101
|
Choi H, Park JY, Kim HJ, Noh M, Ueyama T, Bae Y, Lee TR, Shin DW. Hydrogen peroxide generated by DUOX1 regulates the expression levels of specific differentiation markers in normal human keratinocytes. J Dermatol Sci 2013; 74:56-63. [PMID: 24332816 DOI: 10.1016/j.jdermsci.2013.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recent studies have demonstrated that the production of reactive oxygen species (ROS) itself plays an indispensable role in the process of differentiation in various tissues. However, it is unclear whether ROS have an effect on the differentiation of keratinocytes essential for the development of the epidermal permeability barrier. OBJECTIVE The aim of the study is to determine a major H2O2-generating source by ionomycin in normal human keratinocytes (NHKs), and elucidate the physiological role of H2O2 generated by identified dual oxidase 1 (DUOX1) on differentiation markers of NHKs. METHODS To detect H2O2 level generated by ionomycin in NHKs, luminal-HRP assays are performed. To examine the effects of DUOX1 on differentiation markers of NHKs, analysis of Q-RT-PCR, siRNA knockdown, and Western blot analysis were performed. RESULTS We found that levels of H2O2 generated by ionomycin, a Ca(2+) signal inducer, showed Ca(2+) dependence manner. In addition, DPI, an inhibitor of NOXes, significantly reversed the ionomycin-induced H2O2 level, and inhibited the mRNA expression levels of keratin 1, keratin 10, and filaggrin compared with other ROS generating system inhibitors. Interestingly, we demonstrated that extracellular Ca(2+) markedly up-regulated mRNA expression levels of DUOX1 among NADPH oxidase (NOX) isoforms. Knockdown of DUOX1 by RNA interference (RNAi) in NHKs significantly antagonized an increase of ionomycin-induced H2O2 level, and specifically decreased the expressions of several keratinocyte differentiation markers such as keratin 1, transglutaminase 3, desmoglein 1, and aquaporin 9. In addition, we also found that formation of cornified envelope was significantly reduced in DUOX1-knockdown NHKs. CONCLUSION These results suggest that DUOX1 is the major H2O2-producing source in NHKs stimulated with Ca(2+), and plays a significant role in regulating the expression of specific markers necessary for the normal differentiation of keratinocytes.
Collapse
Affiliation(s)
- Hyun Choi
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Ju-Yearl Park
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul University, Seoul 151-742, Republic of Korea
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Republic of Korea
| | - Yunsoo Bae
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| |
Collapse
|
102
|
Inhibition of oxidative stress by low-molecular-weight polysaccharides with various functional groups in skin fibroblasts. Int J Mol Sci 2013; 14:19399-415. [PMID: 24071940 PMCID: PMC3821563 DOI: 10.3390/ijms141019399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to evaluate the in cellulo inhibition of hydrogen-peroxide-induced oxidative stress in skin fibroblasts using different low-molecular-weight polysaccharides (LMPS) prepared from agar (LMAG), chitosan (LMCH) and starch (LMST), which contain various different functional groups (i.e., sulfate, amine, and hydroxyl groups). The following parameters were evaluated: cell viability, intracellular oxidant production, lipid peroxidation, and DNA damage. Trolox was used as a positive control in order to allow comparison of the antioxidant efficacies of the various LMPS. The experimentally determined attenuation of oxidative stress by LMPS in skin fibroblasts was: LMCH > LMAG > LMST. The different protection levels of these LMPS may be due to the physic-chemical properties of the LMPS' functional groups, including electron transfer ability, metal ion chelating capacities, radical stabilizing capacity, and the hydrophobicity of the constituent sugars. The results suggest that LMCH might constitute a novel and potential dermal therapeutic and sun-protective agent.
Collapse
|
103
|
Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:119-45. [PMID: 24050626 DOI: 10.1146/annurev-pathol-012513-104651] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are a chemical class of molecules that have generally been conceptualized as deleterious entities, albeit ones whose destructive properties could be harnessed as antimicrobial effector functions to benefit the whole organism. This appealingly simplistic notion has been turned on its head in recent years with the discovery of the NADPH oxidases, or Noxes, a family of enzymes dedicated to the production of ROS in a variety of cells and tissues. The Nox-dependent, physiological generation of ROS is highly conserved across virtually all multicellular life, often as a generalized response to microbes and/or other exogenous stressors. This review discusses the current knowledge of the role of physiologically generated ROS and the enzymes that form them in both normal biology and disease.
Collapse
Affiliation(s)
- J David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322;
| | | |
Collapse
|
104
|
Potapovich AI, Kostyuk VA, Kostyuk TV, de Luca C, Korkina LG. Effects of pre- and post-treatment with plant polyphenols on human keratinocyte responses to solar UV. Inflamm Res 2013; 62:773-80. [PMID: 23689555 DOI: 10.1007/s00011-013-0634-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/07/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The understanding of the anti-inflammatory mechanisms of action of plant polyphenols (PPs) and clarification of the relationship between their anti-inflammatory and antioxidant properties may result in a new therapeutic approach to skin cancers. OBJECTIVE To elucidate the underlying mechanism, we analyzed the ability of PPs to attenuate inflammatory, metabolic and oxidative cellular responses to UV irradiation. METHODS Normal human epidermal keratinocytes (NHEK) were exposed to physiologically relevant dose of solar-simulated UV irradiation. Effects of pre- and post-treatment with PPs on the overproduction of peroxides and inflammatory mediators (mRNA and protein) were analyzed using real-time RT-PCR, enzyme-linked immunosorbent and fluorometric techniques. RESULTS Differences between the effectiveness of pre- and post-treatment with polyphenols was found. In particular, PPs post-treatment, but not pretreatment, completely abolished overexpression of Cyp1a1 and Cyp1b1 genes and elevation of intracellular peroxides in NHEK irradiated by UV. Post-treatment with PPs also more efficiently than pretreatment prevented UV-induced overexpression of IL-1 beta, IL-6 and COX2 mRNAs. CONCLUSION Our data strongly suggest that PPs predominantly affect delayed molecular and cellular events initiated in NHEK by solar UV rather than primary photochemical reactions. PPs may be important component in cosmetic formulations for post-sun skin care.
Collapse
Affiliation(s)
- Alla I Potapovich
- Department of Biology, Byelorussian State University, Minsk 220050, Belarus
| | | | | | | | | |
Collapse
|
105
|
Morpho-mechanical intestinal remodeling in type 2 diabetic GK rats--is it related to advanced glycation end product formation? J Biomech 2013. [PMID: 23403079 DOI: 10.1016/j.] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Little is known about the mechanisms for the biomechanical remodeling in diabetes. The histomorphology, passive biomechanical properties and expression of advanced glycation end product (N epsilon-(carboxymethyl) lysine, AGE) and its receptor (RAGE) were studied in jejunal segments from 8 GK diabetic rats (GK group) and 10 age-matched normal rats (Normal group). The mechanical test was done by using a ramp distension of fluid into the jejunal segments in vitro. Circumferential stress and strain were computed from the length, diameter and pressure data and from the zero-stress state geometry. AGE and RAGE were detected by immunohistochemistry staining. Linear regression analysis was done to study association between the glucose level and AGE/RAGE expression with the histomorphometric and biomechanical parameters. The blood glucose level, the jejunal weight per length, wall thickness, wall area and layer thickness significantly increased in the GK group compared with the Normal group (P<0.05, P<0.01 and P<0.001). The opening angle and absolute values of residual strain decreased whereas the circumferential stiffness of the jejunal wall increased in the GK group (P<0.05 and P<0.01). Furthermore, stronger AGE expression in the villi and crypt and RAGE expression in the villi were found in the GK group (P<0.05 and P<0.01). Most histomorphometric and biomechanical changes were associated with blood glucose level and AGE/RAGE expression. In conclusion, histomorphometric and biomechanical remodeling occurred in type 2 diabetic GK rats. The increasing blood glucose level and the increased AGE/RAGE expression were associated with the remodeling, indicating a causal relationship.
Collapse
|
106
|
Cortat B, Garcia CCM, Quinet A, Schuch AP, de Lima-Bessa KM, Menck CFM. The relative roles of DNA damage induced by UVA irradiation in human cells. Photochem Photobiol Sci 2013; 12:1483-95. [DOI: 10.1039/c3pp50023c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
107
|
Nechifor MT, Niculiţe CM, Urs AO, Regalia T, Mocanu M, Popescu A, Manda G, Dinu D, Leabu M. UVA irradiation of dysplastic keratinocytes: oxidative damage versus antioxidant defense. Int J Mol Sci 2012; 13:16718-36. [PMID: 23222638 PMCID: PMC3546716 DOI: 10.3390/ijms131216718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/13/2012] [Accepted: 11/29/2012] [Indexed: 01/24/2023] Open
Abstract
UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate.
