101
|
Ran JH, Shen TT, Liu WJ, Wang XQ. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants. PLoS One 2013; 8:e78997. [PMID: 24244399 PMCID: PMC3823973 DOI: 10.1371/journal.pone.0078997] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/27/2013] [Indexed: 11/22/2022] Open
Abstract
Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH) subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1) All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2) the gymnosperm 'SPCH' genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm "SPCH" genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants.
Collapse
Affiliation(s)
- Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Wen-Juan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
102
|
Rudall PJ, Hilton J, Bateman RM. Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. THE NEW PHYTOLOGIST 2013; 200:598-614. [PMID: 23909825 DOI: 10.1111/nph.12406] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/10/2013] [Indexed: 05/02/2023]
Abstract
We evaluate stomatal development in terms of its primary morphogenetic factors and place it in a phylogenetic context, including clarification of the contrasting specialist terms that are used by different sets of researchers. The genetic and structural bases for stomatal development are well conserved and increasingly well understood in extant taxa, but many phylogenetically crucial plant lineages are known only from fossils, in which it is problematic to infer development. For example, specialized lateral subsidiary cells that occur adjacent to the guard cells in some taxa can be derived either from the same cell lineage as the guard cells or from an adjacent cell file. A potentially key factor in land-plant evolution is the presence (mesogenous type) or absence (perigenous type) of at least one asymmetric division in the cell lineage leading to the guard-mother cell. However, the question whether perigenous or mesogenous development is ancestral in land plants cannot yet be answered definitively based on existing data. Establishment of 'fossil fingerprints' as developmental markers is critical for understanding the evolution of stomatal patterning. Long cell-short cell alternation in the developing leaf epidermis indicates that the stomata are derived from an asymmetric mitosis. Other potential developmental markers include nonrandom stomatal orientation and a range of variation in relative sizes of epidermal cells. Records of occasional giant stomata in fossil bennettites could indicate development of a similar type to early-divergent angiosperms.
Collapse
Affiliation(s)
- Paula J Rudall
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Jason Hilton
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
103
|
Ishizaki K, Mizutani M, Shimamura M, Masuda A, Nishihama R, Kohchi T. Essential role of the E3 ubiquitin ligase nopperabo1 in schizogenous intercellular space formation in the liverwort Marchantia polymorpha. THE PLANT CELL 2013; 25:4075-84. [PMID: 24170128 PMCID: PMC3877802 DOI: 10.1105/tpc.113.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 05/17/2023]
Abstract
The vast majority of land plants develop gas-exchange tissues with intercellular spaces (ICSs) connected directly to the air. Although the developmental processes of ICS have been described in detail at the morphological and ultrastructural level in diverse land plants, little is known about the molecular mechanism responsible for ICS formation. The liverwort Marchantia polymorpha develops a multilayered tissue with a large ICS (air chamber), whose formation is initiated at selected positions of epidermal cells. We isolated a mutant of M. polymorpha showing impaired air-chamber formation, nopperabo1 (nop1), from T-DNA-tagged lines. In nop1 plants, no ICS was formed; consequently, a single-layered epidermis developed on the dorsal side of the thallus. The causal gene NOP1 encodes a Plant U-box (PUB) E3 ubiquitin ligase carrying tandem ARMADILLO (ARM) repeats in the C terminus. An in vitro ubiquitination assay indicated that the NOP1 protein possesses E3 ubiquitin ligase activity in a U-box-dependent manner. Confocal microscopy and biochemical analysis showed that NOP1 was localized to the plasma membrane. Our investigation demonstrated the essential role of the PUB-ARM-type ubiquitin ligase in ICS formation in M. polymorpha, which sheds light on the molecular mechanism of schizogenous ICS formation in land plants.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Miya Mizutani
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masaki Shimamura
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Akihide Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
104
|
Chater C, Gray JE, Beerling DJ. Early evolutionary acquisition of stomatal control and development gene signalling networks. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:638-46. [PMID: 23871687 DOI: 10.1016/j.pbi.2013.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 05/08/2023]
Abstract
Fossil stomata of early vascular land plants date back over 418 million years and exhibit properties suggesting that they were operational, including differentially thickened guard cells and sub-stomatal chambers. Molecular studies on basal land plant groups (bryophytes and lycophytes) provide insight into the core genes involved in sensing and translating changes in the drought hormone abscisic acid (ABA), light and concentration of CO2 into changes in stomatal aperture. These studies indicate that early land plants probably possessed the genetic tool kits for stomata to actively respond to environmental/endogenous cues. With these ancestral molecular genetic tool kits in place, stomatal regulation of plant carbon and water relations may have became progressively more effective as hydraulic systems evolved in seed plant lineages. Gene expression and cross-species gene complementation studies suggest that the pathway regulating stomatal fate may also have been conserved across land plant evolution. This emerging area offers a fascinating glimpse into the potential genetic tool kits used by the earliest vascular land plants to build and operate the stomata preserved in the fossil record.
Collapse
Affiliation(s)
- Caspar Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
105
|
Zalewski CS, Floyd SK, Furumizu C, Sakakibara K, Stevenson DW, Bowman JL. Evolution of the class IV HD-zip gene family in streptophytes. Mol Biol Evol 2013; 30:2347-65. [PMID: 23894141 PMCID: PMC3773374 DOI: 10.1093/molbev/mst132] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters.
Collapse
Affiliation(s)
| | - Sandra K. Floyd
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Chihiro Furumizu
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Keiko Sakakibara
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | | - John L. Bowman
- Section of Plant Biology, University of California, Davis
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
106
|
Developmental Priming of Stomatal Sensitivity to Abscisic Acid by Leaf Microclimate. Curr Biol 2013; 23:1805-11. [DOI: 10.1016/j.cub.2013.07.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022]
|
107
|
O’Donoghue MT, Chater C, Wallace S, Gray JE, Beerling DJ, Fleming AJ. Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3567-81. [PMID: 23888066 PMCID: PMC3745722 DOI: 10.1093/jxb/ert190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bryophytes, the most basal of the extant land plants, diverged at least 450 million years ago. A major feature of these plants is the biphasic alternation of generations between a dominant haploid gametophyte and a minor diploid sporophyte phase. These dramatic differences in form and function occur in a constant genetic background, raising the question of whether the switch from gametophyte-to-sporophyte development reflects major changes in the spectrum of genes being expressed or alternatively whether only limited changes in gene expression occur and the differences in plant form are due to differences in how the gene products are put together. This study performed replicated microarray analyses of RNA from several thousand dissected and developmentally staged sporophytes of the moss Physcomitrella patens, allowing analysis of the transcriptomes of the sporophyte and early gametophyte, as well as the early stages of moss sporophyte development. The data indicate that more significant changes in transcript profile occur during the switch from gametophyte to sporophyte than recently reported, with over 12% of the entire transcriptome of P. patens being altered during this major developmental transition. Analysis of the types of genes contributing to these differences supports the view of the early sporophyte being energetically and nutritionally dependent on the gametophyte, provides a profile of homologues to genes involved in angiosperm stomatal development and physiology which suggests a deeply conserved mechanism of stomatal control, and identifies a novel series of transcription factors associated with moss sporophyte development.
