101
|
Abstract
The ubiquitous nature of plastics has raised concerns pertaining to continuous exposure to plastic polymers and human health risks. Of particular concern is the use of endocrine-disrupting chemicals in plastic production, including di(2-ethylhexyl)phthalate (DEHP) and bisphenol A (BPA). Widespread and continuous exposure to DEHP and BPA occurs through dietary intake, inhalation, dermal and intravenous exposure via consumer products and medical devices. This article reviews the literature examining the relationship between DEHP and BPA exposure and cardiac toxicity. In vitro and in vivo experimental reports are outlined, as well as epidemiological studies which examine the association between these chemicals and cardiovascular outcomes. Gaps in our current knowledge are also discussed, along with future investigative endeavors that may help resolve whether DEHP and/or BPA exposure has a negative impact on cardiovascular physiology.
Collapse
Affiliation(s)
- Nikki Gillum Posnack
- Pharmacology and Physiology Department, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington, DC, 20052, USA,
| |
Collapse
|
102
|
Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose Response 2015; 13:1559325815598308. [PMID: 26674671 PMCID: PMC4674187 DOI: 10.1177/1559325815598308] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Because bisphenol A (BPA) is a high production volume chemical, we examined over 500 peer-reviewed studies to understand its global distribution in effluent discharges, surface waters, sewage sludge, biosolids, sediments, soils, air, wildlife, and humans. Bisphenol A was largely reported from urban ecosystems in Asia, Europe, and North America; unfortunately, information was lacking from large geographic areas, megacities, and developing countries. When sufficient data were available, probabilistic hazard assessments were performed to understand global environmental quality concerns. Exceedances of Canadian Predicted No Effect Concentrations for aquatic life were >50% for effluents in Asia, Europe, and North America but as high as 80% for surface water reports from Asia. Similarly, maximum concentrations of BPA in sediments from Asia were higher than Europe. Concentrations of BPA in wildlife, mostly for fish, ranged from 0.2 to 13 000 ng/g. We observed 60% and 40% exceedences of median levels by the US Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey in Europe and Asia, respectively. These findings highlight the utility of coordinating global sensing of environmental contaminants efforts through integration of environmental monitoring and specimen banking to identify regions for implementation of more robust environmental assessment and management programs.
Collapse
Affiliation(s)
- Jone Corrales
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Lauren A. Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - W. Baylor Steele
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Brian S. Yates
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Christopher S. Breed
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - E. Spencer Williams
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W. Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| |
Collapse
|
103
|
Posnack NG, Brooks D, Chandra A, Jaimes R, Sarvazyan N, Kay M. Physiological response of cardiac tissue to bisphenol A: alterations in ventricular pressure and contractility. Am J Physiol Heart Circ Physiol 2015; 309:H267-75. [PMID: 25980024 DOI: 10.1152/ajpheart.00272.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022]
Abstract
Biomonitoring studies have indicated that humans are routinely exposed to bisphenol A (BPA), a chemical that is commonly used in the production of polycarbonate plastics and epoxy resins. Epidemiological studies have shown that BPA exposure in humans is associated with cardiovascular disease; however, the direct effects of BPA on cardiac physiology are largely unknown. Previously, we have shown that BPA exposure slows atrioventricular electrical conduction, decreases epicardial conduction velocity, and prolongs action potential duration in excised rat hearts. In the present study, we tested if BPA exposure also adversely affects cardiac contractile performance. We examined the impact of BPA exposure level, sex, and pacing rate on cardiac contractile function in excised rat hearts. Hearts were retrogradely perfused at constant pressure and exposed to 10(-9)-10(-4) M BPA. Left ventricular developed pressure and contractility were measured during sinus rhythm and during pacing (5, 6.5, and 9 Hz). Ca(2+) transients were imaged from whole hearts and from neonatal rat cardiomyocyte layers. During sinus rhythm in female hearts, BPA exposure decreased left ventricular developed pressure and inotropy in a dose-dependent manner. The reduced contractile performance was exacerbated at higher pacing rates. BPA-induced effects on contractile performance were also observed in male hearts, albeit to a lesser extent. Exposure to BPA altered Ca(2+) handling within whole hearts (reduced diastolic and systolic Ca(2+) transient potentiation) and neonatal cardiomyocytes (reduced Ca(2+) transient amplitude and prolonged Ca(2+) transient release time). In conclusion, BPA exposure significantly impaired cardiac performance in a dose-dependent manner, having a major negative impact upon electrical conduction, intracellular Ca(2+) handing, and ventricular contractility.
Collapse
Affiliation(s)
- Nikki Gillum Posnack
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia; and
| | - Daina Brooks
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia
| | - Akhil Chandra
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia
| | - Rafael Jaimes
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia
| | - Narine Sarvazyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia; and
| | - Matthew Kay
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
104
|
Nahar MS, Liao C, Kannan K, Harris C, Dolinoy DC. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. CHEMOSPHERE 2015; 124:54-60. [PMID: 25434263 PMCID: PMC4297568 DOI: 10.1016/j.chemosphere.2014.10.071] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 05/18/2023]
Abstract
While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng g(-1)), BPA concentrations were lower in matched placenta (<0.05-25.4 ng g(-1)) and kidney (0.08-11.1 ng g(-1)) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3% and 59.2% in placenta, 79.5% and 66.4% in fetal liver, and 77.9% and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value<0.001) and CCGG content (p-value<0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus.
Collapse
Affiliation(s)
- Muna S Nahar
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Chunyang Liao
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, State University of New York at Albany, Albany, NY, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, State University of New York at Albany, Albany, NY, USA; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
105
|
Guida M, Troisi J, Ciccone C, Granozio G, Cosimato C, Di Spiezio Sardo A, Ferrara C, Guida M, Nappi C, Zullo F, Di Carlo C. Bisphenol A and congenital developmental defects in humans. Mutat Res 2015; 774:33-39. [PMID: 25796969 DOI: 10.1016/j.mrfmmm.2015.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Over 50% of the causes of fetal malformations in humans are still unknown. Recent evidence suggests the relationship between environmental exposure to endocrine disruptors and fetal malformations. Our study aims to establish the role of Bisphenol A (BPA), if any, in altering human reproduction. We enrolled 151 pregnant women who were divided into two groups: case group (CS, n=101), women with established diagnosis of developmental defect, and control group (CL, n=50), pregnant women with normally developed fetus. Total, free and conjugated BPA were measured in their blood using GC-MS with isotopic dilution. The results show a correlation between environmental exposure to BPA and the genesis of fetal malformations. Conjugated BPA, which was higher in the CL, casts light on the hypothesis that a reduced ability to metabolize the chemical in the mother can concur to the occurrence of malformation. In a more detailed manner, in case of chromosomal malformations, the average value of free BPA appears to be nearly three times greater than that of the controls. Similarly, in case of central and peripheral nervous system non-chromosomal malformations, the value of free BPA is nearly two times greater than that of the controls.
Collapse
Affiliation(s)
| | - Jacopo Troisi
- Department of Medicine, University of Salerno, Italy.
