101
|
Batsivari A, Rybtsov S, Souilhol C, Binagui-Casas A, Hills D, Zhao S, Travers P, Medvinsky A. Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture. Stem Cell Reports 2017; 8:1549-1562. [PMID: 28479304 PMCID: PMC5469869 DOI: 10.1016/j.stemcr.2017.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation. Expansion of HSC precursors is accompanied by increased proliferation Final steps of HSC maturation are accompanied by decelerating proliferation Proliferative architecture of intra-aortic clusters is maintained during HSC development c-Kit expression levels correlate with the proliferative status of HSC precursors
Collapse
Affiliation(s)
- Antoniana Batsivari
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Anahi Binagui-Casas
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - David Hills
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Suling Zhao
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Paul Travers
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alexander Medvinsky
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
102
|
Chung S, Kim SH, Seo Y, Kim SK, Lee JY. Quantitative analysis of cell proliferation by a dye dilution assay: Application to cell lines and cocultures. Cytometry A 2017; 91:704-712. [PMID: 28375566 DOI: 10.1002/cyto.a.23105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Cell proliferation represents one of the most fundamental processes in biological systems, thus the quantitative analysis of cell proliferation is important in many biological applications such as drug screening, production of biologics, and assessment of cytotoxicity. Conventional proliferation assays mainly quantify cell number based on a calibration curve of a homogeneous cell population, and therefore are not applicable for the analysis of cocultured cells. Moreover, these assays measure cell proliferation indirectly, based on cellular metabolic activity or DNA content. To overcome these shortcomings, a dye dilution assay employing fluorescent cell tracking dyes that are retained within cells was applied and was diluted proportionally by subsequent cell divisions. Here, it was demonstrated that this assay could be implemented to quantitatively analyze the cell proliferation of different types of cell lines, and to concurrently analyze the proliferation of two types of cell lines in coculture by utilizing cell tracking dyes with different spectral characteristics. The mean division time estimated by the dye dilution assay is compared with the population doubling time obtained from conventional methods and values from literature. Additionally, dye transfer between cocultured cells was investigated and it was found that it is a characteristic of the cells rather than a characteristic of the dye. It was suggested that this method can be easily combined with other flow cytometric analyses of cellular properties, providing valuable information on cell status under diverse conditions. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Soobin Chung
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Youseong-gu, Daejeon, 34113, Republic of Korea
| | - Seol-Hee Kim
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Yuri Seo
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sook-Kyung Kim
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Youseong-gu, Daejeon, 34113, Republic of Korea
| | - Ji Youn Lee
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
103
|
Smirnov A, Solga MD, Lannigan J, Criss AK. High-Throughput Particle Uptake Analysis by Imaging Flow Cytometry. CURRENT PROTOCOLS IN CYTOMETRY 2017; 80:11.22.1-11.22.17. [PMID: 28369762 PMCID: PMC5710744 DOI: 10.1002/cpcy.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quantifying the efficiency of particle uptake by host cells is important in the fields of infectious diseases, autoimmunity, cancer, developmental biology, and drug delivery. Here we present a protocol for high-throughput analysis of particle uptake by imaging flow cytometry, using the bacterium Neisseria gonorrhoeae attached to and internalized by neutrophils as an example. Cells are exposed to fluorescently labeled bacteria, fixed, and stained with a bacteria-specific antibody of a different fluorophore. Thus, in the absence of a permeabilizing agent, extracellular bacteria are double-labeled with two fluorophores while intracellular bacteria remain single-labeled. A spot count algorithm is used to determine the number of single- and double-labeled bacteria in individual cells, to calculate the percent of cells associated with bacteria, percent of cells with internalized bacteria, and percent of cell-associated bacteria that are internalized. These analyses quantify bacterial association and internalization across thousands of cells and can be applied to diverse experimental systems. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology, University
of Virginia, Charlottesville, Virginia, USA
| | - Michael D. Solga
- Department of Microbiology, Immunology, and Cancer Biology, University
of Virginia, Charlottesville, Virginia, USA
| | - Joanne Lannigan
- Department of Microbiology, Immunology, and Cancer Biology, University
of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University
of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
104
|
Faust A, Kandakatla A, van der Merwe Y, Ren T, Huleihel L, Hussey G, Naranjo JD, Johnson S, Badylak S, Steketee M. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. J Biomater Appl 2017; 31:1277-1295. [PMID: 28447547 DOI: 10.1177/0885328217698062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃. However, few studies have analyzed how extracellular matrix hydrogels influence primary central nervous system neuron survival and growth, and whether central nervous system and non-central nervous system extracellular matrix specificity is critical to neuronal responses. Urinary bladder extracellular matrix hydrogels increase both primary hippocampal neuron survival and neurite growth to similar or even greater extents, suggesting extracellular matrix from non-homologous tissue sources, such as urinary bladder matrix-extracellular matrix, may be a more economical and safer alternative to developing central nervous system extracellular matrices for central nervous system applications. Additionally, we show matrix-bound vesicles derived from urinary bladder extracellular matrix are endocytosed by hippocampal neurons and positively regulate primary hippocampal neuron neurite growth. Matrix-bound vesicles carry protein and RNA cargos, including noncoding RNAs and miRNAs that map to the human genome and are known to regulate cellular processes. Thus, urinary bladder matrix-bound vesicles provide natural and transfectable cargoes which offer new experimental tools and therapeutic applications to study and treat central nervous system neuron injury.
Collapse
Affiliation(s)
- Anne Faust
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Apoorva Kandakatla
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Yolandi van der Merwe
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,3 Swanson School of Engineering, Department of Bioengineering University of Pittsburgh, Pittsburgh, PA, USA
| | - Tanchen Ren
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Luai Huleihel
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Hussey
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Diego Naranjo
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott Johnson
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Badylak
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Steketee
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,5 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
105
|
Structure-Function Studies Link Class II Viral Fusogens with the Ancestral Gamete Fusion Protein HAP2. Curr Biol 2017; 27:651-660. [PMID: 28238660 DOI: 10.1016/j.cub.2017.01.049] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 11/24/2022]
Abstract
The conserved transmembrane protein, HAP2/GCS1, has been linked to fertility in a wide range of taxa and is hypothesized to be an ancient gamete fusogen. Using template-based structural homology modeling, we now show that the ectodomain of HAP2 orthologs from Tetrahymena thermophila and other species adopt a protein fold remarkably similar to the dengue virus E glycoprotein and related class II viral fusogens. To test the functional significance of this predicted structure, we developed a flow-cytometry-based assay that measures cytosolic exchange across the conjugation junction to rapidly probe the effects of HAP2 mutations in the Tetrahymena system. Using this assay, alterations to a region in and around a predicted "fusion loop" in T. thermophila HAP2 were found to abrogate membrane pore formation in mating cells. Consistent with this, a synthetic peptide corresponding to the HAP2 fusion loop was found to interact directly with model membranes in a variety of biophysical assays. These results raise interesting questions regarding the evolutionary relationships of class II membrane fusogens and harken back to a long-held argument that eukaryotic sex arose as the byproduct of selection for the horizontal transfer of a "selfish" genetic element from cell to cell via membrane fusion.
Collapse
|
106
|
Fu J, Wiraja C, Chong R, Xu C, Wang DA. Real-time and non-invasive monitoring of embryonic stem cell survival during the development of embryoid bodies with smart nanosensor. Acta Biomater 2017; 49:358-367. [PMID: 27845273 DOI: 10.1016/j.actbio.2016.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/02/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022]
Abstract
Embryonic stem cells (ESCs)-derived embryoid body (EB) is a powerful model for the study of early embryonic development and the discovery of therapeutics for tissue regeneration. This article reports a smart nanosensor platform for labeling and tracking the survival and distribution of ESCs during the EB development in a real-time and non-invasive way. Compared with the cell tracker (i.e. DiO) and the green fluorescent protein (GFP), nanosensors provide the homogenous and highly-efficient ESC labeling. Following the internalization, intracellular nanosensors gradually release the non-fluorescent molecules that become fluorescent only in viable cells. This allows a continuous monitoring of ESC survival and distribution during the process of EB formation. Finally, we confirm that nanosensor labeling does not cause the significant influences to biological properties of the ESCs and EBs. STATEMENT OF SIGNIFICANCE The distribution pattern of viable embryonic stem cells (ESCs) within embryoid body (EB) is closely related with the maturation of EBs. Noninvasive and real-time monitoring of viable ESC distribution in EBs would allow researchers to optimize the culturing condition in time during the EB development and to select the suitable EBs for subsequent applications.