Collapse
Affiliation(s)
| | - Caspar Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Simon Wallace
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - David J. Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew J. Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
108
|
Assouline S, Or D. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange. PLoS One 2013; 8:e67757. [PMID: 23844085 PMCID: PMC3699479 DOI: 10.1371/journal.pone.0067757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.
Collapse
Affiliation(s)
- Shmuel Assouline
- Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, A.R.O.-Volcani Center, Bet Dagan, Israel.
| | | |
Collapse
|
109
|
Yao Y, Liu X, Li Z, Ma X, Rennenberg H, Wang X, Li H. Drought-induced H2O 2 accumulation in subsidiary cells is involved in regulatory signaling of stomatal closure in maize leaves. PLANTA 2013; 238:217-27. [PMID: 23625015 DOI: 10.1007/s00425-013-1886-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 04/15/2013] [Indexed: 05/23/2023]
Abstract
Increasing H2O2 levels in guard cells in response to environmental stimuli are recently considered a general messenger involved in the signaling cascade for the induction of stomatal closure. But little is known as to whether subsidiary cells participate in the H2O2-mediated stomatal closure of grass plants. In the present study, 2-week-old seedlings of maize (Zea mays) were exposed to different degrees of soil water deficit for 3 weeks. The effects of soil water contents on leaf ABA and H2O2 levels and stomatal aperture were investigated using physiological, biochemical, and histochemical approaches. The results showed that even under well-watered conditions, significant amounts of H2O2 were observed in guard cells, whereas H2O2 concentrations in the subsidiary cells were negligible. Decreasing soil water contents led to a significant increase in leaf ABA levels associated with significantly enhanced O2 (-) and H2O2 contents, consistent with reduced degrees of stomatal conductance and aperture. The significant increase in H2O2 appeared in both guard cells and subsidiary cells of the stomatal complex, and H2O2 levels increased with decreasing soil water contents. Drought-induced increase in the activity of antioxidative enzymes could not counteract the significant increase in H2O2 levels in guard cells and subsidiary cells. These results indicate that subsidiary cells participate in H2O2-mediated stomatal closure, and drought-induced H2O2 accumulation in subsidiary cells is involved in the signaling cascade regulating stomatal aperture of grass plants such as maize.
Collapse
Affiliation(s)
- Yaqin Yao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
110
|
Gaff DF, Oliver M. The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:315-328. [PMID: 32481110 DOI: 10.1071/fp12321] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/10/2013] [Indexed: 05/22/2023]
Abstract
In a minute proportion of angiosperm species, rehydrating foliage can revive from airdryness or even from equilibration with air of ~0% RH. Such desiccation tolerance is known from vegetative cells of some species of algae and of major groups close to the evolutionary path of the angiosperms. It is also found in the reproductive structures of some algae, moss spores and probably the aerial spores of other terrestrial cryptogamic taxa. The occurrence of desiccation tolerance in the seed plants is overwhelmingly in the aerial reproductive structures; the pollen and seed embryos. Spatially and temporally, pollen and embryos are close ontogenetic derivatives of the angiosperm microspores and megaspores respectively. This suggests that the desiccation tolerance of pollen and embryos derives from the desiccation tolerance of the spores of antecedent taxa and that the basic pollen/embryo mechanism of desiccation tolerance has eventually become expressed also in the vegetative tissue of certain angiosperm species whose drought avoidance is inadequate in micro-habitats that suffer extremely xeric episodes. The protective compounds and processes that contribute to desiccation tolerance in angiosperms are found in the modern groups related to the evolutionary path leading to the angiosperms and are also present in the algae and in the cyanobacteria. The mechanism of desiccation tolerance in the angiosperms thus appears to have its origins in algal ancestors and possibly in the endosymbiotic cyanobacteria-related progenitor of chloroplasts and the bacteria-related progenitor of mitochondria. The mechanism may involve the regulation and timing of the accumulation of protective compounds and of other contributing substances and processes.
Collapse
Affiliation(s)
- Donald F Gaff
- School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia
| | - Melvin Oliver
- USDA-ARS, Plant Genetics Research Unit, 205 Curtis Hall - UMC, Columbia, MO 65211, USA
| |
Collapse
|
111
|
Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby RJ, Tissue DT, von Caemmerer S. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. THE NEW PHYTOLOGIST 2013; 197:1077-1094. [PMID: 23346950 DOI: 10.1111/nph.12104] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 11/15/2012] [Indexed: 05/05/2023]
Abstract
The rate of CO(2) assimilation by plants is directly influenced by the concentration of CO(2) in the atmosphere, c(a). As an environmental variable, c(a) also has a unique global and historic significance. Although relatively stable and uniform in the short term, global c(a) has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive datasets and models to develop an integrated, multi-scale assessment of the impact of changing c(a) on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling c(a) is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that tends to maintain 1 - c(i)/c(a), the relative gradient for CO(2) diffusion into the leaf, relatively constant. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing c(a) can be described by simple equations rooted in the formulation of more commonly studied short-term responses.
Collapse
Affiliation(s)
- Peter J Franks
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark A Adams
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jeffrey S Amthor
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Margaret M Barbour
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA, 94305, USA
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Graham D Farquhar
- Research School of Biology, The Australian National University, Acton, ACT, 0200, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jon Lloyd
- Centre for Tropical Environmental and Sustainability Science (TESS), School of Earth and Environmental Sciences, James Cook University, Cairns, Qld, 4878, Australia
- Earth and Biosphere Institute, School of Geography, University of Leeds, Leeds, UK
| | - Nate McDowell
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Richard J Norby
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - David T Tissue
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Susanne von Caemmerer
- Research School of Biology, The Australian National University, Acton, ACT, 0200, Australia
| |
Collapse
|
112
|
Haig D. Filial mistletoes: the functional morphology of moss sporophytes. ANNALS OF BOTANY 2013; 111:337-45. [PMID: 23277472 PMCID: PMC3579447 DOI: 10.1093/aob/mcs295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND A moss sporophyte inherits a haploid set of genes from the maternal gametophyte to which it is attached and another haploid set of genes from a paternal gametophyte. Evolutionary conflict is expected between genes of maternal and paternal origin that will be expressed as adaptations of sporophytes to extract additional resources from maternal gametophytes and adaptations of maternal gametophytes to restrain sporophytic demands. INTERPRETATION The seta and stomata of peristomate mosses are interpreted as sporophytic devices for increasing nutrient transfer. The seta connects the foot, where nutrients are absorbed, to the developing capsule, where nutrients are needed for sporogenesis. Its elongation lifts stomata of the apophysis above the boundary layer, into the zone of turbulent air, thereby increasing the transpirational pull that draws nutrients across the haustorial foot. The calyptra is interpreted as a gametophytic device to reduce sporophytic demands. The calyptra fits tightly over the intercalary meristem of the sporophytic apex and prevents lateral expansion of the meristem. While intact, the calyptra delays the onset of transpiration. PREDICTIONS Nutrient transfer across the foot, stomatal number and stomatal aperture are predicted to be particular arenas of conflict between sporophytes and maternal gametophytes, and between maternal and paternal genomes of sporophytes.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
113
|
Ligrone R, Duckett JG, Renzaglia KS. The origin of the sporophyte shoot in land plants: a bryological perspective. ANNALS OF BOTANY 2012; 110:935-41. [PMID: 22875816 PMCID: PMC3448429 DOI: 10.1093/aob/mcs176] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/31/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts, mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilophytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in hornworts and polysporangiophytes develops predominantly by post-embryonic meristematic activity. SCOPE This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization. Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced a sporangium-supporting seta, we postulate that in the hornwort-polysporangiophyte lineage the basal meristem acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic programme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polysporangiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth. CONCLUSIONS The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e. an anticipation and a delay, respectively, in the development of the sporangium. In either case the result was a pedomorphic sporophyte permanently retaining juvenile characters.
