101
|
Freise NF, Gliga S, Fischer J, Lübke N, Lutterbeck M, Schöler M, Bölke E, Orth HM, Feldt T, Roemmele C, Wilke D, Schneider J, Wille K, Hohmann C, Strauss R, Hower M, Ruf A, Schubert J, Isberner N, Stecher M, Pilgram L, Vehreschild JJ, Hanses F, Luedde T, Jensen B, Jung N, Göpel S, Westhoff T, Hohenstein B, Rothfuss K, Rieg S, Ruethrich MM, Rupp J, Hanses F, Luedde T, Jensen B. Convalescent plasma treatment for SARS-CoV-2 infected high-risk patients: a matched pair analysis to the LEOSS cohort. Sci Rep 2022; 12:19035. [PMID: 36351986 PMCID: PMC9643921 DOI: 10.1038/s41598-022-23200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Establishing the optimal treatment for COVID-19 patients remains challenging. Specifically, immunocompromised and pre-diseased patients are at high risk for severe disease course and face limited therapeutic options. Convalescent plasma (CP) has been considered as therapeutic approach, but reliable data are lacking, especially for high-risk patients. We performed a retrospective analysis of 55 hospitalized COVID-19 patients from University Hospital Duesseldorf (UKD) at high risk for disease progression, in a substantial proportion due to immunosuppression from cancer, solid organ transplantation, autoimmune disease, dialysis. A matched-pairs analysis (1:4) was performed with 220 patients from the Lean European Open Survey on SARS-CoV-2-infected Patients (LEOSS) who were treated or not treated with CP. Both cohorts had high mortality (UKD 41.8%, LEOSS 34.1%). A matched-pairs analysis showed no significant effect on mortality. CP administration before the formation of pulmonary infiltrates showed the lowest mortality in both cohorts (10%), whereas mortality in the complicated phase was 27.8%. CP administration during the critical phase revealed the highest mortality: UKD 60.9%, LEOSS 48.3%. In our cohort of COVID-19 patients with severe comorbidities CP did not significantly reduce mortality in a retrospective matched-pairs analysis. However, our data supports the concept that a reduction in mortality is achievable by early CP administration.
Collapse
Affiliation(s)
- Noemi F. Freise
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Smaranda Gliga
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Johannes Fischer
- grid.411327.20000 0001 2176 9917Department for Transfusion Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Nadine Lübke
- grid.411327.20000 0001 2176 9917Institute of Virology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Matthias Lutterbeck
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Miriam Schöler
- grid.411327.20000 0001 2176 9917Heinrich Heine University, Duesseldorf, Germany
| | - Edwin Bölke
- grid.411327.20000 0001 2176 9917Department of Radiotherapy and Radio Oncology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Hans Martin Orth
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Torsten Feldt
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Christoph Roemmele
- grid.419801.50000 0000 9312 0220Department of Internal Medicine III, Gastroenterology and Infectious Diseases, University Hospital Augsburg, Augsburg, Germany
| | - Dominik Wilke
- grid.412282.f0000 0001 1091 2917University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jochen Schneider
- grid.6936.a0000000123222966Technical University of Munich, Munich, Germany
| | - Kai Wille
- grid.5570.70000 0004 0490 981XJohannes Wesling Klinikum Minden, Ruhr-University Bochum, Bochum, Germany
| | - Christian Hohmann
- grid.419807.30000 0004 0636 7065Department of Oncology and Infectious Diseases, Klinikum Bremen-Mitte, Bremen, Germany
| | - Richard Strauss
- grid.411668.c0000 0000 9935 6525University Hospital Erlangen, Erlangen, Germany
| | - Martin Hower
- grid.473616.10000 0001 2200 2697Department of Internal Medicine, Klinikum Dortmund gGmbH, Dortmund, Germany
| | - Andreas Ruf
- grid.419594.40000 0004 0391 0800Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Nora Isberner
- grid.411760.50000 0001 1378 7891Department of Internal Medicine II, Division of Infectious Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Melanie Stecher
- grid.6190.e0000 0000 8580 3777Faculty of Medicine, University Clinics, Department I of Internal Medicine, University of Cologne, Cologne, Germany ,grid.452463.2German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Lisa Pilgram
- grid.6363.00000 0001 2218 4662Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany ,grid.411088.40000 0004 0578 8220Center for Internal Medicine, Medical Department 2, Hematology, Oncology and Infectious Diseases, University Hospital of Frankfurt, Frankfurt, Germany
| | - Jörg J. Vehreschild
- grid.6190.e0000 0000 8580 3777Faculty of Medicine, University Clinics, Department I of Internal Medicine, University of Cologne, Cologne, Germany ,grid.452463.2German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany ,grid.411088.40000 0004 0578 8220Center for Internal Medicine, Medical Department 2, Hematology, Oncology and Infectious Diseases, University Hospital of Frankfurt, Frankfurt, Germany
| | | | - Frank Hanses
- grid.411941.80000 0000 9194 7179Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | - Tom Luedde
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Björn Jensen
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Preceding anti-spike IgG levels predicted risk and severity of COVID-19 during the Omicron-dominant wave in Santa Fe city, Argentina. Epidemiol Infect 2022; 150:e187. [PMID: 36325837 PMCID: PMC9947048 DOI: 10.1017/s0950268822001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The SARS-CoV-2 Omicron variant has increased infectivity and immune escape compared with previous variants, and caused the surge of massive COVID-19 waves globally. Despite a vast majority (~90%) of the population of Santa Fe city, Argentina had been vaccinated and/or had been infected by SARS-CoV-2 when Omicron emerged, the epidemic wave that followed its arrival was by far the largest one experienced in the city. A serosurvey conducted prior to the arrival of Omicron allowed to assess the acquired humoral defences preceding the wave and to conduct a longitudinal study to provide individual-level real-world data linking antibody levels and protection against COVID-19 during the wave. A very large proportion of 1455 sampled individuals had immunological memory against COVID-19 at the arrival of Omicron (almost 90%), and about half (48.9%) had high anti-spike immunoglobulin G levels (>200 UI/ml). However, the antibody titres varied greatly among the participants, and such variability depended mainly on the vaccine platform received, on having had COVID-19 previously and on the number of days elapsed since last antigen exposure (vaccine shot or natural infection). A follow-up of 514 participants provided real-world evidence of antibody-mediated protection against COVID-19 during a period of high risk of exposure to an immune-escaping highly transmissible variant. Pre-wave antibody titres were strongly negatively associated with COVID-19 incidence and severity of symptoms during the wave. Also, receiving a vaccine shot during the follow-up period reduced the COVID-19 risk drastically (15-fold). These results highlight the importance of maintaining high defences through vaccination at times of high risk of exposure to immune-escaping variants.
Collapse
|
103
|
Delgado-Fernández M, García-Gemar GM, Fuentes-López A, Muñoz-Pérez MI, Oyonarte-Gómez S, Ruíz-García I, Martín-Carmona J, Sanz-Cánovas J, Castaño-Carracedo MÁ, Reguera-Iglesias JM, Ruíz-Mesa JD. Treatment of COVID-19 with convalescent plasma in patients with humoral immunodeficiency - Three consecutive cases and review of the literature. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:507-516. [PMID: 36336380 PMCID: PMC9631336 DOI: 10.1016/j.eimce.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/20/2021] [Indexed: 06/16/2023]
Abstract
Patients lacking humoral response have been suggested to develop a less severe COVID-19, but there are some reports with a prolonged, relapsing or deadly course. From April 2020, there is growing evidence on the benefits of COVID-19 convalescent plasma (CCP) for patients with humoral immunodeficiency. Most of them had a congenital primary immunodeficiency or were on treatment with anti CD20 antibodies. We report on three patients treated in our hospital and review thirty-one more cases described in the literature. All patients but three resolved clinical picture with CCP. A dose from 200 to 800ml was enough in most cases. Antibody levels after transfusion were negative or low, suggesting consumption of them in SARS-CoV-2 neutralization. These patients have a protracted clinical course shortened after CCP. CCP could be helpful for patients with humoral immunodeficiency. It avoid relapses and chronification. CCP should be transfused as early as possible in patients with COVID-19 and humoral immunodeficiency.
Collapse
Affiliation(s)
| | | | - Ana Fuentes-López
- Microbiology Department, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | | | - Salvador Oyonarte-Gómez
- Director of "Red andaluza de Medicina transfusional, tejidos y células" del Sistema Sanitario Público de Andalucía, Spain
| | | | | | - Jaime Sanz-Cánovas
- Internal Medicine Department, Hospital Regional Universitario de Málaga, Spain
| | | | | | - Juan Diego Ruíz-Mesa
- Infectious Diseases Department, Hospital Regional Universitario de Málaga, Spain
| |
Collapse
|
104
|
Impact of Convalescent Plasma Therapy in Hospitalized Patients With Severe COVID-19. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2022. [DOI: 10.1097/ipc.0000000000001161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
105
|
Senefeld JW, Paneth NS, Carter RE, Wright RS, Fairweather D, Bruno KA, Joyner MJ. Late Treatment for COVID-19 With Convalescent Plasma. Chest 2022; 162:e283-e284. [PMID: 36344142 PMCID: PMC9634046 DOI: 10.1016/j.chest.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Nigel S Paneth
- Departments of Epidemiology and Biostatistics and Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - R Scott Wright
- Departments of Cardiovascular Medicine and Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
106
|
Self WH, Wheeler AP, Stewart TG, Schrager H, Mallada J, Thomas CB, Cataldo VD, O'Neal HR, Shapiro NI, Higgins C, Ginde AA, Chauhan L, Johnson NJ, Henning DJ, Jaiswal SJ, Mammen MJ, Harris ES, Pannu SR, Laguio-Vila M, El Atrouni W, de Wit M, Hoda D, Cohn CS, McWilliams C, Shanholtz C, Jones AE, Raval JS, Mucha S, Ipe TS, Qiao X, Schrantz SJ, Shenoy A, Fremont RD, Brady EJ, Carnahan RH, Chappell JD, Crowe JE, Denison MR, Gilchuk P, Stevens LJ, Sutton RE, Thomsen I, Yoder SM, Bistran-Hall AJ, Casey JD, Lindsell CJ, Wang L, Pulley JM, Rhoads JP, Bernard GR, Rice TW. Neutralizing COVID-19 Convalescent Plasma in Adults Hospitalized With COVID-19: A Blinded, Randomized, Placebo-Controlled Trial. Chest 2022; 162:982-994. [PMID: 35780813 PMCID: PMC9247217 DOI: 10.1016/j.chest.2022.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/21/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Convalescent plasma has been one of the most common treatments for COVID-19, but most clinical trial data to date have not supported its efficacy. RESEARCH QUESTION Is rigorously selected COVID-19 convalescent plasma with neutralizing anti-SARS-CoV-2 antibodies an efficacious treatment for adults hospitalized with COVID-19? STUDY DESIGN AND METHODS This was a multicenter, blinded, placebo-controlled randomized clinical trial among adults hospitalized with SARS-CoV-2 infection and acute respiratory symptoms for < 14 days. Enrolled patients were randomly assigned to receive one unit of COVID-19 convalescent plasma (n = 487) or placebo (n = 473). The primary outcome was clinical status (disease severity) 14 days following study infusion measured with a seven-category ordinal scale ranging from discharged from the hospital with resumption of normal activities (lowest score) to death (highest score). The primary outcome was analyzed with a multivariable ordinal regression model, with an adjusted odds ratio (aOR) < 1.0 indicating more favorable outcomes with convalescent plasma than with placebo. In secondary analyses, trial participants were stratified according to the presence of endogenous anti-SARS-CoV-2 antibodies ("serostatus") at randomization. The trial included 13 secondary efficacy outcomes, including 28-day mortality. RESULTS Among 974 randomized patients, 960 were included in the primary analysis. Clinical status on the ordinal outcome scale at 14 days did not differ between the convalescent plasma and placebo groups in the overall population (aOR, 1.04; one-seventh support interval [1/7 SI], 0.82-1.33), in patients without endogenous antibodies (aOR, 1.15; 1/7 SI, 0.74-1.80), or in patients with endogenous antibodies (aOR, 0.96; 1/7 SI, 0.72-1.30). None of the 13 secondary efficacy outcomes were different between groups. At 28 days, 89 of 482 (18.5%) patients in the convalescent plasma group and 80 of 465 (17.2%) patients in the placebo group had died (aOR, 1.04; 1/7 SI, 0.69-1.58). INTERPRETATION Among adults hospitalized with COVID-19, including those seronegative for anti-SARS-CoV-2 antibodies, treatment with convalescent plasma did not improve clinical outcomes. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT04362176; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Wesley H Self
- Vanderbilt Institute for Clinical and Translational Research and Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN.