Collapse
|
107
|
Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. MATERIALS 2016; 9:ma9120992. [PMID: 28774112 PMCID: PMC5456956 DOI: 10.3390/ma9120992] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/19/2022]
Abstract
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly(ε-caprolactone) (PCL)/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response.
Collapse
|
108
|
Nicholls FJ, Liu JR, Modo M. A Comparison of Exogenous Labels for the Histological Identification of Transplanted Neural Stem Cells. Cell Transplant 2016; 26:625-645. [PMID: 27938486 DOI: 10.3727/096368916x693680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interpretation of cell transplantation experiments is often dependent on the presence of an exogenous label for the identification of implanted cells. The exogenous labels Hoechst 33342, 5-bromo-2'-deoxyuridine (BrdU), PKH26, and Qtracker were compared for their labeling efficiency, cellular effects, and reliability to identify a human neural stem cell (hNSC) line implanted intracerebrally into the rat brain. Hoechst 33342 (2 mg/ml) exhibited a delayed cytotoxicity that killed all cells within 7 days. This label was hence not progressed to in vivo studies. PKH26 (5 μM), Qtracker (15 nM), and BrdU (0.2 μM) labeled 100% of the cell population at day 1, although BrdU labeling declined by day 7. BrdU and Qtracker exerted effects on proliferation and differentiation. PKH26 reduced viability and proliferation at day 1, but this normalized by day 7. In an in vitro coculture assay, all labels transferred to unlabeled cells. After transplantation, the reliability of exogenous labels was assessed against the gold standard of a human-specific nuclear antigen (HNA) antibody. BrdU, PKH26, and Qtracker resulted in a very small proportion (<2%) of false positives, but a significant amount of false negatives (∼30%), with little change between 1 and 7 days. Exogenous labels can therefore be reliable to identify transplanted cells without exerting major cellular effects, but validation is required. The interpretation of cell transplantation experiments should be presented in the context of the label's limitations.
Collapse
|
109
|
Sun X, Zhang C, Jin H, Sun G, Tian Y, Shi W, Zhang D. Flow cytometric analysis of T lymphocyte proliferation in vivo by EdU incorporation. Int Immunopharmacol 2016; 41:56-65. [PMID: 27816727 DOI: 10.1016/j.intimp.2016.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
Monitoring T lymphocyte proliferation, especially in vivo, is essential for the evaluation of adaptive immune reactions. Flow cytometry-based proliferation assays have advantages in measuring cell division of different T lymphocyte subsets at the same time by multicolor labelling. In this study, we aimed to establish the use of 5-Ethynyl-2'-deoxyuridine (EdU) incorporation in vivo to monitor T lymphocyte proliferation by flow cytometry with an adoptive transfer model. We found that fixation followed by permeabilization preserved T cell surface antigens and had no obvious effects on the fluorescence intensity of APC, PE, PE-Cy7, FITC and PerCP-Cy5.5 when the concentration of the permeabilization reagents was optimized. However, the click reaction resulted in a significant decrease in the fluorescence intensity of PE and PE-Cy7, and surface staining after the click reaction improved the fluorescence intensity. Thus, an extra step of blocking with PBS with 3% FBS between the click reaction and cell surface staining is needed. Furthermore, the percentage of EdU-positive cells increased in a dose-dependent manner, and the saturated dose of EdU was 20mg/kg. Intraperitoneal and intravenous injection had no differences in lymphocyte proliferation detection with EdU in vivo. In addition, T cell proliferation measured by EdU incorporation was comparable to BrdU but was lower than CFSE labelling. In conclusion, we optimized the protocols for EdU administration in vivo and staining in vitro, providing a feasible method for the measurement of T lymphocyte proliferation with EdU incorporation by flow cytometry in vivo.
Collapse
Affiliation(s)
- Xiaojing Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Chunpan Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Hua Jin
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Guangyong Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Yue Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Wen Shi
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China.
| |
Collapse
|
110
|
Phenyltetrazolyl-phenylamides: Substituent impact on modulation capability and selectivity toward the efflux protein ABCG2 and investigation of interaction with the transporter. Eur J Med Chem 2016; 124:881-895. [DOI: 10.1016/j.ejmech.2016.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/15/2023]
|
111
|
Press AT, Ungelenk L, Rinkenauer AC, Gröger M, Lehmann F, Mosig A, Schubert US, Clemens MG, Bauer M. A new fluorescent dye for cell tracing and mitochondrial imaging in vitro and in vivo. JOURNAL OF BIOPHOTONICS 2016; 9:888-900. [PMID: 26563981 DOI: 10.1002/jbio.201500190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Mitochondria contribute to redox and calcium balance, and apoptosis thus regulating cellular fate. In the present study, mitochondrial staining applying a novel dye, V07-07059, was performed in human embryonic kidney cells, a human vascular endothelial cell line and primary human mononuclear cells. The new fluorescent mega Stokes dye (peak excitation: 488 nm, peak emission: 554 nm) showed superior fluorescent properties and stability. V07-07059 stains mitochondria dependent on their membrane potential and is safe to use in vitro and in vivo. Unlike other dyes applied in this context (e.g. Tetramethylrhodamine methyl ester), V07-07059 only marginally inhibits mitochondrial respiration and function. V07-07059 enables real time imaging of mitochondrial trafficking and remodeling. Prolonged staining with V07-07059 demonstrated the dyes suitability as a novel probe to track cells. In comparison to the widely used standard for cell proliferation and tracking studies 5(6)-diacetate N-succinimidyl ester, V07-07059 proved superior regarding toxicity and photostability.
Collapse
Affiliation(s)
- Adrian T Press
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
- Department of Anesthesiology & Critical Care, Jena University Hospital, Erlanger Allee 101, 07747, Jena
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Luisa Ungelenk
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
- Department of Anesthesiology & Critical Care, Jena University Hospital, Erlanger Allee 101, 07747, Jena
| | - Alexandra C Rinkenauer
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Marko Gröger
- Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University, 07743, Jena, Germany
| | - Frank Lehmann
- Dyomics GmbH, Jena Germany, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Alexander Mosig
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University, 07743, Jena, Germany
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Mark G Clemens
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
- Department of Biological Sciences and Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223, USA
| | - Michael Bauer
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.
- Department of Anesthesiology & Critical Care, Jena University Hospital, Erlanger Allee 101, 07747, Jena.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
112
|
Atwal S, Giengkam S, VanNieuwenhze M, Salje J. Live imaging of the genetically intractable obligate intracellular bacteria Orientia tsutsugamushi using a panel of fluorescent dyes. J Microbiol Methods 2016; 130:169-176. [PMID: 27582280 PMCID: PMC5073074 DOI: 10.1016/j.mimet.2016.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of the molecular mechanisms of bacterial infection and pathogenesis are disproportionally derived from a small number of well-characterised species and strains. One reason for this is the enormous time and resources required to develop a new organism into experimental system that can be interrogated at the molecular level, in particular with regards to the development of genetic tools. Live cell imaging by fluorescence microscopy is a powerful technique to study biological processes such as bacterial motility, host cell invasion, and bacterial growth and division. In the absence of genetic tools that enable exogenous expression of fluorescent proteins, fluorescent chemical probes can be used to label and track living cells. A large number of fluorescent chemical probes are commercially available, but these have overwhelmingly been applied to the study of eukaryotic cell systems. Here, we present a methodical analysis of four different classes of probes, which can be used to delineate the cytoplasm, nucleic acids, cell membrane or peptidoglycan of living bacterial cells. We have tested these in the context of the important but neglected human pathogen Orientia tsutsugamushi but expect that the methodology would be broadly applicable to other bacterial species. A panel of fluorescent dyes are used to label living cells of the obligate intracellular bacterium Orientia tsutsugamushi. These dyes include CFSE, SYTO9, DiI/DiO/DiD and HADA. These dyes label the bacterial cytoplasm, nucleic acids, lipid membrane and cell wall respectively.