Collapse
Affiliation(s)
- Roberto Ligrone
- Dipartimento di Scienze ambientali, Seconda Università di Napoli, Caserta, Italy.
| | | | | |
Collapse
|
114
|
Locosselli GM, Ceccantini G. Plasticity of stomatal distribution pattern and stem tracheid dimensions in Podocarpus lambertii: an ecological study. ANNALS OF BOTANY 2012; 110:1057-66. [PMID: 22875814 PMCID: PMC3448432 DOI: 10.1093/aob/mcs179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/02/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Leaf and wood plasticity are key elements in the survival of widely distributed plant species. Little is known, however, about variation in stomatal distribution in the leaf epidermis and its correlation with the dimensions of conducting cells in wood. This study aimed at testing the hypothesis that Podocarpus lambertii, a conifer tree, possesses a well-defined pattern of stomatal distribution, and that this pattern can vary together with the dimensions of stem tracheids as a possible strategy to survive in climatically different sites. METHODS Leaves and wood were sampled from trees growing in a cold, wet site in south-eastern Brazil and in a warm, dry site in north-eastern Brazil. Stomata were thoroughly mapped in leaves from each study site to determine a spatial sampling strategy. Stomatal density, stomatal index and guard cell length were then sampled in three regions of the leaf: near the midrib, near the leaf margin and in between the two. This sampling strategy was used to test for a pattern and its possible variation between study sites. Wood and stomata data were analysed together via principal component analysis. KEY RESULTS The following distribution pattern was found in the south-eastern leaves: the stomatal index was up to 25 % higher in the central leaf region, between the midrib and the leaf margin, than in the adjacent regions. The inverse pattern was found in the north-eastern leaves, in which the stomatal index was 10 % higher near the midrib and the leaf margin. This change in pattern was accompanied by smaller tracheid lumen diameter and length. CONCLUSIONS Podocarpus lambertii individuals in sites with higher temperature and lower water availability jointly regulate stomatal distribution in leaves and tracheid dimensions in wood. The observed stomatal distribution pattern and variation appear to be closely related to the placement of conducting tissue in the mesophyll.
Collapse
Affiliation(s)
- Giuliano Maselli Locosselli
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, Laboratório de Anatomia Vegetal, Sao Paulo, SP, Brazil.
| | | |
Collapse
|
115
|
Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. PLoS One 2012; 7:e40080. [PMID: 22768224 PMCID: PMC3386932 DOI: 10.1371/journal.pone.0040080] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Both leaf attributes and stomatal traits are linked to water economy in land plants. However, it is unclear whether these two components are associated evolutionarily. METHODOLOGY/PRINCIPAL FINDINGS In characterizing the possible effect of phylogeny on leaf attributes and stomatal traits, we hypothesized that a correlated evolution exists between the two. Using a phylogenetic comparative method, we analyzed 14 leaf attributes and stomatal traits for 17 species in Paphiopedilum. Stomatal length (SL), stomatal area (SA), upper cuticular thickness (UCT), and total cuticular thickness (TCT) showed strong phylogenetic conservatism whereas stomatal density (SD) and stomatal index (SI) were significantly convergent. Leaf vein density was correlated with SL and SD whether or not phylogeny was considered. The lower epidermal thickness (LET) was correlated positively with SL, SA, and stomatal width but negatively with SD when phylogeny was not considered. When this phylogenetic influence was factored in, only the significant correlation between SL and LET remained. CONCLUSION/SIGNIFICANCE Our results support the hypothesis for correlated evolution between stomatal traits and vein density in Paphiopedilum. However, they do not provide evidence for an evolutionary association between stomata and leaf thickness. These findings lend insight into the evolution of traits related to water economy for orchids under natural selection.
Collapse
Affiliation(s)
- Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Tropical Plant Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Jie Guan
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory of Plant Physiology and Biochemistry and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mei Sun
- Key Laboratory of Tropical Plant Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Juan-Juan Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Kun-Fang Cao
- Key Laboratory of Tropical Plant Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
116
|
Chen ZH, Eisenach C, Xu XQ, Hills A, Blatt MR. Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis. PLANT METHODS 2012; 8:15. [PMID: 22559714 PMCID: PMC3475070 DOI: 10.1186/1746-4811-8-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 04/10/2012] [Indexed: 05/20/2023]
Abstract
Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible tools for quantitative analysis of transport in the intact cell. We have developed a reliable set of procedures for voltage clamp analysis of guard cells from Arabidopsis leaves. These procedures greatly simplify electrophysiological recordings, extending the duration of measurements and scope for analysis of the predominant K+ and anion channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Science and Health, University of Western Sydney, Richmond, NSW 2753, Australia
| | - Cornelia Eisenach
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Xin-Qin Xu
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
117
|
Zhang L, Niu H, Wang S, Zhu X, Luo C, Li Y, Zhao X. Gene or environment? Species-specific control of stomatal density and length. Ecol Evol 2012; 2:1065-70. [PMID: 22837850 PMCID: PMC3399171 DOI: 10.1002/ece3.233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/12/2012] [Accepted: 01/24/2012] [Indexed: 11/11/2022] Open
Abstract
Stomatal characteristics are used as proxies of paleo-environment. Only a few model species have been used to study the mechanisms of genetic and environmental effects on stomatal initiation. Variation among species has not been quantified. In this paper, results from an in situ reciprocal transplant experiment along an elevation gradient in the northeast Tibetan Plateau are reported, in which the relative effects of genetics (original altitude) and environment (transplant altitude) on stomatal density (SD) and length (SL) were quantified. In Thalictrum alpinum, only the environment significantly influenced SD, with the variance component ([Formula: see text]) of the environment found to be much greater than that of genetics ([Formula: see text]) ([Formula: see text]). In Kobresia humillis, only genetics significantly influenced SD and SL, with the genetics variance component found to be greater than that of the environment ([Formula: see text], for SD). These results suggest that the extent to which genetics and the environment determine stomatal initiation and development is species-specific. This needs to be considered when studying genetic or environmental controls of stomatal initiation, as well as when SD and SL are used as proxies for ancient climate factors (e.g., CO(2) concentration).