Collapse
Affiliation(s)
- Marina T. Nechifor
- Faculty of Biology, University of Bucharest, Bucharest 050095, Romania; E-Mails: (M.T.N.); (D.D.)
| | - Cristina M. Niculiţe
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Andreea O. Urs
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Teodor Regalia
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
- “Carol Davila” University of Medicine and Pharmacy, Bucharest 050096, Romania
| | - Mihaela Mocanu
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Alexandra Popescu
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Gina Manda
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Diana Dinu
- Faculty of Biology, University of Bucharest, Bucharest 050095, Romania; E-Mails: (M.T.N.); (D.D.)
| | - Mircea Leabu
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
- “Carol Davila” University of Medicine and Pharmacy, Bucharest 050096, Romania
| |
Collapse
|
108
|
Zhao B, Ming M, He YY. Suppression of PTEN transcription by UVA. J Biochem Mol Toxicol 2012; 27:184-91. [PMID: 23129115 DOI: 10.1002/jbt.21451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 01/10/2023]
Abstract
Although ultraviolet A (UVA; 315-400 nm) has different physical and biological targets than ultraviolet B (UVB; 280-315 nm), the contribution of UVA to skin cancer susceptibility and its molecular basis remain largely unknown. Here we show that chronic UVA radiation suppresses phosphatase and tensin homolog (PTEN) expression at the mRNA level. Subchronic and acute UVA radiation also downregulated PTEN in normal human epidermal keratinocytes, skin culture, and mouse skin. At the molecular level, chronic UVA radiation decreased the transcriptional activity of the PTEN promoter in a methylation-independent manner, whereas it had no effect on the protein stability or mRNA stability of PTEN. In contrast, we found that UVA-induced activation of the Ras/ERK/AKT and NF-кB pathways plays an important role in UV-induced PTEN downregulation. Inhibiting extracellular signal-regulated kinases (ERK) or protein pinase B (AKT) increases PTEN expression. Our findings may provide unique insights into PTEN downregulation as a critical component of UVA's molecular impact during keratinocyte transformation.
Collapse
Affiliation(s)
- Baozhong Zhao
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
109
|
Bmi-1 confers adaptive radioresistance to KYSE-150R esophageal carcinoma cells. Biochem Biophys Res Commun 2012; 425:309-14. [PMID: 22842564 DOI: 10.1016/j.bbrc.2012.07.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 01/11/2023]
Abstract
Radiotherapy (RT) is a major modality of cancer treatment. However, tumors often acquire radioresistance, which causes RT to fail. The exact mechanisms by which tumor cells subjected to fractionated irradiation (FIR) develop an adaptive radioresistance are largely unknown. Using the radioresistant KYSE-150R esophageal squamous cell carcinoma (ESCC) model, which was derived from KYSE-150 parental cells using FIR, the role of Bmi-1 in mediating the radioadaptive response of ESCC cells to RT was investigated. The results showed that the level of Bmi-1 expression was significantly higher in KYSE-150R cells than in the KYSE-150 parental cells. Bmi-1 depletion sensitized the KYSE-150R cells to RT mainly through the induction of apoptosis, partly through the induction of senescence. A clonogenic cell survival assay showed that Bmi-1 depletion significantly decreased the radiation survival fraction in KYSE-150R cells. Furthermore, Bmi-1 depletion increased the generation of reactive oxygen species (ROS) and the expression of oxidase genes (Lpo, Noxo1 and Alox15) in KYSE-150R cells exposed to irradiation. DNA repair capacities assessed by γ-H2AX foci formation were also impaired in the Bmi-1 down-regulated KYSE-150R cells. These results suggest that Bmi-1 plays an important role in tumor radioadaptive resistance under FIR and may be a potent molecular target for enhancing the efficacy of fractionated RT.
Collapse
|
110
|
Ligand-activated PPARδ inhibits UVB-induced senescence of human keratinocytes via PTEN-mediated inhibition of superoxide production. Biochem J 2012; 444:27-38. [PMID: 22335598 DOI: 10.1042/bj20111832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UV radiation-mediated photodamage to the skin has been implicated in premature aging and photoaging-related skin cancer and melanoma. Little is known about the cellular events that underlie premature senescence, or how to impede these events. In the present study we demonstrate that PPARδ (peroxisome-proliferator-activated receptor δ) regulates UVB-induced premature senescence of normal keratinocytes. Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly attenuated UVB-mediated generation of ROS (reactive oxygen species) and suppressed senescence of human keratinocytes. Ligand-activated PPARδ up-regulated the expression of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and suppressed the PI3K (phosphatidylinositol 3-kinase)/Akt pathway. Concomitantly, translocation of Rac1 to the plasma membrane, which leads to the activation of NADPH oxidases and generation of ROS, was significantly attenuated. siRNA (small interfering RNA)-mediated knockdown of PTEN abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt/Rac1 signalling and on generation of ROS in keratinocytes exposed to UVB. Finally, when HR-1 hairless mice were treated with GW501516 before exposure to UVB, the number of senescent cells in the skin was significantly reduced. Thus ligand-activated PPARδ confers resistance to UVB-induced cellular senescence by up-regulating PTEN and thereby modulating PI3K/Akt/Rac1 signalling to reduce ROS generation in keratinocytes.
Collapse
|
111
|
Henri P, Beaumel S, Guezennec A, Poumès C, Stoebner PE, Stasia MJ, Guesnet J, Martinez J, Meunier L. MC1R expression in HaCaT keratinocytes inhibits UVA-induced ROS production via NADPH oxidase- and cAMP-dependent mechanisms. J Cell Physiol 2012; 227:2578-85. [PMID: 21898403 DOI: 10.1002/jcp.22996] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultraviolet A (UVA) radiations are responsible for deleterious effects, mainly due to reactive oxygen species (ROS) production. Alpha-melanocyte stimulating hormone (α-MSH) binds to melanocortin-1 receptor (MC1R) in melanocytes to stimulate pigmentation and modulate cutaneous inflammatory responses. MC1R may be induced in keratinocytes after UV exposure. To investigate the effect of MC1R signaling on UVA-induced ROS (UVA-ROS) production, we generated HaCaT cells that stably express human MC1R (HaCaT-MC1R) or the Arg151Cys (R(151)C) non-functional variant (HaCaT-R(151)C). We then assessed ROS production immediately after UVA exposure and found that: (1) UVA-ROS production was strongly reduced in HaCaT-MC1R but not in HaCaT-R(151)C cells compared to parental HaCaT cells; (2) this inhibitory effect was further amplified by incubation of HaCaT-MC1R cells with α-MSH before UVA exposure; (3) protein kinase A (PKA)-dependent NoxA1 phosphorylation was increased in HaCaT-MC1R compared to HaCaT and HaCaT-R(151)C cells. Inhibition of PKA in HaCaT-MC1R cells resulted in a marked increase of ROS production after UVA irradiation; (4) the ability of HaCaT-MC1R cells to produce UVA-ROS was restored by inhibiting epidermal growth factor receptor (EGFR) or extracellular signal-regulated kinases (ERK) activity before UVA exposure. Our findings suggest that constitutive activity of MC1R in keratinocytes may reduce UVA-induced oxidative stress via EGFR and cAMP-dependent mechanisms.
Collapse
Affiliation(s)
- Pauline Henri
- Institute of Biomolecules Max Mousseron (IBMM), University Montpellier I and II, UMR CNRS 5247, Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Gruber F, Bicker W, Oskolkova OV, Tschachler E, Bochkov VN. A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res 2012; 53:1232-42. [PMID: 22414483 DOI: 10.1194/jlr.d025270] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized as signaling mediators that are not only markers of oxidative stress but are also "makers" of pathology relevant to disease pathogenesis. Understanding the biological role of individual molecular species of OxPLs requires the knowledge of their concentration kinetics in cells and tissues. In this work, we describe a straightforward "fingerprinting" procedure for analysis of a broad spectrum of molecular species generated by oxidation of the four most abundant species of polyunsaturated phosphatidylcholines (OxPCs). The approach is based on liquid-liquid extraction followed by reversed-phase HPLC coupled to electrospray ionization MS/MS. More than 500 peaks corresponding in retention properties to polar and oxidized PCs were detected within 8 min at 99 m/z precursor values using a single diagnostic product ion in extracts from human dermal fibroblasts. Two hundred seventeen of these peaks were fluence-dependently and statistically significantly increased upon exposure of cells to UVA irradiation, suggesting that these are genuine oxidized or oxidatively fragmented species. This method of semitargeted lipidomic analysis may serve as a simple first step for characterization of specific "signatures" of OxPCs produced by different types of oxidative stress in order to select the most informative peaks for identification of their molecular structure and biological role.
