CoV 2 it is necessary to consider the indoor flow patterns between infectors and susceptibles. This research provides detailed information about CO2 dispersion in enclosed/semi-enclosed scenarios, which can be very useful for reducing the transmission risk through better natural ventilation designs and improving the classic risk models since it allows to check their hypotheses in real-world scenarios. Although CFD ventilation studies in indoor/semi-indoor environments have been already addressed in the literature, this research is focused on restaurant terraces, scenarios scarcely investigated. Likewise, one of the novelties of this study is to take into account the outdoor meteorological conditions to appropriately simulate natural ventilation.
Collapse
|
143
|
Rodríguez-Hakim M, Räz L, Vermant J. Variations in human saliva viscoelasticity affect aerosolization propensity. SOFT MATTER 2022; 18:2528-2540. [PMID: 35113119 DOI: 10.1039/d1sm01581h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Some contagious diseases, such as COVID-19, spread through the transmission of aerosols and droplets. Aerosol and droplet formation occurs inside and outside of the respiratory tract, the latter being observed during speaking and sneezing. Upon sneezing, saliva is expelled as a flat sheet, which destabilizes into filaments that subsequently break up into droplets. The presence of macromolecules (such as mucins) in saliva influences the dynamics of aerosol generation, since elasticity is expected to stabilize both fluid sheets and filaments, hence deterring droplet formation. In this study, the process of aerosol formation outside the respiratory tract is systematically replicated using an impinging jet setup, where two liquid jets collide and form a thin fluid sheet that can fragment into ligaments and droplets. The experimental setup enables us to investigate a range of dynamic conditions, quantified by the relevant non-dimensional numbers, which encompass those experienced during sneezing. Experiments are conducted with human saliva provided by different donors, revealing significant variations in their stability and breakup. We quantify the effect of viscoelasticity via shear and extensional rheology experiments, concluding that the extensional relaxation time is the most adequate measure of a saliva's elasticity. We summarize our results in terms of the dimensionless Weber, Reynolds, and Deborah numbers and construct universal state diagrams that directly compare our data to human sneezing, concluding that the aerosolization propensity is correlated with diminished saliva elasticities, higher emission velocities, and larger ejecta volumes. This could entail variations in disease transmission between individuals which hitherto have not been recognized.
Collapse
Affiliation(s)
| | - Linard Räz
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland.
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland.
| |
Collapse
|
144
|
Ho GY, Kansy IK, Klavacs KA, Leonhard M, Schneider-Stickler B. 3Effect of FFP2+3 masks on voice range profile measurement and voice acoustics in routine voice diagnostics. Folia Phoniatr Logop 2022; 74:335-344. [PMID: 35344948 DOI: 10.1159/000524299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Voice diagnostics including voice range profile measurement (VRP) and acoustic voice analysis is essential in laryngology and phoniatrics. Due to Covid-19 pandemic, wearing of filtering face masks (FFP2/3) is recommended when high risk aerosol generating procedures like singing and speaking are being performed. Goal of this study was to compare VRP parameters when performed without and with FFP2/3 masks. Further, formant analysis for sustained vowels, singer's formant and analysis of reading standard text samples were performed without/with FFP2/3 masks. METHODS 20 subjects (6 male and 14 female) were enrolled in this study with an average age of 36±16 y (mean ± SD). 14 patients were rated as euphonic/not hoarse and 6 patients as mildly hoarse. All subjects underwent the VRP measurements, vowel and text recordings without/with FFP2/3 mask using the software DiVAS by XION medical (Berlin, Germany). Voice range of singing voice, equivalent of voice extension measure (eVEM), fundamental frequency (F0), sound pressure level (SPL) of soft speaking and shouting were calculated and analyzed. Maximum phonation time (MPT) and jitter-% were included for Dysphonia Severity Index (DSI) measurement. Analyses of singer's formant were performed. Spectral analyses of sustained vowels /a:/, /i:/ and /u:/ (first=F1 and second=F2 formants), intensity of long term average spectrum (LTAS) and alpha-ratio (α-ratio) were calculated using the freeware praat. RESULTS For all subjects the mean values of routine voice parameters without/with mask were analyzed: no significant differences were found in results of singing voice range, eVEM. SPL and frequency of soft speaking/shouting, except significant lower mean SPL of shouting with FFP2/3 mask, in particular that of the female subjects (p=0.002). Results of MPT, jitter and DSI without/with FFP2/3 mask showed no significant differences. Further mean values analyzed without/with mask were: ratio singer's formant/loud singing, with lower ratio with FFP2/3 mask (p=0.001). F1 and F2 of /a:/, /i:/, /u:/, with no significant differences of the results, with the exception of F2 of /i:/ with lower value with FFP2/3 mask (p=0.005). With the exceptions mentioned, the t-test revealed no significant differences for each of the routine parameters tested in the recordings without and with wearing a FFP2/3 mask. CONCLUSION It can be concluded, that VRP measurements including DSI performed with FFP2/3 masks provide reliable data in clinical routine with respect to voice condition/constitution. Spectral analyses of sustained vowel, text and singer's formant will be affected by wearing FFP2/3 masks.