| | - Allison P Wheeler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Thomas G Stewart
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Harry Schrager
- Department of Medicine, Tufts School of Medicine, Newton-Wellesley Hospital, Newton, MA
| | - Jason Mallada
- Department of Pharmacy, Newton-Wellesley Hospital, Massachusetts College of Pharmacy and Health Sciences, Newton, MA
| | - Christopher B Thomas
- Division of Pulmonary and Critical Care, Louisiana State University Health-Sciences Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA
| | - Vince D Cataldo
- Division of Hematology and Oncology, Louisiana State University Health-Sciences Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA
| | - Hollis R O'Neal
- Division of Pulmonary and Critical Care, Louisiana State University Health-Sciences Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Conor Higgins
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Adit A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Lakshmi Chauhan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Nicholas J Johnson
- Department of Emergency Medicine and Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA
| | - Daniel J Henning
- Department of Emergency Medicine, University of Washington, Seattle, WA
| | - Stuti J Jaiswal
- Division of Hospital Medicine, Scripps Clinic, Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA
| | - Manoj J Mammen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, State University of New York at Buffalo, Buffalo, NY
| | - Estelle S Harris
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Sonal R Pannu
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH
| | - Maryrose Laguio-Vila
- Department of Internal Medicine, Division of Infectious Disease, Rochester General Hospital, Rochester, NY
| | - Wissam El Atrouni
- Division of Infectious Diseases, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Marjolein de Wit
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Daanish Hoda
- Oncology Clinical Program, Intermountain Healthcare, Murray, UT
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Carla McWilliams
- Department of Infectious Disease, Cleveland Clinic Florida Weston, Weston, FL
| | - Carl Shanholtz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Alan E Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Jay S Raval
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM
| | - Simon Mucha
- Department of Critical Care, Respiratory Institute, Cleveland Clinical Health System, Cleveland, OH
| | - Tina S Ipe
- Department of Pathology and Laboratory Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Xian Qiao
- Sentara Pulmonary, Critical Care, and Sleep Specialists, Sentara Health, Sentara Norfolk General Hospital, Eastern Virginia Medical School, Norfolk, VA
| | | | - Aarthi Shenoy
- Department of Medicine, MedStar Washington Hospital Center, Washington, DC
| | | | - Eric J Brady
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Robert H Carnahan
- Department of Pediatrics, Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN; Department of Radiology, Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - James D Chappell
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - James E Crowe
- Department of Pediatrics, Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN; Department of Pediatrics, and Department of Pathology, Microbiology, and Immunology, Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Mark R Denison
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Laura J Stevens
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel E Sutton
- Immunology and Molecular Pathogeneisis Program, Emory University, Atlanta, GA
| | - Isaac Thomsen
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Sandra M Yoder
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Amanda J Bistran-Hall
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan D Casey
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Li Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Jill M Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Jillian P Rhoads
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Gordon R Bernard
- Vanderbilt Institute for Clinical and Translational Research and Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Todd W Rice
- Vanderbilt Institute for Clinical and Translational Research and Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
107
|
Abadi B, Aarabi Jeshvaghani AH, Fathalipour H, Dehghan L, Rahimi Sirjani K, Forootanfar H. Therapeutic Strategies in the Fight against COVID-19: From Bench to Bedside. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:517-532. [PMID: 36380976 PMCID: PMC9652495 DOI: 10.30476/ijms.2021.92662.2396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 06/16/2023]
Abstract
In December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China. This virus rapidly spread worldwide and was declared a global pandemic by the World Health Organization (WHO) in March 2020. High incidence, long incubation period, and diverse clinical signs of the disease posed a huge challenge globally. The efforts of health systems have been focused on repurposing existing drugs or developing innovative therapies to reduce the morbidity and mortality associated with SARS-CoV-2. In addition, most of the large pharmaceutical companies are intensely working on vaccine development to swiftly deliver safe and effective vaccines to prevent further spread of the virus. In this review, we will discuss the latest data on therapeutic strategies undergoing clinical trials. Additionally, we will provide a summary of vaccines currently under development.
Collapse
Affiliation(s)
- Banafshe Abadi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Brain Cancer Research Core, Universal Scientific Education and Research Network, Tehran, Iran
| | | | - Hadis Fathalipour
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Leili Dehghan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
108
|
Shoham S, Focosi D. Limitations on PassItOn Design and Execution Should Temper Negative Conclusions. Chest 2022; 162:e282-e283. [PMID: 36344141 PMCID: PMC9634043 DOI: 10.1016/j.chest.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
109
|
DGTI 2022: die 55. Jahrestagung der DGTI vom 21. bis 23. September
2022 in Mannheim. TRANSFUSIONSMEDIZIN 2022. [DOI: 10.1055/a-1814-8489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
110
|
Focosi D, Franchini M, Casadevall A. On the Need to Determine the Contribution of Anti-Nucleocapsid Antibodies as Potential Contributors to COVID-19 Convalescent Plasma Efficacy. Viruses 2022; 14:2378. [PMID: 36366476 PMCID: PMC9697776 DOI: 10.3390/v14112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/31/2023] Open
Abstract
Historically the therapeutic potential of polyclonal passive immunotherapies in viral diseases has been related to antiviral neutralizing antibodies, but there is also considerable evidence that non-neutralizing antibodies can translate into clinical benefit as well. In the setting of SARS-CoV-2 infection, we review here in vitro and in vivo evidence supporting a contributing role for anti-nucleocapsid antibodies. Retrospective investigation of anti-nucleocapsid antibody levels in randomized clinical trials of COVID-19 convalescent plasma is warranted to better understand whether there is an association with efficacy or lack thereof.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| |
Collapse
|
111
|
Bartelt LA, Markmann AJ, Nelson B, Keys J, Root H, Henderson HI, Kuruc J, Baker C, Bhowmik DR, Hou YJ, Premkumar L, Cornaby C, Schmitz JL, Weiss S, Park Y, Baric R, de Silva AM, Lachiewicz A, Napravnik S, van Duin D, Margolis DM. Outcomes of Convalescent Plasma with Defined High versus Lower Neutralizing Antibody Titers against SARS-CoV-2 among Hospitalized Patients: CoronaVirus Inactivating Plasma (CoVIP) Study. mBio 2022; 13:e0175122. [PMID: 36135380 PMCID: PMC9601237 DOI: 10.1128/mbio.01751-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) was an early and widely adopted putative therapy for severe COVID-19. Results from randomized control trials and observational studies have failed to demonstrate a clear therapeutic role for CCP for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Underlying these inconclusive findings is a broad heterogeneity in the concentrations of neutralizing antibodies (nAbs) between different CCP donors. We conducted this study to evaluate the effectiveness and safety of nAb titer-defined CCP in adults admitted to an academic referral hospital. Patients positive by a SARS-CoV-2 nucleic acid amplification test and with symptoms for <10 days were eligible. Participants received either CCP with nAb titers of >1:640 (high-titer group) or ≥1:160 to 1:640 (standard-titer group) in addition to standard of care treatments. The primary clinical outcome was time to hospital discharge, with mortality and respiratory support evaluated as secondary outcomes. Adverse events were contrasted by CCP titer. Between 28 August and 4 December 2020, 316 participants were screened, and 55 received CCP, with 14 and 41 receiving high- versus standard-titer CCP, respectively. Time to hospital discharge was shorter among participants receiving high- versus standard-titer CCP, accounting for death as a competing event (hazard ratio, 1.94; 95% confidence interval [CI], 1.05 to 3.58; Gray's P = 0.02). Severe adverse events (SAEs) (≥grade 3) occurred in 4 (29%) and 23 (56%) of participants receiving the high versus standard titer, respectively, by day 28 (risk ratio, 0.51; 95% CI, 0.21 to 1.22; Fisher's P = 0.12). There were no observed treatment-related AEs. (This study has been registered at ClinicalTrials.gov under registration no. NCT04524507). IMPORTANCE In this study, in a high-risk population of patients admitted for COVID-19, we found an earlier time to hospital discharge among participants receiving CCP with nAb titers of >1:640 compared with participants receiving CCP with a lower nAb titer and no CCP-related AEs. The significance of our research is in identifying a dose response of CCP and clinical outcomes based on nAb titer. Although limited by a small study size, these findings support further study of high-nAb-titer CCP defined as >1:640 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Alena J. Markmann
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Bridget Nelson
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jessica Keys
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Heather Root
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- The AIDS Center at Montefiore, Division of Infectious Diseases, Montefiore Medical Center, Bronx, New York, USA
| | - Heather I. Henderson
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - JoAnn Kuruc
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Caroline Baker
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - D. Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Caleb Cornaby
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John L. Schmitz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Susan Weiss
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pathology, Carolinas Pathology Group, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Yara Park
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne Lachiewicz
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sonia Napravnik
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David van Duin
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
112
|
SARS-CoV-2 IgG Levels Allow Predicting the Optimal Time Span of Convalescent Plasma Donor Suitability. Diagnostics (Basel) 2022; 12:diagnostics12112567. [DOI: 10.3390/diagnostics12112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Convalescent plasma (CP) has been in use for the treatment of numerous infectious diseases for more than a century, recently also for coronavirus disease 2019 (COVID-19). A major challenge for this treatment is identifying suitable donors with sufficient levels of functional antibodies and to determine the optimal time span for CP donation. In this retrospective study, we analyzed 189 CP donations of 66 donors regarding anti-SARS-CoV-2 anti-S IgG antibody levels. We found a significant correlation between the semi-quantitative SARS-CoV-2 IgG ratio values and in vitro antibody functionality. A time-to-event analysis allowed us to predict the optimal time span of COVID-19 CP donor suitability. We found that high IgG ratio values, which significantly correlate with high in vitro antibody functionality, were suitable for CP donation for a median of 134 days after the first CP donation. Donors with lower IgG ratios were suitable for a median of 53 days. Our data support plasma collection centers to determine optimal points in time for CP donation by means of widely used semi-quantitative laboratory IgG ratio values.