Collapse
Affiliation(s)
- Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
113
|
Tyrrell RM. Modulation of gene expression by the oxidative stress generated in human skin cells by UVA radiation and the restoration of redox homeostasis. Photochem Photobiol Sci 2012; 11:135-47. [DOI: 10.1039/c1pp05222e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
114
|
Masaki H. The Possible Use of Zinc Ions for Anti-pigmentation and Anti-wrinkling Skin Care. YAKUGAKU ZASSHI 2012; 132:261-9. [DOI: 10.1248/yakushi.132.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hitoshi Masaki
- Tokyo University of Technology, School of Bioscience and Biotechnology
| |
Collapse
|
115
|
Aroun A, Zhong JL, Tyrrell RM, Pourzand C. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem Photobiol Sci 2012; 11:118-34. [DOI: 10.1039/c1pp05204g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
116
|
Neurospora crassa Light Signal Transduction Is Affected by ROS. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:791963. [PMID: 22046507 PMCID: PMC3199206 DOI: 10.1155/2012/791963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/23/2011] [Indexed: 11/17/2022]
Abstract
In the ascomycete fungus Neurospora crassa blue-violet light controls the expression of genes responsible for differentiation of reproductive structures, synthesis of secondary metabolites, and the circadian oscillator activity. A major photoreceptor in Neurospora cells is WCC, a heterodimeric complex formed by the PAS-domain-containing polypeptides WC-1 and WC-2, the products of genes white collar-1 and white collar-2. The photosignal transduction is started by photochemical activity of an excited FAD molecule noncovalently bound by the LOV domain (a specialized variant of the PAS domain). The presence of zinc fingers (the GATA-recognizing sequences) in both WC-1 and WC-2 proteins suggests that they might function as transcription factors. However, a critical analysis of the phototransduction mechanism considers the existence of residual light responses upon absence of WCC or its homologs in fungi. The data presented
point at endogenous ROS generated by a photon stimulus as an alternative input to pass on light signals to downstream targets.
Collapse
|
117
|
Henderson CJ, Ritchie KJ, McLaren A, Chakravarty P, Wolf CR. Increased skin papilloma formation in mice lacking glutathione transferase GSTP. Cancer Res 2011; 71:7048-60. [PMID: 21975931 DOI: 10.1158/0008-5472.can-11-0882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The glutathione S-transferase GSTP is overexpressed in many human cancers and chemotherapy-resistant cancer cells, where there is evidence that GSTP may have additional functions beyond its known catalytic role. On the basis of evidence that Gstp-deficient mice have a comparatively higher susceptibility to skin carcinogenesis, we investigated whether this phenotype reflected an alteration in carcinogen detoxification or not. For this study, Gstp(-/-) mice were interbred with Tg.AC mice that harbor initiating H-ras mutations in the skin. Gstp(-/-)/Tg.AC mice exposed to the proinflammatory phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) exhibited higher tumor incidence and multiplicity with a significant thickening of skin after treatment, illustrating hyperproliferative growth. Unexpectedly, we observed no difference in cellular proliferation or apoptosis or in markers of oxidative stress, although higher levels of the inflammatory marker nitrotyrosine were found in Gstp(-/-)/Tg.AC mice. Instead, gene set enrichment analysis of microarray expression data obtained from skin revealed a more proapoptotic and proinflammatory environment shortly after TPA treatment. Within 4 weeks of TPA treatment, Gstp(-/-)/Tg.AC mice displayed altered lipid/sterol metabolism and Wnt signaling along with aberrant processes of cytoskeletal control and epidermal morphogenesis at both early and late times. In extending the evidence that GSTP has a vital role in normal homeostatic control and cancer prevention, they also strongly encourage the emerging concept that GSTP is a major determinant of the proinflammatory character of the tumor microenvironment. This study shows that the GSTP plays a major role in carcinogenesis distinct from its role in detoxification and provides evidence that the enzyme is a key determinant of the proinflammatory tumor environment.
Collapse
Affiliation(s)
- Colin J Henderson
- Cancer Research UK Molecular Pharmacology Unit, Medical Research Institute, Ninewells Hospital & Medical School, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
118
|
Abstract
Photo-induced damage to proteins occurs via multiple pathways. Direct damage induced by UVB (λ 280-320 nm) and UVA radiation (λ 320-400 nm) is limited to a small number of amino acid residues, principally tryptophan (Trp), tyrosine (Tyr), histidine (His) and disulfide (cystine) residues, with this occurring via both excited state species and radicals. Indirect protein damage can occur via singlet oxygen ((1)O(2)(1)Δ(g)), with this resulting in damage to Trp, Tyr, His, cystine, cysteine (Cys) and methionine (Met) residues. Although initial damage is limited to these residues multiple secondary processes, that occur both during and after radiation exposure, can result in damage to other intra- and inter-molecular sites. Secondary damage can arise via radicals (e.g. Trp, Tyr and Cys radicals), from reactive intermediates generated by (1)O(2) (e.g. Trp, Tyr and His peroxides) and via molecular reactions of photo-products (e.g. reactive carbonyls). These processes can result in protein fragmentation, aggregation, altered physical and chemical properties (e.g. hydrophobicity and charge) and modulated biological turnover. Accumulating evidence implicates these events in cellular and tissue dysfunction (e.g. apoptosis, necrosis and altered cell signaling), and multiple human pathologies.
Collapse
Affiliation(s)
- David I Pattison
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia
| | | | | |
Collapse
|
119
|
Lamore SD, Wondrak GT. Autophagic-lysosomal dysregulation downstream of cathepsin B inactivation in human skin fibroblasts exposed to UVA. Photochem Photobiol Sci 2011; 11:163-72. [PMID: 21773629 DOI: 10.1039/c1pp05131h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, using 2D-DIGE proteomics we have identified cathepsin B as a novel target of UVA in human Hs27 skin fibroblasts. In response to chronic exposure to noncytotoxic doses of UVA (9.9 J cm(-2), twice a week, 3 weeks), photooxidative impairment of cathepsin B enzymatic activity occurred with accumulation of autofluorescent aggregates colocalizing with lysosomes, an effect mimicked by pharmacological antagonism of cathepsin B using the selective inhibitor CA074Me. Here, we have further explored the mechanistic involvement of cathepsin B inactivation in UVA-induced autophagic-lysosomal alterations using autophagy-directed PCR expression array analysis as a discovery tool. Consistent with lysosomal expansion, UVA upregulated cellular protein levels of the lysosomal marker glycoprotein Lamp-1, and increased levels of the lipidated autophagosomal membrane constituent LC3-II were detected. UVA did not alter expression of beclin 1 (BECN1), an essential factor for initiation of autophagy, but upregulation of p62 (sequestosome 1, SQSTM1), a selective autophagy substrate, and α-synuclein (SNCA), an autophagic protein substrate and aggresome component, was observed at the mRNA and protein level. Moreover, UVA downregulated transglutaminase-2 (TGM2), an essential enzyme involved in autophagolysosome maturation. Strikingly, UVA effects on Lamp-1, LC3-II, beclin 1, p62, α-synuclein, and transglutaminase-2 were mimicked by CA074Me treatment. Taken together, our data suggest that UVA-induced autophagic-lysosomal alterations occur as a consequence of impaired autophagic flux downstream of cathepsin B inactivation, a novel molecular mechanism potentially involved in UVA-induced skin photodamage.
Collapse
Affiliation(s)
- Sarah D Lamore
- Department of Pharmacology and Toxicology, College of Pharmacy & University of Arizona, Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | | |
Collapse
|
120
|
Han CY, Hien TT, Lim SC, Kang KW. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells. Biochem Biophys Res Commun 2011; 410:68-74. [PMID: 21640077 DOI: 10.1016/j.bbrc.2011.05.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023]
Abstract
Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm(2)) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.
Collapse
Affiliation(s)
- Chang Yeob Han
- BK21 Project Team, College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | | | | | | |
Collapse
|
121
|
Zanette C, Pelin M, Crosera M, Adami G, Bovenzi M, Larese FF, Florio C. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Toxicol In Vitro 2011; 25:1053-60. [PMID: 21501681 DOI: 10.1016/j.tiv.2011.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 01/06/2023]
Abstract
For their antibacterial activity, silver nanoparticles (Ag NPs) are largely used in various commercially available products designed to come in direct contact with the skin. In this study we investigated the effects of Ag NPs on skin using the human-derived keratinocyte HaCaT cell line model. Ag NPs caused a concentration- and time-dependent decrease of cell viability, with IC(50) values of 6.8 ± 1.3 μM (MTT assay) and 12 ± 1.2 μM (SRB assay) after 7 days of contact. A 24h treatment, followed by a 6 day recovery period in Ag NPs-free medium, reduced cell viability with almost the same potency (IC(50)s of 15.3 ± 4.6 and 35 ± 20 μM, MTT and SRB assays, respectively). Under these conditions, no evidence of induction of necrotic events (propidium iodide assay) was found. Apocynin, NADPH-oxidase inhibitor, or N(G)-monomethyl-L-argynine, nitric oxide synthase inhibitor, did not prevent NPs-induced reduction of cell viability. TEM analysis of cells exposed to NPs for 24h revealed alteration of nuclear morphology but only a marginal presence of individual NPs inside the cells. These results demonstrate that on HaCaT keratinocytes a relatively short time of contact with Ag NPs causes a long-lasting inhibition of cell growth, not associated with consistent Ag NPs internalization.