Collapse
Affiliation(s)
- Sharanjeet Atwal
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Suparat Giengkam
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Jeanne Salje
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
113
|
Issa ME, Berndt S, Carpentier G, Pezzuto JM, Cuendet M. Bruceantin inhibits multiple myeloma cancer stem cell proliferation. Cancer Biol Ther 2016; 17:966-75. [PMID: 27434731 DOI: 10.1080/15384047.2016.1210737] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.
Collapse
Affiliation(s)
- Mark E Issa
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| | - Sarah Berndt
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| | - Gilles Carpentier
- b Laboratoire CRRET, Faculté des Sciences et Technologie , Université Paris Est Créteil , Créteil Cedex , France
| | - John M Pezzuto
- c Arnold & Marie Schwartz College of Pharmacy and Health Sciences , Long Island University , Brooklyn , NY , USA
| | - Muriel Cuendet
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| |
Collapse
|
114
|
Alterations in P-Glycoprotein Expression and Function Between Macrophage Subsets. Pharm Res 2016; 33:2713-21. [PMID: 27431863 DOI: 10.1007/s11095-016-1998-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Macrophages are an important cellular reservoir in HIV, and exist in two phenotypically dissimilar subsets, the pro-inflammatory M1 phenotype, and the anti-inflammatory M2 phenotype. The role of these two subsets is uncertain. We hypothesized that differences in drug efflux transporters exist between the subsets, which would result in altered intracellular drug concentrations between these cells. METHODS U937 monocytic cells were polarized to the M1 or M2 phenotype via treatment with interferon-gamma and LPS, or interleukins 4, 13, and LPS, respectively. PGP function was assessed with Hoechst 33342, and expression via western blotting. Intracellular lopinavir was assessed via LC-MS/MS. Data was confirmed with primary monocyte derived macrophages. RESULTS We observed significant differences in intracellular concentrations of lopinavir, a PGP substrate, with higher concentrations in M1 cells. PGP function and expression was higher in the M2 macrophages. These results were confirmed with primary monocyte derived macrophages. CONCLUSIONS This data shows that there are previously unreported differences in P-glycoprotein expression between macrophage subsets, and suggests that there may be differences for other transporters. These differences can play a role in intracellular drug concentrations in these cells, and may allow for low-level HIV replication.
Collapse
|
115
|
Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage. Stem Cells Int 2016; 2016:6549347. [PMID: 27375746 PMCID: PMC4916289 DOI: 10.1155/2016/6549347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342) represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL), with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique.
Collapse
|
116
|
McArdle S, Mikulski Z, Ley K. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J Exp Med 2016; 213:1117-31. [PMID: 27270892 PMCID: PMC4925021 DOI: 10.1084/jem.20151885] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
Ley et al. provide a review of the technology and accomplishments of dynamic imaging of myeloid cells in atherosclerosis. Intravital imaging is an invaluable tool for understanding the function of cells in healthy and diseased tissues. It provides a window into dynamic processes that cannot be studied by other techniques. This review will cover the benefits and limitations of various techniques for labeling and imaging myeloid cells, with a special focus on imaging cells in atherosclerotic arteries. Although intravital imaging is a powerful tool for understanding cell function, it alone does not provide a complete picture of the cell. Other techniques, such as flow cytometry and transcriptomics, must be combined with intravital imaging to fully understand a cell's phenotype, lineage, and function.
Collapse
Affiliation(s)
- Sara McArdle
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Zbigniew Mikulski
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Klaus Ley
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
117
|
Use of flow cytometry and PCR analysis to detect 5-carboxyfluoroscein-stained obligate intracellular bacteria Lawsonia intracellularis invasion of McCoy cells. J Microbiol Methods 2016; 126:60-6. [PMID: 27154728 DOI: 10.1016/j.mimet.2016.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Abstract
In this study, we describe a method to quantify invasion of obligate intracellular bacteria, Lawsonia intracellularis, inside McCoy cells. In immunological research, the cell-permeable fluorescent dye 5'-carboxyfluoroscein succidyl ester (CFSE) is commonly used to quantify eukaryotic cellular proliferation. Instead of using it in this traditional way, we stained L. intracellularis with CFSE dye prior to infection of McCoy cells. Flow cytometry was performed to quantify the percentage of eukaryotic cells which had taken up or were associated with fluorescent bacteria. As obligate intracellular bacteria, they cannot replicate outside of eukaryotic cells and thus qPCR analysis was used to quantify bacterial growth. Indirectly, PCR analysis confirmed invasion rather than adherence to the McCoy cell surface. Fluorescent activated cell sorting (FACS) was used to sort the CFSE(+) (i.e. infected) McCoy cells from the CFSE(-) (i.e. non-infected) McCoy cells and confocal microscopy was used to confirm bacterial invasion and cytosolic localization of CFSE-L. intracellularis. To show that this approach could be used in conjunction with functional assays, we investigated the effect that serum antibodies had on CFSE-bacterial invasion and growth. Instead of blocking invasion, rabbit hyperimmune serum augmented invasion of the bacteria inside McCoy cells and qPCR analysis confirmed bacterial growth over the course of 5days. We conclude that CFSE-labeling of bacteria and qPCR can be used to track and quantify bacterial invasion and may be a valuable tool for studying the invasive properties of bacteria, especially if commercial antibodies are not available. This approach may be adapted for use in other obligate intracellular bacteria and intracellular pathogens.
Collapse
|
118
|
Trichobilharzia regenti (Schistosomatidae): 3D imaging techniques in characterization of larval migration through the CNS of vertebrates. Micron 2016; 83:62-71. [DOI: 10.1016/j.micron.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 01/12/2023]
|
119
|
González R, Dobrinski I. Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 2016; 56:83-98. [PMID: 25991701 DOI: 10.1093/ilar/ilv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals.
Collapse
Affiliation(s)
- Raquel González
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| |
Collapse
|
120
|
Xu G, Meng ZX, Lin JD, Deng CX, Carson PL, Fowlkes JB, Tao C, Liu X, Wang X. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy. Sci Rep 2016; 6:16937. [PMID: 26842459 PMCID: PMC4740791 DOI: 10.1038/srep16937] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/21/2015] [Indexed: 01/22/2023] Open
Abstract
Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D "physio-chemical signature" for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.