Collapse
Affiliation(s)
- Lirong Zhang
- Department of Resource and Environment, Graduate University of Chinese Academy of SciencesBeijing 100049, China
| | - Haishan Niu
- Department of Resource and Environment, Graduate University of Chinese Academy of SciencesBeijing 100049, China
| | - Shiping Wang
- Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijing 100101, China
| | - Xiaoxue Zhu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Institute of Northwest Plateau Biology, Chinese Academy of SciencesXining 810008, Qinghai, China
| | - Caiyun Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Institute of Northwest Plateau Biology, Chinese Academy of SciencesXining 810008, Qinghai, China
| | - Yingnian Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Institute of Northwest Plateau Biology, Chinese Academy of SciencesXining 810008, Qinghai, China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Institute of Northwest Plateau Biology, Chinese Academy of SciencesXining 810008, Qinghai, China
| |
Collapse
|
118
|
Ligrone R, Duckett JG, Renzaglia KS. Major transitions in the evolution of early land plants: a bryological perspective. ANNALS OF BOTANY 2012; 109:851-71. [PMID: 22356739 PMCID: PMC3310499 DOI: 10.1093/aob/mcs017] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/06/2012] [Indexed: 05/02/2023]
Abstract
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.
Collapse
Affiliation(s)
- Roberto Ligrone
- Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta, Italy.
| | | | | |
Collapse
|
119
|
Veselý P, Bures P, Smarda P, Pavlícek T. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? ANNALS OF BOTANY 2012; 109:65-75. [PMID: 22021815 PMCID: PMC3241587 DOI: 10.1093/aob/mcr267] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/14/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Genome size is known to affect various plant traits such as stomatal size, seed mass, and flower or shoot phenology. However, these associations are not well understood for species with very large genomes, which are laregly represented by geophytic plants. No detailed associations are known between DNA base composition and genome size or species ecology. METHODS Genome sizes and GC contents were measured in 219 geophytes together with tentative morpho-anatomical and ecological traits. KEY RESULTS Increased genome size was associated with earliness of flowering and tendency to grow in humid conditions, and there was a positive correlation between an increase in stomatal size in species with extremely large genomes. Seed mass of geophytes was closely related to their ecology, but not to genomic parameters. Genomic DNA GC content showed a unimodal relationship with genome size but no relationship with species ecology. CONCLUSIONS Evolution of genome size in geophytes is closely related to their ecology and phenology and is also associated with remarkable changes in DNA base composition. Although geophytism together with producing larger cells appears to be an advantageous strategy for fast development of an organism in seasonal habitats, the drought sensitivity of large stomata may restrict the occurrence of geophytes with very large genomes to regions not subject to water stress.
Collapse
Affiliation(s)
- Pavel Veselý
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic.
| | | | | | | |
Collapse
|
120
|
|
121
|
Wang Y, Blatt M. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells. Biochem J 2011; 439:161-70. [PMID: 21745184 PMCID: PMC3181827 DOI: 10.1042/bj20110845] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/01/2011] [Accepted: 07/11/2011] [Indexed: 11/23/2022]
Abstract
Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic fluxes across both the plasma membrane and tonoplast, the metabolism of organic acids, primarily Mal (malate), and its accumulation and loss. Anion channels at the plasma membrane are thought to comprise a major pathway for Mal efflux during stomatal closure, implicating their key role in linking solute flux with metabolism. Nonetheless, little is known of the regulation of anion channel current (I(Cl)) by cytosolic Mal or its immediate metabolite OAA (oxaloacetate). In the present study, we have examined the impact of Mal, OAA and of the monocarboxylic acid anion acetate in guard cells of Vicia faba L. and report that all three organic acids affect I(Cl), but with markedly different characteristics and sidedness to their activities. Most prominent was a suppression of ICl by OAA within the physiological range of concentrations found in vivo. These findings indicate a capacity for OAA to co-ordinate organic acid metabolism with I(Cl) through the direct effect of organic acid pool size. The findings of the present study also add perspective to in vivo recordings using acetate-based electrolytes.
Collapse
Affiliation(s)
- Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
122
|
Ruszala E, Beerling D, Franks P, Chater C, Casson S, Gray J, Hetherington A. Land Plants Acquired Active Stomatal Control Early in Their Evolutionary History. Curr Biol 2011; 21:1030-5. [DOI: 10.1016/j.cub.2011.04.044] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/30/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|
123
|
Chater C, Kamisugi Y, Movahedi M, Fleming A, Cuming A, Gray J, Beerling D. Regulatory Mechanism Controlling Stomatal Behavior Conserved across 400 Million Years of Land Plant Evolution. Curr Biol 2011; 21:1025-9. [DOI: 10.1016/j.cub.2011.04.032] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/24/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
124
|
Lammertsma EI, de Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc Natl Acad Sci U S A 2011; 108:4035-40. [PMID: 21330552 PMCID: PMC3054011 DOI: 10.1073/pnas.1100371108] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A principle response of C3 plants to increasing concentrations of atmospheric CO(2) (CO(2)) is to reduce transpirational water loss by decreasing stomatal conductance (g(s)) and simultaneously increase assimilation rates. Via this adaptation, vegetation has the ability to alter hydrology and climate. Therefore, it is important to determine the adaptation of vegetation to the expected anthropogenic rise in CO(2). Short-term stomatal opening-closing responses of vegetation to increasing CO(2) are described by free-air carbon enrichments growth experiments, and evolutionary adaptations are known from the geological record. However, to date the effects of decadal to centennial CO(2) perturbations on stomatal conductance are still largely unknown. Here we reconstruct a 34% (±12%) reduction in maximum stomatal conductance (g(smax)) per 100 ppm CO(2) increase as a result of the adaptation in stomatal density (D) and pore size at maximal stomatal opening (a(max)) of nine common species from Florida over the past 150 y. The species-specific g(smax) values are determined by different evolutionary development, whereby the angiosperms sampled generally have numerous small stomata and high g(smax), and the conifers and fern have few large stomata and lower g(smax). Although angiosperms and conifers use different D and a(max) adaptation strategies, our data show a coherent response in g(smax) to CO(2) rise of the past century. Understanding these adaptations of C3 plants to rising CO(2) after decadal to centennial environmental changes is essential for quantification of plant physiological forcing at timescales relevant for global warming, and they are likely to continue until the limits of their phenotypic plasticity are reached.