Collapse
Affiliation(s)
- Caterina Zanette
- Department of Life Sciences, University of Trieste, Via L. Giorgeri 7/9, 34127 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
122
|
Kaneko K, Walker SL, Lai-Cheong J, Matsui MS, Norval M, Young AR. cis-Urocanic acid enhances prostaglandin E2 release and apoptotic cell death via reactive oxygen species in human keratinocytes. J Invest Dermatol 2011; 131:1262-71. [PMID: 21412256 DOI: 10.1038/jid.2011.37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urocanic acid (UCA) is a major UVR-absorbing skin molecule that undergoes trans to cis photoisomerization in the epidermis following UVR exposure. Murine studies have established that cis-UCA is an important mediator of UVR-induced immune suppression, but little is known about its signaling pathway. We have previously demonstrated that treatment of normal human epidermal keratinocytes with cis-UCA resulted in increased synthesis of prostaglandin E(2) (PGE(2)) and cell death. Here, using immortalized human keratinocytes, we report that cis-UCA but not trans-UCA generates reactive oxygen species (ROS) in a dose-dependent manner and that the natural antioxidant α-tocopherol can reduce this ROS generation, subsequent PGE(2) release, and apoptotic cell death. Western blot analysis revealed that cis-UCA leads to a transient phosphorylation of EGFR as well as downstream mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK) and p38. Pharmacological inhibition of their activity attenuated PGE(2) release induced by cis-UCA. After transient activation, cis-UCA downregulated EGFR protein expression that corresponded to activation of caspase-3. In addition, pretreatment with α-tocopherol inhibited EGFR downregulation and caspase-3 activation induced by cis-UCA. These results suggest that cis-UCA exerts its effects on human keratinocytes via intracellular ROS generation that modulates EGFR signaling and subsequently induces PGE(2) synthesis and apoptotic cell death.
Collapse
Affiliation(s)
- Kazuyo Kaneko
- St John's Institute of Dermatology, King's College London School of Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
123
|
Hirakawa S, Saito R, Ohara H, Okuyama R, Aiba S. Dual Oxidase 1 Induced by Th2 Cytokines Promotes STAT6 Phosphorylation via Oxidative Inactivation of Protein Tyrosine Phosphatase 1B in Human Epidermal Keratinocytes. THE JOURNAL OF IMMUNOLOGY 2011; 186:4762-70. [DOI: 10.4049/jimmunol.1000791] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
124
|
Brown GC, Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 2011; 12:1-4. [PMID: 21303703 DOI: 10.1016/j.mito.2011.02.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/10/2011] [Accepted: 02/01/2011] [Indexed: 01/12/2023]
Abstract
It is often assumed that mitochondria are the main source of reactive oxygen species (ROS) in mammalian cells, but there is no convincing experimental evidence for this in the literature. What evidence there is suggests mitochondria are a significant source for ROS, which may have physiological and pathological effects. But quantitatively, endoplasmic reticulum and peroxisomes have a greater capacity to produce ROS than mitochondria, at least in liver. In most cells and physiological or pathological conditions there is a lack of evidence for or against mitochondria being the main source of cellular ROS. Mitochondria can rapidly degrade ROS and thus are potential sinks for ROS, but whether mitochondria act as net sources or sinks within cells in particular conditions is unknown.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | |
Collapse
|
125
|
Radioprotective effects of Bmi-1 involve epigenetic silencing of oxidase genes and enhanced DNA repair in normal human keratinocytes. J Invest Dermatol 2011; 131:1216-25. [PMID: 21307872 DOI: 10.1038/jid.2011.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Normal human keratinocytes (NHKs) undergo premature senescence following exposure to ionizing radiation (IR). This study investigates the effect of Bmi-1, a polycomb group protein, on radiation-induced senescence response. When exposed to IR, NHK transduced with Bmi-1 (NHK/Bmi-1) showed reduced senescent phenotype and enhanced proliferation compared with control cells (NHK/B0). To investigate the underlying mechanism, we determined the production of reactive oxygen species (ROS), expression of ROS-generating enzymes, and DNA repair activities in cells. ROS level was increased upon irradiation but notably reduced by Bmi-1 transduction. Irradiation led to strong induction of oxidase genes, e.g., Lpo (lactoperoxidase), p22-phox, p47-phox, and Gp91, in NHK/B0 but their expression was almost completely silenced in NHK/Bmi-1. Induction of oxidase genes upon irradiation was linked with loss of trimethylated histone 3 at lysine 27 (H3K27Me3), but NHK/Bmi-1 expressed a higher level of H3K27Me3 compared with NHK/B0. Bmi-1 transduction suppressed IR-associated induction of jumanji domain containing 3 while enhancing the expression of EZH2, thereby preventing the loss of H3K27Me3 in the irradiated cells. Furthermore, NHK/Bmi-1 demonstrated increased repair of IR-induced DNA damage compared with NHK/B0. These results indicate that Bmi-1 elicits radioprotective effects on NHK by mitigating the genotoxicity of IR through epigenetic mechanisms.
Collapse
|
126
|
Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 2011; 63:218-42. [PMID: 21228261 DOI: 10.1124/pr.110.002980] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NADPH oxidase (Nox) has a dedicated function of generating reactive oxygen species (ROS). Accumulating evidence suggests that Nox has an important role in signal transduction in cellular stress responses. We have reviewed the current evidence showing that the Nox system can be activated by a collection of chemical, physical, and biological cellular stresses. In many circumstances, Nox activation fits to the cellular stress response paradigm, in that (1) the response can be initiated by various forms of cellular stresses; (2) Nox-derived ROS may activate mitogen-activated protein kinases (extracellular signal-regulated kinase, p38) and c-Jun NH(2)-terminal kinase, which are the core of the cell stress-response signaling network; and (3) Nox is involved in the development of stress cross-tolerance. Activation of the cell survival pathway by Nox may promote cell adaptation to stresses, whereas Nox may also convey signals toward apoptosis in irreversibly injured cells. At later stage after injury, Nox is involved in tissue repair by modulating cell proliferation, angiogenesis, and fibrosis. We suggest that Nox may have an integral role in cell stress responses and the subsequent tissue repair process. Understanding Nox-mediated redox signaling mechanisms may be of prominent significance at the crossroads of directing cellular responses to stress, aiming at either enhancing the stress resistance (in such situations as preventing ischemia-reperfusion injuries and accelerating wound healing) or sensitizing the stress-induced cytotoxicity for proliferative diseases such as cancer. Therefore, an optimal outcome of interventions on Nox will only be achieved when this is dealt with in a timely and disease-and stage-specific manner.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China.
| | | | | |
Collapse
|
127
|
XPC silencing in normal human keratinocytes triggers metabolic alterations through NOX-1 activation-mediated reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:609-19. [PMID: 21167810 DOI: 10.1016/j.bbabio.2010.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/14/2010] [Accepted: 12/08/2010] [Indexed: 12/28/2022]
Abstract
Cancer cells utilize complex mechanisms to remodel their bioenergetic properties. We exploited the intrinsic genomic stability of xeroderma pigmentosum C (XPC) to understand the inter-relationships between genomic instability, reactive oxygen species (ROS) generation, and metabolic alterations during neoplastic transformation. We showed that knockdown of XPC (XPC(KD)) in normal human keratinocytes results in metabolism remodeling through NADPH oxidase-1 (NOX-1) activation, which in turn leads to increased ROS levels. While enforcing antioxidant defenses by overexpressing catalase, CuZnSOD, or MnSOD could not block the metabolism remodeling, impaired NOX-1 activation abrogates both alteration in ROS levels and modifications of energy metabolism. As NOX-1 activation is observed in human squamous cell carcinomas (SCCs), the blockade of NOX-1 could be a target for the prevention and the treatment of skin cancers.