Collapse
Affiliation(s)
- Guan Xu
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Zhuo-xian Meng
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jian-die Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Cheri X. Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul L. Carson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - J. Brian Fowlkes
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Chao Tao
- Key Laboratory of Modern Acoustics, Nanjing University, Nanjing, 210093, China
| | - Xiaojun Liu
- Key Laboratory of Modern Acoustics, Nanjing University, Nanjing, 210093, China
| | - Xueding Wang
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
121
|
A new cytofluorimetric approach to evaluate the circulating microparticles in subjects with antiphospholipid antibodies. Thromb Res 2015; 136:1252-8. [PMID: 26476741 DOI: 10.1016/j.thromres.2015.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Growing evidence supports the idea that microparticles (MPs) could contribute to the pathogenesis of the thrombotic phenomena associated with antiphospholipid antibody syndrome (APS), inducing a hypercoagulable state. But, to date, different approaches to evaluate circulating MPs and conflicting results have been reported. MATERIALS AND METHODS We have characterized the different circulating subpopulations of MPs in APS patients, and in asymptomatic aPL-positive subjects (carriers) by examining the correlation between the amount and phenotype of MPs and the clinical parameters. Forty-eight subjects were enrolled: 16 with primary APS, 16 aPL-positive, but without clinical criteria for APS (carriers), and 16 healthy subjects. The levels of MPs were evaluated using a new cytofluorimetric approach based on BD Horizon Violet Proliferation dye (VPD) 450. RESULTS AND CONCLUSIONS Using a new detection cytofluorimetric approach, we demonstrated that the AnnV-negative MPs, underestimated/or excluded in the previous studies, are a large subset of circulating MPs. Also, the levels of MPs in the plasma of aPL positive subjects indicate a state of cellular activation, which is much more pronounced in patients with APS compared to aPL carriers. Moreover, the preliminary data of our pilot study suggest that the evaluation of circulating MPs, in particular PMPs and EMPs, could be used as a surrogate biomarker for platelet and vascular damage monitoring and, if confirmed in a more numerous cohort of patients, it could be used as a prognostic factor to identify aPL positive subjects at higher risk of developing thrombosis.
Collapse
|
122
|
Petrik D, Latchney SE, Masiulis I, Yun S, Zhang Z, Wu JI, Eisch AJ. Chromatin Remodeling Factor Brg1 Supports the Early Maintenance and Late Responsiveness of Nestin-Lineage Adult Neural Stem and Progenitor Cells. Stem Cells 2015; 33:3655-65. [PMID: 26418130 DOI: 10.1002/stem.2215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/14/2015] [Indexed: 12/25/2022]
Abstract
Insights from embryonic development suggest chromatin remodeling is important in adult neural stem cells (aNSCs) maintenance and self-renewal, but this concept has not been fully explored in the adult brain. To assess the role of chromatin remodeling in adult neurogenesis, we inducibly deleted Brg1--the core subunit of SWI/SNF-like Brg1/Brm-associated factor chromatin remodeling complexes--in nestin-expressing aNSCs and their progeny in vivo and in culture. This resulted in abnormal adult neurogenesis in the hippocampus, which initially reduced hippocampal aNSCs and progenitor maintenance, and later reduced its responsiveness to physiological stimulation. Mechanistically, deletion of Brg1 appeared to impair cell cycle progression, which is partially due to elevated p53 pathway and p21 expression. Knockdown of p53 rescued the neurosphere growth defects caused by Brg1 deletion. Our results show that epigenetic chromatin remodeling (via a Brg1 and p53/p21-dependent process) determines the aNSCs and progenitor maintenance and responsiveness of neurogenesis.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah E Latchney
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Irene Masiulis
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sanghee Yun
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zilai Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiang I Wu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
123
|
Ayoub H, Ainseba B, Langlais M, Thiébaut R. Parameters identification for a model of T cell homeostasis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2015; 12:917-936. [PMID: 26280181 DOI: 10.3934/mbe.2015.12.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we consider a model of T cell homeostasis based on the Smith-Martin model. This nonlinear model is structured by age and CD44 expression. First, we establish the mathematical well-posedness of the model system. Next, we prove the theoretical identifiability regarding the up-regulation of CD44, the proliferation time phase and the rate of entry into division, by using the experimental data. Finally, we compare two versions of the Smith-Martin model and we identify which model fits the experimental data best.
Collapse
Affiliation(s)
- Houssein Ayoub
- IMB UMR CNRS 5251, Bordeaux University, 3 Place de la Victoire, 33076 Bordeaux Cedex, France.
| | | | | | | |
Collapse
|
124
|
Lin HH, Lee HW, Lin RJ, Huang CW, Liao YC, Chen YT, Fang JM, Lee TC, Yu AL, Chang HC. Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells with Fluorescent Nanodiamonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4394-402. [PMID: 26077637 DOI: 10.1002/smll.201500878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/11/2015] [Indexed: 05/05/2023]
Abstract
Quiescent cancer stem cells (CSCs) have long been considered to be a source of tumor initiation. However, identification and isolation of these cells have been hampered by the fact that commonly used fluorescent markers are not sufficiently stable, both chemically and photophysically, to allow tracking over an extended period of time. Here, it is shown that fluorescent nanodiamonds (FNDs) are well suited for this application. Genotoxicity tests of FNDs with comet and micronucleus assays for human fibroblasts and breast cancer cells indicate that the nanoparticles neither cause DNA damage nor impair cell growth. Using AS-B145-1R breast cancer cells as the model cell line for CSC, it is found that the FND labeling outperforms 5-ethynyl-2'-deoxyuridine (EdU) and carboxyfluorescein diacetate succinimidyl ester (CFSE) in regards to its long-term tracking capability (>20 d). Moreover, through a quantification of their stem cell activity by measuring mammosphere-forming efficiencies (MFEs) and self-renewal rates, the FND-positive cells are identified to have an MFE twice as high as that of the FND-negative cells isolated from the same dissociated mammospheres. Thus, the nanoparticle-based labeling technique provides an effective new tool for tracking and finding slow-proliferating/quiescent CSCs in cancer research.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
- Taiwan International Graduate Program-Chemical Biology and Molecular Biophysics, Academia Sinica, Taipei, 115, Taiwan
| | - Hsiao-Wen Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ruey-Jen Lin
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Chih-Wei Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Chun Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yit-Tsong Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Alice L Yu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| |
Collapse
|
125
|
Siegel SJ, Roche AM, Weiser JN. Influenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source. Cell Host Microbe 2015; 16:55-67. [PMID: 25011108 DOI: 10.1016/j.chom.2014.06.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/07/2014] [Accepted: 05/01/2014] [Indexed: 11/15/2022]
Abstract
Much of the mortality attributed to influenza virus is due to secondary bacterial pneumonia, particularly from Streptococcus pneumoniae. However, mechanisms underlying this coinfection are incompletely understood. We find that prior influenza infection enhances pneumococcal colonization of the murine nasopharynx, which in turn promotes bacterial spread to the lungs. Influenza accelerates bacterial replication in vivo, and sialic acid, a major component of airway glycoconjugates, is identified as the host-derived metabolite that stimulates pneumococcal proliferation. Influenza infection increases sialic acid and sialylated mucin availability and enhances desialylation of host glycoconjugates. Pneumococcal genes for sialic acid catabolism are required for influenza to promote bacterial growth. Decreasing sialic acid availability in vivo by genetic deletion of the major airway mucin Muc5ac or mucolytic treatment limits influenza-induced pneumococcal replication. Our findings suggest that higher rates of disease during coinfection could stem from influenza-provided sialic acid, which increases pneumococcal proliferation, colonization, and aspiration.
Collapse
Affiliation(s)
- Steven J Siegel
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aoife M Roche
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey N Weiser
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
126
|
Phetsouphanh C, Zaunders JJ, Kelleher AD. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci 2015; 16:18878-93. [PMID: 26274954 PMCID: PMC4581277 DOI: 10.3390/ijms160818878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.
Collapse
Affiliation(s)
| | - John James Zaunders
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| | - Anthony Dominic Kelleher
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| |
Collapse
|
127
|
Sosa-Castañeda J, Hernández-Mendoza A, Astiazarán-García H, Garcia HS, Estrada-Montoya MC, González-Córdova AF, Vallejo-Cordoba B. Screening of Lactobacillus strains for their ability to produce conjugated linoleic acid in milk and to adhere to the intestinal tract. J Dairy Sci 2015; 98:6651-9. [PMID: 26233456 DOI: 10.3168/jds.2014-8515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/03/2015] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) has been shown to provide beneficial effects on health; however, the amount consumed in food is far from that required for the desired effects. Thus, increasing the CLA content in dairy foods through milk fermentation with specific lactic acid bacteria (LAB) offers an interesting alternative. Moreover, some LAB may be able to adhere to the intestinal mucosa and produce CLA through endogenous synthesis. Therefore, the objective of this study was to screen LAB isolates for their ability to produce CLA in skim milk and in simulated gastrointestinal conditions. Additionally, the ability of selected CLA-producing LAB to adhere to the intestinal mucosa in a murine model was assessed. Results showed that of 13 strains of Lactobacillus tested, only 4 were able to produce CLA in skim milk supplemented with linoleic acid (13.44 ± 0.78 to 50.9 ± 0.26 µg/mL). Furthermore, these 4 Lactobacillus strains were able to survive and produce CLA in simulated gastrointestinal conditions and to adhere to the intestinal mucosa of Wistar rats after 7 d of oral inoculation with fluorescently labeled bacteria. Accordingly, these 4 Lactobacillus strains may be used to manufacture fermented dairy foods to increase CLA content, and consumption of these fermented milks may result in CLA produced endogenously by these LAB.