Collapse
Affiliation(s)
- Emmy I. Lammertsma
- Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, 3584 CD, Utrecht, The Netherlands
| | - Hugo Jan de Boer
- Department of Environmental Sciences, Copernicus Institute, Utrecht University, 3508 TC, Utrecht, The Netherlands; and
| | - Stefan C. Dekker
- Department of Environmental Sciences, Copernicus Institute, Utrecht University, 3508 TC, Utrecht, The Netherlands; and
| | - David L. Dilcher
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - André F. Lotter
- Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, 3584 CD, Utrecht, The Netherlands
| | - Friederike Wagner-Cremer
- Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, 3584 CD, Utrecht, The Netherlands
| |
Collapse
|
125
|
MacAlister CA, Bergmann DC. Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants. Evol Dev 2011; 13:182-92. [PMID: 21410874 PMCID: PMC3139685 DOI: 10.1111/j.1525-142x.2011.00468.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Stomata are a broadly conserved feature of land plants with a crucial role regulating transpiration and gas exchange between the plant and atmosphere. Stereotyped cell divisions within a specialized cell lineage of the epidermis generate stomata and define the pattern of their distribution. The behavior of the stomatal lineage varies in its detail among different plant groups, but general features include asymmetric cell divisions and an immediate precursor (the guard mother cell [GMC]) that divides symmetrically to form the pair of cells that will differentiate into the guard cells. In Arabidopsis, the closely related basic helix-loop-helix (bHLH) subgroup Ia transcription factors SPEECHLESS, MUTE, and FAMA promote asymmetric divisions, the acquisition of GMC identity and guard cell differentiation, respectively. Genome sequence data indicate that these key positive regulators of stomatal development are broadly conserved among land plants. While orthologies can be established among individual family members within the angiosperms, more distantly related groups contain subgroup Ia bHLHs of unclear affinity. We demonstrate group Ia members from the moss Physcomitrella patens can partially complement MUTE and FAMA and recapitulate gain of function phenotypes of group Ia genes in multiple steps in the stomatal lineage in Arabidopsis. Our data are consistent with a mechanism whereby a multifunctional transcription factor underwent duplication followed by specialization to provide the three (now nonoverlapping) functions of the angiosperm stomatal bHLHs.
Collapse
Affiliation(s)
- Cora A MacAlister
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
126
|
Galvez DA, Landhäusser SM, Tyree MT. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? TREE PHYSIOLOGY 2011; 31:250-7. [PMID: 21444372 DOI: 10.1093/treephys/tpr012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In a greenhouse study we quantified the gradual change of gas exchange, water relations and root reserves of aspen (Populus tremuloides Michx.) seedlings growing over a 3-month period of severe water stress. The aim of the study was to quantify the complex interrelationship between growth, water and gas exchange, and root carbon (C) dynamics. Various growth, gas exchange and water relations variables in combination with root reserves were measured periodically on seedlings that had been exposed to a continuous drought treatment over a 12-week period and compared with well-watered seedlings. Although gas exchange and water relations parameters significantly decreased over the drought period in aspen seedlings, root reserves did not mirror this trend. During the course of the experiment roots of aspen seedlings growing under severe water stress showed a two orders of magnitude increase in sugar and starch content, and roots of these seedlings contained more starch relative to sugar than those in non-droughted seedlings. Drought resulted in a switch from growth to root reserves storage which indicates a close interrelationship between growth and physiological variables and the accumulation of root carbohydrate reserves. Although a severe 3-month drought period created physiological symptoms of C limitation, there was no indication of a depletion of root C reserve in aspen seedlings.
Collapse
Affiliation(s)
- David A Galvez
- Department of Renewable Resources, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada.
| | | | | |
Collapse
|
127
|
|
128
|
Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P. Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions. THE NEW PHYTOLOGIST 2010; 188:1099-112. [PMID: 20840507 DOI: 10.1111/j.1469-8137.2010.03443.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Woody species in Mediterranean ecosystems form intra-annual density fluctuations (IADFs) in tree rings in response to changes in environmental conditions, especially water availability. Dendrochronology, quantitative wood anatomy and high-resolution isotopic analysis (using a laser ablation technique) were used to characterize IADFs in Arbutus unedo shrubs grown on two sites with different water availability on the island of Elba (Italy). Our findings show that IADF characterization can provide information about the relationship between environmental factors and tree growth at the seasonal level. At the more xeric site, IADFs mainly located in the early and middle parts of the annual ring, showed a decrease in vessel size and an increase in δ(13) C as a result of drought deficit. Opposite trends were found at the more mesic site, with IADFs located at the end of the ring and associated with a lower δ(13) C. Moreover, at the first site, IADFs are induced by drought deficit, while at the second site IADFs are linked with the regrowth in the last part of the growing season triggered by favourable wet conditions. This combined approach is a promising way for dating problematic wood samples and interpreting the phenomena that trigger the formation of IADFs in the Mediterranean environment.
Collapse
Affiliation(s)
- Giovanna Battipaglia
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Using a broad definition of trees, the evolutionary origins of trees in a nutritional context is considered using data from the fossil record and molecular phylogeny. Trees are first known from the Late Devonian about 380 million years ago, originated polyphyletically at the pteridophyte grade of organization; the earliest gymnosperms were trees, and trees are polyphyletic in the angiosperms. Nutrient transporters, assimilatory pathways, homoiohydry (cuticle, intercellular gas spaces, stomata, endohydric water transport systems including xylem and phloem-like tissue) and arbuscular mycorrhizas preceded the origin of trees. Nutritional innovations that began uniquely in trees were the seed habit and, certainly (but not necessarily uniquely) in trees, ectomycorrhizas, cyanobacterial, actinorhizal and rhizobial (Parasponia, some legumes) diazotrophic symbioses and cluster roots.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at SCRI (Scottish Crop Research Institute), Invergowrie, Dundee, UK.
| | | |
Collapse
|
130
|
Witzany G. Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 2010; 1:160-80. [PMID: 21541001 PMCID: PMC3083953 DOI: 10.4331/wjbc.v1.i5.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/05/2023] Open
Abstract
This article describes a coherent biocommunication categorization for the kingdoms of bacteria, fungi and plants. The investigation further shows that, besides biotic sign use in trans-, inter- and intraorganismic communication processes, a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour. Far from being mechanistic interactions, communication processes within organisms and between organisms are sign-mediated interactions. Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells, tissues, organs and organisms. Signs of biocommunicative processes are chemical molecules in most cases. The signs that are used in a great variety of signaling processes follow syntactic (combinatorial), pragmatic (context-dependent) and semantic (content-specific) rules. These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms. It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria, fungi and plants.
Collapse
Affiliation(s)
- Günther Witzany
- Guenther Witzany, Telos-Philosophische Praxis, Vogelsangstrasse 18c, A-5111-Buermoos, Austria
| |
Collapse
|
131
|
Rychel AL, Peterson KM, Torii KU. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. JOURNAL OF PLANT RESEARCH 2010; 123:275-280. [PMID: 20336477 DOI: 10.1007/s10265-010-0330-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 03/03/2010] [Indexed: 05/27/2023]
Abstract
Stomata are an essential land plant innovation whose patterning and density are under genetic and environmental control. Recently, several putative ligands have been discovered that influence stomatal density, and they all belong to the epidermal patterning factor-like family of secreted cysteine-rich peptides. Two of these putative ligands, EPF1 and EPF2, are expressed exclusively in the stomatal lineage cells and negatively regulate stomatal density. A third, EPFL6 or CHALLAH, is also a negative regulator of density, but is expressed subepidermally in the hypocotyl. A fourth, EPFL9 or STOMAGEN, is expressed in the mesophyll tissues and is a positive regulator of density. Genetic evidence suggests that these ligands may compete for the same receptor complex. Proper stomatal patterning is likely to be an intricate process involving ligand competition, regional specificity, and communication between tissue layers. EPFL-family genes exist in the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, and rice, Oryza sativa, and their sequence analysis yields several genes some of which are related to EPF1, EPF2, EPFL6, and EPFL9. Presence of these EPFL family members in the basal land plants suggests an exciting hypothesis that the genetic components for stomatal patterning originated early in land plant evolution.