Collapse
|
128
|
Pygmalion MJ, Ruiz L, Popovic E, Gizard J, Portes P, Marat X, Lucet-Levannier K, Muller B, Galey JB. Skin cell protection against UVA by Sideroxyl, a new antioxidant complementary to sunscreens. Free Radic Biol Med 2010; 49:1629-37. [PMID: 20826208 DOI: 10.1016/j.freeradbiomed.2010.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 01/17/2023]
Abstract
Oxidative stress resulting from photosensitized ROS production in skin is widely accepted as the main contributor to the deleterious effects of UVA exposure. Among the mechanisms known to be involved in UVA-induced oxidative damage, iron plays a central role. UVA radiation of skin cells induces an immediate release of iron, which can then act as a catalyst for uncontrolled oxidation reactions of cell components. Such site-specific damage can scarcely be counteracted by classical antioxidants. In contrast, iron chelators potentially offer an effective way to protect skin against UVA insults. However, iron chelation is very difficult to achieve without disturbing iron homeostasis or inducing iron depletion. A novel compound was developed to avoid these potentially harmful side effects. Sideroxyl was designed to acquire its strong chelating capability only during oxidative stress according to an original process of intramolecular hydroxylation. Herein, we describe in vitro results demonstrating the protective efficiency of Sideroxyl against deleterious effects of UVA at the molecular, cellular, and tissular levels. First, the Sideroxyl diacid form protects a model protein against UVA-induced photosensitized carbonylation. Second, intracellular ROS are dose-dependently decreased in the presence of Sideroxyl in both human cultured fibroblasts and human keratinocytes. Third, Sideroxyl protects normal human fibroblasts against UVA-induced DNA damage as measured by the comet assay and MMP-1 production. Finally, Sideroxyl provides protection against UVA-induced alterations in human reconstructed skin. These results suggest that Sideroxyl may prevent UVA-induced damage in human skin as a complement to sunscreens, especially in the long-wavelength UVA range.
Collapse
|
129
|
Rezvani HR, Kim AL, Rossignol R, Ali N, Daly M, Mahfouf W, Bellance N, Taïeb A, de Verneuil H, Mazurier F, Bickers DR. XPC silencing in normal human keratinocytes triggers metabolic alterations that drive the formation of squamous cell carcinomas. J Clin Invest 2010; 121:195-211. [PMID: 21123941 DOI: 10.1172/jci40087] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA damage is a well-known initiator of tumorigenesis. Studies have shown that most cancer cells rely on aerobic glycolysis for their bioenergetics. We sought to identify a molecular link between genomic mutations and metabolic alterations in neoplastic transformation. We took advantage of the intrinsic genomic instability arising in xeroderma pigmentosum C (XPC). The XPC protein plays a key role in recognizing DNA damage in nucleotide excision repair, and patients with XPC deficiency have increased incidence of skin cancer and other malignancies. In cultured human keratinocytes, we showed that lentivirus-mediated knockdown of XPC reduced mitochondrial oxidative phosphorylation and increased glycolysis, recapitulating cancer cell metabolism. Accumulation of unrepaired DNA following XPC silencing increased DNA-dependent protein kinase activity, which subsequently activated AKT1 and NADPH oxidase-1 (NOX1), resulting in ROS production and accumulation of specific deletions in mitochondrial DNA (mtDNA) over time. Subcutaneous injection of XPC-deficient keratinocytes into immunodeficient mice led to squamous cell carcinoma formation, demonstrating the tumorigenic potential of transduced cells. Conversely, simultaneous knockdown of either NOX1 or AKT1 blocked the neoplastic transformation induced by XPC silencing. Our results demonstrate that genomic instability resulting from XPC silencing results in activation of AKT1 and subsequently NOX1 to induce ROS generation, mtDNA deletions, and neoplastic transformation in human keratinocytes.
Collapse
Affiliation(s)
- Hamid Reza Rezvani
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Lamore SD, Qiao S, Horn D, Wondrak GT. Proteomic identification of cathepsin B and nucleophosmin as novel UVA-targets in human skin fibroblasts. Photochem Photobiol 2010; 86:1307-17. [PMID: 20946361 DOI: 10.1111/j.1751-1097.2010.00818.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here, we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a two-dimensional-difference-gel-electrophoresis (2D-DIGE) approach. Fibroblasts were exposed to noncytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass-spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photo-oxidative stress causatively involved in dermal photodamage through the impairment of lysosomal removal of lipofuscin.
Collapse
Affiliation(s)
- Sarah D Lamore
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
131
|
Lamore SD, Azimian S, Horn D, Anglin BL, Uchida K, Cabello CM, Wondrak GT. The malondialdehyde-derived fluorophore DHP-lysine is a potent sensitizer of UVA-induced photooxidative stress in human skin cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:251-64. [PMID: 20724175 DOI: 10.1016/j.jphotobiol.2010.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 02/06/2023]
Abstract
Light-driven electron and energy transfer involving non-DNA skin chromophores as endogenous photosensitizers induces oxidative stress in UVA-exposed human skin, a process relevant to photoaging and photocarcinogenesis. Malondialdehyde is an electrophilic dicarbonyl-species derived from membrane lipid peroxidation. Here, we present experimental evidence suggesting that the malondialdehyde-derived protein epitope dihydropyridine (DHP)-lysine is a potent endogenous UVA-photosensitizer of human skin cells. Immunohistochemical analysis revealed the abundant occurrence of malondialdehyde-derived and DHP-lysine epitopes in human skin. Using the chemically protected dihydropyridine-derivative (2S)-Boc-2-amino-6-(3,5-diformyl-4-methyl-4H-pyridin-1-yl)-hexanoic acid-t-butylester as a model of peptide-bound DHP-lysine, photodynamic inhibition of proliferation and induction of cell death were observed in human skin Hs27 fibroblasts as well as primary and HaCaT keratinocytes exposed to the combined action of UVA and DHP-lysine. DHP-lysine photosensitization induced intracellular oxidative stress, p38 MAPkinase activation, and upregulation of heme oxygenase-1 expression. Consistent with UVA-driven ROS formation from DHP-lysine, formation of superoxide, hydrogen peroxide, and singlet oxygen was detected in chemical assays, but little protection was achieved using SOD or catalase during cellular photosensitization. In contrast, inclusion of NaN(3) completely abolished DHP-photosensitization. Taken together, these data demonstrate photodynamic activity of DHP-lysine and support the hypothesis that malondialdehyde-derived protein-epitopes may function as endogenous sensitizers of UVA-induced oxidative stress in human skin.
Collapse
Affiliation(s)
- Sarah D Lamore
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Marrot L, Planel E, Ginestet AC, Belaïdi JP, Jones C, Meunier JR. In vitro tools for photobiological testing: molecular responses to simulated solar UV of keratinocytes growing as monolayers or as part of reconstructed skin. Photochem Photobiol Sci 2010; 9:448-58. [PMID: 20354637 DOI: 10.1039/b9pp00145j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epidermal keratinocytes are critical targets for UV-induced genotoxicity as their transformation by sunlight overexposure can lead to skin cancer such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Therefore, assessment of photoprotection should involve early markers associated with DNA photodamage. Here, the same normal human keratinocytes either in monoculture (KC) or in full thickness reconstructed skin (RS) were compared with respect to their response to simulated solar UV (SSUV) exposure. Irradiation conditions (spectral power distribution and doses) were designed to mimic environmental zenithal UV from sunlight. At doses where survival was higher than 80%, comet assay showed more single strand breaks (SSB) and cyclobutane pyrimidine dimers (CPD) in keratinocytes in RS than in KC one hour post-exposure. The transcription factor p53 was activated in both models. While in KC p53 accumulation displayed a linear dose-dependency up to 24 h post-exposure, in RS it followed a bell-shaped profile and reverted to its basal rate. QRT-PCR demonstrated that among genes controlled by p53, P21 and MDM2 were clearly induced by SSUV in KC, whereas GADD45 expression was strongly and almost exclusively up-regulated in RS. Nrf2-dependent antioxidant genes (Ferritin light chain, NQO1) were only induced in RS, yet at low doses for NQO1. In vitro models such as KC or RS allowing the development of quantitative methodologies should be used as surrogates for in vivo tests assessing photogenotoxicity.
Collapse
Affiliation(s)
- Laurent Marrot
- L'OREAL, International Department of Safety Research, Aulnay sous bois, France
| | | | | | | | | | | |
Collapse
|
133
|
UVB Radiation Induces Apoptosis in Keratinocytes by Activating a Pathway Linked to “BLT2-Reactive Oxygen Species”. J Invest Dermatol 2010; 130:1095-106. [DOI: 10.1038/jid.2009.436] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
134
|
Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 2010; 140:517-28. [PMID: 20178744 DOI: 10.1016/j.cell.2010.01.009] [Citation(s) in RCA: 488] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/06/2009] [Accepted: 01/04/2010] [Indexed: 12/19/2022]
Abstract
Despite its toxicity, H(2)O(2) is produced as a signaling molecule that oxidizes critical cysteine residues of effectors such as protein tyrosine phosphatases in response to activation of cell surface receptors. It has remained unclear, however, how H(2)O(2) concentrations above the threshold required to modify effectors are achieved in the presence of the abundant detoxification enzymes peroxiredoxin (Prx) I and II. We now show that PrxI associated with membranes is transiently phosphorylated on tyrosine-194 and thereby inactivated both in cells stimulated via growth factor or immune receptors in vitro and in those at the margin of healing cutaneous wounds in mice. The localized inactivation of PrxI allows for the transient accumulation of H(2)O(2) around membranes, where signaling components are concentrated, while preventing the toxic accumulation of H(2)O(2) elsewhere. In contrast, PrxII was inactivated not by phosphorylation but rather by hyperoxidation of its catalytic cysteine during sustained oxidative stress.