| | | | | | | | | | - Cinzia Ferrara
- Department of Medicine, "Federico II", University of Naples, Italy
| | - Marco Guida
- Department of Biology, "Federico II", University of Naples, Italy
| | - Carmine Nappi
- Department of Medicine, "Federico II", University of Naples, Italy
| | - Fulvio Zullo
- Department of Medicine, University of Salerno, Italy
| | | |
Collapse
|
106
|
Veiga-Lopez A, Pennathur S, Kannan K, Patisaul HB, Dolinoy DC, Zeng L, Padmanabhan V. Impact of gestational bisphenol A on oxidative stress and free fatty acids: Human association and interspecies animal testing studies. Endocrinology 2015; 156:911-22. [PMID: 25603046 PMCID: PMC4330308 DOI: 10.1210/en.2014-1863] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is a high production volume chemical and an endocrine disruptor. Developmental exposures to BPA have been linked to adult metabolic pathologies, but the pathways through which these disruptions occur remain unknown. This is a comprehensive interspecies association vs causal study to evaluate risks posed by prenatal BPA exposure and to facilitate discovery of biomarkers of relevance to BPA toxicity. Samples from human pregnancies during the first trimester and at term, as well as fetal and/or adult samples from prenatally BPA-treated sheep, rats, and mice, were collected to assess the impact of BPA on free fatty acid and oxidative stress dynamics. Mothers exposed to higher BPA during early to midpregnancy and their matching term cord samples displayed increased 3-nitrotyrosine (NY), a marker of nitrosative stress. Maternal samples had increased palmitic acid, which was positively correlated with NY. Sheep fetuses and adult sheep and rats prenatally exposed to a human-relevant exposure dose of BPA showed increased systemic nitrosative stress. The strongest effect of BPA on circulating free fatty acids was observed in adult mice in the absence of increased oxidative stress. This is the first multispecies study that combines human association and animal causal studies assessing the risk posed by prenatal BPA exposure to metabolic health. This study provides evidence of the induction of nitrosative stress by prenatal BPA in both the mother and fetus at time of birth and is thus supportive of the use of maternal NY as a biomarker for offspring health.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics (A.V.-L., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Internal Medicine (S.P., L.Z.), University of Michigan, Ann Arbor, Michigan 48109; Wadsworth Center (K.K.), New York State Department of Health, Albany, New York 12201; Department of Biological Sciences (H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Environmental Health Sciences (D.C.D.), University of Michigan, Ann Arbor, Michigan 48109
| | | | | | | | | | | | | |
Collapse
|
107
|
Fang C, Ning B, Waqar AB, Niimi M, Li S, Satoh K, Shiomi M, Ye T, Dong S, Fan J. Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. J Appl Toxicol 2015; 35:1058-70. [DOI: 10.1002/jat.3103] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/03/2014] [Accepted: 11/20/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Chao Fang
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment, Chinese Academy of Sciences; Xiamen China
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Yamanashi Japan
| | - Bo Ning
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Yamanashi Japan
| | - Ahmed Bilal Waqar
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Yamanashi Japan
| | - Manabu Niimi
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Yamanashi Japan
| | - Shen Li
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Yamanashi Japan
| | - Kaneo Satoh
- Department of Laboratory Medicine, Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Yamanashi Japan
| | - Masashi Shiomi
- Institute for Experimental Animals; Kobe University School of Medicine; Kobe Japan
| | - Ting Ye
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment, Chinese Academy of Sciences; Xiamen China
| | - Sijun Dong
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment, Chinese Academy of Sciences; Xiamen China
| | - Jianglin Fan
- Key Laboratory of Urban Environment and Health; Institute of Urban Environment, Chinese Academy of Sciences; Xiamen China
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Yamanashi Japan
| |
Collapse
|
108
|
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3978] [Citation(s) in RCA: 528] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
109
|
Inadera H. Neurological Effects of Bisphenol A and its Analogues. Int J Med Sci 2015; 12:926-36. [PMID: 26664253 PMCID: PMC4661290 DOI: 10.7150/ijms.13267] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023] Open
Abstract
The endocrine disrupting chemical bisphenol A (BPA) is widely used in the production of polycarbonate plastics and epoxy resins. The use of BPA-containing products in daily life makes exposure ubiquitous, and the potential human health risks of this chemical are a major public health concern. Although numerous in vitro and in vivo studies have been published on the effects of BPA on biological systems, there is controversy as to whether ordinary levels of exposure can have adverse effects in humans. However, the increasing incidence of developmental disorders is of concern, and accumulating evidence indicates that BPA has detrimental effects on neurological development. Other bisphenol analogues, used as substitutes for BPA, are also suspected of having a broad range of biological actions. The objective of this review is to summarize our current understanding of the neurobiological effects of BPA and its analogues, and to discuss preventive strategies from a public health perspective.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
110
|
vom Saal FS, Welshons WV. Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine, and that BPA causes numerous hazards from multiple routes of exposure. Mol Cell Endocrinol 2014; 398:101-13. [PMID: 25304273 PMCID: PMC4805123 DOI: 10.1016/j.mce.2014.09.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/16/2022]
Abstract
There is extensive evidence that bisphenol A (BPA) is related to a wide range of adverse health effects based on both human and experimental animal studies. However, a number of regulatory agencies have ignored all hazard findings. Reports of high levels of unconjugated (bioactive) serum BPA in dozens of human biomonitoring studies have also been rejected based on the prediction that the findings are due to assay contamination and that virtually all ingested BPA is rapidly converted to inactive metabolites. NIH and industry-sponsored round robin studies have demonstrated that serum BPA can be accurately assayed without contamination, while the FDA lab has acknowledged uncontrolled assay contamination. In reviewing the published BPA biomonitoring data, we find that assay contamination is, in fact, well controlled in most labs, and cannot be used as the basis for discounting evidence that significant and virtually continuous exposure to BPA must be occurring from multiple sources.
Collapse
Affiliation(s)
- Frederick S vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 USA.
| | - Wade V Welshons
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211 USA
| |
Collapse
|
111
|
Peluso ME, Munnia A, Ceppi M. Bisphenol-A exposures and behavioural aberrations: Median and linear spline and meta-regression analyses of 12 toxicity studies in rodents. Toxicology 2014; 325:200-8. [DOI: 10.1016/j.tox.2014.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 09/16/2014] [Indexed: 01/26/2023]
|
112
|
Yang Y, Guan J, Yin J, Shao B, Li H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. CHEMOSPHERE 2014; 112:481-486. [PMID: 25048943 DOI: 10.1016/j.chemosphere.2014.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
The use of bisphenol A (BPA) has been restricted in many countries because of its potential health effects. As a result of these restrictions, a group of bisphenol analogues that are structurally similar to BPA have been developed as the alternatives for industrial applications. However, latest researches indicated that these chemicals have similar endocrine-disrupting effects as BPA in humans. Moreover, only a limited number of studies have attempted to monitor the exposure level in humans of other bisphenol analogues. In the present study, the concentrations of seven bisphenols, including bisphenol S (BPS), bisphenol F (BPF), bisphenol B (BPB), BPA, bisphenol AF (BPAF), tetrachlorobisphenol A (TCBPA) and tetrabromobisphenol A (TBBPA), in human urine samples were measured by liquid chromatography coupled to mass spectrometry (LC-MS/MS) following the enzymatic hydrolysis of glucuronidase/arylsulfatase and liquid-liquid extraction (LLE). Under the optimised conditions, high recoveries (81.6-116.8%) were obtained for all the analytes, and the relative standard deviations (RSD, %) were less than 16.4% (n=6). The isotopic internal standard calibration curves for each of the target compounds exhibited excellent linearity (r(2)>0.99) and the limit of quantification (LOQ) for the analytes in urine ranged from 0.024 to 0.310 ng mL(-1). The method was applied to investigate the urinary levels of these seven bisphenols in a cohort of residents living near a BPAF manufacturing plant in south China. BPS, BPF, BPA and BPAF were detected in urine samples at concentrations ranging from <LOQ to a few ng mL(-1), whereas BPB, TCBPA and TBBPA were not detected. This is the first study to report the occurrence of BPF and BPAF in human urine samples. The availability of rapid and simple analytical methods may be highly useful for the future biomonitoring of these compounds.
Collapse
Affiliation(s)
- Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Research Centre for Preventive Medicine, Beijing 100013, China
| | - Jian Guan
- Jiaxing Center for Disease Control and Prevention, Zhejiang 314050, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Research Centre for Preventive Medicine, Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Research Centre for Preventive Medicine, Beijing 100013, China.
| | - Hong Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Research Centre for Preventive Medicine, Beijing 100013, China
| |
Collapse
|
113
|
Padmanabhan V, Veiga-Lopez A. Reproduction Symposium: developmental programming of reproductive and metabolic health. J Anim Sci 2014; 92:3199-210. [PMID: 25074449 PMCID: PMC4153374 DOI: 10.2527/jas.2014-7637] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor bisphenol A (BPA) show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds with steroidogenic potential via the environment and food sources calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function.
Collapse
Affiliation(s)
- V Padmanabhan
- Departments of Pediatrics Obstetrics and Gynecology Molecular and Integrative Physiology Environmental Health Sciences, The University of Michigan, Ann Arbor 48108
| | | |
Collapse
|
114
|
Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. Bisphenol a and reproductive health: update of experimental and human evidence, 2007-2013. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:775-86. [PMID: 24896072 PMCID: PMC4123031 DOI: 10.1289/ehp.1307728] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND In 2007, an expert panel reviewed associations between bisphenol A (BPA) exposure and reproductive health outcomes. Since then, new studies have been conducted on the impact of BPA on reproduction. OBJECTIVE In this review, we summarize data obtained since 2007, focusing on a) findings from human and animal studies, b) the effects of BPA on a variety of reproductive end points, and c) mechanisms of BPA action. METHODS We reviewed the literature published from 2007 to 2013 using a PubMed search based on keywords related to BPA and male and female reproduction. DISCUSSION Because BPA has been reported to affect the onset of meiosis in both animal and in vitro models, interfere with germ cell nest breakdown in animal models, accelerate follicle transition in several animal species, alter steroidogenesis in multiple animal models and women, and reduce oocyte quality in animal models and women undergoing in vitro fertilization (IVF), we consider it an ovarian toxicant. In addition, strong evidence suggests that BPA is a uterine toxicant because it impaired uterine endometrial proliferation, decreased uterine receptivity, and increased implantation failure in animal models. BPA exposure may be associated with adverse birth outcomes, hyperandrogenism, sexual dysfunction, and impaired implantation in humans, but additional studies are required to confirm these associations. Studies also suggest that BPA may be a testicular toxicant in animal models, but the data in humans are equivocal. Finally, insufficient evidence exists regarding effects of BPA on the oviduct, the placenta, and pubertal development. CONCLUSION Based on reports that BPA impacts female reproduction and has the potential to affect male reproductive systems in humans and animals, we conclude that BPA is a reproductive toxicant.
Collapse
Affiliation(s)
- Jackye Peretz
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Altered social interactions in male juvenile cynomolgus monkeys prenatally exposed to bisphenol A. Neurotoxicol Teratol 2014; 44:46-52. [DOI: 10.1016/j.ntt.2014.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 12/17/2022]
|
116
|
Veiga-Lopez A, Beckett EM, Abi Salloum B, Ye W, Padmanabhan V. Developmental programming: prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep. Toxicol Appl Pharmacol 2014; 279:119-28. [PMID: 24923655 DOI: 10.1016/j.taap.2014.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/20/2022]
Abstract
Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5mg/kgBW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess preovulatory hormonal changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean number or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2-3mm, 4-5mm, and ≥6mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females.