Collapse
|
113
|
Chen Q, Zhang J, Wang P, Zhang Z. The mechanisms of immune response and evasion by the main SARS-CoV-2 variants. iScience 2022; 25:105044. [PMID: 36068846 PMCID: PMC9436868 DOI: 10.1016/j.isci.2022.105044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. SARS-CoV-2 carries a unique group of mutations, and the transmission of the virus has led to the emergence of other mutants such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Delta (B.1.617.2) and Omicron (B.1.1.529). The advent of a vaccine has raised hopes of ending the pandemic. However, the mutation variants of SARS-CoV-2 have raised concerns about the effectiveness of vaccines because the data showed that the vaccine was less effective against mutation variants compared to the previous variants. Mutation variants could easily mutate the N-segment structure and receptor domain of its spike glycoprotein (S) protein to escape antibody recognition. Therefore, it is vital to understand the potential immune response and evasion mechanism of SARS-CoV-2 variants. In this review, immune response and evasion mechanisms of several SARS-CoV-2 variants are described, which could provide some helpful advice for future vaccines.
Collapse
Affiliation(s)
- Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Jiawei Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Zuyong Zhang
- The Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
114
|
Slay RM, Cook R, Hendricks K, Boucher D, Merchlinsky M. Pre- and Postlicensure Animal Efficacy Studies Comparing Anthrax Antitoxins. Clin Infect Dis 2022; 75:S441-S450. [PMID: 36251555 PMCID: PMC9649416 DOI: 10.1093/cid/ciac593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The deliberate use of Bacillus anthracis spores is believed by the US government to be a high bioweapons threat. The first line of defense following potential exposure to B. anthracis spores would be postexposure prophylaxis with antimicrobials that have activity against B. anthracis. Additional therapies to address the effects of toxins may be needed in systemically ill individuals. Over the last 2 decades, the United States government (USG) collaborated with the private sector to develop, test, and stockpile 3 antitoxins: anthrax immunoglobulin intravenous (AIGIV), raxibacumab, and obiltoxaximab. All 3 products target protective antigen, a protein factor common to the 2 exotoxins released by B. anthracis, and hamper or block the toxins' effects and prevent or reduce pathogenesis. These antitoxins were approved for licensure by the United States Food and Drug Administration based on animal efficacy studies compared to placebo. METHODS We describe USG-sponsored pre- and postlicensure studies that compared efficacy of 3 antitoxins in a New Zealand White rabbit model of inhalation anthrax; survival following a lethal aerosolized dose of B. anthracis spores was the key measure of effectiveness. To model therapeutic intervention, intravenous treatments were started following onset of antigenemia. RESULTS In pre- and postlicensure studies, all 3 antitoxins were superior to placebo; in the postlicensure study, raxibacumab and obiltoxaximab were superior to AIGIV, but neither was superior to the other. CONCLUSIONS These data illustrate the relative therapeutic benefit of the 3 antitoxins and provide a rationale to prioritize their deployment.
Collapse
Affiliation(s)
- Raymond M Slay
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel Cook
- Oak Ridge Institute for Science and Education, CDC Fellowship Program, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine Hendricks
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Boucher
- Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Michael Merchlinsky
- Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| |
Collapse
|
115
|
Grubovic Rastvorceva RM, Useini S, Stevanovic M, Demiri I, Petkovic E, Franchini M, Focosi D. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients-An Open-Label Phase II Clinical Trial. Life (Basel) 2022; 12:1565. [PMID: 36295001 PMCID: PMC9605182 DOI: 10.3390/life12101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Background: COVID-19 convalescent plasma (CCP) is an important antiviral option for selected patients with COVID-19. Materials and Methods: In this open-label, phase 2, clinical trial conducted from 30 April 2020 till 10 May 2021 in the Republic of North Macedonia, we evaluated the efficacy and safety of CCP in hospitalized patients. Treatment was with a single unit of CCP having an anti-RBD IgG concentration higher than 5 AU/mL. Results: There were 189 patients that completed the study, of which 65 (34.4%) had WHO 8-point clinical progression scale score of 3 (requiring hospital care but not oxygen support), 65 (34.4%) had a score of 4 (hospitalized and requiring supplemental oxygen by mask or nasal prongs), and 59 (31.2%) had a score of 5 (hospitalized and requiring supplemental oxygen by non-invasive ventilation or high-flow oxygen). Mean age was 57 years (range 22−94), 78.5% were males, 80.4% had elevated body mass index, and 70.9% had comorbidity. Following CCP transfusion, we observed clinical improvement with increase rates in oxygenation-free days of 32.3% and 58.5% at 24 h and seven days after CCP transfusion, a decline in WHO scores, and reduced progression to severe disease (only one patient was admitted to ICU after CCP transfusion). Mortality in the entire cohort was 11.6% (22/189). We recorded 0% mortality in WHO score 3 (0/65) and in patients that received CCP transfusion in the first seven days of disease, 4.6% mortality in WHO score 4 (3/65), and 30.5% mortality in WHO score 5 (18/59). Mortality correlated with WHO score (Chi-square 19.3, p < 0.001) and with stay in the ICU (Chi-square 55.526, p ≤ 0.001). No severe adverse events were reported. Conclusions: This study showed that early administration of CCP to patients with moderate disease was a safe and potentially effective treatment for hospitalized COVID-19 patients. The trial was registered at clinicaltrials.gov (NCT04397523).
Collapse
Affiliation(s)
- Rada M. Grubovic Rastvorceva
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
- Faculty of Medical Sciences, University Goce Delcev, 2000 Stip, North Macedonia
| | - Sedula Useini
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | - Milena Stevanovic
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Ilir Demiri
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Elena Petkovic
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | | | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
116
|
A randomized placebo-controlled trial of convalescent plasma for adults hospitalized with COVID-19 pneumonia. Sci Rep 2022; 12:16385. [PMID: 36180450 PMCID: PMC9523654 DOI: 10.1038/s41598-022-19629-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Passive immunotherapy with convalescent plasma may be the only available agent during the early phases of a pandemic. Here, we report safety and efficacy of high-titer convalescent plasma for COVID-19 pneumonia. Double-blinded randomized multicenter placebo-controlled trial of adult patients hospitalized with COVID-19 pneumonia. The intervention was COVID-19 convalescent plasma and placebo was saline allocated 2:1. The primary outcome was clinical status 14 days after the intervention evaluated on a clinical ordinal scale. The trial was registered at ClinicalTrials.Gov, NCT04345289, 14/04/2020. The CCAP-2 trial was terminated prematurely due to futility. Of 147 patients randomized, we included 144 patients in the modified intention-to-treat population. The ordinal clinical status 14 days post-intervention was comparable between treatment groups (odds ratio (OR) 1.41, 95% confidence interval (CI) 0.72–2.09). Results were consistent when evaluating clinical progression on an individual level 14 days after intervention (OR 1.09; 95% CI 0.46–1.73). No significant differences in length of hospital stay, admission to ICU, frequency of severe adverse events or all-cause mortality during follow-up were found between the intervention and the placebo group. Infusion of convalescent plasma did not influence clinical progression, survival or length of hospitalization in patients with COVID-19 pneumonia.
Collapse
|
117
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin Microbiol Rev 2022; 35:e0020021. [PMID: 35262370 PMCID: PMC9491201 DOI: 10.1128/cmr.00200-21] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
118
|
Efficacy of COVID-19 Convalescent Plasma Based on Antibody Concentration. Adv Hematol 2022; 2022:7992927. [PMID: 36164495 PMCID: PMC9509285 DOI: 10.1155/2022/7992927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background Convalescent plasma obtained from individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains neutralizing antibodies to the virus and has been frequently used as a treatment in hospitalized patients with severe COVID-19. Methods We conducted a retrospective, observational cohort study involving 96 hospitalized patients with severe COVID-19 who were allocated in a 1 : 1 ratio to having received either high antibody concentration convalescent plasma or low antibody concentration convalescent plasma. Quantitative measurements of IgG to the receptor-binding domain (RBD), the S1 subunit of the spike protein, and the SARS-CoV-2 nucleocapsid (N) protein were determined from donor plasma samples. The primary outcome was all-cause mortality within 30 days following convalescent plasma administration in regard to each of the three antibody domains. Results Within the nucleocapsid antibody domain, death occurred in 22.2% of patients in the low antibody concentration group versus 23.5% in the high antibody concentration group (p=0.88). Within the RBD antibody domain, death occurred in 22.9% of patients in both the low and the high antibody concentration groups (p=1.0). Within the S1 subunit antibody domain, death occurred in 27.1% of patients in the low antibody concentration group versus 18.8% in the high antibody concentration group (p=0.33). Conclusions No significant differences were observed between low and high concentration convalescent plasma in regard to overall mortality at 30 days, hospital length of stay, number of ventilator days, and subsequent receipt of invasive mechanical ventilation in patients who were previously not receiving mechanical ventilation. Trial Registration. This study was not associated with a clinical trial due to the retrospective nature of study design.
Collapse
|
119
|
Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022; 13:993754. [PMID: 36189203 PMCID: PMC9523127 DOI: 10.3389/fimmu.2022.993754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.
Collapse
Affiliation(s)
- Xiaohui Wei
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | - Jiangning Liu
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
120
|
Gachoud D, Pillonel T, Tsilimidos G, Battolla D, Dumas D, Opota O, Fontana S, Vollenweider P, Manuel O, Greub G, Bertelli C, Rufer N. Antibody response and intra-host viral evolution after plasma therapy in COVID-19 patients pre-exposed or not to B-cell-depleting agents. Br J Haematol 2022; 199:549-559. [PMID: 36101920 PMCID: PMC9539045 DOI: 10.1111/bjh.18450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 12/16/2022]
Abstract
Administration of plasma therapy may contribute to viral control and survival of COVID-19 patients receiving B-cell-depleting agents that impair humoral immunity. However, little is known on the impact of anti-CD20 pre-exposition on the kinetics of SARS-CoV-2-specific antibodies. Here, we evaluated the relationship between anti-spike immunoglobulin G (IgG) kinetics and the clinical status or intra-host viral evolution after plasma therapy in 36 eligible hospitalized COVID-19 patients, pre-exposed or not to B-cell-depleting treatments. The majority of anti-CD20 pre-exposed patients (14/17) showed progressive declines of anti-spike IgG titres following plasma therapy, contrasting with the 4/19 patients who had not received B-cell-depleting agents (p = 0.0006). Patients with antibody decay also depicted prolonged clinical symptoms according to the World Health Organization (WHO) severity classification (p = 0.0267) and SARS-CoV-2 viral loads (p = 0.0032) before complete virus clearance. Moreover, they had higher mutation rates than patients able to mount an endogenous humoral response (p = 0.015), including three patients with one to four spike mutations, potentially associated with immune escape. No relevant differences were observed between patients treated with plasma from convalescent and/or mRNA-vaccinated donors. Our study emphasizes the need for an individualized clinical care and follow-up in the management of COVID-19 patients with B-cell lymphopenia.
Collapse
Affiliation(s)
- David Gachoud
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland,Medical Education Unit, School of Medicine, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Trestan Pillonel
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Gerasimos Tsilimidos
- Division of Hematology, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Dunia Battolla
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Dominique Dumas
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Onya Opota
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Stefano Fontana
- Interregional Blood Transfusion SRCBernSwitzerland,Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Peter Vollenweider
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Department of MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Gilbert Greub
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland,Infectious Diseases Service and Transplantation Center, Department of MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Claire Bertelli
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Nathalie Rufer
- Interregional Blood Transfusion SRCEpalingesSwitzerland,Department of OncologyLausanne University Hospital and University of LausanneEpalingesSwitzerland
| |
Collapse
|
121
|
Joyner MJ, Carter RE, Fairweather D, Wright RS. Convalescent plasma and COVID-19: Time for a second-second look? Transfus Med 2022; 33:16-20. [PMID: 36089562 PMCID: PMC9538409 DOI: 10.1111/tme.12915] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
In this short narrative, we highlight some of our experiences leading the US Convalescent Plasma Program at the beginning of the pandemic in the spring and summer of 2020. This includes a brief summary of how the program emerged and high-level lessons we learned. We also share our impressions about why convalescent plasma was used at scale in the United States, early in the pandemic and share ideas that might inform the use of convalescent plasma in future outbreaks of novel infectious diseases.