Collapse
|
135
|
Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci 2010; 58:85-90. [PMID: 20399614 DOI: 10.1016/j.jdermsci.2010.03.003] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 02/27/2010] [Accepted: 03/09/2010] [Indexed: 12/22/2022]
Abstract
Intracellular and extracellular oxidative stress initiated by reactive oxygen species (ROS) advance skin aging, which is characterized by wrinkles and atypical pigmentation. Because UV enhances ROS generation in cells, skin aging is usually discussed in relation to UV exposure. The use of antioxidants is an effective approach to prevent symptoms related to photo-induced aging of the skin. In this review, the mechanisms of ROS generation and ROS elimination in the body are summarized. The effects of ROS generated in the skin and the roles of ROS in altering the skin are also discussed. In addition, the effects of representative antioxidants on the skin are summarized with a focus on skin aging.
Collapse
Affiliation(s)
- Hitoshi Masaki
- Nikkol Group Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashi-Ku, Tokyo 174-0046, Japan.
| |
Collapse
|
136
|
Choi H, Kim S, Kim HJ, Kim KM, Lee CH, Shin JH, Noh M. Sphingosylphosphorylcholine down-regulates filaggrin gene transcription through NOX5-based NADPH oxidase and cyclooxygenase-2 in human keratinocytes. Biochem Pharmacol 2010; 80:95-103. [PMID: 20230798 DOI: 10.1016/j.bcp.2010.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Sphingosylphosphorylcholine (SPC) mediates various inflammatory and behavioral responses in atopic dermatitis. Recent studies have shown that dysfunction of the epidermal permeability barrier itself plays a primary role in the etiology of atopic dermatitis. However, the effects of SPC on major proteins essential to the development of the epidermal permeability barrier such as filaggrin, loricrin, involucrin, keratin 1, keratin 10 and small proline-rich proteins are still unclear. In this study, we demonstrated that SPC significantly reduces filaggrin gene transcription, implying that SPC plays a pivotal role in impairment of the epidermal permeability barrier in atopic dermatitis lesional skin. In cultured normal human keratinocytes (NHKs), SPC increases the intracellular level of reactive oxygen species (ROS) and up-regulates NADPH oxidase 5 (NOX5) gene transcription. SPC also stimulates prostaglandin (PG) E(2) production by increasing cyclooxygenase (COX)-2 expression in NHK. The effects of the prostanoid EP receptor agonists, limaprost, butaprost, and sulprostone on filaggrin gene expression in NHK suggest that the prostanoid EP2 receptor plays a significant role in the PGE(2)-mediated filaggrin down-regulation. In contrast, limaprost and butaprost do not affect NOX5 expression in NHK, implying that the NOX5-regulated ROS pathway stimulated by SPC may be upstream of the COX-2 pathway. We propose that the increase in SPC levels further aggravates dermatological symptoms of atopic dermatitis through SPC-induced down-regulation of filaggrin in NHK.
Collapse
Affiliation(s)
- Hyun Choi
- Skin Research Institute, AmorePacific Corporation Research Center, Yongin, Gyeounggi-do 446-729, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
137
|
Choi WS, Mitsumoto A, Kochevar IE. Involvement of reactive oxygen species in TGF-beta1-induced tropoelastin expression by human dermal fibroblasts. Photochem Photobiol 2010; 85:1425-33. [PMID: 19709383 DOI: 10.1111/j.1751-1097.2009.00611.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic exposure to solar UV radiation causes marked changes in the dermal extracellular matrix that underlie the loss of resiliency and increased laxity observed in photoaged skin. In particular, the dermal elastin content increases substantially and the normal, well-organized elastic fibers are replaced by amorphous elastotic material. Transforming growth factor-beta1 (TGF-beta1) stimulates synthesis of elastin by dermal fibroblasts and may mediate the increase in elastin in chronically photodamaged skin. We investigated pathways involved in the TGF-beta1-induced increase in tropoelastin (TE), the soluble elastin monomer and assessed the role of reactive oxygen species (ROS) in the regulation of TE mRNA. Antioxidants and an inhibitor of NADPH oxidase blocked TGF-beta1-induced TE mRNA increase even when added 1.5 h after TGF-beta1, although ROS were detected for only 30 min. The TE mRNA increase required activation of Smad4, shown using Smad4 siRNA, and also involved the ERK1/2, p38 and JNK MAP kinases but not PI3K. ROS did not enhance signaling through Smad2 but did enhance activation of p38 and ERK1/2 at 10 min after TGF-beta1. These results indicate that Smad and MAPK pathways mediate TGF-beta1-induced TE expression and that ROS are required for both early signal transduction and later steps that increase elastin.
Collapse
Affiliation(s)
- Won Seon Choi
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
138
|
Kovacic P, Somanathan R. Dermal toxicity and environmental contamination: electron transfer, reactive oxygen species, oxidative stress, cell signaling, and protection by antioxidants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 203:119-138. [PMID: 19957119 DOI: 10.1007/978-1-4419-1352-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Large numbers of chemicals are known to produce diverse types of skin injury, and these substances fit into a wide variety of both organic and inorganic chemical classes. Skin contact with toxins is difficult to avoid, because they are widely distributed, e.g., in industrial substances, agricultural chemicals, household products, and plants. Although various hypotheses have been advanced, there is no universal agreement as to how dermal toxins act to produce their effects. In this review, we provide evidence and numerous literature citations to support the view that oxidative stress (OS) and electron transfer (ET) comprise a portion of a key mechanism, and perhaps unifying theme that underlie the action of dermatotoxins. We apply the concept that ET and OS are key elements in the induction of dermatotoxic effects to all of the main classes of toxins, and to other toxins, as well. We believe it is not coincidental that the vast majority of dermatotoxic substances incorporate recurrent ET chemical functionalities (i.e., quinone, metal complexes, ArNO2, or conjugated iminium), either per se or as metabolites; such entities potentially give rise to reactive oxygen species (ROS) by redox cycling. However, in some categories, wherein agents cause dermal damage, e.g., peroxides and radiation, it appears that ROS are generated by non-ET routes. As expected, if ET and oxidative process do constitute the mechanistic framework by which most dermal toxins act, then antioxidants (AOs), if present, should prevent or mitigate effects. This is exactly what has been discovered to occur. Because ET and OS either cause or contribute to dermal toxicity, and AOs may offer protection therefrom, policy makers and researchers may be better positioned to prevent human dermatotoxicity.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
139
|
Gruber F, Mayer H, Lengauer B, Mlitz V, Sanders JM, Kadl A, Bilban M, Martin R, Wagner O, Kensler TW, Yamamoto M, Leitinger N, Tschachler E. NF‐E2‐related factor 2 regulates the stress response to UVA‐1‐oxidized phospholipids in skin cells. FASEB J 2009; 24:39-48. [DOI: 10.1096/fj.09-133520] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Florian Gruber
- Department of DermatologyMedical University of ViennaViennaAustria
- Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Herbert Mayer
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Barbara Lengauer
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Veronika Mlitz
- Department of DermatologyMedical University of ViennaViennaAustria
| | - John M. Sanders
- Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Alexandra Kadl
- Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Martin Bilban
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Rainer Martin
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Oswald Wagner
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Thomas W. Kensler
- Department of Environmental Health SciencesJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | | - Norbert Leitinger
- Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Erwin Tschachler
- Department of DermatologyMedical University of ViennaViennaAustria
- Centre de Recherches et d'Investigations Epidermiques et SensoriellesNeuillyFrance
| |
Collapse
|
140
|
Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens 2009; 27:1202-16. [PMID: 19307985 DOI: 10.1097/hjh.0b013e328329e31c] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Endothelial dysfunction is a crucial step in the pathogenesis of cardiovascular diseases. Reactive oxygen species (ROS) generated in response to lipopolysaccharide (LPS) during sepsis promotes progressive endothelial failure. Typically, LPS-stimulated leukocytes produce pro-inflammatory cytokines, which trigger endothelial ROS production through NAD(P)H oxidase (Nox) activation, in a process that takes hours. Noteworthy, endothelial cells exposed to LPS may also generate ROS in just a few minutes. However, the mechanisms underlying this early event and its deleterious effect in endothelial function are unknown. Here, we investigated the mechanisms of early LPS-induced ROS generation and its effect in endothelial cell viability. METHODS Human umbilical vein endothelial cells were exposed to LPS for 1-40 min to study ROS generation, cytokines expression, and signaling transduction by confocal microscopy, real-time PCR (RT-PCR), western blot, and immunoprecipation. Fourty-eight hour treatments were used to determine cell death by MTT assay, cell counting, and flow cytometry. Contribution of specific Nox isoform was evaluated using a siRNAs approach. RESULTS LPS rapidly evoked a cytokine-independent ROS production, eliciting a rapid increase in p47phox phosphorylation by a phospholipase C/conventional protein kinase C and PI3-K signaling. It is noteworthy that the early LPS-induced ROS production triggered significant endothelial necrosis, which was prevented by a previous, but not a posterior, antioxidant treatment. The early LPS-induced ROS production as well as endothelial necrosis was totally dependent of Nox2 and Nox4 activity. CONCLUSION Endothelial cells exposure to LPS triggers an early ROS production. Remarkably, this single early ROS production is enough to generate extensive endothelial cell death by necrosis dependent on the activity of Nox2 and Nox4. Because, in sepsis, ROS production can cause endothelial dysfunction, results here provided may be relevant when considering the development of strategies for sepsis therapy.