Collapse
Affiliation(s)
- Guan-Yuh Ho
- Division of Phoniatrics-Logopedics, Department of Otorhinolaryngology, Medical University Hospital Vienna, Vienna, Austria,
| | - Ines Kristina Kansy
- Division of Phoniatrics-Logopedics, Department of Otorhinolaryngology, Medical University Hospital Vienna, Vienna, Austria
| | | | - Matthias Leonhard
- Division of Phoniatrics-Logopedics, Department of Otorhinolaryngology, Medical University Hospital Vienna, Vienna, Austria
| | - Berit Schneider-Stickler
- Division of Phoniatrics-Logopedics, Department of Otorhinolaryngology, Medical University Hospital Vienna, Vienna, Austria
- Medical Center of Communication, Vienna, Austria
| |
Collapse
|
145
|
Nakashita M, Takagi Y, Tanaka H, Nakamura H, Serizawa Y, Ukai T, Azuma K, Chiba H, Terada K, Nakanishi K, Fujikawa T, Saito K, Yamaguchi R, Mitsuhashi Y, Yano K, Shibuma T, Kuzuma A, Tsuda S, Sadamoto T, Ishii Y, Ohara T, Hitomi Y, Hiroshima T, Yamagishi T, Kamiya H, Anita S, Yahata Y, Shimada T, Arima Y, Suzuki M, Sekizuka T, Kuroda M, Sunagawa T. Singing Is a Risk Factor for SARS-CoV-2 Infection: A Case-control Study of Karaoke-related COVID-19 Outbreaks in Two Cities in Hokkaido, Japan, Linked by Whole Genome Analysis. Open Forum Infect Dis 2022; 9:ofac158. [PMID: 35531379 PMCID: PMC8992236 DOI: 10.1093/ofid/ofac158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Singing in an indoor space may increase the risk of SARS-CoV-2 infection. We conducted a case-control study of karaoke-related COVID-19 outbreaks to reveal the risk factors for SARS-CoV-2 infection among individuals who participate in karaoke.
Methods
Cases were defined as people who enjoyed karaoke at a bar and who tested positive for SARS-CoV-2 by RT-PCR between May 16 and July 3, 2020. Controls were defined as people who enjoyed karaoke at the same bar during the same period as the cases and tested negative. Odds ratio (OR) and confidence interval (CI) were calculated. ORs were adjusted by variables with significantly high odds ratio (aOR).
Results
We identified 81 cases, the majority of whom were active elderly individuals (median age: 75 years). Six cases died (case fatality ratio: 7%). Among the cases, 68 (84%) were guests, 18 of whom had visited more than two karaoke bars. A genome analysis conducted in 30 cases showed six types of isolates within four single-nucleotide variations difference. The case-control study revealed that singing (aOR 11.0, 95% CI, 1.2-101.0), not wearing a mask (aOR 3.7, 95% CI 1.2-11.2) and time spent per visit (aOR 1.7, 95% CI 1.1-2.7) were associated with COVID-19 infection.
Conclusions
A karaoke-related COVID-19 outbreak that occurred in two different cities was confirmed by the results of genome analysis. Singing in less-ventilated, indoor and crowded environments increases the risk of acquiring SARS-CoV-2 infection. Wearing a mask and staying for only a short time can reduce the risk of infection during karaoke.