Collapse
Affiliation(s)
- A Veiga-Lopez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - E M Beckett
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - B Abi Salloum
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - W Ye
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; The Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
117
|
Aris A. Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in Eastern Townships of Canada. Reprod Toxicol 2014; 45:8-13. [DOI: 10.1016/j.reprotox.2013.12.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 11/30/2013] [Accepted: 12/11/2013] [Indexed: 12/01/2022]
|
118
|
Pouokam GB, Ajaezi GC, Mantovani A, Orisakwe OE, Frazzoli C. Use of Bisphenol A-containing baby bottles in Cameroon and Nigeria and possible risk management and mitigation measures: community as milestone for prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 481:296-302. [PMID: 24602914 DOI: 10.1016/j.scitotenv.2014.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
The plasticizer Bisphenol A (BPA) is banned in baby bottles in many industrialized countries due to safety concerns. We provide a pilot view on the potential BPA exposure of bottle-fed children in sub-Saharan Africa through an enquiry on availability, accessibility and affordability of plastic baby bottles, usage pattern, and risk perception. An observational survey was conducted in a randomized group of vending sites (34 pharmacies; 87 shops and markets), in three cities (Yaoundé, Foumbot, Bafoussam) in Cameroon (two regions), and in two cities (Lagos, Port Harcourt) in Nigeria (two states). Interviews in vending sites and group discussions were conducted with 248 mothers. Cameroon and Nigeria showed a largely comparable situation. Plastic baby bottles are largely imported from industrialized countries, where a label indicates the presence/absence of BPA. In pharmacies most plastic baby bottles are labeled as BPA-free, whereas most bottles sold in shops are not BPA-free. BPA-containing bottles are more accessible and affordable, due to sale in common shops and lower costs. The meaning of the label BPA-free is unknown to both vendors and customers: the BPA issue is also largely unknown to policy makers and media and no regulation exists on food contact materials. The wide availability of BPA-containing baby bottles, lack of information and usage patterns (e.g. temperature and duration of heating) suggest a likely widespread exposure of African infants. Possible usage recommendations to mitigate exposure are indicated. Risk communication to policy makers, sellers and citizens is paramount to raise awareness and to oppose possible dumping from countries where BPA-containing materials are banned. Our pilot study points out relevant global health issues such as the capacity building of African communities on informed choices and usage of baby products, and the exploitation of international knowledge by African scientists and risk managers.
Collapse
Affiliation(s)
- Guy Bertrand Pouokam
- Laboratory of Food Sciences and Metabolism, University of Yaoundé I, PO Box 812, Cameroon
| | - Godwin Chukwuebuka Ajaezi
- Department of Medical Laboratory Science, Rivers State University of Science and Technology, Port Harcourt, Nigeria
| | - Alberto Mantovani
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Orish Ebere Orisakwe
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Port Harcourt, East/West Road PMB 5323, Choba, Nigeria
| | - Chiara Frazzoli
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
119
|
van Esterik JCJ, Dollé MET, Lamoree MH, van Leeuwen SPJ, Hamers T, Legler J, van der Ven LTM. Programming of metabolic effects in C57BL/6JxFVB mice by exposure to bisphenol A during gestation and lactation. Toxicology 2014; 321:40-52. [PMID: 24726836 DOI: 10.1016/j.tox.2014.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/14/2023]
Abstract
The global rise in prevalence of obesity is not fully explained by genetics or life style factors. The developmental origins of health and disease paradigm suggests that environmental factors during early life could play a role. In this perspective, perinatal exposure to bisphenol A (BPA) has been indicated as a programming factor for obesity and related metabolic disorders later in life. Here we study early life programming by BPA using an experimental design that is relevant for human exposure. C57BL/6JxFVB hybrid mice were exposed during gestation and lactation via maternal feed to 8 non-toxic doses (0-3000 μg/kg body weight/day (μg/kg bw/d)) of BPA. After weaning, offspring were followed for 20 weeks without further exposure. Adult male offspring showed dose-dependent increases of body and liver weights, no effects on fat pad weights and a dose-dependent decrease in circulating glucagon. Female offspring showed a dose-dependent decrease in body weight, liver, muscle and fat pad weights, adipocyte size, serum lipids, serum leptin and adiponectin. Physical activity was decreased in exposed males and suggested to be increased in exposed females. Brown adipose tissue showed slightly increased lipid accumulation in males and lipid depletion in females, and ucp1 expression was dose-dependently increased in females. The effects in females were more reliable and robust than in males due to wide confidence intervals and potential confounding by litter size for male data. The lowest derived BMDL (lower bound of the (two-sided) 90%-confidence interval for the benchmark dose) of 233 μg/kg bw/d (for interscapular weight in females) was below the proposed BMDL of 3633 μg/kg bw/d as a basis for tolerable daily intake. Although these results suggest that BPA can program for an altered metabolic phenotype, the sexual dimorphism of effects and diversity of outcomes among studies similar in design as the present study do not mark BPA as a specific obesogen. The consistency within the complex of observed metabolic effects suggests that upstream key element(s) in energy homeostasis are modified. Sex-dependent factors contribute to the final phenotypic outcome.
Collapse
Affiliation(s)
- J C J van Esterik
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands; Department of Chemistry and Biology, Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - M E T Dollé
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - M H Lamoree
- Department of Chemistry and Biology, Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - S P J van Leeuwen
- Department of Chemistry and Biology, Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - T Hamers
- Department of Chemistry and Biology, Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - J Legler
- Department of Chemistry and Biology, Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - L T M van der Ven
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|
120
|
Posnack NG, Jaimes R, Asfour H, Swift LM, Wengrowski AM, Sarvazyan N, Kay MW. Bisphenol A exposure and cardiac electrical conduction in excised rat hearts. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:384-90. [PMID: 24487307 PMCID: PMC3984226 DOI: 10.1289/ehp.1206157] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/29/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys, and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased urinary BPA concentrations and cardiovascular disease, yet the direct effects of BPA on the heart are unknown. OBJECTIVES The goal of our study was to measure the effect of BPA (0.1-100 μM) on cardiac impulse propagation ex vivo using excised whole hearts from adult female rats. METHODS We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential in excised rat hearts exposed to BPA via perfusate media. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. RESULTS Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1-100 μM BPA), prolonged action potential duration (1-100 μM BPA), and delayed atrioventricular conduction (10-100 μM BPA). These effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals and dropped ventricular beats, and eventually resulted in complete heart block. CONCLUSIONS Our results show that acute BPA exposure slowed electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA's effect on heart electrophysiology and determining whether chronic in vivo exposure can cause or exacerbate conduction abnormalities in patients with preexisting heart conditions and in other high-risk populations.
Collapse
|
121
|
Vandenberg LN, Gerona RR, Kannan K, Taylor JA, van Breemen RB, Dickenson CA, Liao C, Yuan Y, Newbold RR, Padmanabhan V, vom Saal FS, Woodruff TJ. A round robin approach to the analysis of bisphenol A (BPA) in human blood samples. Environ Health 2014; 13:25. [PMID: 24690217 PMCID: PMC4066311 DOI: 10.1186/1476-069x-13-25] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/10/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Human exposure to bisphenol A (BPA) is ubiquitous, yet there are concerns about whether BPA can be measured in human blood. This Round Robin was designed to address this concern through three goals: 1) to identify collection materials, reagents and detection apparatuses that do not contribute BPA to serum; 2) to identify sensitive and precise methods to accurately measure unconjugated BPA (uBPA) and BPA-glucuronide (BPA-G), a metabolite, in serum; and 3) to evaluate whether inadvertent hydrolysis of BPA-G occurs during sample handling and processing. METHODS Four laboratories participated in this Round Robin. Laboratories screened materials to identify BPA contamination in collection and analysis materials. Serum was spiked with concentrations of uBPA and/or BPA-G ranging from 0.09-19.5 (uBPA) and 0.5-32 (BPA-G) ng/mL. Additional samples were preserved unspiked as 'environmental' samples. Blinded samples were provided to laboratories that used LC/MSMS to simultaneously quantify uBPA and BPA-G. To determine whether inadvertent hydrolysis of BPA metabolites occurred, samples spiked with only BPA-G were analyzed for the presence of uBPA. Finally, three laboratories compared direct and indirect methods of quantifying BPA-G. RESULTS We identified collection materials and reagents that did not introduce BPA contamination. In the blinded spiked sample analysis, all laboratories were able to distinguish low from high values of uBPA and BPA-G, for the whole spiked sample range and for those samples spiked with the three lowest concentrations (0.5-3.1 ng/ml). By completion of the Round Robin, three laboratories had verified methods for the analysis of uBPA and two verified for the analysis of BPA-G (verification determined by: 4 of 5 samples within 20% of spiked concentrations). In the analysis of BPA-G only spiked samples, all laboratories reported BPA-G was the majority of BPA detected (92.2 - 100%). Finally, laboratories were more likely to be verified using direct methods than indirect ones using enzymatic hydrolysis. CONCLUSIONS Sensitive and accurate methods for the direct quantification of uBPA and BPA-G were developed in multiple laboratories and can be used for the analysis of human serum samples. BPA contamination can be controlled during sample collection and inadvertent hydrolysis of BPA conjugates can be avoided during sample handling.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Division of Environmental Health Sciences, University of Massachusetts – Amherst, School of Public Health, Amherst, MA, USA
| | - Roy R Gerona
- Department of Laboratory Medicine, University of California – San Francisco, San Francisco, CA, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and State University of New York at Albany, Albany, NY, USA
| | - Julia A Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | | - Carrie A Dickenson
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California – San Francisco, San Francisco, CA, USA
| | - Chunyang Liao
- Wadsworth Center, NY State Department of Public Health, Albany, NY, USA
| | - Yang Yuan
- College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Retha R Newbold
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics and Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California – San Francisco, San Francisco, CA, USA
| |
Collapse
|
122
|
Cappiello A, Famiglini G, Palma P, Termopoli V, Lavezzi AM, Matturri L. Determination of selected endocrine disrupting compounds in human fetal and newborn tissues by GC-MS. Anal Bioanal Chem 2014; 406:2779-88. [DOI: 10.1007/s00216-014-7692-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 01/31/2023]
|
123
|
Abstract
A newly recognized primary cause of the obesity epidemic is the developmental programming effects of infants born to mothers with obesity or gestational diabetes, intrauterine growth-restricted newborns, and offspring exposed to environmental toxins including bisphenol A. The mechanisms which result in offspring obesity include the programming of the hypothalamic appetite pathway and adipogenic signals regulating lipogenesis. Processes include nutrient sensors, epigenetic modifications, and alterations in stem cell precursors of both appetite/satiety neurons and adipocytes which are modulated to potentiate offspring obesity. Future strategies for the prevention and therapy of obesity must address programming effects of the early life environment.