Collapse
Affiliation(s)
- J Sosa-Castañeda
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - A Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - H Astiazarán-García
- Laboratorio de Patología Experimental, Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico
| | - H S Garcia
- Unidad de Investigación y Desarrollo en Alimentos (UNIDA) Instituto Tecnológico de Veracruz M. A. de Quevedo, Veracruz, Veracruz 91897, Mexico
| | - M C Estrada-Montoya
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
128
|
Vitales-Noyola M, Doníz-Padilla L, Álvarez-Quiroga C, Monsiváis-Urenda A, Portillo-Salazar H, González-Amaro R. Quantitative and functional analysis of CD69+ NKG2D+ T regulatory cells in healthy subjects. Hum Immunol 2015; 76:511-8. [DOI: 10.1016/j.humimm.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/16/2015] [Accepted: 06/02/2015] [Indexed: 12/18/2022]
|
129
|
Hadjicharalambous C, Mygdali E, Prymak O, Buyakov A, Kulkov S, Chatzinikolaidou M. Proliferation and osteogenic response of MC3T3-E1 pre-osteoblastic cells on porous zirconia ceramics stabilized with magnesia or yttria. J Biomed Mater Res A 2015; 103:3612-24. [PMID: 25847599 DOI: 10.1002/jbm.a.35475] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 12/26/2022]
Abstract
Dense zirconia ceramics are used in bone applications due to their mechanical strength and biocompatibility, but lack osseointegration. A porous interface in contact with bone tissue may lead to better bone bonding but the biological properties of porous zirconia are not widely explored. The present study focuses on the manufacturing of an yttria- (YSZ) and a magnesia-stabilized (MgSZ) porous zirconia, and on their in vitro biological investigation. The sintered ceramics had similar characteristics of porosity, pore size and interconnectivity. Their elastic moduli and compressive strength values were within the range of the values of human cortical bone. MC3T3-E1 pre-osteoblasts were used to investigate the proliferation, alkaline phosphatase (ALP) activity, collagen deposition and expression profile of four genes involved in bone metabolism of cells on porous ceramics. Scanning electron and fluorescence microscopy were employed to visualize cell morphology and growth. Pre-osteoblasts adhered well on both ceramics but cell numbers on YSZ were higher. Cells exhibited an increase in ALP activity and collagen deposition after 14 days on both MgSZ and YSZ, with higher levels on YSZ. Real-time quantitative polymerase chain reaction (qPCR) showed that the expression of bone sialoprotein (Bsp) and collagen type I (col1aI) were significantly higher on YSZ. No significant differences were found in their ability to regulate the early gene expression of Runx2 and Alp. Nevertheless, the biomineralized calcium content was similar on both ceramics after 21 days, indicating that despite chemical differences, both scaffolds direct the pre-osteoblasts toward a mature state capable of mineralizing the extracellular matrix.
Collapse
Affiliation(s)
| | - Evdokia Mygdali
- Department of Materials Science and Technology, University of Crete, Heraklion, 71003, Greece
| | - Oleg Prymak
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen, 45117, Germany
| | - Ales Buyakov
- Tomsk State University and ISPMS RAS, 2/4 Academicheskii Avenue, Tomsk, 634021, Russia
| | - Sergei Kulkov
- Tomsk State University and ISPMS RAS, 2/4 Academicheskii Avenue, Tomsk, 634021, Russia
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion, 71003, Greece.,IESL-FORTH, Vasilika Vouton, Heraklion, 71110, Greece
| |
Collapse
|
130
|
Hadjicharalambous C, Buyakov A, Buyakova S, Kulkov S, Chatzinikolaidou M. Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and
in vitro
biological response. Biomed Mater 2015; 10:025012. [DOI: 10.1088/1748-6041/10/2/025012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
131
|
Gardner JK, Mamotte CDS, Patel P, Yeoh TL, Jackaman C, Nelson DJ. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS One 2015; 10:e0123563. [PMID: 25886502 PMCID: PMC4401725 DOI: 10.1371/journal.pone.0123563] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs) were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay), upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.
Collapse
Affiliation(s)
- Joanne K. Gardner
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Cyril D. S. Mamotte
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Priya Patel
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Teong Ling Yeoh
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Connie Jackaman
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Delia J. Nelson
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- CHIRI Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
132
|
Filby A, Begum J, Jalal M, Day W. Appraising the suitability of succinimidyl and lipophilic fluorescent dyes to track proliferation in non-quiescent cells by dye dilution. Methods 2015; 82:29-37. [PMID: 25802116 DOI: 10.1016/j.ymeth.2015.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 01/21/2015] [Accepted: 02/25/2015] [Indexed: 01/05/2023] Open
Abstract
Successful completion of the cell cycle usually results in two identical daughter progeny. This process of generational doubling is termed proliferation and when it occurs in a regulated fashion the benefits range from driving embryonic development to mounting a successful immune response. However when it occurs in a dis-regulated fashion, it is one of the hallmarks of cancer and autoimmunity. These very reasons make proliferation a highly informative parameter in many different biological systems. Conventional flow cytometry (CFC) is a high-throughput, fluorescence-based method for measuring the phenotype and function of cells. The application of CFC to measuring proliferation requires a fluorescent dye able to mark live cells so that when they divide, the daughter progeny receives approximately half the fluorescence of the parent. In measurement space, this translates into peaks of fluorescence decreasing by approximately half, each corresponding to a round of division. It is essential that these peaks can be resolved from one another otherwise it is nearly impossible to obtain accurate quantitative proliferation data. Peak resolution is affected by many things, including instrument performance, the choice of fluorescent dye and the inherent properties of the cells under investigation. There are now many fluorescent dyes available for tracking proliferation by dye dilution differing in their chemistry and spectral properties. Here we provide a method for assessing the performance of various candidate dyes with particular emphasis on situations where the cell type is non-quiescent. We have shown previously that even under optimised instrument and labelling conditions, the heterogeneity of non-quiescent cells makes it impossible to obtain an input width below the threshold for peak resolution without reducing the fluorescence distribution using a cell sorter. Moreover, our method also measures how the dye performs post-labelling in terms of loss/transfer to other cells and how the dye is inherited across the cytokinetic plane. All of these factors will affect peak resolution both in non-quiescent and primary cell types.
Collapse
Affiliation(s)
- Andrew Filby
- Flow Cytometry Core Facility, Newcastle Biomedicine, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; FACS Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, Holborn, WC2A 3LY London, UK.
| | - Julfa Begum
- FACS Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, Holborn, WC2A 3LY London, UK
| | - Marwa Jalal
- FACS Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, Holborn, WC2A 3LY London, UK
| | - William Day
- FACS Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, Holborn, WC2A 3LY London, UK
| |
Collapse
|
133
|
Nugroho RH, Yoshikawa K, Shimizu H. Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 2015; 120:396-404. [PMID: 25795572 DOI: 10.1016/j.jbiosc.2015.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
Acid stress has been reported to inhibit cell growth and decrease productivity during bio-production processes. In this study, a metabolomics approach was conducted to understand the effect of lactic acid induced stress on metabolite pools in Saccharomyces cerevisiae. Cells were cultured with lactic acid as the acidulant, with or without initial pH control, i.e., at pH 6 or pH 2.5, respectively. Under conditions of low pH, lactic acid led to a decrease in the intracellular pH and specific growth rate; however, these parameters remained unaltered in the cultures with pH control. Capillary electrophoresis-mass spectrometry followed by a statistical principal component analysis was used to identify the metabolites and measure the increased concentrations of ATP, glutathione and proline during severe acid stress. Addition of proline to the acidified cultures improved the specific growth rates. We hypothesized that addition of proline protected the cells from acid stress by combating acid-induced oxidative stress. Lactic acid diffusion into the cell resulted in intracellular acidification, which elicited an oxidative stress response and resulted in increased glutathione levels.