Collapse
Affiliation(s)
- Michael J. Joyner
- Department of Anesthesiology & Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Division of Clinical Trials & BiostatisticsMayo ClinicJacksonvilleFloridaUSA
| | | | - R. Scott Wright
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
122
|
Prolonged ICU Stay in Severe and Critically-Ill COVID-19 Patients Who Received Convalescent Plasma Therapy. Crit Care Res Pract 2022; 2022:1594342. [PMID: 36118915 PMCID: PMC9473920 DOI: 10.1155/2022/1594342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
Background Convalescent plasma administration in severe and critically-ill COVID-19 patients have been proven to not provide improvement in patients' outcome, yet it is still widely used in countries with limited resources due to its high availability and safety. This study aims to investigate its effects on ICU mortality, ICU length of stay (LoS), and improvement of oxygen support requirements. Methods Data of all severe and critically-ill patients in our COVID-19 ICU was collected retrospectively between May and November 2020. We dichotomized the variables and compared outcome data of 48 patients, who received convalescent plasma to 131 patients, receiving standard of care. Data were analyzed using multiple logistic regression to make prediction models of mortality, length of stay, and oxygen support device requirement. Result Overall mortality rate in our COVID-19 ICU was 55.3%, with a median overall length of stay of 8 (4–11) days. Less patients that received convalescent plasma presented with the need for mechanical ventilation on ICU admission (p < 0.001), but with comparable PaO2 to FiO2 (P/F) ratio (p=0.95). Factors that confounded mortality were obesity (aOR = 14.1; 95% CI (1.25, 166.7); p=0.032), mechanical ventilation (aOR = 333; 95% CI (4.5,1,000); p < 0.001), higher neutrophil-to-lymphocyte ratio (NLR) (aOR = 7.32; 95% CI (1.82, 29.4); p=0.005), and lower P/F ratio (aOR = 7.70; 95% CI (2.04, 29.4); p=0.003). ICU LoS was longer in patients, who had prior history of hypertension (aOR = 2.14; 95% CI (1.05, 4.35); p=0.036) and received convalescent plasma (aOR = 3.88; 95% CI (1.77, 8.05); p < 0.001). Deceased patients, who received convalescent plasma, stayed longer in the ICU with a mean length of stay of 12.87 ± 5.7 days versus 8.13 ± 4.8 days with a significant difference (U = 434; p < 0.000). The chance of improved oxygen support requirements was lower in obese patients (aOR = 9.18; 95%CI (2.0, 42.1); p < 0.004), mechanically ventilated patients (aOR = 13.15; 95% CI (3.75, 46.09); p < 0.001), patients with higher NLR (aOR = 2.5; 95% CI (1.07, 5.85); p=0.034), and lower P/F ratio (aOR = 2.76; 95% CI (1.1, 6.91); p=0.031). Conclusion The length of stay of patients in the convalescent plasma group was significantly longer than the control group. There was no effect of convalescent plasma in ICU mortality and no improvement was observed in terms of oxygen support requirements.
Collapse
|
123
|
Birschmann I, von Bargen K, Teune M, Flottmann C, Knüttgen F, Knabbe C. Retrospective study shows that early administration of convalescent plasma in hospitalized COVID-19 patients may have a positive effect on disease progression. Health Sci Rep 2022; 5:e714. [PMID: 35957967 PMCID: PMC9362730 DOI: 10.1002/hsr2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Ingvild Birschmann
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| | - Katharina von Bargen
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| | - Michelle Teune
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| | - Christian Flottmann
- Lukas Krankenhaus BündeMedizinische Klinik II – Innere Medizin und KardiologieBündeGermany
| | - Franziska Knüttgen
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| | - Cornelius Knabbe
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| |
Collapse
|
124
|
Estcourt LJ, Cohn CS, Pagano MB, Iannizzi C, Kreuzberger N, Skoetz N, Allen ES, Bloch EM, Beaudoin G, Casadevall A, Devine DV, Foroutan F, Gniadek TJ, Goel R, Gorlin J, Grossman BJ, Joyner MJ, Metcalf RA, Raval JS, Rice TW, Shaz BH, Vassallo RR, Winters JL, Tobian AAR. Clinical Practice Guidelines From the Association for the Advancement of Blood and Biotherapies (AABB): COVID-19 Convalescent Plasma. Ann Intern Med 2022; 175:1310-1321. [PMID: 35969859 PMCID: PMC9450870 DOI: 10.7326/m22-1079] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DESCRIPTION Coronavirus disease 2019 convalescent plasma (CCP) has emerged as a potential treatment of COVID-19. However, meta-analysis data and recommendations are limited. The Association for the Advancement of Blood and Biotherapies (AABB) developed clinical practice guidelines for the appropriate use of CCP. METHODS These guidelines are based on 2 living systematic reviews of randomized controlled trials (RCTs) evaluating CCP from 1 January 2019 to 26 January 2022. There were 33 RCTs assessing 21 916 participants. The results were summarized using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) method. An expert panel reviewed the data using the GRADE framework to formulate recommendations. RECOMMENDATION 1 (OUTPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for outpatients with COVID-19 who are at high risk for disease progression (weak recommendation, moderate-certainty evidence). RECOMMENDATION 2 (INPATIENT) The AABB recommends against CCP transfusion for unselected hospitalized persons with moderate or severe disease (strong recommendation, high-certainty evidence). This recommendation does not apply to immunosuppressed patients or those who lack antibodies against SARS-CoV-2. RECOMMENDATION 3 (INPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 who do not have SARS-CoV-2 antibodies detected at admission (weak recommendation, low-certainty evidence). RECOMMENDATION 4 (INPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 and preexisting immunosuppression (weak recommendation, low-certainty evidence). RECOMMENDATION 5 (PROPHYLAXIS) The AABB suggests against prophylactic CCP transfusion for uninfected persons with close contact exposure to a person with COVID-19 (weak recommendation, low-certainty evidence). GOOD CLINICAL PRACTICE STATEMENT CCP is most effective when transfused with high neutralizing titers to infected patients early after symptom onset.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and Transplant and Radcliffe Department of Medicine, University of Oxford, United Kingdom (L.J.E.)
| | - Claudia S Cohn
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, Minnesota (C.S.C.)
| | - Monica B Pagano
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, Washington (M.B.P.)
| | - Claire Iannizzi
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Nina Kreuzberger
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Nicole Skoetz
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Elizabeth S Allen
- University of California San Diego, Department of Pathology, La Jolla, California (E.S.A.)
| | - Evan M Bloch
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| | | | - Arturo Casadevall
- The Johns Hopkins University School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland (A.C.)
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada (D.V.D.)
| | - Farid Foroutan
- University Health Network, Ted Rogers Centre for Heart Research, Toronto, and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada (F.F.)
| | - Thomas J Gniadek
- NorthShore University Health System, Department of Pathology and Laboratory Medicine, Evanston, Illinois (T.J.G.)
| | - Ruchika Goel
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| | - Jed Gorlin
- Innovative Blood Resources, Division of New York Blood Center Enterprises, St. Paul, Minnesota (J.G.)
| | - Brenda J Grossman
- Washington University in St. Louis School of Medicine, Department of Pathology and Immunology, St. Louis, Missouri (B.J.G.)
| | - Michael J Joyner
- Mayo Clinic, Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota (M.J.J.)
| | - Ryan A Metcalf
- University of Utah, Department of Pathology, Salt Lake City, Utah (R.A.M.)
| | - Jay S Raval
- University of New Mexico, Department of Pathology, Albuquerque, New Mexico (J.S.R.)
| | - Todd W Rice
- Vanderbilt University Medical Center, Division of Allergy, Pulmonary, and Critical Care Medicine, Nashville, Tennessee (T.W.R.)
| | - Beth H Shaz
- Duke University, Department of Pathology, Durham, North Carolina (B.H.S.)
| | | | - Jeffrey L Winters
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota (J.L.W.)
| | - Aaron A R Tobian
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| |
Collapse
|
125
|
Elliott BP, Buchek GM, Koroscil MT. Characteristics, Treatment, and Outcomes of Patients With Severe or Life-threatening COVID-19 at a Military Treatment Facility-A Descriptive Cohort Study. Mil Med 2022; 187:e1043-e1046. [PMID: 33576431 PMCID: PMC7928756 DOI: 10.1093/milmed/usab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The treatment of severe and life-threatening COVID-19 is a rapidly evolving practice. The purpose of our study was to describe the characteristics and outcomes of patients with severe or life-threatening COVID-19 who present to a Military Treatment Facility (MTF) with an emphasis on addressing institutional adaptations to rapidly changing medical evidence. MATERIALS AND METHODS A single-center retrospective study conducted on a prospectively maintained cohort. The MTF is a 52-bed hospital within an urban setting. Patients were included in the cohort if they had laboratory-confirmed severe or life-threatening COVID-19 with positive SARS-CoV-2 reverse transcription polymerase chain reaction. Severe disease was defined as dyspnea, respiratory frequency ≥30/min, blood oxygen saturation ≤93% on ambient air, partial pressure of arterial oxygen to fraction of inspired oxygen ratio <300, or lung infiltrates involving >50% of lung fields within 24-48 hours. Life-threatening COVID-19 was defined as respiratory failure, septic shock, or multiple organ dysfunction. The cohort included patients admitted from June 1 through November 13. Data were collected retrospectively via chart review by a resident physician. RESULTS In total, our MTF saw 14 cases of severe or life-threatening COVID-19 from June 1 to November 13. Patients had a median age of 70.5 years, with 7% being active duty personnel, 21% dependents, and 71% retired military members. The median time to dexamethasone, remdesivir, and convalescent plasma administration was 4.7, 6.3, and 11.2 hours, respectively. The 28-day in-hospital mortality was 0%. CONCLUSIONS Patients who present to an MTF with severe or life-threatening COVID-19 are largely retirees, with only a small fraction comprising active duty personnel. The institution of order sets and early consultation can help facilitate prompt patient care for COVID-19.