Collapse
Affiliation(s)
- Manami Nakashita
- Field Epidemiology Training Program, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuta Takagi
- Public Health Office, City of Sapporo, Hokkaido, Japan
| | | | - Haruna Nakamura
- Field Epidemiology Training Program, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yusuke Serizawa
- Field Epidemiology Training Program, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiko Ukai
- Field Epidemiology Training Program, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kotaro Azuma
- Public Health Office, City of Sapporo, Hokkaido, Japan
| | - Hiroko Chiba
- Public Health Office, City of Sapporo, Hokkaido, Japan
| | | | | | | | - Kayoko Saito
- Public Health Office, City of Sapporo, Hokkaido, Japan
| | - Ryo Yamaguchi
- Public Health Office, City of Sapporo, Hokkaido, Japan
| | | | - Koichi Yano
- Public Health Office, City of Sapporo, Hokkaido, Japan
| | | | - Akemi Kuzuma
- Public Health Office, Otaru City, Hokkaido, Japan
| | | | | | - Yasuhiko Ishii
- Hokkaido Government Department of Health and Welfare, Hokkaido, Japan
| | - Tsukasa Ohara
- Hokkaido Government Department of Health and Welfare, Hokkaido, Japan
| | - Yoshiaki Hitomi
- Hokkaido Government Department of Health and Welfare, Hokkaido, Japan
| | - Takashi Hiroshima
- Hokkaido Government Department of Health and Welfare, Hokkaido, Japan
| | - Takuya Yamagishi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Kamiya
- Center for Field Epidemiology Intelligence, Research, and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Samuel Anita
- Center for Field Epidemiology Intelligence, Research, and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuichiro Yahata
- Center for Field Epidemiology Intelligence, Research, and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoe Shimada
- Center for Field Epidemiology Intelligence, Research, and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuzo Arima
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoi Suzuki
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomimasa Sunagawa
- Center for Field Epidemiology Intelligence, Research, and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
146
|
Alsved M, Nygren D, Thuresson S, Medstrand P, Fraenkel CJ, Löndahl J. SARS-CoV-2 in exhaled aerosol particles from covid-19 cases and its association to household transmission. Clin Infect Dis 2022; 75:e50-e56. [PMID: 35271734 PMCID: PMC8992237 DOI: 10.1093/cid/ciac202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) transmission via exhaled aerosol particles has been considered an important route for the spread of infection, especially during super-spreading events involving loud talking or singing. However, no study has previously linked measurements of viral aerosol emissions to transmission rates. Methods During February–March 2021, COVID-19 cases that were close to symptom onset were visited with a mobile laboratory for collection of exhaled aerosol particles during breathing, talking, and singing, respectively, and of nasopharyngeal and saliva samples. Aerosol samples were collected using a BioSpot-VIVAS and a NIOSH bc-251 2-stage cyclone, and all samples were analyzed by RT-qPCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection. We compared transmission rates between households with aerosol-positive and aerosol-negative index cases. Results SARS-CoV-2 RNA was detected in at least 1 aerosol sample from 19 of 38 (50%) included cases. The odds ratio (OR) of finding positive aerosol samples decreased with each day from symptom onset (OR 0.55, 95 confidence interval [CI] .30–1.0, P = .049). The highest number of positive aerosol samples were from singing, 16 (42%), followed by talking, 11 (30%), and the least from breathing, 3 (8%). Index cases were identified for 13 households with 31 exposed contacts. Higher transmission rates were observed in households with aerosol-positive index cases, 10/16 infected (63%), compared to households with aerosol-negative index cases, 4/15 infected (27%) (χ2 test, P = .045). Conclusions COVID-19 cases were more likely to exhale SARS-CoV-2-containing aerosol particles close to symptom onset and during singing or talking as compared to breathing. This study supports that individuals with SARS-CoV-2 in exhaled aerosols are more likely to transmit COVID-19.