Collapse
|
124
|
Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho SM. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One 2014; 9:e90332. [PMID: 24594937 PMCID: PMC3940879 DOI: 10.1371/journal.pone.0090332] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Human exposure to bisphenol A (BPA) is ubiquitous. Animal studies found that BPA contributes to development of prostate cancer, but human data are scarce. Our study examined the association between urinary BPA levels and Prostate cancer and assessed the effects of BPA on induction of centrosome abnormalities as an underlying mechanism promoting prostate carcinogenesis. The study, involving 60 urology patients, found higher levels of urinary BPA (creatinine-adjusted) in Prostate cancer patients (5.74 µg/g [95% CI; 2.63, 12.51]) than in non-Prostate cancer patients (1.43 µg/g [95% CI; 0.70, 2.88]) (p = 0.012). The difference was even more significant in patients <65 years old. A trend toward a negative association between urinary BPA and serum PSA was observed in Prostate cancer patients but not in non-Prostate cancer patients. In vitro studies examined centrosomal abnormalities, microtubule nucleation, and anchorage-independent growth in four Prostate cancer cell lines (LNCaP, C4-2, 22Rv1, PC-3) and two immortalized normal prostate epithelial cell lines (NPrEC and RWPE-1). Exposure to low doses (0.01–100 nM) of BPA increased the percentage of cells with centrosome amplification two- to eight-fold. Dose responses either peaked or reached the plateaus with 0.1 nM BPA exposure. This low dose also promoted microtubule nucleation and regrowth at centrosomes in RWPE-1 and enhanced anchorage-independent growth in C4-2. These findings suggest that urinary BPA level is an independent prognostic marker in Prostate cancer and that BPA exposure may lower serum PSA levels in Prostate cancer patients. Moreover, disruption of the centrosome duplication cycle by low-dose BPA may contribute to neoplastic transformation of the prostate.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jun Ying
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bin Ouyang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Barbara Burke
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bruce Bracken
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
125
|
Prenatal bisphenol A and birth outcomes: MOCEH (Mothers and Children's Environmental Health) study. Int J Hyg Environ Health 2014; 217:328-34. [DOI: 10.1016/j.ijheh.2013.07.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/22/2022]
|
126
|
Prins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, Huang K, Nelles JL, Ho SM, Walker CL, Kajdacsy-Balla A, van Breemen RB. Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 2014; 155:805-17. [PMID: 24424067 PMCID: PMC3929731 DOI: 10.1210/en.2013-1955] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies in rodent models have shown that early-life exposure to bisphenol A (BPA) reprograms the prostate and enhances its susceptibility to hormonal carcinogenesis with aging. To determine whether the human prostate is similarly sensitive to BPA, the current study used human prostate epithelial stem-like cells cultured from prostates of young, disease-free donors. Similar to estradiol-17β (E2), BPA increased stem-progenitor cell self-renewal and expression of stem-related genes in a dose-dependent manner. Further, 10 nM BPA and E2 possessed equimolar membrane-initiated signaling with robust induction of p-Akt and p-Erk at 15 minutes. To assess in vivo carcinogenicity, human prostate stem-progenitor cells combined with rat mesenchyme were grown as renal grafts in nude mice, forming normal human prostate epithelium at 1 month. Developmental BPA exposure was achieved through oral administration of 100 or 250 μg BPA/kg body weight to hosts for 2 weeks after grafting, producing free BPA levels of 0.39 and 1.35 ng/mL serum, respectively. Carcinogenesis was driven by testosterone plus E2 treatment for 2 to 4 months to model rising E2 levels in aging men. The incidence of high-grade prostate intraepithelial neoplasia and adenocarcinoma markedly increased from 13% in oil-fed controls to 33% to 36% in grafts exposed in vivo to BPA (P < .05). Continuous developmental BPA exposure through in vitro (200 nM) plus in vivo (250 μg/kg body weight) treatments increased high-grade prostate intraepithelial neoplasia/cancer incidence to 45% (P < .01). Together, the present findings demonstrate that human prostate stem-progenitor cells are direct BPA targets and that developmental exposure to BPA at low doses increases hormone-dependent cancer risk in the human prostate epithelium.
Collapse
Affiliation(s)
- Gail S Prins
- Department of Urology (G.S.P., W.-Y.H., G.-B.S., D.-P.H., S.M., J.L.N.) and Department of Pathology (A.K.-B.), College of Medicine, and Department of Medicinal Chemistry and Pharmacognosy (G.L., K.H., R.B.v.B.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612; University of Illinois Cancer Center (G.S.P., A.K.B., R.B.v.B.), Chicago, Illinois 60612; Department of Environmental Health (S.-M.H.), University of Cincinnati, Cincinnati, Ohio 45220; and Center for Translational Cancer Research (C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, College Station, Texas 77843
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Gyllenhammar I, Tröger R, Glynn A, Rosén J, Hellenäs KE, Lignell S. Serum levels of unconjugated bisphenol A are below 0.2ng/ml in Swedish nursing women when contamination is minimized. ENVIRONMENT INTERNATIONAL 2014; 64:56-60. [PMID: 24368293 DOI: 10.1016/j.envint.2013.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/25/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
In this study serum levels of bisphenol A (BPA) were investigated in primiparous women from Uppsala County, Sweden, sampled 3weeks after delivery 1996-2011, in both yearly pools of serum (n=39, temporal trend study) and in 208 individual samples also present in the pools. Possible contamination risks of BPA from blood sampling equipment and sample tubes, as well as from handling of the samples were evaluated. The unconjugated form of BPA was analyzed using a UPLC-MS/MS method with a limit of quantification (LOQ) of 0.2ng/ml. The results show that the levels of unconjugated BPA generally were <0.2ng/ml. The sampling equipment used when taking blood samples from the women and the tubes used for storage and processing of samples did not show any detectable BPA leakage. In the first analysis of the serum samples, unconjugated BPA levels ≥0.2ng/ml were found in 12% of the individual samples and in 21% of the trend samples. However, in reanalyses of individual serum samples from the same aliquot or from new aliquots, samples with BPA levels ≥0.2ng/ml in the first analysis did not have quantifiable BPA levels. Moreover, 11% of BPA spiked calibration samples (over 200) had higher levels than could be explained by the random error of the method. Thus BPA contamination of the biobanked samples probably occurred randomly during sample handling, pooling and processing. Equipment used for sampling of children and repeated blood sampling were leaking BPA. The results show the difficulties in analyzing compounds where samples are easily contaminated from exogenous sources. It also points out that it is questionable to use biobanked samples unless absence of BPA contamination from the sampling and storage materials, and during handling of the samples, can be proven.