Collapse
Affiliation(s)
- Brian P Elliott
- Department of Internal Medicine, Wright Patterson Medical Center, Wright Patterson AFB, OH 45433, USA
| | - Gregory M Buchek
- Department of Internal Medicine, Wright Patterson Medical Center, Wright Patterson AFB, OH 45433, USA
- Department of Infectious Diseases, Wright Patterson Medical Center, Wright Patterson AFB, OH 45433, USA
| | - Matthew T Koroscil
- Department of Internal Medicine, Wright Patterson Medical Center, Wright Patterson AFB, OH 45433, USA
- Department of Pulmonary and Critical Care, Wright Patterson Medical Center, Wright Patterson AFB, OH 45433, USA
| |
Collapse
|
126
|
Chauhan L, Pattee J, Ford J, Thomas C, Lesteberg K, Richards E, Bernas CA, Loi M, Dumont L, Annen K, Berg M, Zirbes M, Knight V, Miller A, Jenkins TC, Bennett TD, Monkowski D, Boxer RS, Beckham JD. A Multicenter, Prospective, Observational, Cohort-Controlled Study of Clinical Outcomes Following Coronavirus Disease 2019 (COVID-19) Convalescent Plasma Therapy in Hospitalized Patients With COVID-19. Clin Infect Dis 2022; 75:e466-e472. [PMID: 34549274 PMCID: PMC9612788 DOI: 10.1093/cid/ciab834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused high inpatient mortality and morbidity throughout the world. COVID-19 convalescent plasma (CCP) has been utilized as a potential therapy for patients hospitalized with coronavirus disease 2019 (COVID-19) pneumonia. This study evaluated the outcomes of hospitalized patients with COVID-19 treated with CCP in a prospective, observational, multicenter trial. METHODS From April through August 2020, hospitalized patients with COVID-19 at 16 participating hospitals in Colorado were enrolled and treated with CCP and compared with hospitalized patients with COVID-19 who were not treated with convalescent plasma. Plasma antibody levels were determined following the trial, given that antibody tests were not approved at the initiation of the trial. CCP-treated and untreated hospitalized patients with COVID-19 were matched using propensity scores followed by analysis for length of hospitalization and inpatient mortality. RESULTS A total of 542 hospitalized patients with COVID-19 were enrolled at 16 hospitals across the region. A total of 468 hospitalized patients with COVID-19 were entered into propensity score matching with 188 patients matched for analysis in the CCP-treatment and control arms. Fine-Gray models revealed increased length of hospital stay in CCP-treated patients and no change in inpatient mortality compared with controls. In subgroup analysis of CCP-treated patients within 7 days of admission, there was no difference in length of hospitalization and inpatient mortality. CONCLUSIONS These data show that treatment of hospitalized patients with COVID-19 treated with CCP did not significantly improve patient hospitalization length of stay or inpatient mortality.
Collapse
Affiliation(s)
- Lakshmi Chauhan
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jack Pattee
- Center for Innovative Design and Analysis, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshay Ford
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Chris Thomas
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kelsey Lesteberg
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric Richards
- University of Colorado Hospital System, Denver, Colorado, USA
| | - Carl A Bernas
- University of Colorado Hospital System, Denver, Colorado, USA
| | - Michele Loi
- Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Larry Dumont
- University of Colorado School of Medicine, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| | - Kyle Annen
- Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Mary Berg
- University of Colorado Hospital System, Denver, Colorado, USA
| | - Mercedes Zirbes
- Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Amanda Miller
- Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Tellen D Bennett
- Children’s Hospital Colorado, Aurora, Colorado, USA
- Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Section of Informatics and Data Science, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Rebecca S Boxer
- Institute for Health Research, Kaiser Permanente of Colorado, Aurora, Colorado, USA
| | - J David Beckham
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado School of Medicine, Aurora, Colorado, USA
- Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
127
|
Convalescent Plasma for COVID-19: A Single Center Prospective Experience with Serial Antibody Measurements and Review of the Literature. Pathogens 2022; 11:pathogens11090958. [PMID: 36145390 PMCID: PMC9503397 DOI: 10.3390/pathogens11090958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background: High-titer convalescent plasma given early for COVID-19 may decrease progression into a severe infection. Here, we reported a study of serial antibody measurements in patients who received CP at our center and performed a systematic review of randomized trials on CP. Methods: Our center participated in the Mayo Clinic Expanded Access Program for COVID-19 Convalescent Plasma. Patients diagnosed with COVID-19 by nasopharyngeal polymerase chain reaction at our center between April and August 2020 were included in the study if staffing was available for specimen collection. Through a colloidal gold immunochromatography assay, these patients’ IgM and IgG antibody responses were measured at baseline (Day 0) and after transfusion (Day 1, 2, etc.). Donor CP antibody levels were measured as well. Results: 110 serum specimens were obtained from 21 COVID-19 patients, 16 of whom received CP. The median time from developing symptoms to receiving CP was 11 days (range 4−21). In 9 of 14 (64%) cases where both recipient and donor CP antibody levels were tested, donor COVID-19 IgG was lower than that of the recipient. Higher donor antibody levels compared with the recipient (R = 0.71, p < 0.01) and low patient IgG before CP transfusion (p = 0.0108) correlated with increasing patient IgG levels from baseline to Day 1. Among all patients, an increased COVID-19 IgG in the short-term and longitudinally was positively correlated with improved clinical outcomes (ρ = 0.69, p = 0.003 and ρ = 0.58, p < 0.006, respectively). Conclusions: In a real-world setting where donor CP was not screened for the presence of antibodies, CP in donors might have less COVID-19 IgG than in recipients. An increase in patient antibody levels in the short term and longitudinally was associated with improved clinical outcomes.
Collapse
|
128
|
Zhou CK, Bennett MM, Villa CH, Hammonds KP, Lu Y, Ettlinger J, Priest EL, Gottlieb RL, Davis S, Mays E, Clarke TC, Shoaibi A, Wong HL, Anderson SA, Kelly RJ. Multi-center matched cohort study of convalescent plasma for hospitalized patients with COVID-19. PLoS One 2022; 17:e0273223. [PMID: 35980913 PMCID: PMC9387784 DOI: 10.1371/journal.pone.0273223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Although frequently used in the early pandemic, data on the effectiveness of COVID-19 convalescent plasma (CCP) remain mixed. We investigated the effectiveness and safety of CCP in hospitalized COVID-19 patients in real-world practices during the first two waves of the pandemic in a multi-hospital healthcare system in Texas.
Methods and findings
Among 11,322 hospitalized patients with confirmed COVID-19 infection from July 1, 2020 to April 15, 2021, we included patients who received CCP and matched them with those who did not receive CCP within ±2 days of the transfusion date across sites within strata of sex, age groups, days and use of dexamethasone from hospital admission to the match date, and oxygen requirements 4–12 hours prior to the match date. Cox proportional hazards model estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for effectiveness outcomes in a propensity score 1:1 matched cohort. Pre-defined safety outcomes were described. We included 1,245 patients each in the CCP treated and untreated groups. Oxygen support was required by 93% of patients at the baseline. The pre-defined primary effectiveness outcome of 28-day in-hospital all-cause mortality (HR = 0.85; 95%CI: 0.66,1.10) were similar between treatment groups. Sensitivity and stratified analyses found similar null results. CCP-treated patients were less likely to be discharged alive (HR = 0.82; 95%CI: 0.74, 0.91), and more likely to receive mechanical ventilation (HR = 1.48; 95%CI: 1.12, 1.96). Safety outcomes were rare and similar between treatment groups.
Conclusion
The findings in this large, matched cohort of patients hospitalized with COVID-19 and mostly requiring oxygen support at the time of treatment, do not support a clinical benefit in 28-day in-hospital all-cause mortality for CCP. Future studies should assess the potential benefits with specifically high-titer units in perhaps certain subgroups of patients (e.g. those with early disease or immunocompromised).
Collapse
Affiliation(s)
- Cindy Ke Zhou
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Monica M. Bennett
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
| | - Carlos H. Villa
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kendall P. Hammonds
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
| | - Yun Lu
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jason Ettlinger
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
| | - Elisa L. Priest
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
| | - Robert L. Gottlieb
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
- Baylor University Medical Center, Dallas, Texas, United States of America
- Baylor Heart and Vascular Hospital, Dallas, Texas, United States of America
- Baylor Scott and White The Heart Hospital, Plano, Texas, United States of America
- Texas A&M Health Science Center, Dallas, Texas, United States of America
- TCU and University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Steven Davis
- Baylor Scott & White Medical Center–Irving, Irving, Texas, United States of America
| | - Edward Mays
- Baylor University Medical Center, Dallas, Texas, United States of America
| | - Tainya C. Clarke
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Azadeh Shoaibi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hui-Lee Wong
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Steven A. Anderson
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ronan J. Kelly
- Baylor University Medical Center, Dallas, Texas, United States of America
- Charles A. Sammons Cancer Center Baylor University Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
129
|
Esteban I, Panighetti MT, Polack FP. Post-trial follow-up after a randomized clinical trial of COVID-19 convalescent plasma. Gates Open Res 2022. [DOI: 10.12688/gatesopenres.13725.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: COVID-19 convalescent plasma (CP) proved to be a safe acute intervention, however, the long-term clinical effects of COVID-19 CP are to date unknown. CP might have a prospective negative effect by down-regulating the inflammatory response suppressing antibody formation and promoting autoantibodies against interferons. Our objective was to establish the long-term safety profile of COVID-19 CP and determine if its administration increases the risk for further respiratory infections in older adults. Methods: All participants included in the intention to treat analysis of a randomized clinical trial evaluating the efficacy of COVID-19 CP in older adults were invited to participate in this post-trial follow-up study. Patients were strictly followed for at least 6 months after randomization. The primary endpoint was the number of patients with clinically confirmed acute respiratory infections (ARIs). Secondary endpoints included all-cause mortality, time to first respiratory infection, SARS-CoV-2 re-infection, adverse events, and persistence of COVID-19 symptoms after initial infection. Results: 142 patients were included in the study (total retention rate=92.8%). The mean age was 77.2 years (SD=8.6) and the median duration of follow-up was 10.4 months (IQR=1.63), with no differences among groups. 20 patients had a clinically confirmed ARI during the study. No differences were observed between groups in the proportion of ARIs (CP=11/72 and Placebo=9/70, p-value=0.678) and in the probability of ARI-free survival between groups (log-rank test p-value=0.63). No differences emerged when comparing groups regarding secondary endpoints. Conclusions: COVID-19 convalescent plasma remains a safe intervention without increasing the risk of acute respiratory infection or other clinical consequences in the long term.
Collapse
|
130
|
Brynjolfsson SF, Sigurgrimsdottir H, Gudlaugsson O, Kristjansson M, Kristinsson KG, Ludviksson BR. Determining SARS-CoV-2 non-infectivity state-A brief overview. Front Public Health 2022; 10:934242. [PMID: 36033758 PMCID: PMC9412020 DOI: 10.3389/fpubh.2022.934242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023] Open
Abstract
From the beginning of the COVID-19 pandemic, it has claimed over 6 million lives, and globally the pandemic rages with detrimental consequences, with the emergence of new more infectious and possibly virulent variants. A clinical obstacle in this battle has been to determine when an infected individual has reached a non-infectious state. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be transmitted under diverse circumstances, and various rules and regulations, along with different testing methods, have been applied in an attempt to confine the transmission. However, that has proven to be a difficult task. In this review, we take together recently published data on infectivity and transmission of SARS-CoV-2 and have combined it with the clinical experience that physicians in Iceland have accumulated from the pandemic. In addition, we suggest guidelines for determining when patients with COVID-19 reach a non-infectious state based on a combination of clinical experience, scientific data, and proficient use of available tests. This review has addressed some of the questions regarding contagiousness and immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Siggeir F. Brynjolfsson
- Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland,Department of Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland,*Correspondence: Siggeir F. Brynjolfsson
| | - Hildur Sigurgrimsdottir
- Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland,Department of Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Olafur Gudlaugsson
- Department of Infectious Diseases, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
| | - Mar Kristjansson
- Department of Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland,Department of Infectious Diseases, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
| | - Karl G. Kristinsson
- Department of Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland,Department of Clinical Microbiology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjorn R. Ludviksson
- Department of Immunology, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland,Department of Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland,Bjorn R. Ludviksson
| |
Collapse
|
131
|
Awasthi M, Golding H, Khurana S. Severe Acute Respiratory Syndrome Coronavirus 2 Hyperimmune Intravenous Human Immunoglobulins Neutralizes Omicron Subvariants BA.1, BA.2, BA.2.12.1, BA.3, and BA.4/BA.5 for Treatment of Coronavirus Disease 2019. Clin Infect Dis 2022; 76:e503-e506. [PMID: 35925647 PMCID: PMC9384659 DOI: 10.1093/cid/ciac642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Our study demonstrates that neither 2020 convalescent plasma (CP) nor 2019/2020 intravenous immunoglobulin (IVIG) neutralizes Omicron subvariants BA.1 to BA.5. In contrast, 2020 hyperimmune anti-severe acute respiratory syndrome coronavirus 2 IVIG (hCoV-2IG) lots neutralized Omicron variants of concern, similar to results with 2022 CP from BA.1 breakthrough infections. Therefore, high-titer hCoV-2IG and CP could be evaluated for treatment of high-risk individuals infected with circulating Omicron subvariants.