Collapse
Affiliation(s)
- Riyanto Heru Nugroho
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
134
|
Chen J, Huo J, Jia Z, Song Y, Li Y, Zhang L. Effects of atrazine on the proliferation and cytotoxicity of murine lymphocytes with the use of carboxyfluorescein succinimidyl ester-based flow cytometric approaches. Food Chem Toxicol 2015; 76:61-9. [DOI: 10.1016/j.fct.2014.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/24/2014] [Accepted: 11/28/2014] [Indexed: 12/31/2022]
|
135
|
Ivanov DP, Parker TL, Walker DA, Alexander C, Ashford MB, Gellert PR, Garnett MC. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J Biotechnol 2015; 205:3-13. [PMID: 25592050 DOI: 10.1016/j.jbiotec.2015.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Physiologically relevant in vitro models can serve as biological analytical platforms for testing novel treatments and drug delivery systems. We describe the first steps in the development of a 3D human brain tumour co-culture model that includes the interplay between normal and tumour tissue along with nutrient gradients, cell-cell and cell-matrix interactions. The human medulloblastoma cell line UW228-3 and human foetal brain tissue were marked with two supravital fluorescent dyes (CDCFDASE, Celltrace Violet) and cultured together in ultra-low attachment 96-well plates to form reproducible single co-culture spheroids (d = 600 μm, CV% = 10%). Spheroids were treated with model cytotoxic drug etoposide (0.3-100 μM) and the viability of normal and tumour tissue quantified separately using flow cytometry and multiphoton microscopy. Etoposide levels of 10 μM were found to maximise toxicity to tumours (6.5% viability) while stem cells maintained a surviving fraction of 40%. The flexible cell marking procedure and high-throughput compatible protocol make this platform highly transferable to other cell types, primary tissues and personalised screening programs. The model's key anticipated use is for screening and assessment of drug delivery strategies to target brain tumours, and is ready for further developments, e.g. differentiation of stem cells to a range of cell types and more extensive biological validation.
Collapse
Affiliation(s)
- Delyan P Ivanov
- School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - Terry L Parker
- Medical School, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - David A Walker
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | | | | | | | | |
Collapse
|
136
|
Abstract
Recruitment of leukocytes into arteries is a hallmark event throughout all stages of atherosclerosis and hence stands out as a primary therapeutic target. To understand the molecular mechanisms of arterial leukocyte subset infiltration, real-time visualization of recruitment processes of leukocyte subsets at high resolution is a prerequisite. In this review we provide a balanced overview of optical imaging modalities in the more commonly used experimental models for atherosclerosis (e.g., mouse models) allowing for in vivo display of recruitment processes in large arteries and further detail strategies to overcome hurdles inherent to arterial imaging. We further provide a synopsis of techniques allowing for non-toxic, photostable labeling of target structures. Finally, we deliver a short summary of ongoing developments including the emergence of novel labeling approaches, the use of superresolution microscopy, and the potentials of opto-acoustic microscopy and intravascular 2-dimensional near-infrared fluorescence microscopy.
Collapse
Affiliation(s)
- Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
137
|
Krstic M, Stojadinovic M, Smiljanic K, Stanic-Vucinic D, Cirkovic Velickovic T. The anti-cancer activity of green tea, coffee and cocoa extracts on human cervical adenocarcinoma HeLa cells depends on both pro-oxidant and anti-proliferative activities of polyphenols. RSC Adv 2015. [DOI: 10.1039/c4ra13230k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thein vitroanti-cervical cancer potency of tested polyphenol extracts is exhibited in the following order: green tea > coffee > cocoa, with only green tea showing both pro-oxidative and anti-proliferative action.
Collapse
Affiliation(s)
- Maja Krstic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| | - Marija Stojadinovic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| | - Katarina Smiljanic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| | - Dragana Stanic-Vucinic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| | - Tanja Cirkovic Velickovic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| |
Collapse
|
138
|
Atif SM, Lee SJ, Li LX, Uematsu S, Akira S, Gorjestani S, Lin X, Schweighoffer E, Tybulewicz VLJ, McSorley SJ. Rapid CD4+ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. Eur J Immunol 2014; 45:513-24. [PMID: 25430631 PMCID: PMC4324162 DOI: 10.1002/eji.201444744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/13/2014] [Accepted: 10/31/2014] [Indexed: 01/07/2023]
Abstract
Toll-like receptors (TLRs) can recognize microbial patterns and utilize adaptor molecules, such as-MyD88 or (TRIF TIR-domain-containing adapter-inducing interferon-β), to initiate downstream signaling that ultimately affects the initiation of adaptive immunity. In addition to this inflammatory role, TLR5 expression on dendritic cells can favor antigen presentation of flagellin peptides and thus increase the sensitivity of flagellin-specific T-cell responses in vitro and in vivo. Here, we examined the role of alternative signaling pathways that might regulate flagellin antigen presentation in addition to MyD88. These studies suggest a requirement for spleen tyrosine kinase, a noncanonical TLR-signaling adaptor molecule, and its downstream molecule CARD9 in regulating the sensitivity of flagellin-specific CD4(+) T-cell responses in vitro and in vivo. Thus, a previously unappreciated signaling pathway plays an important role in regulating the dominance of flagellin-specific T-cell responses.
Collapse
Affiliation(s)
- Shaikh M Atif
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California Davis, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Detection of microparticles from human red blood cells by multiparametric flow cytometry. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2014; 13:274-80. [PMID: 25369588 DOI: 10.2450/2014.0136-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND During storage, red blood cells (RBC) undergo chemical and biochemical changes referred to as "storage lesions". These events determine the loss of RBC integrity, resulting in lysis and release of microparticles. There is growing evidence of the clinical importance of microparticles and their role in blood transfusion-related side effects and pathogen transmission. Flow cytometry is currently one of the most common techniques used to quantify and characterise microparticles. Here we propose multiparametric staining to monitor and quantify the dynamic release of microparticles by stored human RBC. MATERIAL AND METHODS RBC units (n=10) were stored under blood bank conditions for up to 42 days. Samples were tested at different time points to detect microparticles and determine the haemolysis rate (HR%). Microparticles were identified by flow cytometry combining carboxyfluorescein diacetate succinimidyl ester (CFSE) dye, annexin V and anti-glycophorin A antibody. RESULTS We demonstrated that CFSE can be successfully used to label closed vesicles with an intact membrane. The combination of CFSE and glycophorin A antibody was effective for monitoring and quantifying the dynamic release of microparticles from RBC during storage. Double staining with CFSE/glycophorin A was a more precise approach, increasing vesicle detection up to 4.7-fold vs the use of glycophorin A/annexin V alone. Moreover, at all the time points tested, we found a robust correlation (R=0.625; p=0.0001) between HR% and number of microparticles detected. DISCUSSION Multiparametric staining, based on a combination of CFSE, glycophorin A antibody and annexin V, was able to detect, characterise and monitor the release of microparticles from RBC units during storage, providing a sensitive approach to labelling and identifying microparticles for transfusion medicine and, more broadly, for cell-based therapies.