Collapse
|
141
|
Cooper KL, Liu KJ, Hudson LG. Enhanced ROS production and redox signaling with combined arsenite and UVA exposure: contribution of NADPH oxidase. Free Radic Biol Med 2009; 47:381-8. [PMID: 19414066 PMCID: PMC2777740 DOI: 10.1016/j.freeradbiomed.2009.04.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 02/27/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
Solar ultraviolet radiation (UVR) is the major etiological factor in skin carcinogenesis. However, in vivo studies demonstrate that mice exposed to arsenic and UVR exhibit significantly more tumors and oxidative DNA damage than animals treated with either agent alone. Interactions between arsenite and UVR in the production of reactive oxygen species (ROS) and stress-associated signaling may provide a basis for the enhanced carcinogenicity. In this study keratinocytes were pretreated with arsenite (3 microM) and then exposed to UVA (10 kJ/m(2)). We report that exposure to UVA after arsenite pretreatment enhanced ROS production, p38 MAP kinase activation, and induction of a redox-sensitive gene product, heme oxygenase-1, compared to either stimulus alone. UVR exposure resulted in rapid and transient NADPH oxidase activation, whereas the response to arsenite was more pronounced and persistent. Inhibition of NADPH oxidase decreased ROS production in arsenite-treated cells but had little impact on UVA-exposed cells. Furthermore, arsenite-induced, but not UVA-induced, p38 activation and HO-1 expression were dependent upon NADPH oxidase activity. These findings indicate differences in the mechanisms of ROS production by arsenite and UVA that may provide an underlying basis for the observed enhancement of redox-related cellular responses upon combined UVA and arsenite exposure.
Collapse
Affiliation(s)
- Karen L Cooper
- College of Pharmacy, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
142
|
Rubio N, Rajadurai A, Held KD, Prise KM, Liber HL, Redmond RW. Real-time imaging of novel spatial and temporal responses to photodynamic stress. Free Radic Biol Med 2009; 47:283-90. [PMID: 19409981 DOI: 10.1016/j.freeradbiomed.2009.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/21/2009] [Accepted: 04/24/2009] [Indexed: 01/06/2023]
Abstract
Cells subjected to various forms of stress have been shown to induce bystander responses in nontargeted cells, thus extending the stress response to a larger population. However, the mechanism(s) of bystander responses remains to be clearly identified, particularly for photodynamic stress. Oxidative stress and cell viability were studied on the spatial and temporal levels after photodynamic targeting of a subpopulation of EMT6 murine mammary cancer cells in a multiwell plate by computerized time-lapse fluorescence microscopy. In the targeted population a dose-dependent loss of cell viability was observed in accordance with increased oxidative stress. This was accompanied by increased oxidative stress in bystander populations but on different time scales, reaching a maximum more rapidly in targeted cells. Treatment with extracellular catalase, or the NADPH oxidase inhibitor diphenyleneiodinium, decreased production of reactive oxygen species (ROS) in both populations. These effects are ascribed to photodynamic activation of NADPH-oxidase in the targeted cells, resulting in a rapid burst of ROS formation with hydrogen peroxide acting as the signaling molecule responsible for initiation of these photodynamic bystander responses. The consequences of increased oxidative stress in bystander cells should be considered in the overall framework of photodynamic stress.
Collapse
Affiliation(s)
- Noemi Rubio
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
143
|
Masaki H, Izutsu Y, Yahagi S, Okano Y. Reactive oxygen species in HaCaT keratinocytes after UVB irradiation are triggered by intracellular Ca(2+) levels. J Investig Dermatol Symp Proc 2009; 14:50-52. [PMID: 19675553 DOI: 10.1038/jidsymp.2009.12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It is recognized that reactive oxygen species (ROS) are responsible for skin damage due to UVB-radiation (UVB-R). However, the triggering substance(s) for ROS generation after UVB-R is uncertain with respect to the activation of NADPH oxidase (Nox), xanthine oxidase (XOD), and respiratory chain-chain reactions in mitochondria. As a first step in identifying the trigger(s) for UVB-induced ROS generation, we examined the relationship between Ca(2+) levels and ROS generation in HaCaT keratinocytes. UVB-R exposure of HaCaT keratinocytes resulted in an immediate elevation of ROS that recurred 7 hours later. This was accompanied by immediately elevated intracellular Ca(2+) . A Ca(2+) chelating agent, BAPTA, abolished the elevation of ROS after UVB-R completely. In addition, exogenous H(2)O(2) did not increase intracellular Ca(2+) levels. This suggests that intracellular Ca(2+) is the first trigger for UVB-induced ROS generation.Journal of Investigative Dermatology Symposium Proceedings (2009) 14, 50-52; doi:10.1038/jidsymp.2009.12.
Collapse
Affiliation(s)
- Hitoshi Masaki
- Cosmos Technical Center Co., LTD., 3-24-3 Hasune, Itabashi-Ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
144
|
Grange PA, Chéreau C, Raingeaud J, Nicco C, Weill B, Dupin N, Batteux F. Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. PLoS Pathog 2009; 5:e1000527. [PMID: 19629174 PMCID: PMC2709429 DOI: 10.1371/journal.ppat.1000527] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 07/01/2009] [Indexed: 01/19/2023] Open
Abstract
Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Propionibacterium acnes (P. acnes), a gram-positive anareobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS) are produced by keratinocytes upon P. acnes infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by P. acnes. In our hands, ROS, and especially superoxide anions (O2•−), were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In P. acnes-stimulated keratinocytes, O2•− was produced by NAD(P)H oxidase through activation of the scavenger receptor CD36. O2•− was dismuted by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, P. acnes-induced O2•− abrogated P. acnes growth and was involved in keratinocyte lysis through the combination of O2•− with nitric oxide to form peroxynitrites. Finally, retinoic acid derivates, the most efficient anti-acneic drugs, prevent O2•− production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans. Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. It is the most common skin disease, affecting up to 80% of individuals at some point between the ages of 11 and 30 years. Propionibacterium acnes (P. acnes) plays a role in the development of inflammatory acne lesions, but whether it causes inflammation by itself or through indirect mechanisms is not clear yet. Therefore, by exposing epidermal cells to P. acnes in vitro, we tested whether reactive oxygen species (ROS) production (oxidative burst) was involved in the inflammatory process. We found that one particular ROS, superoxide anion, was generated by epidermal cells following P. acnes stimulation. This phenomenon is associated with the production of a soluble pro inflammatory molecule, IL-8, and epidermal cell death. The abrogation of P. acnes-induced oxidative burst by the most commonly used and most efficient treatments of acne suggests that superoxide anions produced by epidermal cells are critical in the development of acne inflammatory lesions.