Collapse
Affiliation(s)
- Amanda L Rychel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
132
|
Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, Palmer C, Cerabolini B, Pierce S, Hamzehee B, Asri Y, Jamzad Z, Wilson P, Raven JA, Band SR, Basconcelo S, Bogard A, Carter G, Charles M, Castro-Díez P, Cornelissen JHC, Funes G, Jones G, Khoshnevis M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Boustani S, Dehghan M, Guerrero-Campo J, Hynd A, Kowsary E, Kazemi-Saeed F, Siavash B, Villar-Salvador P, Craigie R, Naqinezhad A, Romo-Díez A, de Torres Espuny L, Simmons E. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? ANNALS OF BOTANY 2010; 105:573-84. [PMID: 20375204 PMCID: PMC2850795 DOI: 10.1093/aob/mcq011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/04/2008] [Accepted: 12/21/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. METHODS Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. KEY RESULTS Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. CONCLUSIONS Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.
Collapse
Affiliation(s)
- J G Hodgson
- Peak Science and Environment, Station House, Leadmill, Hathersage, Hope Valley S32 1BA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
This review examines the evolution of the plant vascular system from its beginnings in the green algae to modern arborescent plants, highlighting the recent advances in developmental, organismal, geochemical and climatological research that have contributed to our understanding of the evolution of xylem. Hydraulic trade-offs in vascular structure-function are discussed in the context of canopy support and drought and freeze-thaw stress resistance. This qualitative and quantitative neontological approach to palaeobotany may be useful for interpreting the water-transport efficiencies and hydraulic limits in fossil plants. Large variations in atmospheric carbon dioxide levels are recorded in leaf stomatal densities, and may have had profound impacts on the water conservation strategies of ancient plants. A hypothesis that links vascular function with stomatal density is presented and examined in the context of the evolution of wood and/or vessels. A discussion of the broader impacts of plant transport on hydrology and climate concludes this review.
Collapse
Affiliation(s)
- J Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA.
| |
Collapse
|
134
|
Peterson KM, Rychel AL, Torii KU. Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. THE PLANT CELL 2010; 22:296-306. [PMID: 20179138 PMCID: PMC2845417 DOI: 10.1105/tpc.109.072777] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/22/2010] [Accepted: 02/01/2010] [Indexed: 05/13/2023]
Abstract
Stomata are microscopic valves on the plant epidermis that played a critical role in the evolution of land plants. Studies in the model dicot Arabidopsis thaliana have identified key transcription factors and signaling pathways controlling stomatal patterning and differentiation. Three paralogous Arabidopsis basic helix-loop-helix proteins, SPEECHLESS (SPCH), MUTE, and FAMA, mediate sequential steps of cell-state transitions together with their heterodimeric partners SCREAM (SCRM) and SCRM2. Cell-cell signaling components, including putative ligands, putative receptors, and mitogen-activated protein kinase cascades, orient asymmetric cell divisions and prevent overproduction and clustering of stomata. The recent availability of genome sequence and reverse genetics tools for model monocots and basal land plants allows for the examination of the conservation of genes important in stomatal patterning and differentiation. Studies in grasses have revealed that divergence of SPCH-MUTE-FAMA predates the evolutionary split of monocots and dicots and that these proteins show conserved and novel roles in stomatal differentiation. By contrast, specific asymmetric cell divisions in Arabidopsis and grasses require unique molecular components. Molecular phylogenetic analysis implies potential conservation of signaling pathways and prototypical functions of the transcription factors specifying stomatal differentiation.
Collapse
Affiliation(s)
- Kylee M. Peterson
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Amanda L. Rychel
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Keiko U. Torii
- Department of Biology, University of Washington, Seattle, Washington 98195
- PREST, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| |
Collapse
|
135
|
Abstract
The extant land plants are unique among the monophyletic clade of photosynthetic eukaryotes, which consists of the green algae (chlorophytes), the charophycean algae (charophytes), numerous groups of unicellular algae (prasinophytes) and the embryophytes, by possessing, firstly, a sexual life cycle characterized by an alternation between a haploid, gametophytic and a diploid, sporophytic multicellular generation; secondly, the formation of egg cells within multicellular structures called archegonia; and, thirdly, the retention of the zygote and diploid sporophyte embryo within the archegonium. We review the developmental, paleobotanical and molecular evidence indicating that: the embryophytes descended from a charophyte-like ancestor; this common ancestor had a life cycle with only a haploid multicellular generation; and the most ancient (c. 410 Myr old) land plants (e.g. Cooksonia, Rhynia and Zosterophyllum) had a dimorphic life cycle (i.e. their haploid and diploid generations were morphologically different). On the basis of these findings, we suggest that the multicellular reproductive structures of extant charophytes and embryophytes are developmentally homologous, and that those of the embryophytes evolved by virtue of the co-option and re-deployment of ancient algal homeodomain gene networks.
Collapse
Affiliation(s)
- Karl J Niklas
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
136
|
Franks PJ, Drake PL, Beerling DJ. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. PLANT, CELL & ENVIRONMENT 2009. [PMID: 19682293 DOI: 10.1111/j.1365-3040.2009.002031.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maximum stomatal conductance to water vapour and CO2 (gwmax, gcmax, respectively), which are set at the time of leaf maturity, are determined predominantly by stomatal size (S) and density (D). In theory, many combinations of S and D yield the same gwmax and gcmax, so there is no inherent correlation between S and D, or between S, D and maximum stomatal conductance. However, using basic equations for gas diffusion through stomata of different sizes, we show that a negative correlation between S and D offers several advantages, including plasticity in gwmax and gcmax with minimal change in epidermal area allocation to stomata. Examination of the relationship between S and D in Eucalyptus globulus seedlings and coppice shoots growing in the field under high and low rainfall revealed a strong negative relationship between S and D, whereby S decreased with increasing D according to a negative power function. The results provide evidence that plasticity in maximum stomatal conductance may be constrained by a negative S versus D relationship, with higher maximum stomatal conductance characterized by smaller S and higher D, and a tendency to minimize change in epidermal space allocation to stomata as S and D vary.
Collapse
Affiliation(s)
- Peter J Franks
- 1Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
137
|
Franks PJ, Beerling DJ. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci U S A 2009; 106:10343-7. [PMID: 19506250 PMCID: PMC2693183 DOI: 10.1073/pnas.0904209106] [Citation(s) in RCA: 441] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Indexed: 11/18/2022] Open
Abstract
Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.