Collapse
Affiliation(s)
- Malin Alsved
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - David Nygren
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sara Thuresson
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Carl Johan Fraenkel
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Infection Control, Region Skåne, Lund, Sweden
| | - Jakob Löndahl
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| |
Collapse
|
147
|
3D modelling and simulation of the dispersion of droplets and drops carrying the SARS-CoV-2 virus in a railway transport coach. Sci Rep 2022; 12:4025. [PMID: 35256741 PMCID: PMC8900967 DOI: 10.1038/s41598-022-08067-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/23/2022] [Indexed: 01/04/2023] Open
Abstract
Computational fluid dynamics (CFD) modelling and 3D simulations of the air flow and dispersion of droplets or drops in semi-confined ventilated spaces have found topical applications with the unfortunate development of the Covid-19 pandemic. As an illustration of this scenario, we have considered the specific situation of a railroad coach containing a seated passenger infected with the SARS-CoV-2 virus (and not wearing a face mask) who, by breathing and coughing, releases droplets and drops that contain the virus and that present aerodynamic diameters between 1 and 1000 µm. The air flow is generated by the ventilation in the rail coach. While essentially 3D, the flow is directed from the bottom to the top of the carriage and comprises large to small eddies visualised by means of streamlines. The space and time distribution of the droplets and drops is computed using both an Eulerian model and a Lagrangian model. The results of the two modelling approaches are fully consistent and clearly illustrate the different behaviours of the drops, which fall down close to the infected passenger, and the droplets, which are carried along with the air flow and invade a large portion of the rail coach. This outcome is physically sound and demonstrates the relevance of CFD for simulating the transport and dispersion of droplets and drops with any diameter in enclosed ventilated spaces. As coughing produces drops and breathing produces droplets, both modes of transmission of the SARS-CoV-2 virus in human secretions have been accounted for in our 3D numerical study. Beyond the specific, practical application of the rail coach, this study offers a much broader scope by demonstrating the feasibility and usefulness of 3D numerical simulations based on CFD. As a matter of fact, the same computational approach that has been implemented in our study can be applied to a huge variety of ventilated indoor environments such as restaurants, performance halls, classrooms and open-plan offices in order to evaluate if their occupation could be critical with respect to the transmission of the SARS-CoV-2 virus or to other airborne respiratory infectious agents, thereby enabling relevant recommendations to be made.
Collapse
|
148
|
Johnson TJ, Nishida RT, Sonpar AP, Lin YCJ, Watson KA, Smith SW, Conly JM, Evans DH, Olfert JS. Viral load of SARS-CoV-2 in droplets and bioaerosols directly captured during breathing, speaking and coughing. Sci Rep 2022; 12:3484. [PMID: 35241703 PMCID: PMC8894466 DOI: 10.1038/s41598-022-07301-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Determining the viral load and infectivity of SARS-CoV-2 in macroscopic respiratory droplets, bioaerosols, and other bodily fluids and secretions is important for identifying transmission modes, assessing risks and informing public health guidelines. Here we show that viral load of SARS-CoV-2 Ribonucleic Acid (RNA) in participants' naso-pharyngeal (NP) swabs positively correlated with RNA viral load they emitted in both droplets >10 [Formula: see text] and bioaerosols <10 [Formula: see text] directly captured during the combined expiratory activities of breathing, speaking and coughing using a standardized protocol, although the NP swabs had [Formula: see text] 10[Formula: see text] more RNA on average. By identifying highly-infectious individuals (maximum of 18,000 PFU/mL in NP), we retrieved higher numbers of SARS-CoV-2 RNA gene copies in bioaerosol samples (maximum of 4.8[Formula: see text] gene copies/mL and minimum cycle threshold of 26.2) relative to other studies. However, all attempts to identify infectious virus in size-segregated droplets and bioaerosols were negative by plaque assay (0 of 58). This outcome is partly attributed to the insufficient amount of viral material in each sample (as indicated by SARS-CoV-2 gene copies) or may indicate no infectious virus was present in such samples, although other possible factors are identified.