Collapse
Affiliation(s)
| | - Rikard Tröger
- National Food Agency, P.O. Box 622, 751 26 Uppsala, Sweden
| | - Anders Glynn
- National Food Agency, P.O. Box 622, 751 26 Uppsala, Sweden
| | - Johan Rosén
- National Food Agency, P.O. Box 622, 751 26 Uppsala, Sweden
| | | | - Sanna Lignell
- National Food Agency, P.O. Box 622, 751 26 Uppsala, Sweden
| |
Collapse
|
128
|
Vom Saal FS, VandeVoort CA, Taylor JA, Welshons WV, Toutain PL, Hunt PA. Bisphenol A (BPA) pharmacokinetics with daily oral bolus or continuous exposure via silastic capsules in pregnant rhesus monkeys: Relevance for human exposures. Reprod Toxicol 2014; 45:105-16. [PMID: 24582107 DOI: 10.1016/j.reprotox.2014.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/09/2014] [Accepted: 01/20/2014] [Indexed: 11/19/2022]
Abstract
We measured serum dBPA in non-pregnant and pregnant female rhesus monkeys, fetuses and amniotic fluid. dBPA was administered by a daily oral bolus or sc implantation of Silastic capsules; both resulted in daily average serum unconjugated dBPA concentrations of <1ng/ml. We observed lower serum concentrations of unconjugated dBPA in pregnant females relative to pre-pregnancy values, and generally lower concentrations in fetal serum than in maternal serum. Differences in pharmacokinetics of dBPA were evident between pre-pregnancy, early and late pregnancy, likely reflecting changes in maternal, fetal and placental physiology. The serum ratio of conjugated to unconjugated dBPA after continuous sc release of dBPA was similar to values reported in human biomonitoring studies and markedly lower than with oral administration, suggesting oral bolus exposure is not an appropriate human exposure model. We report elsewhere that there were numerous adverse effects on fetuses exposed to very low serum dBPA in these studies.
Collapse
Affiliation(s)
- Frederick S Vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States.
| | - Catherine A VandeVoort
- Department of Obstetrics and Gynecology, University of California, Davis, CA, United States; California National Primate Research Center, University of California, Davis, CA, United States
| | - Julia A Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Wade V Welshons
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Pierre-Louis Toutain
- Université de Toulouse, INPT, ENVT, UPS, UMR1331, F- 31062 Toulouse, France; INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F- 31027 Toulouse, France
| | - Patricia A Hunt
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
129
|
Beydoun HA, Khanal S, Zonderman AB, Beydoun MA. Sex differences in the association of urinary bisphenol-A concentration with selected indices of glucose homeostasis among U.S. adults. Ann Epidemiol 2014; 24:90-7. [PMID: 23954568 PMCID: PMC3865104 DOI: 10.1016/j.annepidem.2013.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/04/2013] [Accepted: 07/06/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE Emerging evidence suggests that exposure to endocrine disruptors may initiate or exacerbate adiposity and associated health problems. This study examined sex differences in the association of urinary level of bisphenol-A (BPA) with selected indices of glucose homeostasis among U.S. adults. METHODS Data analyses were performed using a sample of 1586 participants from the 2005 to 2008 National Health and Nutrition Examination Surveys. BPA level and the ratio of BPA-to-creatinine level were defined as log-transformed variables and in quartiles. Selected indices of glucose homeostasis were defined using fasting glucose and insulin data. Multivariate linear and logistic regression models for the hypothesized relationships were constructed after controlling for age, sex, race, education, marital status, smoking status, physical activity, total dietary intake, and urinary creatinine concentration. RESULTS Taking the first quartile as a referent, the third quartile of BPA level was positively associated with log-transformed level of insulin and β-cell function (homeostasis model assessment for β-cell function) as well as insulin resistance (log-transformed homeostasis model assessment for insulin resistance; homeostasis model assessment for insulin resistance ≥2.5), with significant BPA-by-sex interaction; these associations were stronger among males than among females. Irrespective of sex, the ratio of BPA-to-creatinine level was not predictive of indices of glucose homeostasis. CONCLUSIONS A complex association may exist between BPA and hyperinsulinemia among adult U.S. men. Prospective cohort studies are needed to further elucidate endocrine disruptors as determinants of adiposity-related disturbances.
Collapse
Affiliation(s)
- Hind A Beydoun
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, VA
| | - Suraj Khanal
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, VA
| | - Alan B Zonderman
- Laboratory of Behavioral Neuroscience, National Institute on Aging/National Institutes of Health/Intramural Research Program, Baltimore, MD
| | - May A Beydoun
- Laboratory of Behavioral Neuroscience, National Institute on Aging/National Institutes of Health/Intramural Research Program, Baltimore, MD.
| |
Collapse
|
130
|
Kim JH, Sartor MA, Rozek LS, Faulk C, Anderson OS, Jones TR, Nahar MS, Dolinoy DC. Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome. BMC Genomics 2014; 15:30. [PMID: 24433282 PMCID: PMC3902427 DOI: 10.1186/1471-2164-15-30] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 01/10/2014] [Indexed: 01/07/2023] Open
Abstract
Background Environmental factors during perinatal development may influence developmental plasticity and disease susceptibility via alterations to the epigenome. Developmental exposure to the endocrine active compound, bisphenol A (BPA), has previously been associated with altered methylation at candidate gene loci. Here, we undertake the first genome-wide characterization of DNA methylation profiles in the liver of murine offspring exposed perinatally to multiple doses of BPA through the maternal diet. Results Using a tiered focusing approach, our strategy proceeds from unbiased broad DNA methylation analysis using methylation-based next generation sequencing technology to in-depth quantitative site-specific CpG methylation determination using the Sequenom EpiTYPER MassARRAY platform to profile liver DNA methylation patterns in offspring maternally exposed to BPA during gestation and lactation to doses ranging from 0 BPA/kg (Ctr), 50 μg BPA/kg (UG), or 50 mg BPA/kg (MG) diet (N = 4 per group). Genome-wide analyses indicate non-monotonic effects of DNA methylation patterns following perinatal exposure to BPA, corroborating previous studies using multiple doses of BPA with non-monotonic outcomes. We observed enrichment of regions of altered methylation (RAMs) within CpG island (CGI) shores, but little evidence of RAM enrichment in CGIs. An analysis of promoter regions identified several hundred novel BPA-associated methylation events, and methylation alterations in the Myh7b and Slc22a12 gene promoters were validated. Using the Comparative Toxicogenomics Database, a number of candidate genes that have previously been associated with BPA-related gene expression changes were identified, and gene set enrichment testing identified epigenetically dysregulated pathways involved in metabolism and stimulus response. Conclusions In this study, non-monotonic dose dependent alterations in DNA methylation among BPA-exposed mouse liver samples and their relevant pathways were identified and validated. The comprehensive methylome map presented here provides candidate loci underlying the role of early BPA exposure and later in life health and disease status.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan, USA.
| |
Collapse
|
131
|
Abstract
Bisphenol A (BPA) is a high production volume chemical with adverse endocrine and reproductive health effects in toxicological studies. Despite widespread general population exposure to BPA, knowledge of its potential impacts upon reproduction and pregnancy in humans is limited. This paper reviews the current epidemiological literature on fertility and adverse pregnancy outcomes associated with BPA exposure. It also provides relevant resources for health care providers who are in a unique position to provide guidance in reducing exposure to this endocrine disrupting chemical.
Collapse
Affiliation(s)
- David E Cantonwine
- Department of Environmental Health Sciences University of Michigan School of Public Health Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
132
|
Lakind JS, Goodman M, Mattison DR. Bisphenol A and indicators of obesity, glucose metabolism/type 2 diabetes and cardiovascular disease: a systematic review of epidemiologic research. Crit Rev Toxicol 2014; 44:121-50. [PMID: 24392816 DOI: 10.3109/10408444.2013.860075] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Bisphenol A (BPA), a high-volume chemical with weak estrogenic properties, has been linked to obesity, cardiovascular diseases (CVD) and diabetes mellitus (DM). This review evaluates both the consistency and the quality of epidemiological evidence from studies testing the hypothesis that BPA exposure is a risk factor for these health outcomes. METHODS We followed the current methodological guidelines for systematic reviews by using two independent researchers to identify, review and summarize the relevant epidemiological literature on the relation of BPA to obesity, CVD, DM, or related biomarkers. Each paper was summarized with respect to its methods and results with particular attention to study design and exposure assessment, which have been cited as the main areas of weakness in BPA epidemiologic research. As quantitative meta-analysis was not feasible, the study results were categorized qualitatively as positive, inverse, null, or mixed. RESULTS Nearly all studies on BPA and obesity-, DM- or CVD-related health outcomes used a cross-sectional design and relied on a single measure of BPA exposure, which may result in serious exposure misclassification. For all outcomes, results across studies were inconsistent. Although several studies used the same data and the same or similar statistical methods, when the methods varied slightly, even studies that used the same data produced different results. CONCLUSION Epidemiological study design issues severely limit our understanding of health effects associated with BPA exposure. Considering the methodological limitations of the existing body of epidemiology literature, assertions about a causal link between BPA and obesity, DM, or CVD are unsubstantiated.