Collapse
Affiliation(s)
- Peter J Franks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
138
|
Beerling DJ, Franks PJ. Evolution of stomatal function in 'lower' land plants. THE NEW PHYTOLOGIST 2009; 183:921-925. [PMID: 19702775 DOI: 10.1111/j.1469-8137.2009.02973.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
| | - Peter J Franks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
139
|
Duckett JG, Pressel S, P'ng KMY, Renzaglia KS. Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum. THE NEW PHYTOLOGIST 2009; 183:1053-1063. [PMID: 19552695 DOI: 10.1111/j.1469-8137.2009.02905.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The nineteenth century air-gun explanation for explosive spore discharge in Sphagnum has never been tested experimentally. Similarly, the function of the numerous stomata ubiquitous in the capsule walls has never been investigated. Both intact and pricked Sphagnum capsules, that were allowed to dry out, all dehisced over an 8-12 h period during which time the stomatal guard cells gradually collapsed and their potassium content, measured by X-ray microanalysis in a cryoscanning electron microscope, gradually increased. By contrast, guard cell potassium fell in water-stressed Arabidopsis. The pricking experiments demonstrate that the air-gun notion for explosive spore discharge in Sphagnum is inaccurate; differential shrinkage of the capsule walls causes popping off the rigid operculum. The absence of evidence for a potassium-regulating mechanism in the stomatal guard cells and their gradual collapse before spore discharge indicates that their sole role is facilitation of sporophyte desiccation that ultimately leads to capsule dehiscence. Our novel functional data on Sphagnum, when considered in relation to bryophyte phylogeny, suggest the possibility that stomata first appeared in land plants as structures that facilitated sporophyte drying out before spore discharge and only subsequently acquired their role in the regulation of gaseous exchange.
Collapse
Affiliation(s)
- Jeffrey G Duckett
- School of Biological and Chemical Sciences, Queen Mary University of London E1 4NS, UK
| | - Silvia Pressel
- School of Biological and Chemical Sciences, Queen Mary University of London E1 4NS, UK
| | - Ken M Y P'ng
- Department of Materials, Queen Mary University of London E1 4NS, UK
| | - Karen S Renzaglia
- Plant Biology Department, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
140
|
Meyer M, Seibt U, Griffiths H. To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms. Philos Trans R Soc Lond B Biol Sci 2008; 363:2767-78. [PMID: 18487135 PMCID: PMC2606768 DOI: 10.1098/rstb.2008.0039] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A comparative study has been made of the photosynthetic physiological ecology and carbon isotope discrimination characteristics for modern-day bryophytes and closely related algal groups. Firstly, the extent of bryophyte distribution and diversification as compared with more advanced land plant groups is considered. Secondly, measurements of instantaneous carbon isotope discrimination (Delta), photosynthetic CO(2) assimilation and electron transport rates were compared during the drying cycles. The extent of surface diffusion limitation (when wetted), internal conductance and water use efficiency (WUE) at optimal tissue water content (TWC) were derived for liverworts and a hornwort from contrasting habitats and with differing degrees of thallus ventilation (as intra-thalline cavities and internal airspaces). We also explore how the operation of a biophysical carbon-concentrating mechanism (CCM) tempers isotope discrimination characteristics in two other hornworts, as well as the green algae Coleochaete orbicularis and Chlamydomonas reinhardtii. The magnitude of Delta was compared for each life form over a drying curve and used to derive the surface liquid-phase conductance (when wetted) and internal conductance (at optimal TWC). The magnitude of external and internal conductances, and WUE, was higher for ventilated, compared with non-ventilated, liverworts and hornworts, but the values were similar within each group, suggesting that both factors have been optimized for each life form. For the hornworts, leakiness of the CCM was highest for Megaceros vincentianus and C. orbicularis (approx. 30%) and, at 5%, lowest in C. reinhardtii grown under ambient CO2 concentrations. Finally, evidence for the operation of a CCM in algae and hornworts is considered in terms of the probable role of the chloroplast pyrenoid, as the origins, structure and function of this enigmatic organelle are explored during the evolution of land plants.
Collapse
|
141
|
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. Genome size is a strong predictor of cell size and stomatal density in angiosperms. THE NEW PHYTOLOGIST 2008; 179:975-986. [PMID: 18564303 DOI: 10.1111/j.1469-8137.2008.02528.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Across eukaryotes phenotypic correlations with genome size are thought to scale from genome size effects on cell size. However, for plants the genome/cell size link has only been thoroughly documented within ploidy series and small subsets of herbaceous species. Here, the first large-scale comparative analysis is made of the relationship between genome size and cell size across 101 species of angiosperms of varying growth forms. Guard cell length and epidermal cell area were used as two metrics of cell size and, in addition, stomatal density was measured. There was a significant positive relationship between genome size and both guard cell length and epidermal cell area and a negative relationship with stomatal density. Independent contrast analyses revealed that these traits are undergoing correlated evolution with genome size. However, the relationship was growth form dependent (nonsignificant results within trees/shrubs), although trees had the smallest genome/cell sizes and the highest stomatal density. These results confirm the generality of the genome size/cell size relationship. The results also suggest that changes in genome size, with concomitant influences on stomatal size and density, may influence physiology, and perhaps play an important genetic role in determining the ecological and life-history strategy of a species.
Collapse
Affiliation(s)
- Jeremy M Beaulieu
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AD, UK
| | - Sunil Patel
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Arjun Pendharkar
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Charles A Knight
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
142
|
Kang Y, Outlaw WH, Andersen PC, Fiore GB. Guard-cell apoplastic sucrose concentration--a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. PLANT, CELL & ENVIRONMENT 2007; 30:551-8. [PMID: 17407533 DOI: 10.1111/j.1365-3040.2007.01635.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In broad bean (Vicia faba L.), an apoplastic phloem loader, the sucrose concentration increases up to approximately 2 mM in the leaf apoplast and up to approximately 150 mM in the guard-cell apoplast during the photoperiod. This high concentration in the guard-cell apoplast results from transpiration and is sufficient osmotically to reduce stomatal aperture size by up to 3 microm or approximately 25% of the maximum aperture size. In this paper, we investigated a parallel and required role for high bulk-leaf apoplastic sucrose concentration, which correlates with high photosynthesis rate. An empirically determined combination of lowered light intensity and lowered CO(2) concentration reduced the photosynthesis rate to nominally one-fifth of the control value without a significant change in transpiration. This reduction in photosynthesis caused the sucrose concentration in the leaf apoplast--the immediate source pool for guard cells--to decrease by 70% (to 0.4 mM). In turn, sucrose concentration in the guard-cell apoplast decreased by approximately 80% (to approximately 40 mM). These results complete the required evidence for a non-exclusive, transpiration-linked, photosynthesis-dependent passive mechanism for the modulation of stomatal aperture size. In an ancillary investigation, hexoses in the bulk-leaf apoplast decreased when photosynthesis was lowered, but their concentrations in the guard-cell apoplast of control plants indicated that their osmotic contribution was negligible.
Collapse
Affiliation(s)
- Yun Kang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | |
Collapse
|
143
|
Abstract
Stomata are cellular epidermal valves in plants central to gas exchange and biosphere productivity. The pathways controlling their formation are best understood for Arabidopsis thaliana where stomata are produced through a series of divisions in a dispersed stem cell compartment. The stomatal pathway is an accessible system for analyzing core developmental processes including position-dependent patterning via intercellular signaling and the regulation of the balance between proliferation and cell specification. This review synthesizes what is known about the mechanisms and genes underlying stomatal development. We contrast the functions of genes that act earlier in the pathway, including receptors, kinases, and proteases, with those that act later in the cell lineage. In addition, we discuss the relationships between environmental signals, stomatal development genes, and the capacity for controlling shoot gas exchange.