Collapse
Affiliation(s)
- Philippe A. Grange
- Laboratoire de Recherche en Dermatologie, EA 1833, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Christiane Chéreau
- Laboratoire d'Immunologie EA 1833, Faculté de Médecine, Université Paris Descartes, Paris, France
- ERTi «Plateforme d'étude du stress oxydant en oncologie et dans les maladies inflammatoires», Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Joël Raingeaud
- INSERM U749, Université Paris-sud, Faculté de Pharmacie, Chatenay-Malabry, France
| | - Carole Nicco
- Laboratoire d'Immunologie EA 1833, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Bernard Weill
- Laboratoire d'Immunologie EA 1833, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Nicolas Dupin
- Laboratoire de Recherche en Dermatologie, EA 1833, Faculté de Médecine, Université Paris Descartes, Paris, France
- Service de Dermatologie-Vénéréologie, Hôpital Cochin – Pavillon Tarnier, AP-HP, Paris, France
| | - Frédéric Batteux
- Laboratoire d'Immunologie EA 1833, Faculté de Médecine, Université Paris Descartes, Paris, France
- ERTi «Plateforme d'étude du stress oxydant en oncologie et dans les maladies inflammatoires», Faculté de Médecine, Université Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
145
|
McCarty MF, Barroso-Aranda J, Contreras F. Potential complementarity of high-flavanol cocoa powder and spirulina for health protection. Med Hypotheses 2009; 74:370-3. [PMID: 19577379 DOI: 10.1016/j.mehy.2008.09.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/12/2008] [Accepted: 09/27/2008] [Indexed: 12/22/2022]
Abstract
Recent studies show that ingestion of flavanol-rich cocoa powder provokes increased endothelial production of nitric oxide - an effect likely mediated by epicatchin - and thus may have considerable potential for promoting vascular health. The Kuna Indians of Panama, who regularly consume large amounts of flavanol-rich cocoa, are virtually free of hypertension and stroke, even though they salt their food. Of potentially complementary merit is the cyanobacterium spirulina, which has been used as a food in certain cultures. Spirulina is exceptionally rich in phycocyanobilin (PCB), which recently has been shown to act as a potent inhibitor of NADPH oxidase; this effect likely rationalizes the broad range of anti-inflammatory, cytoprotective, and anti-atherosclerotic effects which orally administered spirulina has achieved in rodent studies. In light of the central pathogenic role which NADPH oxidase-derived oxidant stress plays in a vast range of disorders, spirulina or PCB-enriched spirulina extracts may have remarkable potential for preserving and restoring health. Joint administration of flavanol-rich cocoa powder and spirulina may have particular merit, inasmuch as cocoa can mask the somewhat disagreeable flavor and odor of spirulina, whereas the antioxidant impact of spirulina could be expected to amplify the bioactivity of the nitric oxide evoked by cocoa flavanols in inflamed endothelium. Moreover, there is reason to suspect that, by optimizing cerebrovascular perfusion while quelling cerebral oxidant stress, cocoa powder and spirulina could collaborate in prevention of senile dementia. Thus, food products featuring ample amounts of both high-flavanol cocoa powder and spirulina may have considerable potential for health promotion, and merit evaluation in rodent studies and clinical trials.
Collapse
|
146
|
Ridley AJ, Whiteside JR, McMillan TJ, Allinson SL. Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int J Radiat Biol 2009; 85:177-95. [PMID: 19296341 DOI: 10.1080/09553000902740150] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE UVA radiation (315-400 nm) contributes to skin aging and carcinogenesis. The aim of this review is to consider the mechanisms that underlie UVA-induced cellular damage, how this damage may be prevented or repaired and the signal transduction processes that are elicited in response to it. RESULTS Exposure to ultraviolet (UV) light is well-established as the causative factor in skin cancer. Until recently, most work on the mechanisms that underlie skin carcinogenesis focused on shorter wavelength UVB radiation (280-315 nm), however in recent years there has been increased interest in the contribution made by UVA. UVA is able to cause a range of damage to cellular biomolecules including lipid peroxidation, oxidized protein and DNA damage, such as 8-oxoguanine and cyclobutane pyrimidine dimers. Such damage is strongly implicated in both cell death and malignant transformation and cells have a number of mechanisms in place to mitigate the effects of UVA exposure, including antioxidants, DNA repair, and stress signalling pathways. CONCLUSIONS The past decade has seen a surge of interest in the biological effects of UVA exposure as its significance to the process of photo-carcinogenesis has become increasingly evident. However, unpicking the unique complexity of the cellular response to UVA, which is only now becoming apparent, will be a major challenge for the field of photobiology in the 21st century.
Collapse
Affiliation(s)
- Andrew J Ridley
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, UK.
| | | | | | | |
Collapse
|
147
|
Yamaura M, Mitsushita J, Furuta S, Kiniwa Y, Ashida A, Goto Y, Shang WH, Kubodera M, Kato M, Takata M, Saida T, Kamata T. NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res 2009; 69:2647-54. [PMID: 19276355 DOI: 10.1158/0008-5472.can-08-3745] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Generation of reactive oxygen species (ROS) has been implicated in carcinogenic development of melanoma, but the underlying molecular mechanism has not been fully elucidated. We studied the expression and function of the superoxide-generating NADPH oxidase (Nox)4 in human melanoma cells. Nox4 was up-regulated in 13 of 20 melanoma cell lines tested. Silencing of Nox4 expression in melanoma MM-BP cells by small interfering RNAs decreased ROS production and thereby inhibited anchorage-independent cell growth and tumorigenecity in nude mice. Consistently, a general Nox inhibitor, diphenylene iodonium, and antioxidants vitamine E and pyrrolidine dithiocarbamate blocked cell proliferation of MM-BP cells. Flow cytometric analysis indicated that Nox4 small interfering RNAs and diphenylene iodonium induced G(2)-M cell cycle arrest, which was also observed with another melanoma cell line, 928mel. This was accompanied by induction of the Tyr-15 phosphorylated, inactive form of cyclin-dependent kinase 1 (a hallmark of G(2)-M checkpoint) and hyperphosphorylation of cdc25c leading to its increased binding to 14-3-3 proteins. Ectopic expression of catalase, a scavenger of ROS, also caused accumulation of cells in G(2)-M phase. Immunohistochemistry revealed that expression of Nox4 was detected in 31.0% of 13 melanoma patients samples, suggesting the association of Nox4 expression with some steps of melanoma development. The findings suggest that Nox4-generated ROS are required for transformation phenotype of melanoma cells and contribute to melanoma growth through regulation of G(2)-M cell cycle progression.
Collapse
Affiliation(s)
- Maki Yamaura
- Department of Dermatology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Rubio N, Fleury SP, Redmond RW. Spatial and temporal dynamics of in vitro photodynamic cell killing: extracellular hydrogen peroxide mediates neighbouring cell death. Photochem Photobiol Sci 2009; 8:457-64. [PMID: 19337658 DOI: 10.1039/b815343d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic killing of a cell population is generally considered to result from direct effects that occur in each cell. In some scenarios this may be an over-simplification and the potential for cell-cell signaling processes to contribute to the response of a population to photodynamic stress is addressed in this paper. Photodynamic killing of EMT6 cells in culture was studied in time and space using computerized time-lapse microscopy. The rate of cell killing was dependent on the fluence with both rapid and slower processes evident, the proportion of the former increasing with fluence. The spatial distribution of cell death was non-random and for the slow cell killing process was found to occur preferentially in the vicinity of dead or dying cells, suggesting a local signaling process. An inhibitory effect of extracellular catalase indicated the involvement of hydrogen peroxide in the spread of cell death and NADPH oxidase was determined as the principal source of hydrogen peroxide. This cell signaling pathway was observed for membrane-bound and mitochondrial photosensitizers but not for a nuclear photosensitizer. These secondary cell signalling pathways extend the oxidative damage to cells in space and time.
Collapse
Affiliation(s)
- Noemí Rubio
- Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
149
|
Cadet J, Douki T, Ravanat JL, Di Mascio P. Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochem Photobiol Sci 2009; 8:903-11. [DOI: 10.1039/b905343n] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
150
|
Nakai K, Yoneda K, Igarashi J, Moriue T, Kosaka H, Kubota Y. Angiotensin II enhances EGF receptor expression levels via ROS formation in HaCaT cells. J Dermatol Sci 2008; 51:181-9. [PMID: 18424077 DOI: 10.1016/j.jdermsci.2008.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/15/2008] [Accepted: 03/03/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND Recent work has shown a novel function of angiotensin II (Ang II) in skin wound healing in which reactive oxygen species might be involved. As Ang II is known to increase superoxide production by activating NADPH oxidase in some non-phagocytic cells, we hypothesized that the produced superoxide by NADPH activation could contribute to the regulation of epidermal growth factor receptor (EGFR) in keratinocytes. OBJECTIVE We examined whether Ang II could generate superoxide and enhance EGFR expression levels in HaCaT cells. METHODS Superoxide formation was assessed by using hydroethidine. EGFR expression levels were examined by Western blotting. RESULTS Ang II (1-100 microM) increased the superoxide formation. Ang II (1-100 microM) resulted in a dose-dependent increase in cell proliferation in HaCaT cells. Heparin-binding epidermal growth factor activated the EGFR at 5-10 min. Although Ang II did not activate the EGFR, the expression levels of EGFR protein were increased in HaCaT cells treated with Ang II (1 microM) at 6h. Apocynin, a NADPH oxidase inhibitor, decreased the expression levels of EGFR. Xanthine/xanthine oxidase system, an exogenous superoxide generating system, enhanced the EGFR protein expression. Although Ang II did not affect the nitric oxide (NO) production, a NO synthase inhibitor N(omega)-nitro-l-arginine methyl ester suppressed the Ang II-induced EGFR expression levels in HaCaT cells. Thus, constitutive NO is required for the Ang II-induced EGFR expression in HaCaT cells. CONCLUSION These results suggest that Ang II enhances the cell proliferation and EGFR expression via superoxide production under the regulation of NO in HaCaT cells, implying that Ang II may regulate the proliferation, differentiation and tumorigenesis of the epidermis by harmonizing the superoxide and NO production.
Collapse
Affiliation(s)
- Kozo Nakai
- Department of Dermatology, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan.
| | | | | | | | | | | |
Collapse
|