Collapse
Affiliation(s)
- Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, 20993, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, 20993, USA
| | - Surender Khurana
- Corresponding author: Surender Khurana, Ph.D. Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, USA 20993, E. mail-
| |
Collapse
|
132
|
Mathur P, Kottilil S. Immunomodulatory therapies for COVID-19. Front Med (Lausanne) 2022; 9:921452. [PMID: 35991665 PMCID: PMC9381694 DOI: 10.3389/fmed.2022.921452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose As COVID-19 disease progresses, the host inflammatory response contributes to hypoxemia and severe and critical illness. In these latter stages of disease, patients may benefit from immunomodulatory therapies to control the aberrant host inflammatory response. In this review, we provide an overview of these therapies and provide summaries of the studies that led to issuance of FDA Emergency Use Authorization or recommendation by the Infectious Diseases Society of America (IDSA). Materials and methods We reviewed English-language studies, Emergency Use Authorizations (EUAs), and guidelines from March 2020 to present. Conclusion and relevance There are several therapies with proposed benefit in severe and critical COVID-19 disease. Few have been issued FDA EUA or recommendation by the Infectious Diseases Society of America (IDSA). Physicians should be familiar with the evidence supporting use of these therapies and the patient populations most likely to benefit from each.
Collapse
Affiliation(s)
- Poonam Mathur
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
133
|
Merin NM, LeVee AA, Merlo CA, Spector K, Coleman H, Klapper E, Hayes C, Zabner R, McDyer JF, Eby YJ, Sullivan DJ, Tobian AAR, Bloch EM, Hager DN. The feasibility of multiple units of convalescent plasma in mechanically ventilated patients with COVID-19: A pilot study. Transfus Apher Sci 2022; 61:103423. [PMID: 35337753 PMCID: PMC8923025 DOI: 10.1016/j.transci.2022.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Noah M Merin
- Department of Internal Medicine, Division of Hematology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Alexis A LeVee
- Department of Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Christian A Merlo
- Department of Internal Medicine, Division of Hematology, Cedars-Sinai Medical Center, Los Angeles, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, USA
| | - Kellie Spector
- Department of Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | | | - Ellen Klapper
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Chelsea Hayes
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Rachel Zabner
- Department of Medicine, Division of Infectious Diseases, Cedars-Sinai Medical Center, Los Angeles, USA
| | - John F McDyer
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Yolanda J Eby
- Department of Pathology, Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Aaron A R Tobian
- Department of Pathology, Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Evan M Bloch
- Department of Pathology, Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David N Hager
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
134
|
Farhangnia P, Dehrouyeh S, Safdarian AR, Farahani SV, Gorgani M, Rezaei N, Akbarpour M, Delbandi AA. Recent advances in passive immunotherapies for COVID-19: The Evidence-Based approaches and clinical trials. Int Immunopharmacol 2022; 109:108786. [PMID: 35483235 PMCID: PMC9021130 DOI: 10.1016/j.intimp.2022.108786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing a global pandemic called COVID-19. Currently, there is no definitive treatment for this emerging disease. Global efforts resulted in developing multiple platforms of COVID-19 vaccines, but their efficacy in humans should be wholly investigated in the long-term clinical and epidemiological follow-ups. Despite the international efforts, COVID-19 vaccination accompanies challenges, including financial and political obstacles, serious adverse effects (AEs), the impossibility of using vaccines in certain groups of people in the community, and viral evasion due to emerging novel variants of SARS-CoV-2 in many countries. For these reasons, passive immunotherapy has been considered a complementary remedy and a promising way to manage COVID-19. These approaches arebased on reduced inflammation due to inhibiting cytokine storm phenomena, immunomodulation,preventing acute respiratory distress syndrome (ARDS), viral neutralization, anddecreased viral load. This article highlights passive immunotherapy and immunomodulation approaches in managing and treating COVID-19 patients and discusses relevant clinical trials (CTs).
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Shiva Dehrouyeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Amir Reza Safdarian
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Soheila Vasheghani Farahani
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, United States.
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
135
|
Tse K, Chen Q, Padilla A, Martinez K, Salazar A, Aidikoff J, Soliven S, Sintef A, Palmer-Toy D, Platz B, Shafi H, Zemek A. Lessons learned from the use of COVID-19 convalescent plasma at Kaiser Permanente. JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: GLOBAL 2022; 1:309-311. [PMID: 36051399 PMCID: PMC9396439 DOI: 10.1016/j.jacig.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin Tse
- Department of Allergy and Immunology, Southern California Permanente Medical Group, San Diego Kaiser Permanente Medical Center, San Diego, Calif
| | - Qiaoling Chen
- Department of Research and Evaluation, Southern California Permanente Medical Group, Pasadena, Calif
| | - Ariadna Padilla
- Department of Research and Evaluation, Southern California Permanente Medical Group, Pasadena, Calif
| | - Kenneth Martinez
- Department of Pathology, Southern California Permanente Medical Group, Downey Kaiser Permanente Medical Center, Downey, Calif
| | - Alejandra Salazar
- Department of Pathology, Southern California Permanente Medical Group, Downey Kaiser Permanente Medical Center, Downey, Calif
| | - Jennifer Aidikoff
- Department of Pathology, Southern California Permanente Medical Group, Los Angeles Kaiser Permanente Medical Center, Los Angeles, Calif
| | - Stephanie Soliven
- Department of Pathology, Southern California Permanente Medical Group, San Diego Kaiser Permanente Medical Center, San Diego, Calif
| | - Ann Sintef
- SCPMG Regional Reference Core Laboratories, Kaiser Permanente - Southern California Permanente Medical Group, North Hollywood, Calif
| | - Darryl Palmer-Toy
- SCPMG Regional Reference Core Laboratories, Kaiser Permanente - Southern California Permanente Medical Group, North Hollywood, Calif
| | - Brian Platz
- Department of Pathology, Southern California Permanente Medical Group, West Los Angeles Kaiser Permanente Medical Center, Los Angeles, Calif
| | - Hedyeh Shafi
- Department of Pathology, Southern California Permanente Medical Group, Los Angeles Kaiser Permanente Medical Center, Los Angeles, Calif
| | - Allison Zemek
- Department of Pathology, Southern California Permanente Medical Group, Downey Kaiser Permanente Medical Center, Downey, Calif
| |
Collapse
|
136
|
Avery RK. Update on COVID-19 Therapeutics for Solid Organ Transplant Recipients, Including the Omicron Surge. Transplantation 2022; 106:1528-1537. [PMID: 35700481 PMCID: PMC9311293 DOI: 10.1097/tp.0000000000004200] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Major changes have occurred in therapeutics for coronavirus-19 (COVID-19) infection over the past 12-18 mo, most notably in early outpatient therapy. In most cases, solid organ transplant recipients were not included in the original clinical trials of these agents, so studies of real-world outcomes have been important in building our understanding of their utility. This review examines what is known about clinical outcomes in solid organ transplant recipients with newer therapies. SARS-CoV-2 monoclonal antibodies for early treatment or prophylaxis have likely prevented many hospitalizations and deaths. In addition, convalescent plasma, the oral drugs nirmatrelvir/ritonavir and molnupiravir, remdesivir for early outpatient treatment, anti-inflammatory therapy, and investigational virus-specific T-cell therapy will be discussed. Finally, the later consequences of COVID-19, such as secondary infections, long COVID symptoms, and persistent active infection, are identified as areas for future research.
Collapse
Affiliation(s)
- Robin Kimiko Avery
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
137
|
Souan L, Sughayer MA, Abu Alhowr MM. Establishing the First COVID-19 Convalescent Plasma Biobank in Jordan. Biopreserv Biobank 2022; 20:423-428. [PMID: 35904406 DOI: 10.1089/bio.2022.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Antibodies with the specialized ability to fight infection can be found in the blood of individuals who have recovered from or have been vaccinated against COVID-19. As a result, plasma from these individuals could be used to treat critically ill patients. This treatment is known as convalescent plasma (CCP) therapy. Methods: Plasma units from 1555 consented healthy blood bank donors were collected from February to September 2021. Blood units were tested for the quantitative determination of Immunoglobulin G (IgG) antibodies to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus using one of the following assays based on the availability of the kits: The LIAISON® SARS-CoV-2 TrimericS IgG assay or the Abbott SARS-CoV-2 IgG II Quant assay. Results: Among the tested donors, 1027 participants tested positive for neutralizing anti-SARS-CoV-2 IgG antibodies (66.04%). There were 484 donors whose plasma qualified to be used for CCP therapy (47.13%) and 214 CCP units were stored in the COVID-19 convalescent biobank. Conclusion: We were able to identify and store 214 fresh frozen plasma units qualified for CCP-plasma therapy for COVID-19 patients according to World Health Organization standards. Hence, we established the first COVID-19-convalescent plasma data and plasma biobank for treating COVID-19-infected cancer patients in Jordan and the region.
Collapse
Affiliation(s)
- Lina Souan
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Maher A Sughayer
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Maha M Abu Alhowr
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
138
|
Battaglini D, Robba C, Pelosi P, Rocco PRM. Treatment for acute respiratory distress syndrome in adults: A narrative review of phase 2 and 3 trials. Expert Opin Emerg Drugs 2022; 27:187-209. [PMID: 35868654 DOI: 10.1080/14728214.2022.2105833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Ventilatory management and general supportive care of acute respiratory distress syndrome (ARDS) in the adult population have led to significant clinical improvements, but morbidity and mortality remain high. Pharmacologic strategies acting on the coagulation cascade, inflammation, oxidative stress, and endothelial cell injury have been targeted in the last decade for patients with ARDS, but only a few of these have shown potential benefits with a meaningful clinical response and improved patient outcomes. The lack of availability of specific pharmacologic treatments for ARDS can be attributed to its complex pathophysiology, different risk factors, huge heterogeneity, and difficult classification into specific biological phenotypes and genotypes. AREAS COVERED In this narrative review, we briefly discuss the relevance and current advances in pharmacologic treatments for ARDS in adults and the need for the development of new pharmacological strategies. EXPERT OPINION Identification of ARDS phenotypes, risk factors, heterogeneity, and pathophysiology may help to design clinical trials personalized according to ARDS-specific features, thus hopefully decreasing the rate of failed clinical pharmacologic trials. This concept is still under clinical investigation and needs further development.