Collapse
Affiliation(s)
- Tyler J Johnson
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Robert T Nishida
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| | - Ashlesha P Sonpar
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, Canada
- Alberta Health Services, Alberta, Canada
| | - Yi-Chan James Lin
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Kimberley A Watson
- Alberta Health Services, Alberta, Canada
- Department of Family Medicine, University of Alberta, Edmonton, Canada
| | - Stephanie W Smith
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, Canada
- Alberta Health Services, Alberta, Canada
| | - John M Conly
- Alberta Health Services, Alberta, Canada
- Department of Medicine, Microbiology, Immunology and Infectious Diseases, Pathology and Laboratory Medicine, Synder Institute for Chronic Diseases and O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - David H Evans
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Jason S Olfert
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
149
|
Hamilton FW, Gregson FKA, Arnold DT, Sheikh S, Ward K, Brown J, Moran E, White C, Morley AJ, Bzdek BR, Reid JP, Maskell NA, Dodd JW. Aerosol emission from the respiratory tract: an analysis of aerosol generation from oxygen delivery systems. Thorax 2022. [PMID: 34737195 DOI: 10.1101/2021.01.29.21250552] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) provide enhanced oxygen delivery and respiratory support for patients with severe COVID-19. CPAP and HFNO are currently designated as aerosol-generating procedures despite limited high-quality experimental data. We aimed to characterise aerosol emission from HFNO and CPAP and compare with breathing, speaking and coughing. MATERIALS AND METHODS Healthy volunteers were recruited to breathe, speak and cough in ultra-clean, laminar flow theatres followed by using CPAP and HFNO. Aerosol emission was measured using two discrete methodologies, simultaneously. Hospitalised patients with COVID-19 had cough recorded using the same methodology on the infectious diseases ward. RESULTS In healthy volunteers (n=25 subjects; 531 measures), CPAP (with exhalation port filter) produced less aerosol than breathing, speaking and coughing (even with large >50 L/min face mask leaks). Coughing was associated with the highest aerosol emissions of any recorded activity. HFNO was associated with aerosol emission, however, this was from the machine. Generated particles were small (<1 µm), passing from the machine through the patient and to the detector without coalescence with respiratory aerosol, thereby unlikely to carry viral particles. More aerosol was generated in cough from patients with COVID-19 (n=8) than volunteers. CONCLUSIONS In healthy volunteers, standard non-humidified CPAP is associated with less aerosol emission than breathing, speaking or coughing. Aerosol emission from the respiratory tract does not appear to be increased by HFNO. Although direct comparisons are complex, cough appears to be the main aerosol-generating risk out of all measured activities.
Collapse
Affiliation(s)
- Fergus W Hamilton
- Infection Science, North Bristol NHS Trust, Westbury on Trym, UK
- MRC Integrative Epidemiology Unit, Bristol, UK
| | - Florence K A Gregson
- Bristol Aerosol Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | - David T Arnold
- Academic Respiratory Unit, North Bristol NHS Trust, Westbury on Trym, UK
| | - Sadiyah Sheikh
- Bristol Aerosol Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | - Kirsty Ward
- Physiotherapy Department, North Bristol NHS Trust, Westbury on Trym, UK
| | - Jules Brown
- Anaesthetics and Intensive Care Department, North Bristol NHS Trust, Westbury on Trym, UK
| | - Ed Moran
- Infectious Diseases, North Bristol NHS Trust, Bristol, UK
| | - Carrie White
- Research and Development, North Bristol NHS Trust, Westbury on Trym, UK
| | - Anna J Morley
- Academic Respiratory Unit, North Bristol NHS Trust, Westbury on Trym, UK
| | - Bryan R Bzdek
- Bristol Aerosol Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | - Jonathan P Reid
- Bristol Aerosol Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | - Nicholas A Maskell
- Academic Respiratory Unit, North Bristol NHS Trust, Westbury on Trym, UK
| | - James William Dodd
- MRC Integrative Epidemiology Unit, Bristol, UK
- Academic Respiratory Unit, North Bristol NHS Trust, Westbury on Trym, UK
| |
Collapse
|
150
|
Tran YH, Blackburn J, Vest JR. Observation of spectators’ mask-wearing behavior at a national basketball tournament. MANAGING SPORT AND LEISURE 2022. [DOI: 10.1080/23750472.2022.2046492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yvette H. Tran
- Indiana University Richard M Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Justin Blackburn
- Indiana University Richard M Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Joshua R. Vest
- Indiana University Richard M Fairbanks School of Public Health, Indianapolis, IN, USA
- Regenstrief Institute, Indianapolis, IN, USA
| |
Collapse
|