Collapse
|
133
|
Schug TT, Birnbaum LS. Human Health Effects of Bisphenol A. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2014. [DOI: 10.1007/978-1-4471-6500-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
134
|
|
135
|
Burstyn I, Martin JW, Beesoon S, Bamforth F, Li Q, Yasui Y, Cherry NM. Maternal exposure to bisphenol-A and fetal growth restriction: a case-referent study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:7001-14. [PMID: 24336026 PMCID: PMC3881152 DOI: 10.3390/ijerph10127001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 01/24/2023]
Abstract
We conducted a case-referent study of the effect of exposure to bisphenol-A on fetal growth in utero in full-term, live-born singletons in Alberta, Canada. Newborns <10 percentile of expected weight for gestational age and sex were individually matched on sex, maternal smoking and maternal age to referents with weight appropriate to gestational age. Exposure of the fetus to bisphenol-A was estimated from maternal serum collected at 15-16 weeks of gestation. We pooled sera across subjects for exposure assessment, stratified on case-referent status and sex. Individual 1:1 matching was maintained in assembling 69 case and 69 referent pools created from 550 case-referent pairs. Matched pools had an equal number of aliquots from individual women. We used an analytical strategy conditioning on matched set and total pool-level values of covariates to estimate individual-level effects. Pools of cases and referents had identical geometric mean bisphenol-A concentrations (0.5 ng/mL) and similar geometric standard deviations (2.3-2.5). Mean difference in concentration between matched pools was 0 ng/mL, standard deviation: 1 ng/mL. Stratification by sex and control for confounding did not suggest bisphenol-A increased fetal growth restriction. Our analysis does not provide evidence to support the hypothesis that bisphenol-A contributes to fetal growth restriction in full-term singletons.
Collapse
Affiliation(s)
- Igor Burstyn
- Division of Preventive Medicine, Department of Medicine, Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB T6G 2G3, Canada; E-Mail:
- Department of Environmental and Occupational Health, School of Public Health, Drexel University, Philadelphia, PA 19102, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-215-762-2909; Fax: +1-215-762-8846
| | - Jonathan W. Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB T6G 2B7, Canada; E-Mails: (J.W.M.); (S.B.); (F.B.)
| | - Sanjay Beesoon
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB T6G 2B7, Canada; E-Mails: (J.W.M.); (S.B.); (F.B.)
| | - Fiona Bamforth
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB T6G 2B7, Canada; E-Mails: (J.W.M.); (S.B.); (F.B.)
| | - Qiaozhi Li
- School of Public Health, The University of Alberta, Edmonton, AB T6G 1C9, Canada; E-Mails: (Q.L.); (Y.Y.)
| | - Yutaka Yasui
- School of Public Health, The University of Alberta, Edmonton, AB T6G 1C9, Canada; E-Mails: (Q.L.); (Y.Y.)
| | - Nicola M. Cherry
- Division of Preventive Medicine, Department of Medicine, Faculty of Medicine and Dentistry, The University of Alberta, Edmonton, AB T6G 2G3, Canada; E-Mail:
| |
Collapse
|
136
|
Teeguarden J, Hanson-Drury S, Fisher JW, Doerge DR. Are typical human serum BPA concentrations measurable and sufficient to be estrogenic in the general population? Food Chem Toxicol 2013; 62:949-63. [DOI: 10.1016/j.fct.2013.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 11/29/2022]
|
137
|
Chen Zee E, Cornet P, Lazimi G, Rondet C, Lochard M, Magnier AM, Ibanez G. [Impact of endocrine disrupting chemicals on birth outcomes]. ACTA ACUST UNITED AC 2013; 41:601-10. [PMID: 24120149 DOI: 10.1016/j.gyobfe.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 08/26/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Endocrine disruptors are ubiquitous chemicals contaminants in the environment, wildlife, and humans. Their adverse effects on reproduction are well-documented. There is growing evidence that they can contribute to the current emergence of chronic diseases. OBJECTIVES Our aim is to assess the relationships between endocrine disruptors and the neonatal health outcomes. METHODS Two persons have independently reviewed Medline and Toxline databases about the following pollutants: bisphenol A, phthalates, parabens, brominated flame retardants and perfluorinated compounds. Only the human epidemiological studies, in general population with an abstract available, published between 2007 January the 1st and 2011 December the 31st, were analysed. The quality of each study was assessed with the Strobe score. RESULTS Twenty-five out of 680 studies were included in the analysis. All pollutants were widely detected in maternal and new borns samples. Most of the studies have shown associations between bisphenol A, brominated flame retardants and perfluorinated compounds and lower birth weight. The effects on gestational age were less documented and have shown no clear connection. Results for phthalates were more ambiguous. Only one non-instructive study was found on parabens. DISCUSSION Due to the inherent methological bias on endocrine disruptors research, further additional studies on environmental health must be investigated. It seems necessary to adopt preventive health measures first for vulnerable population.
Collapse
Affiliation(s)
- E Chen Zee
- Département de médecine générale, faculté de médecine Pierre et Marie Curie, 27, rue de Chaligny, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
138
|
Individual and combined developmental toxicity assessment of bisphenol A and genistein using the embryonic stem cell test in vitro. Food Chem Toxicol 2013; 60:497-505. [DOI: 10.1016/j.fct.2013.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 08/01/2013] [Accepted: 08/04/2013] [Indexed: 11/23/2022]
|
139
|
Quirós-Alcalá L, Eskenazi B, Bradman A, Ye X, Calafat AM, Harley K. Determinants of urinary bisphenol A concentrations in Mexican/Mexican--American pregnant women. ENVIRONMENT INTERNATIONAL 2013; 59:152-60. [PMID: 23816546 PMCID: PMC3954740 DOI: 10.1016/j.envint.2013.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 05/17/2023]
Abstract
Prenatal exposure to bisphenol A (BPA) may be associated with adverse health effects in the developing fetus; however, little is known about predictors of BPA exposure during pregnancy. We examined BPA exposure in 491 pregnant women from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort and explored the role of living in the United States on significant dietary predictors of BPA exposure. Women provided urine samples up to two times during pregnancy (n=866 total samples). We computed the intraclass correlation coefficient (ICC) to evaluate variability in concentrations between collections and used generalized estimating equation (GEE) models to assess predictors of exposure. Geometric mean (GSD) BPA concentrations were 0.9 (2.8)μg/L and 1.0 (2.6)μg/L at the first and second prenatal visits, respectively. We observed greater within- than between-woman variability in urinary BPA concentrations (ICC=0.22). GEE models suggest that women who lived in the United States their entire life had 38% (CI: -0.1, 89.3) higher urinary BPA concentrations compared with other immigrant women. Additionally, women who consumed ≥3 sodas per day or hamburgers three times a week or more had 58% (CI: 18.0, 112.1) and 20% (CI: -0.2, 45.2) higher urinary BPA concentrations, respectively, compared with women who consumed no sodas or hamburgers. A higher percentage of women who lived their entire life in the United States reported increased consumption of sodas and hamburgers compared with other immigrant women. Independent of other factors, BPA urinary concentrations were slightly higher when the sample was collected later in the day. As in previous studies, high within-woman variability in urinary BPA concentrations confirms that several samples are needed to properly characterize exposure during pregnancy. Results also suggest that some factors could be modified to minimize exposures during pregnancy in our study participants (e.g., reducing soda and hamburger intake) and that factors associated with acculturation might increase BPA concentrations.
Collapse
Affiliation(s)
- Lesliam Quirós-Alcalá
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave, Suite 265, Berkeley, CA 94704
- Corresponding author: Dr. Lesliam Quirós-Alcalá, Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave, Suite 265, Berkeley, CA 94704, Tel: 510-642-9420, Fax: 510-642-9083,
| | - Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave, Suite 265, Berkeley, CA 94704
| | - Asa Bradman
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave, Suite 265, Berkeley, CA 94704
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341
| | - Kim Harley
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave, Suite 265, Berkeley, CA 94704
| |
Collapse
|
140
|
Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol 2013; 42:132-55. [PMID: 23994667 DOI: 10.1016/j.reprotox.2013.08.008] [Citation(s) in RCA: 1210] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/13/2013] [Accepted: 08/21/2013] [Indexed: 01/16/2023]
Abstract
There is growing evidence that bisphenol A (BPA) may adversely affect humans. BPA is an endocrine disruptor that has been shown to be harmful in laboratory animal studies. Until recently, there were relatively few epidemiological studies examining the relationship between BPA and health effects in humans. However, in the last year, the number of these studies has more than doubled. A comprehensive literature search found 91 studies linking BPA to human health; 53 published within the last year. This review outlines this body of literature, showing associations between BPA exposure and adverse perinatal, childhood, and adult health outcomes, including reproductive and developmental effects, metabolic disease, and other health effects. These studies encompass both prenatal and postnatal exposures, and include several study designs and population types. While it is difficult to make causal links with epidemiological studies, the growing human literature correlating environmental BPA exposure to adverse effects in humans, along with laboratory studies in many species including primates, provides increasing support that environmental BPA exposure can be harmful to humans, especially in regards to behavioral and other effects in children.