Collapse
Affiliation(s)
- Denise Battaglini
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Chiara Robba
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.,Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.,Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil.,COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
139
|
Hypothesis-Agnostic Network-Based Analysis of Real-World Data Suggests Ondansetron is Associated with Lower COVID-19 Any Cause Mortality. Drugs Real World Outcomes 2022; 9:359-375. [PMID: 35809196 PMCID: PMC9281575 DOI: 10.1007/s40801-022-00303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/08/2022] Open
Abstract
Background The COVID-19 pandemic generated a massive amount of clinical data, which potentially hold yet undiscovered answers related to COVID-19 morbidity, mortality, long-term effects, and therapeutic solutions. Objectives The objectives of this study were (1) to identify novel predictors of COVID-19 any cause mortality by employing artificial intelligence analytics on real-world data through a hypothesis-agnostic approach and (2) to determine if these effects are maintained after adjusting for potential confounders and to what degree they are moderated by other variables. Methods A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within the Interrogative Biology® platform was used for Bayesian network learning and hypothesis generation to analyze 16,277 PCR+ patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated Bayesian networks that enabled unbiased identification of significant predictors of any cause mortality for specific COVID-19 patient populations. These findings were further analyzed by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. Results We found that in the COVID-19 PCR+ patient cohort, early use of the antiemetic agent ondansetron was associated with decreased any cause mortality 30 days post-PCR+ testing in mechanically ventilated patients. Conclusions The results demonstrate how a real-world COVID-19-focused data analysis using artificial intelligence can generate unexpected yet valid insights that could possibly support clinical decision making and minimize the future loss of lives and resources. Supplementary Information The online version contains supplementary material available at 10.1007/s40801-022-00303-9.
Collapse
|
140
|
Limited Correlation between SARS-CoV-2 Serologic Assays for Identification of High-Titer COVID-19 Convalescent Plasma Using FDA Thresholds. Microbiol Spectr 2022; 10:e0115422. [PMID: 35862939 PMCID: PMC9430146 DOI: 10.1128/spectrum.01154-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In August 2020, the Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for COVID-19 convalescent plasma (CCP) specified 12 authorized serologic assays and associated assay-specific cutoff values for the selection of high-titer CCP for use in hospitalized patients. The criteria used for establishing these cutoff values remains unclear. Here, we compare the overall agreement and concordance of five serologic assays included in the August 2020 FDA EUA at both the manufacturer-recommended qualitative cutoff thresholds and at the FDA-indicated thresholds for high-titer CCP, using serum samples collected as part of the CCP Expanded Access Program (EAP). The qualitative positive percent agreement (PPA) across assays ranged from 92.3% to 98.8%. However, the high-titer categorization across assays varied significantly, with the PPA ranging from 26.5% to 82.7%. The Roche anti-NC ECLIA provided the lowest agreement compared to all other assays. Efforts to optimize high-titer cutoffs could reduce, although not eliminate, the discordance across assays. The consequences of using nonstandardized assays are apparent in our study, and the high-titer cutoffs chosen for each assay are not directly comparable to each other. The generalized findings in our study will be relevant to any future use of convalescent plasma for either COVID-19 or future pandemics of newly emerged pathogens. IMPORTANCE COVID-19 convalescent plasma (CCP) was one of the first therapeutic options available for the treatment of SARS-CoV-2 infections and continues to be used selectively for immunosuppressed patients. Given the emergence of novel SARS-CoV-2 variants which are resistant to treatment with available monoclonal antibody (MAb) therapy, CCP remains an important therapeutic consideration. The FDA has released several emergency use authorizations (EUA) that have specified which serological assays can be used for qualification of CCP, as well as assay-specific cutoffs that must be used to identify high-titer CCP. In this study, a cohort of donor CCP was assessed across multiple serological assays which received FDA EUA for qualification of CCP. This study indicates a high degree of discordance across the assays used to qualify CCP for clinical use, which may have precluded the optimal use of CCP, including during clinical trials. This study highlights the need for assay standardization early in the development of serological assays for emerging pathogens.
Collapse
|
141
|
Cooner F, Liao R, Lin J, Barthel S, Seifu Y, Ruan S. Leveraging Real-World Data in COVID-19 Response. Stat Biopharm Res 2022. [DOI: 10.1080/19466315.2022.2096688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Freda Cooner
- Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA, USA
| | - Ran Liao
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, USA
| | - Junjing Lin
- Takeda Pharmaceutical Co. Limited, Cambridge, MA, USA
| | | | | | | |
Collapse
|
142
|
Findlay-Wilson S, Easterbrook L, Smith S, Pope N, Humphries G, Schuhmann H, Ngabo D, Rayner E, Otter AD, Coleman T, Hicks B, Graham VA, Halkerston R, Apostolakis K, Taylor S, Fotheringham S, Horton A, Tree JA, Wand M, Hewson R, Dowall SD. Development of a cost-effective ovine antibody-based therapy against SARS-CoV-2 infection and contribution of antibodies specific to the spike subunit proteins. Antiviral Res 2022; 203:105332. [PMID: 35533779 PMCID: PMC9075985 DOI: 10.1016/j.antiviral.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
Antibodies against SARS-CoV-2 are important to generate protective immunity, with convalescent plasma one of the first therapies approved. An alternative source of polyclonal antibodies suitable for upscaling would be more amendable to regulatory approval and widespread use. In this study, sheep were immunised with SARS-CoV-2 whole spike protein or one of the subunit proteins: S1 and S2. Once substantial antibody titres were generated, plasma was collected and samples pooled for each antigen. Non-specific antibodies were removed via affinity-purification to yield candidate products for testing in a hamster model of SARS-CoV-2 infection. Affinity-purified polyclonal antibodies to whole spike, S1 and S2 proteins were evaluated for in vitro for neutralising activity against SARS-CoV-2 Wuhan-like virus (Australia/VIC01/2020) and a recent variant of concern, B.1.1.529 BA.1 (Omicron), antibody-binding, complement fixation and phagocytosis assays were also performed. All antibody preparations demonstrated an effect against SARS-CoV-2 disease in the hamster model of challenge, with those raised against the S2 subunit providing the most promise. A rapid, cost-effective therapy for COVID-19 was developed which provides a source of highly active immunoglobulin specific to SARS-CoV-2 with multi-functional activity.
Collapse
Affiliation(s)
- Stephen Findlay-Wilson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Linda Easterbrook
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sandra Smith
- International Therapeutic Proteins Ltd (Australia), Longford, Tasmania, 7301, Australia
| | - Neville Pope
- International Therapeutic Proteins Ltd (UK), Goleigh Farm, Selborne, Hampshire, GU34 3SE, UK
| | - Gareth Humphries
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Holger Schuhmann
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Didier Ngabo
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Emma Rayner
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ashley David Otter
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Tom Coleman
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bethany Hicks
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Anne Graham
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Rachel Halkerston
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kostis Apostolakis
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stephen Taylor
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Susan Fotheringham
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Amanda Horton
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Julia Anne Tree
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew Wand
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stuart David Dowall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
143
|
Focosi D, Franchini M. Potential use of convalescent plasma for SARS-CoV-2 prophylaxis and treatment in immunocompromised and vulnerable populations. Expert Rev Vaccines 2022; 21:877-884. [PMID: 34015243 PMCID: PMC8171015 DOI: 10.1080/14760584.2021.1932475] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION : The ongoing SARS-CoV-2 pandemic is a serious threat for the health of immunocompromised patients. Among neutralizing antibody-based therapeutics, convalescent plasma containing polyclonal anti-SARS-CoV-2 immunoglobulins has promising results in both congenital and iatrogenic immunodeficiencies in oncohematological and transplant patients. AREAS COVERED : This article discusses case reports, case series and controlled studies detailing the efficacy of convalescent plasma in immunocompromised patients. EXPERT OPINION : Convalescent plasma, when administered at high neutralizing antibody titers, is a safe and effective treatment for frail immunocompromised patients. Genetic monitoring of refractory patients is recommended to intercept intra-host emergence of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| |
Collapse
|
144
|
Bao Q, Yang T, Yang M, Mao C. Detection, prevention and treatment of COVID-19 and opportunities for nanobiotechnology. VIEW 2022; 3:20200181. [PMID: 35600668 PMCID: PMC9111118 DOI: 10.1002/viw.20200181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Since the outbreak of COVID-19, the number of confirmed cases and deaths has increased globally at a dramatic speed. In view of the serious health threat to humans, this review discusses the state-of-the-art studies about fighting this disease. It summarizes the current strategies and recent advances in detecting, preventing, and treating COVID-19 and interprets the underlying mechanisms in detail. Detection of COVID-19 can be successfully achieved by multiple techniques such as polymerase chain reaction, computed tomography imaging, and nano-biosensing. Inactivated virus vaccine, nucleic acid vaccine, and different nanoparticles have been employed to effectively prevent COVID-19. A variety of agents such as antiviral agents, neutralizing antibodies, and nanotherapeutics have been developed to treat COVID-19 with exciting efficacy. Although nanobiotechnology has shown great potential in the diagnosis, prevention, and treatment of COVID-19, efforts should be made to explore new biocompatible nano-biomaterials to advance this field to clinical applications. Hence, nanobiotechnology paves a new way to detect, prevent, and treat COVID-19 effectively.