Collapse
|
144
|
Xie X, Wang Y, Williamson L, Holroyd GH, Tagliavia C, Murchie E, Theobald J, Knight MR, Davies WJ, Leyser HMO, Hetherington AM. The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Curr Biol 2006; 16:882-7. [PMID: 16682349 DOI: 10.1016/j.cub.2006.03.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/03/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Stomatal pores of higher plants close in response to decreases in atmospheric relative humidity (RH). This is believed to be a mechanism that prevents the plant from losing excess water when exposed to a dry atmosphere and as such is likely to have been of evolutionary significance during the colonization of terrestrial environments by the embryophytes. We have conducted a genetic screen, based on infrared thermal imaging, to identify Arabidopsis genes involved in the stomatal response to reduced RH. Here we report the characterization of two genes, identified during this screen, which are involved in the guard cell reduced RH signaling pathway. Both genes encode proteins known to be involved in guard cell ABA signaling. OST1 encodes a protein kinase involved in ABA-mediated stomatal closure while ABA2 encodes an enzyme involved in ABA biosynthesis. These results suggest, in contrast to previously published work, that ABA plays a role in the signal transduction pathway connecting decreases in RH to reductions in stomatal aperture. The identification of OST1 as a component required in stomatal RH and ABA signal transduction supports the proposition that guard cell signaling is organized as a network in which some intracellular signaling proteins are shared among different stimuli.
Collapse
Affiliation(s)
- Xiaodong Xie
- Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Liang YK, Dubos C, Dodd IC, Holroyd GH, Hetherington AM, Campbell MM. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 2005; 15:1201-6. [PMID: 16005292 DOI: 10.1016/j.cub.2005.06.041] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 05/13/2005] [Accepted: 06/01/2005] [Indexed: 11/17/2022]
Abstract
Stomata, dynamic pores found on the surfaces of plant leaves, control water loss from the plant and regulate the uptake of CO(2) for photosynthesis. Stomatal aperture is controlled by the two guard cells that surround the stomatal pore. When the two guard cells are fully turgid, the pore gapes open, whereas turgor loss results in stomatal closure. In order to set the most appropriate stomatal aperture for the prevailing environmental conditions, guard cells respond to multiple internal and external signals. Although much is known about guard-cell signaling pathways, rather little is known about how changes in gene expression are involved in the control of stomatal aperture. We show here that AtMYB61 (At1g09540), a gene encoding a member of the Arabidopsis thaliana R2R3-MYB family of transcription factors, is specifically expressed in guard cells in a manner consistent with involvement in the control of stomatal aperture. Gain-of-function and loss-of-function mutant analyses reveal that AtMYB61 expression is both sufficient and necessary to bring about reductions in stomatal aperture with consequent effects on gas exchange. Taken together, our data provide evidence that AtMYB61 encodes the first transcription factor implicated in the closure of stomata.
Collapse
Affiliation(s)
- Yun-Kuan Liang
- Biology Department, Lancaster Environment Centre, University of Lancaster, Lancaster LA1 4YQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
146
|
Chaerle L, Saibo N, Van Der Straeten D. Tuning the pores: towards engineering plants for improved water use efficiency. Trends Biotechnol 2005; 23:308-15. [PMID: 15922083 DOI: 10.1016/j.tibtech.2005.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 03/15/2005] [Accepted: 04/05/2005] [Indexed: 11/19/2022]
Abstract
The management of limited fresh water resources is a major challenge facing society in the 21st century. The agricultural sector accounts for more than two-thirds of human water withdrawal and is therefore a prime area to implement a more rational water use. Environmental stresses are a major factor limiting stable food production. Given the growing shortage of available water for crops this will be an emerging factor in international agricultural economy. The most environmentally friendly and durable solution to the problem of water shortage is to complement more efficient irrigation approaches with crops with optimal water use efficiency, achieved either through genetic engineering or conventional breeding, combined with high yields.
Collapse
Affiliation(s)
- L Chaerle
- Unit Plant Hormone Signaling and Bio-imaging, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
147
|
Abstract
The appearance of stomatal pores during plant evolution is believed to have been a crucial step in land colonisation. A recent screen for genes involved in stomatal development has identified for the first time a mutant plant with no stomata; the results implicate a MAP kinase cascade in stomatal development.
Collapse
Affiliation(s)
- Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
148
|
Pereira JS, David JS, David TS, Caldeira MC, Chaves MM. Carbon and Water Fluxes in Mediterranean-Type Ecosystems — Constraints and Adaptations. PROGRESS IN BOTANY 2004. [DOI: 10.1007/978-3-642-18819-0_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
149
|
Abstract
Stomata, the small pores on the surfaces of leaves and stalks, regulate the flow of gases in and out of leaves and thus plants as a whole. They adapt to local and global changes on all timescales from minutes to millennia. Recent data from diverse fields are establishing their central importance to plant physiology, evolution and global ecology. Stomatal morphology, distribution and behaviour respond to a spectrum of signals, from intracellular signalling to global climatic change. Such concerted adaptation results from a web of control systems, reminiscent of a 'scale-free' network, whose untangling requires integrated approaches beyond those currently used.
Collapse
Affiliation(s)
- Alistair M Hetherington
- Department of Biological Sciences, The Lancaster Environment Centre, University of Lancaster, Lancaster LA1 4YQ, UK.
| | | |
Collapse
|
150
|
Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. PLANT PHYSIOLOGY 2003; 132:2166-73. [PMID: 12913171 PMCID: PMC181300 DOI: 10.1104/pp.103.023879] [Citation(s) in RCA: 384] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 05/18/2003] [Accepted: 05/18/2003] [Indexed: 05/17/2023]
Abstract
The question as to what triggers stomatal closure during leaf desiccation remains controversial. This paper examines characteristics of the vascular and photosynthetic functions of the leaf to determine which responds most similarly to stomata during desiccation. Leaf hydraulic conductance (K(leaf)) was measured from the relaxation kinetics of leaf water potential (Psi(l)), and a novel application of this technique allowed the response of K(leaf) to Psi(l) to be determined. These "vulnerability curves" show that K(leaf) is highly sensitive to Psi(l) and that the response of stomatal conductance to Psi(l) is closely correlated with the response of K(leaf) to Psi(l). The turgor loss point of leaves was also correlated with K(leaf) and stomatal closure, whereas the decline in PSII quantum yield during leaf drying occurred at a lower Psi(l) than stomatal closure. These results indicate that stomatal closure is primarily coordinated with K(leaf). However, the close proximity of Psi(l) at initial stomatal closure and initial loss of K(leaf) suggest that partial loss of K(leaf) might occur regularly, presumably necessitating repair of embolisms.
Collapse
Affiliation(s)
- Tim J Brodribb
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, USA.
| | | |
Collapse
|