Collapse
Key Words
- 17-beta estradiol
- 8-OHdG
- 8-hydoxydeoxyguanosine
- A European population representative sample (Chianti, Italy)
- AGD
- ANA
- BADGE
- BASC-2
- BMI
- BPA
- BRIEF-P
- Behavior Rating Inventory of Executive Function-Preschool
- Behavioral Assessment System for Children
- Bisphenol A
- C-reactive protein
- CAD
- CBCL
- CHAMACOS
- CHD
- CMV
- CRP
- CVD
- Child Behavior Checklist
- DBP
- DHEAS
- Development
- E2
- ECN
- EFS
- EH
- EPIC-Norfolk Study
- ER
- Endocrine-disrupting chemicals
- Epidemiology
- FAI
- FDA
- FSH
- FT
- Food and Drug Administration
- HDL
- HOMES
- HRV
- HbA1c
- Human
- IL-6
- ISCI
- IVF
- InCHIANTI
- LDL
- LH
- MDA
- MGH
- MaGiCAD
- Massachusetts General Hospital (United States)
- Metabolic disease
- NECAT
- NHANES
- NICU Network Neurobehavioral Scale
- NNNS
- National Health and Nutrition Examination Survey (United States)
- OHAT
- Office of Health Assessment and Translation
- PCOS
- PFOA
- PFOS
- PIVUS
- Reproduction
- SBP
- SCE
- SFF
- SHBG
- SRS
- Social Responsiveness Scale
- T
- T3
- T4
- TDI
- TSH
- The Center for the Health Assessment of Mothers and Children of Salinas, Salina, CA
- The European Prospective Investigation into Cancer and Nutrition Cohort Study, consisting of over 500,000 people (Denmark, France, Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden and the United Kingdom)
- The Health Outcomes and Measures of the Environment Study (United States)
- The Metabolomics and Genomics in Coronary Artery Disease Study (Denmark, France, Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden and the United Kingdom)
- The New England Children's Amalgam Trial (United States)
- The Study for Future Families, USA
- The Vasculature in Uppsala Seniors Study (Uppsala, Sweden)
- Thyroid
- UCSF
- USEPA
- United Sates Environmental Protection Agency
- University of California, San Francisco
- VCL
- anogenital distance
- antinuclear antibodies
- bisGMA
- bisphenol A
- bisphenol A diglycidyl ether
- bisphenol A-glycidyl methacrylate
- body mass index
- cardiovascular disease
- coronary artery disease
- coronary heart disease
- curvilinear velocity (μm/s)
- cytomegalovirus
- dehydroepiandrosterone sulfate
- diastolic blood pressure
- embryo cell number
- embryo fragmentation score
- endometrial hyperplasia
- estrogen receptor
- follicle-stimulating hormone
- free androgen index (total T divided by SHBG)
- free testosterone
- hCG
- heart rate variability
- hemoglobin A1c
- high-density lipoprotein
- human chorionic gonadotropin
- in vitro fertilization
- interleukin-6
- intracytoplasmic sperm injection
- low-density lipoprotein
- luteinizing hormone
- malondialdehyde
- perfluorooctane sulfonate
- perfluorooctanoic acid
- polycystic ovary syndrome
- reverse transcription polymerase chain reaction
- rtPCR
- sex hormone binding globulin
- sister chromatid exchange
- systolic blood pressure
- thyroid stimulating hormone
- thyroxine
- tolerable daily intake
- total testosterone
- triidothyronine
Collapse
Affiliation(s)
- Johanna R Rochester
- The Endocrine Disruption Exchange (TEDX), P.O. Box 1407, Paonia, CO 81428, United States.
| |
Collapse
|
141
|
Van Winkle LS, Murphy SR, Boetticher MV, VandeVoort CA. Fetal exposure of rhesus macaques to bisphenol a alters cellular development of the conducting airway by changing epithelial secretory product expression. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:912-8. [PMID: 23757601 PMCID: PMC3734491 DOI: 10.1289/ehp.1206064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 06/07/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure early in life results in organizational changes in reproductive organs, but the effect of BPA on conducting airway cellular maturation has not been studied. Late gestation is characterized by active differentiation of secretory cells in the lung epithelium. OBJECTIVE We evaluated the hypothesis that BPA exposure disrupts epithelial secretory cell development in the fetal conducting airway of the rhesus macaque. METHODS We exposed animals to BPA during either the second (early term) or the third (late term) trimester. There were four treatment groups: a) sham control early term, b) sham control late term, c) BPA early term (BPA-early), and d) BPA late term (BPA-late). Because cellular maturation occurs nonuniformly in the lung, we defined mRNA and protein expression by airway level using microdissection. RESULTS BPA exposure of the dam during late term significantly accelerated secretory cell maturation in the proximal airways of the fetus; both Clara cell secretory protein (CCSP) and MUC5AC/5B mRNA and protein expression increased. CONCLUSIONS BPA exposure during late gestation accelerates secretory cell maturation in the proximal conducting airways. We identified a critical window of fetal susceptibility for BPA effects on lung epithelial cell maturation in the third trimester. This is of environmental health importance because increases in airway mucins are hallmarks of a number of childhood lung diseases that may be affected by BPA exposure.
Collapse
Affiliation(s)
- Laura S Van Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
142
|
Corbel T, Gayrard V, Viguié C, Puel S, Lacroix MZ, Toutain PL, Picard-Hagen N. Bisphenol A disposition in the sheep maternal-placental-fetal unit: mechanisms determining fetal internal exposure. Biol Reprod 2013; 89:11. [PMID: 23699389 DOI: 10.1095/biolreprod.112.106369] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The widespread human exposure to bisphenol A (BPA), a xenoestrogen interfering with developmental processes, raises the question of the mechanisms determining fetal exposure to BPA. A physiological model was developed in ewes to determine whether the pregnancy-associated physiological changes and the metabolic specificities of the fetal-placental unit can influence BPA toxicokinetics (TK) and fetal exposure to BPA. In a first longitudinal study, BPA was infused (2 mg/[kg·day] i.v. for 1 day) into ewes before breeding, at early and late stages of gestation, and after lambing. In a second study, BPA and BPA-glucuronide (BPA-G) were infused intravenously into pregnant ewes or into fetuses at 4 mo of gestation. BPA and its metabolites were assayed in maternal and fetal plasma and amniotic fluid sampled at steady state and after the end of the infusion. The pregnancy status did not modify the TK parameters of BPA and of BPA-G. Five percent of the BPA dose infused into the pregnant ewe was transferred across the placenta to the fetus. The fetal-placental unit was very efficient in metabolizing BPA into conjugated compounds; those metabolites remained trapped in the fetal-placental compartment, leading to a high fetal exposure to BPA conjugates. Taking into account a body weight adjustment, the ovine fetus in late pregnancy is exposed to a BPA dose similar to that of its mother. In contrast to its mother, the fetus exhibits much higher and sustained exposure to BPA metabolites without evidence of their hydrolysis.
Collapse
Affiliation(s)
- Tanguy Corbel
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 1331, Toxalim, Research Center in Food Toxicology, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
143
|
A systematic review of Bisphenol A "low dose" studies in the context of human exposure: a case for establishing standards for reporting "low-dose" effects of chemicals. Food Chem Toxicol 2013; 62:935-48. [PMID: 23867546 DOI: 10.1016/j.fct.2013.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022]
Abstract
Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding.
Collapse
|
144
|
Tang R, Chen MJ, Ding GD, Chen XJ, Han XM, Zhou K, Chen LM, Xia YK, Tian Y, Wang XR. Associations of prenatal exposure to phenols with birth outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:115-20. [PMID: 23562958 DOI: 10.1016/j.envpol.2013.03.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/09/2013] [Accepted: 03/12/2013] [Indexed: 05/21/2023]
Abstract
Many phenols are known to mimic or antagonize hormonal activities and may adversely affect fetal growth. A study of 567 pregnant women was conducted to investigate the relationship between prenatal phenol exposure and birth outcomes, including birth weight, length, and gestational age. We measured the concentrations of bisphenol A, benzophenone-3, 4-n-octylphenol and 4-n-nonylphenol in maternal urine and examine their association with birth outcomes. Categories of urinary benzophenone-3 concentration were associated with decreased gestational age in all infants (p for trend = 0.03). Between middle and low exposure groups, we also found bisphenol A was negatively associated with gestational duration (βadjusted = -0.48 week; 95% confidence interval: -0.91, -0.05). After stratification by gender, we found the consistent results in infant boys with those in all infants, but we did not observe significant association for girls. In conclusion, we found prenatal phenol exposure was sex-specifically related to birth outcomes.
Collapse
Affiliation(s)
- Rong Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Zhang T, Sun H, Kannan K. Blood and urinary bisphenol A concentrations in children, adults, and pregnant women from china: partitioning between blood and urine and maternal and fetal cord blood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4686-94. [PMID: 23506159 DOI: 10.1021/es303808b] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Limited information exists on exposure to bisphenol A (BPA) by children, adults, and pregnant women in China. In the present study, we determined BPA concentrations in whole blood collected from 10 children (1-5 years), 40 women (30 pregnant and 10 nonpregnant), and 30 fetuses (i.e., cord blood). Further, to evaluate the relationship between urinary and blood BPA concentrations, paired specimens of blood and urine (n = 50 pairs) were collected from an adult population. BPA was found in 46% of all blood samples analyzed, with a geometric mean (GM) concentration of 0.19 ng/mL. BPA was found in 84% of urine samples from adults, with a GM concentration of 1.01 ng/mL [0.48 μg/g creatinine (Cr)]. Gender and age were not good predictors of blood BPA concentrations. However, we did find that the creatinine-adjusted urinary BPA concentrations in females were significantly higher (p < 0.05) than the concentrations found in males and that the blood BPA concentrations in children were significantly higher (p < 0.05) than the concentrations found in adults. Among all adults, unadjusted urinary BPA concentrations (i.e., volume-based) were inversely (r = -0.312, p < 0.05) correlated with age when an outlier value (8.70 ng/mL) was excluded from analysis. Concentrations of BPA in urine (creatinine-adjusted) and blood were significantly correlated (r = 0.571, p < 0.01), with concentrations measured in urine approximately an order of magnitude higher than the concentrations found in blood. The mean and GM values for ratios of concentration of BPA between blood and urine were 0.109 and 0.057, respectively. The ratio of mean concentrations of BPA between cord blood and maternal blood was 0.108. On the basis of urinary BPA levels, we estimated the total daily intake (EDI) of BPA by Chinese adults. The mean (range) EDIs of BPA by adult males and females in China were 0.041 (<0.005-0.224) and 0.048 (<0.005-0.151) ug/kg bw/day, respectively. The pregnant women who underwent intravenous drug administration immediately before delivery had significantly higher concentrations of BPA in their blood than did those who did not receive intravenous drug administration. This is the first study to document the occurrence of and human exposure to BPA by pregnant women and fetuses from China.