Collapse
|
140
|
Youniss FM, Sundaresan G, Graham LJ, Wang L, Berry CR, Dewkar GK, Jose P, Bear HD, Zweit J. Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling. PLoS One 2014; 9:e109162. [PMID: 25334026 PMCID: PMC4204826 DOI: 10.1371/journal.pone.0109162] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/19/2014] [Indexed: 12/22/2022] Open
Abstract
The overall objective of this study is to non-invasively image and assess tumor targeting and retention of directly labeled T-lymphocytes following their adoptive transfer in mice. T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell) sensitized BALB/C mice were activated in-vitro with Bryostatin/Ionomycin for 18 hours, and were grown in the presence of Interleukin-2 for 6 days. T-lymphocytes were then directly labeled with 1,1-dioctadecyltetramethyl indotricarbocyanine Iodide (DiR), a lipophilic near infrared fluorescent dye that labels the cell membrane. Assays for viability, proliferation, and function of labeled T-lymphocytes showed that they were unaffected by DiR labeling. The DiR labeled cells were injected via tail vein in mice bearing 4T1 tumors in the flank. In some cases labeled 4T1 specific T-lymphocytes were injected a week before 4T1 tumor cell implantation. Multi-spectral in vivo fluorescence imaging was done to subtract the autofluorescence and isolate the near infrared signal carried by the T-lymphocytes. In recipient mice with established 4T1 tumors, labeled 4T1 specific T-lymphocytes showed marked tumor retention, which peaked 6 days post infusion and persisted at the tumor site for up to 3 weeks. When 4T1 tumor cells were implanted 1-week post-infusion of labeled T-lymphocytes, T-lymphocytes responded to the immunologic challenge and accumulated at the site of 4T1 cell implantation within two hours and the signal persisted for 2 more weeks. Tumor accumulation of labeled 4T1 specific T-lymphocytes was absent in mice bearing Meth A sarcoma tumors. When lysate of 4T1 specific labeled T-lymphocytes was injected into 4T1 tumor bearing mice the near infrared signal was not detected at the tumor site. In conclusion, our validated results confirm that the near infrared signal detected at the tumor site represents the DiR labeled 4T1 specific viable T-lymphocytes and their response to immunologic challenge can be imaged in vivo.
Collapse
Affiliation(s)
- Fatma M. Youniss
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gobalakrishnan Sundaresan
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Laura J. Graham
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Li Wang
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Collin R. Berry
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gajanan K. Dewkar
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Purnima Jose
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harry D. Bear
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jamal Zweit
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
141
|
Peng Y, Zhang Y, Huang B, Luo Y, Zhang M, Li K, Li W, Wen W, Tang S. Survival and migration of pre-induced adult human peripheral blood mononuclear cells in retinal degeneration slow (rds) mice three months after subretinal transplantation. Curr Stem Cell Res Ther 2014; 9:124-33. [PMID: 24350910 PMCID: PMC4101734 DOI: 10.2174/1574888x09666131219115125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022]
Abstract
Introduction: Retinitis pigmentosa (RP), an inherited disease characterized by progressive loss of photoreceptors and retinal pigment epithelium, is a leading genetic cause of blindness. Cell transplantation to replace lost photoreceptors is a potential therapeutic strategy, but technical limitations have prevented clinical application. Adult human peripheral blood mononuclear cells (hPBMCs) may be an ideal cell source for such therapies. This study examined the survival and migration of pre-induced hPBMCs three months after subretinal transplantation in the retinal degeneration slow (rds) mouse model of RP. Materials and Methods: Freshly isolated adult hPBMCs were pre-induced by co-culture with neonatal Sprague-Dawley (SD) rat retinal tissue for 4 days in neural stem cell medium. Pre-induced cells were labeled with CM-DiI for tracing and injected into the right subretinal space of rds mice by the trans-scleral approach. After two and three months, right eyes were harvested and transplanted cell survival and migration examined in frozen sections and whole mountretinas. Immunofluorescence in whole-mount retinas was used to detect the expression of human neuronal and photorece ptorsprotein markers by transplanted cells. Results: Pre-induced adult hPBMCs could survive in vivo and migrate to various parts of the retina. After two and three months, transplanted cells were observed in the ciliary body, retinal outer nuclear layer, inner nuclear layer, ganglion cell layer, optic papilla, and within the optic nerve. The neuronal and photoreceptor markers CD90/Thy1, MAP-2, nestin, and rhodopsin were expressed by subpopulations of CM-DiI-positive cells three months after subretinal transplantation. Conclusion: Pre-induced adult hPBMCs survived for at least three months after subretinal transplantation, migrated throughout the retina, and expressed human protein markers. These results suggest that hPBMCs could be used for cell replacement therapy to treat retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shibo Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou 510060, China.
| |
Collapse
|
142
|
Breymayer J, Rück A, Ryabova AV, Loschenov VB, Steiner RW. Fluorescence investigation of the detachment of aluminum phthalocyanine molecules from aluminum phthalocyanine nanoparticles in monocytes/macrophages and skin cells and their localization in monocytes/macrophages. Photodiagnosis Photodyn Ther 2014; 11:380-90. [DOI: 10.1016/j.pdpdt.2014.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 11/30/2022]
|
143
|
Brunet A, Aslam T, Bradley M. Separating the isomers--efficient synthesis of the N-hydroxysuccinimide esters of 5 and 6-carboxyfluorescein diacetate and 5 and 6-carboxyrhodamine B. Bioorg Med Chem Lett 2014; 24:3186-8. [PMID: 24856065 PMCID: PMC4090417 DOI: 10.1016/j.bmcl.2014.04.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/17/2022]
Abstract
Diacetate protection of 5 and 6-carboxyfluorescein followed by synthesis of the N-hydroxysuccinimide esters allowed ready separation of the two isomers on a multi-gram scale. The 5 and 6-carboxyrhodamine B N-hydroxysuccinimide esters were also readily synthesised and separated.
Collapse
Affiliation(s)
- Aurélie Brunet
- School of Chemistry, EaStChem, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Tashfeen Aslam
- School of Chemistry, EaStChem, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Mark Bradley
- School of Chemistry, EaStChem, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK.
| |
Collapse
|
144
|
Dorst N, Oberringer M, Grässer U, Pohlemann T, Metzger W. Analysis of cellular composition of co-culture spheroids. Ann Anat 2014; 196:303-11. [PMID: 24962944 DOI: 10.1016/j.aanat.2014.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 02/05/2023]
Abstract
3D spheroids and in particular co-culture spheroids reflect the natural organization of cells in tissues much better than 2D cell cultures as indicated by differences in cellular phyisology. However, most methods to analyze cells were established for 2D cultures and cannot easily be applied to spheroids. This study has aimed to demonstrate the possibility of quantification of the cellular composition of co-culture spheroids without previous dissociation into single cells. Prior to the generation of the spheroids, human endothelial cells, osteoblasts and fibroblasts were stained with fluoresent dyes for living cells. Co-culture spheroids of defined stoichiometric compositions were generated by the liquid overlay technique, cultivated for one, three or six days, respectively, and afterwards snap-frozen in liquid nitrogen. Cryo-sections of co-culture spheroids were analyzed by fluorescence microscopy and a newly established semi-automatic measuring routine. In order to compare the results, spheroids of one group were dissociated and the cellular composition was quantified by FACS-analysis. Staining efficiencies were higher than 95% as quantified in preliminary experiments with 2D cultures. Depending on the staining procedure, variations from uniform to punctate signals were detected. The size of all co-culture spheroids decreased over time and snap-freezing did not lead to shrinkage of the spheroids. We were able to detect organizational patterns of different cell types within the spheroids. It was possible to determine the cellular composition by quantitative microscopic analyses of cryo-sections as it could be confirmed by flow cytometric analyses. Depending on the experimental requirements, a combination of both methods might lead to valuable synergy.
Collapse
Affiliation(s)
- Natalie Dorst
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Building 57, Kirrberger Str., 66421 Homburg, Germany.
| | - Martin Oberringer
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Building 57, Kirrberger Str., 66421 Homburg, Germany.
| | - Ute Grässer
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Building 57, Kirrberger Str., 66421 Homburg, Germany.