Collapse
Affiliation(s)
- Qing Bao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
| | - Tao Yang
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
| | - Mingying Yang
- College of Animal ScienceInstitute of Applied Bioresource ResearchZhejiang UniversityHangzhouZhejiangChina
| | - Chuanbin Mao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| |
Collapse
|
145
|
Nikitin PA, DiMuzio JM, Dowling JP, Patel NB, Bingaman-Steele JL, Heimbach BC, Henriquez N, Nicolescu C, Polley A, Sikorski EL, Howanski RJ, Nath M, Shukla H, Scheaffer SM, Finn JP, Liang LF, Smith T, Storm N, McKay LGA, Johnson RI, Malsick LE, Honko AN, Griffiths A, Diamond MS, Sarma P, Geising DH, Morin MJ, Robinson MK. IMM-BCP-01, a patient-derived anti-SARS-CoV-2 antibody cocktail, is active across variants of concern including Omicron BA.1 and BA.2. Sci Immunol 2022; 7:eabl9943. [PMID: 35771946 PMCID: PMC9273042 DOI: 10.1126/sciimmunol.abl9943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies are an efficacious therapy against SARS-CoV-2. However, rapid viral mutagenesis, led to escape from most of these therapies, outlining the need for an antibody cocktail with a broad neutralizing potency. Using an unbiased interrogation of the memory B cell repertoire of convalescent COVID-19 patients, we identified human antibodies with broad antiviral activity in vitro and efficacy in vivo against all tested SARS-CoV-2 variants of concern, including Delta, Omicron BA.1 and BA.2. Here, we describe an antibody cocktail IMM-BCP-01, that consists of three patient-derived broadly neutralizing antibodies directed at non-overlapping surfaces on the SARS-CoV-2 spike protein. Two antibodies, IMM20184 and IMM20190, directly blocked Spike binding to the ACE2 receptor. Binding of the third antibody, IMM20253, to its cryptic epitope on the outer surface of RBD, altered the conformation of the Spike Trimer, promoting release of Spike monomers. These antibodies decreased Omicron SARS-CoV-2 infection in the lungs of Syrian golden hamsters in vivo, and potently induced antiviral effector response in vitro, including phagocytosis, ADCC, and complement pathway activation. Our pre-clinical data demonstrated that the three antibody cocktail IMM-BCP-01 could be a promising means for preventing or treating infection of SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2, in susceptible individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Suzanne M Scheaffer
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | - Nadia Storm
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Lindsay G A McKay
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Rebecca I Johnson
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Lauren E Malsick
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Anna N Honko
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Anthony Griffiths
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston, MA, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
146
|
Rojas M, Rodríguez Y, Hernández JC, Díaz-Coronado JC, Vergara JAD, Vélez VP, Mancilla JP, Araujo I, Yepes JT, Ricaurte OB, Pardo-Oviedo JM, Monsalve DM, Acosta-Ampudia Y, Ramírez-Santana C, García PG, Landinez LA, Correales LD, Grass JS, Pérez CR, López GS, Mateus N, Mancera L, Devia RR, Orjuela JE, Parra-Moreno CR, Buitrago AA, Ordoñez IE, Osorio CF, Ballesteros N, Patiño LH, Castañeda S, Muñoz M, Ramírez JD, Bastard P, Gervais A, Bizien L, Casanova JL, Camacho B, Gallo JE, Gómez O, Rojas-Villarraga A, Pérez CE, Manrique R, Mantilla RD, Anaya JM. Safety and efficacy of convalescent plasma for severe COVID-19: a randomized, single blinded, parallel, controlled clinical study. BMC Infect Dis 2022; 22:575. [PMID: 35761219 PMCID: PMC9235185 DOI: 10.1186/s12879-022-07560-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Convalescent plasma (CP) has been widely used to treat COVID-19 and is under study. However, the variability in the current clinical trials has averted its wide use in the current pandemic. We aimed to evaluate the safety and efficacy of CP in severe coronavirus disease 2019 (COVID-19) in the early stages of the disease. Methods A randomized controlled clinical study was conducted on 101 patients admitted to the hospital with confirmed severe COVID-19. Most participants had less than 14 days from symptoms onset and less than seven days from hospitalization. Fifty patients were assigned to receive CP plus standard therapy (ST), and 51 were assigned to receive ST alone. Participants in the CP arm received two doses of 250 mL each, transfused 24 h apart. All transfused plasma was obtained from "super donors" that fulfilled the following criteria: titers of anti-SARS-CoV-2 S1 IgG ≥ 1:3200 and IgA ≥ 1:800 antibodies. The effect of transfused anti-IFN antibodies and the SARS-CoV-2 variants at the entry of the study on the overall CP efficacy was evaluated. The primary outcomes were the reduction in viral load and the increase in IgG and IgA antibodies at 28 days of follow-up. The per-protocol analysis included 91 patients. Results An early but transient increase in IgG anti-S1-SARS-CoV-2 antibody levels at day 4 post-transfusion was observed (Estimated difference [ED], − 1.36; 95% CI, − 2.33 to − 0.39; P = 0.04). However, CP was not associated with viral load reduction in any of the points evaluated. Analysis of secondary outcomes revealed that those patients in the CP arm disclosed a shorter time to discharge (ED adjusted for mortality, 3.1 days; 95% CI, 0.20 to 5.94; P = 0.0361) or a reduction of 2 points on the WHO scale when compared with the ST group (HR adjusted for mortality, 1.6; 95% CI, 1.03 to 2.5; P = 0.0376). There were no benefits from CP on the rates of intensive care unit admission (HR, 0.82; 95% CI, 0.35 to 1.9; P = 0.6399), mechanical ventilation (HR, 0.66; 95% CI, 0.25 to 1.7; P = 0.4039), or mortality (HR, 3.2; 95% CI, 0.64 to 16; P = 0.1584). Anti-IFN antibodies and SARS-CoV-2 variants did not influence these results. Conclusion CP was not associated with viral load reduction, despite the early increase in IgG anti-SARS-CoV-2 antibodies. However, CP is safe and could be a therapeutic option to reduce the hospital length of stay. Trial registration NCT04332835
Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07560-7.
Collapse
|
147
|
Marconato M, Abela IA, Hauser A, Schwarzmüller M, Katzensteiner R, Braun DL, Epp S, Audigé A, Weber J, Rusert P, Schindler E, Pasin C, West E, Böni J, Kufner V, Huber M, Zaheri M, Schmutz S, Frey BM, Kouyos RD, Günthard HF, Manz MG, Trkola A. Antibodies from convalescent plasma promote SARS-CoV-2 clearance in individuals with and without endogenous antibody response. J Clin Invest 2022; 132:e158190. [PMID: 35482408 PMCID: PMC9197521 DOI: 10.1172/jci158190] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDNeutralizing antibodies are considered a key correlate of protection by current SARS-CoV-2 vaccines. The manner in which human infections respond to therapeutic SARS-CoV-2 antibodies, including convalescent plasma therapy, remains to be fully elucidated.METHODSWe conducted a proof-of-principle study of convalescent plasma therapy based on a phase I trial in 30 hospitalized COVID-19 patients with a median interval between onset of symptoms and first transfusion of 9 days (IQR, 7-11.8 days). Comprehensive longitudinal monitoring of the virological, serological, and disease status of recipients allowed deciphering of parameters on which plasma therapy efficacy depends.RESULTSIn this trial, convalescent plasma therapy was safe as evidenced by the absence of transfusion-related adverse events and low mortality (3.3%). Treatment with highly neutralizing plasma was significantly associated with faster virus clearance, as demonstrated by Kaplan-Meier analysis (P = 0.034) and confirmed in a parametric survival model including viral load and comorbidity (adjusted hazard ratio, 3.0; 95% CI, 1.1-8.1; P = 0.026). The onset of endogenous neutralization affected viral clearance, but even after adjustment for their pretransfusion endogenous neutralization status, recipients benefitted from plasma therapy with high neutralizing antibodies (hazard ratio, 3.5; 95% CI, 1.1-11; P = 0.034).CONCLUSIONOur data demonstrate a clear impact of exogenous antibody therapy on the rapid clearance of viremia before and after onset of the endogenous neutralizing response, and point beyond antibody-based interventions to critical laboratory parameters for improved evaluation of current and future SARS-CoV-2 therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT04869072.FUNDINGThis study was funded via an Innovation Pool project by the University Hospital Zurich; the Swiss Red Cross Glückskette Corona Funding; Pandemiefonds of the UZH Foundation; and the Clinical Research Priority Program "Comprehensive Genomic Pathogen Detection" of the University of Zurich.
Collapse
Affiliation(s)
- Maddalena Marconato
- Department of Medical Oncology and Haematology; University Hospital Zurich and University of Zurich; Comprehensive Cancer Center Zurich; Switzerland
| | - Irene A. Abela
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Anthony Hauser
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Rheliana Katzensteiner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Dominique L. Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Eméry Schindler
- Blood Transfusion Service Zurich, Swiss Red Cross, Zurich, Switzerland
| | - Chloé Pasin
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Emily West
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Verena Kufner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Beat M. Frey
- Blood Transfusion Service Zurich, Swiss Red Cross, Zurich, Switzerland
| | - Roger D. Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Haematology; University Hospital Zurich and University of Zurich; Comprehensive Cancer Center Zurich; Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
148
|
Abstract
Preexisting immunity to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was nonexistent in humans, which coupled with high transmission rates of certain SARS-CoV-2 variants and limited vaccine uptake or availability, has collectively resulted in an ongoing global pandemic. The identification and establishment of one or multiple correlates of protection (CoP) against infectious pathogens is challenging, but beneficial from both the patient care and public health perspectives. Multiple studies have shown that neutralizing antibodies, whether generated following SARS-CoV-2 infection, vaccination, or a combination of both (i.e., hybrid immunity), as well as adaptive cellular immune responses, serve as CoPs for COVID-19. However, the diverse number and type of serologic assays, alongside the lack of cross-assay standardization and emergence of new SARS-CoV-2 variants with immune evasive characteristics, have collectively posed challenges to determining a robust CoP 'threshold' and for the routine utilization of these assays to document 'immunity,' as is commonly done for other vaccine preventable diseases. Here, we discuss what CoPs are, review our current understanding of infection-induced, vaccine-elicited and hybrid immunity to COVID-19 and summarize the current and potential future utility of SARS-CoV-2 serologic testing.
Collapse
Affiliation(s)
- Anisha Misra
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
149
|
Polak TB, Cucchi DGJ, van Rosmalen J, Uyl-de Groot CA, Darrow JJ. Generating Evidence from Expanded Access Use of Rare Disease Medicines: Challenges and Recommendations. Front Pharmacol 2022; 13:913567. [PMID: 35677436 PMCID: PMC9168458 DOI: 10.3389/fphar.2022.913567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 12/05/2022] Open
Abstract
Patients with rare diseases often have limited or no options for approved treatments or participation in clinical trials. In such cases, expanded access (or “compassionate use”) provides a potential means of accessing unapproved investigational medicines. It is also possible to capture and analyze clinical data from such use, but doing so is controversial. In this perspective, we offer examples of evidence derived from expanded access programs for rare diseases to illustrate its potential value to the decision-making of regulators and payers in the European Union and the United States. We discuss ethical and regulatory aspects to the use of expanded access data, with a focus on rare disease medicines. The heterogeneous approach to expanded access among countries within the European Union leaves uncertainties to what extent data can be collected and analyzed. We recommend the issuance of new guidance on data collection during expanded access, harmonization of European pathways, and an update of existing European compassionate use guidance. We hereby aim to clarify the supportive role of expanded access in evidence generation. Harmonization across Europe of expanded access regulations could reduce manufacturer burdens, improve patient access, and yield better data. These changes would better balance the need to generate quality evidence with the desire for pre-approval access to investigational medicine.
Collapse
Affiliation(s)
- Tobias B Polak
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, Netherlands.,Department of Biostatistics, Erasmus University Rotterdam, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus University Rotterdam, Rotterdam, Netherlands.,Real-World Data Department, myTomorrows, Amsterdam, Netherlands
| | - David G J Cucchi
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands.,Department of Hematology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus University Rotterdam, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Carin A Uyl-de Groot
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Jonathan J Darrow
- Department of Law and Taxation, Bentley University, Waltham, MA, United States.,Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
150
|
Low SARS-CoV-2 antibody titers may be associated with poor clinical outcomes for patients with severe COVID-19. Sci Rep 2022; 12:9147. [PMID: 35650227 PMCID: PMC9159042 DOI: 10.1038/s41598-022-12834-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Recently, immune response to coronavirus disease (COVID-19) has attracted attention where an association between higher antibody titer and worsening disease severity has been reported. However, our experiences with severe COVID-19 patients with low antibody titers led to hypothesizing that suppressed humoral immune response may be associated with poorer prognosis in severe COVID19. In this study, antibody titers in severe COVID19 patients were measured at 7, 10, 12, and 14 days after onset. Patients were divided into survivors and non-survivors. SARS-CoV-2 IgM in survivors and non-survivors were 0.06 AU and 0.02 AU (P = 0.048) at 10 days, 0.1 AU and 0.03 AU (P = 0.02) at 12 days, and 0.17 AU and 0.06 AU (P = 0.02) at 14 days. IgG in survivors and non-survivors were 0.01 AU and 0.01 AU (P = 0.04) at 7 days, 0.42 AU and 0.01 AU (P = 0.04) at 12 days, and 0.42 AU and 0.01 AU (P = 0.02) at 14 days. Multivariate analysis showed better survival among patients with IgM positivity at 12 days (P = 0.04), IgG positivity at 12 days (P = 0.04), IgM positivity at 14 days (P = 0.008), and IgG positivity at 14 days (P = 0.005). In severe COVID-19, low antibody titers on days 12 and 14 after onset were associated with poorer prognosis.
Collapse
|