Collapse
Affiliation(s)
- Tao Zhang
- College of Environmental Sciences and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|
146
|
Veiga-Lopez A, Luense LJ, Christenson LK, Padmanabhan V. Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 2013; 154:1873-84. [PMID: 23525218 PMCID: PMC3628019 DOI: 10.1210/en.2012-2129] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/18/2013] [Indexed: 01/02/2023]
Abstract
Bisphenol-A (BPA), a ubiquitous environmental endocrine disrupting chemical, is a component of polycarbonate plastic and epoxy resins. Because of its estrogenic properties, there is increasing concern relative to risks from exposures during critical periods of early organ differentiation. Prenatal BPA treatment in sheep results in low birth weight, hypergonadotropism, and ovarian cycle disruptions. This study tested the hypothesis that gestational exposure to bisphenol A, at an environmentally relevant dose, induces early perturbations in the ovarian transcriptome (mRNA and microRNA). Pregnant Suffolk ewes were treated with bisphenol A (0.5 mg/kg, sc, daily, produced ∼2.6 ng/mL of unconjugated BPA in umbilical arterial samples of BPA treated fetuses approaching median levels of BPA measured in maternal circulation) from days 30 to 90 of gestation. Expression of steroidogenic enzymes, steroid/gonadotropin receptors, key ovarian regulators, and microRNA biogenesis components were measured by RT-PCR using RNA derived from fetal ovaries collected on gestational days 65 and 90. An age-dependent effect was evident in most steroidogenic enzymes, steroid receptors, and key ovarian regulators. Prenatal BPA increased Cyp19 and 5α-reductase expression in day 65, but not day 90, ovaries. Fetal ovarian microRNA expression was altered by prenatal BPA with 45 down-regulated (>1.5-fold) at day 65 and 11 down-regulated at day 90 of gestation. These included microRNAs targeting Sry-related high-mobility-group box (SOX) family genes, kit ligand, and insulin-related genes. The results of this study demonstrate that exposure to BPA at an environmentally relevant dose alters fetal ovarian steroidogenic gene and microRNA expression of relevance to gonadal differentiation, folliculogenesis, and insulin homeostasis.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics (A.V.-L., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Molecular and Integrative Physiology (L.J.L., L.K.C.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Lacey J. Luense
- Department of Pediatrics (A.V.-L., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Molecular and Integrative Physiology (L.J.L., L.K.C.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | | |
Collapse
|
147
|
Hoepner LA, Whyatt RM, Just AC, Calafat AM, Perera FP, Rundle AG. Urinary concentrations of bisphenol A in an urban minority birth cohort in New York City, prenatal through age 7 years. ENVIRONMENTAL RESEARCH 2013; 122:38-44. [PMID: 23312110 PMCID: PMC3602210 DOI: 10.1016/j.envres.2012.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Despite growing concern over potential health effects associated with exposures to the endocrine disruptor, bisphenol A (BPA), insufficient information is available on determinants of BPA concentrations among minority populations in the US. OBJECTIVES To describe concentrations and predictors of BPA in an inner-city longitudinal birth cohort. METHODS We analyzed spot urines for total BPA collected during pregnancy and child ages 3, 5, and 7 years from African Americans and Dominicans (n=568) enrolled in the Columbia Center for Children's Environmental Health birth cohort and residing in Northern Manhattan and the South Bronx. Adjusting for specific gravity, generalized estimating equations were used to compare BPA concentrations across paired samples and linear regression analyses were used to determine relationships between BPA, season of sample collection, socio-demographic variables and urinary concentrations of phthalate metabolites. RESULTS BPA was detected in ≥ 94% of samples. Prenatal concentrations were significantly lower than postnatal concentrations. Geometric means were higher among African Americans compared to Dominicans in prenatal (p=0.008), 5 year (p<0.001) and 7 year (p=0.017) samples. Geometric means at 5 and 7 years were higher (p=0.021, p=0.041 respectively) for children of mothers never married compared to mothers ever married at enrollment. BPA concentrations were correlated with phthalate metabolite concentrations at prenatal, 3, 5 and 7 years (p-values <0.05). Postnatal BPA concentrations were higher in samples collected during the summer. CONCLUSIONS This study shows widespread BPA exposure in an inner-city minority population. BPA concentration variations were associated with socio-demographic characteristics and other xenobiotics.
Collapse
Affiliation(s)
- Lori A Hoepner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th St, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
148
|
Developmental programming: impact of prenatal exposure to bisphenol-A and methoxychlor on steroid feedbacks in sheep. Toxicol Appl Pharmacol 2013; 268:300-8. [PMID: 23454450 DOI: 10.1016/j.taap.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/03/2013] [Accepted: 02/06/2013] [Indexed: 01/26/2023]
Abstract
Bisphenol-A (BPA), a polymer used in plastics manufacturing, and methoxychlor (MXC), a pesticide, are endocrine disrupting compounds with estrogenic and anti-androgenic properties. Prenatal BPA or MXC treatment induces reproductive defects in sheep with BPA causing prepubertal luteinizing hormone (LH) hypersecretion and dampening of periovulatory LH surges and MXC lengthening follicular phase and delaying the LH surge. In this study, we addressed the underlying neuroendocrine defects by testing the following hypotheses: 1) prenatal BPA, but not MXC reduces sensitivity to estradiol and progesterone negative feedback, 2) prenatal BPA, but not MXC increases pituitary responsiveness to gonadotropin releasing hormone (GnRH), and 3) prenatal BPA dampens LH surge response to estradiol positive feedback challenge while prenatal MXC delays the timing of the LH surge. Pregnant sheep were treated with either 1) 5mg/kg/day BPA (produces approximately twice the level found in human circulation, n=8), 2) 5mg/kg/day MXC (the lowest observed effect level stated in the EPA National Toxicology Program's Report; n=6), or 3) vehicle (cotton seed oil: C: n=6) from days 30 to 90 of gestation. Female offspring of these ewes were ovariectomized at 21months of age and tested for progesterone negative, estradiol negative, estradiol positive feedback sensitivities and pituitary responsiveness to GnRH. Results revealed that sensitivity to all 3 feedbacks as well as pituitary responsiveness to GnRH were not altered by either of the prenatal treatments. These findings suggest that the postpubertal reproductive defects seen in these animals may have stemmed from ovarian defects and the steroidal signals emanating from them.
Collapse
|
149
|
Ma W, Kannan K, Wu Q, Bell EM, Druschel CM, Caggana M, Aldous KM. Analysis of polyfluoroalkyl substances and bisphenol A in dried blood spots by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2013; 405:4127-38. [PMID: 23404131 DOI: 10.1007/s00216-013-6787-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/20/2012] [Accepted: 01/24/2013] [Indexed: 11/27/2022]
Abstract
Dried blood spots (DBS), collected as part of the newborn screening program (NSP) in the USA, is a valuable resource for studies on environmental chemical exposures and associated health outcomes in newborns. Nevertheless, determination of concentrations of environmental chemicals in DBS requires assays with great sensitivity, as the typical volume of blood available on a DBS with 16-mm diameter disc is approximately 50 μL. In this study, we developed a liquid-liquid extraction and high-performance liquid chromatography/tandem mass spectrometry method for the detection of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and bisphenol A (BPA) in DBS. The method was validated for accuracy, precision, and sensitivity, by spiking of target chemicals at different levels on Whatman 903 filter cards, which is used in the collection of DBS by the NSP. Contamination arising from collection, storage, and handling of DBS is an important issue to be considered in the analysis of trace levels of environmental chemicals in DBS. For the evaluation of the magnitude of background contamination, field blanks were prepared from unspotted portions of DBS filter cards collected by the NSP. The method was applied for the measurement of PFOS, PFOA, and BPA in 192 DBS specimens provided by NSP of New York State. PFOS and PFOA were detected in 100 % of the specimens analyzed. The concentrations of PFOS and PFOA measured in DBS were similar to those reported earlier in the whole blood samples of newborns. BPA was also found in 86 % of the specimens at concentrations ranging from 0.2 to 36 ng/mL (excluding two outliers). Further studies are needed to evaluate the sources of BPA exposures and health outcomes in newborns.
Collapse
Affiliation(s)
- Wanli Ma
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Functional UDP-glucuronyltransferase 2B15 polymorphism and bisphenol A concentrations in blood: results from physiologically based kinetic modelling. Arch Toxicol 2013; 87:1257-64. [DOI: 10.1007/s00204-013-1022-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/31/2013] [Indexed: 02/04/2023]
|