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Building 57, Kirrberger Str., 66421 Homburg, Germany.
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Building 57, Kirrberger Str., 66421 Homburg, Germany.
| |
Collapse
|
145
|
Sta Maria NS, Barnes SR, Jacobs RE. In vivo monitoring of natural killer cell trafficking during tumor immunotherapy. MAGNETIC RESONANCE INSIGHTS 2014; 7:15-21. [PMID: 25114550 PMCID: PMC4122546 DOI: 10.4137/mri.s13145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are a crucial part of the innate immune system and play critical roles in host anti-viral, anti-microbial, and antitumor responses. The elucidation of NK cell biology and their therapeutic use are actively being pursued with 200 clinical trials currently underway. In this review, we outline the role of NK cells in cancer immunotherapies and summarize current noninvasive imaging technologies used to track NK cells in vivo to investigate mechanisms of action, develop new therapies, and evaluate efficacy of adoptive transfer.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Samuel R Barnes
- Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Russell E Jacobs
- Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
146
|
Yumoto K, Berry JE, Taichman RS, Shiozawa Y. A novel method for monitoring tumor proliferation in vivo using fluorescent dye DiD. Cytometry A 2014; 85:548-55. [PMID: 24700602 DOI: 10.1002/cyto.a.22434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 12/17/2022]
Abstract
Monitoring single cell proliferation in vivo is difficult, but optimizing this technique is essential in order to expand our knowledge of the regulation of tumor proliferation. In this study, we used a lipophilic fluorescent dye, DiD, that rapidly and stably integrates into the phospholipid cell membrane. We cultured DiD-stained prostate cancer cell lines for 10 days and isolated cells by flow cytometry based on expression levels of DiD. We found that a decrease in DiD intensity was correlated to the reduction of EdU, where the DiD-high population proliferated more slowly than the DiD-low population and the DiD-low population exhibited a higher mitotic index. We also found that DiD was detected after 3 weeks of implantation in an in vivo setting. Importantly, DiD dye did not have any effect on normal cell growth, whereas a gold standard fluorescent dye for measuring cell proliferation, CFSE, slowed cell proliferation. Although further study is indicated, DiD can be useful for identifying the molecular mechanisms underlying tumor proliferation in vivo.
Collapse
Affiliation(s)
- Kenji Yumoto
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | | | | | | |
Collapse
|
147
|
Rambaldi D, Pece S, Di Fiore PP. flowFit: a Bioconductor package to estimate proliferation in cell-tracking dye studies. ACTA ACUST UNITED AC 2014; 30:2060-5. [PMID: 24681909 DOI: 10.1093/bioinformatics/btu127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SUMMARY Herein we introduce flowFit, a Bioconductor package designed to perform quantitative analysis of cell proliferation in tracking dye-based experiments. The software, distributed as an R Bioconductor library, is based on a mathematical model that takes into account the height of each peak, the size and position of the parental population (labeled but not proliferating) and the estimated distance between the brightness of a cell and the brightness of its daughter (in which the dye is assumed to undergo a 2-fold dilution). Although the algorithm does not make any inference on cell types, rates of cell divisions or rates of cell death, it deconvolutes the actual collected data into a set of peaks, whereby each peak corresponds to a subpopulation of cells that have divided N times. We validated flowFit by retrospective analysis of published proliferation-tracking experiments and demonstrated that the algorithm predicts the same percentage of cells/generation either in samples with discernible peaks (in which the peaks are visible in the collected raw data) or in samples with non-discernible peaks (in which the peaks are fused together). To the best of our knowledge, flowFit represents the first open-source algorithm in its category and might be applied to numerous areas of cell biology in which quantitative deconvolution of tracking dye-based experiments is desired, including stem cell research. AVAILABILITY AND IMPLEMENTATION http://www.bioconductor.org/packages/devel/bioc/html/flowFit.html (Bioconductor software page). http://www.bioconductor.org/packages/2.13/bioc/vignettes/flowFit/inst/doc/HowTo-flowFit.pdf (package vignette). http://rpubs.com/tucano/flowFit (online tutorial).
Collapse
Affiliation(s)
- Davide Rambaldi
- Department of Experimental Oncology, Istituto Europeo di Oncologia, 20141 Milan and Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Salvatore Pece
- Department of Experimental Oncology, Istituto Europeo di Oncologia, 20141 Milan and Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, ItalyDepartment of Experimental Oncology, Istituto Europeo di Oncologia, 20141 Milan and Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Pier Paolo Di Fiore
- Department of Experimental Oncology, Istituto Europeo di Oncologia, 20141 Milan and Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, ItalyDepartment of Experimental Oncology, Istituto Europeo di Oncologia, 20141 Milan and Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
148
|
Parameter identification for model of T cell proliferation in lymphopenia conditions. Math Biosci 2014; 251:63-71. [PMID: 24631178 DOI: 10.1016/j.mbs.2014.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/19/2014] [Accepted: 03/01/2014] [Indexed: 11/22/2022]
Abstract
The number of T Lymphocytes (T cells) in the body is under homeostatic control. At equilibrium, the majority of naive T cells are non-dividing and express low levels of the surface protein CD44. In conditions of T cell deficiency (lymphopenia), naive T cells enter into a proliferative phase, undergoing cell division accompanied by a subtle change in their surface expression of CD44. In this study, we use a mathematical modelling approach to analyse the proliferative response of transgenic T cells in lymphopenic conditions. Our nonlinear model is composed of ordinary differential equations and partial differential equations structured by age (maturity of cell) and CD44 expression. To better understand the evolution of CD44 expression on the surface of T cells during cell division, we present a numerical analysis to solve a parameter identification problem. Finally, we show the parameters and the simulations that we obtain from the model and compare them to experimental data.
Collapse
|
149
|
Salmonella enterica serovar Typhi impairs CD4 T cell responses by reducing antigen availability. Infect Immun 2014; 82:2247-54. [PMID: 24643532 DOI: 10.1128/iai.00020-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi is associated with a disseminated febrile illness in humans, termed typhoid fever, while Salmonella enterica serovar Typhimurium causes localized gastroenteritis in immunocompetent individuals. One of the genetic differences between both pathogens is the presence in S. Typhi of TviA, a regulatory protein that shuts down flagellin (FliC) expression when bacteria transit from the intestinal lumen into the intestinal mucosa. Here we investigated the consequences of TviA-mediated flagellum gene regulation on flagellin-specific CD4 T cell responses in a mouse model of S. Typhimurium infection. Introduction of the S. Typhi tviA gene into S. Typhimurium suppressed antigen presentation of dendritic cells to flagellin-specific CD4 T cells in vitro. Furthermore, TviA-mediated repression of flagellin expression impaired the activation and proliferation of naive flagellin-specific CD4 T cells in Peyer's patches and mesenteric lymph nodes, which was accompanied by increased bacterial dissemination to the spleen. We conclude that TviA-mediated repression of flagellin expression reduces antigen availability, thereby weakening flagellin-specific CD4 T cell responses.
Collapse
|
150
|
Popescu I, Pipeling M, Akulian J, McDyer J. Phenotypic and functional characterization of cytotoxic T lymphocytes by flow cytometry. Methods Mol Biol 2014; 1186:21-47. [PMID: 25149301 DOI: 10.1007/978-1-4939-1158-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are important constituents of the adaptive immune system. Development of CTLs are particularly important for bacterial and viral infections, in addition to tumor surveillance. Measuring T cell immune function is important in evaluating host defense, allergy, autoimmunity, transplant rejection, and tumor immunity. In these recent years it has become possible to measure multiple effector functions in a single cell such as cytokine, transcription factors, and cytolytic function. In addition these parameters can be evaluated in conjunction with cellular proliferation. In this chapter we detail these cellular based assays and the methods used to characterize and quantify both phenotype and function of CTL.
Collapse
Affiliation(s)
- Iulia Popescu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA,
| | | | | | | |
Collapse
|