101
|
Pulido P, Cazalis R, Cejudo FJ. An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:132-45. [PMID: 18786001 DOI: 10.1111/j.1365-313x.2008.03675.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cereal seed cells contain different mechanisms for protection against the oxidative stress that occurs during maturation and germination. One such mechanism is based on the antioxidant activity of a 1-Cys peroxiredoxin (1-Cys Prx) localized in the nuclei of aleurone and scutellum cells. However, nothing is known about the mechanism of activation of this enzyme. Here, we describe the pattern of localization of NADPH thioredoxin reductase (NTR) in developing and germinating wheat seeds using an immunocytochemical analysis. The presence of NTR in transfer cells, vascular tissue, developing embryo and root meristematic cells, agrees with the localization of thioredoxin h (Trx h), and supports the important function of the NTR/Trx system in cell proliferation and communication. Interestingly, NTR is found in the nuclei of seed cells suffering oxidative stress, thus showing co-localization with Trx h and 1-Cys Prx. To test whether the NTR/Trx system serves as a reductant of the 1-Cys Prx, we cloned a full-length cDNA encoding 1-Cys Prx from wheat, and expressed the recombinant protein in Escherichia coli. Using the purified components, we show NTR-dependent activity of the 1-Cys Prx. Mutants of the 1-Cys Prx allowed us to demonstrate that the peroxidatic residue of the wheat enzyme is Cys46, which is overoxidized in vitro under oxidant conditions. Analysis of extracts from developing and germinating seeds confirmed 1-Cys Prx overoxidation in vivo. Based on these results, we propose that NADPH is the source of the reducing power to regenerate 1-Cys Prx in the nuclei of seed cells suffering oxidative stress, in a process that is catalyzed by NTR.
Collapse
Affiliation(s)
- Pablo Pulido
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y CSIC, Avda Américo Vespucio 49, Seville, Spain
| | | | | |
Collapse
|
102
|
Ramos J, Matamoros MA, Naya L, James EK, Rouhier N, Sato S, Tabata S, Becana M. The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes. THE NEW PHYTOLOGIST 2009; 181:103-114. [PMID: 18826485 DOI: 10.1111/j.1469-8137.2008.02629.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite the multiple roles played by antioxidants in rhizobia-legume symbioses, little is known about glutathione peroxidases (GPXs) in legumes. Here the characterization of six GPX genes of Lotus japonicus is reported. Expression of GPX genes was analysed by quantitative reverse transcription-polymerase chain reaction in L. japonicus and Lotus corniculatus plants exposed to various treatments known to generate reactive oxygen and/or nitrogen species. LjGPX1 and LjGPX3 were the most abundantly expressed genes in leaves, roots and nodules. Compared with roots, LjGPX1 and LjGPX6 were highly expressed in leaves and LjGPX3 and LjGPX6 in nodules. In roots, salinity decreased GPX4 expression, aluminium decreased expression of the six genes, and cadmium caused up-regulation of GPX3, GPX4 and GPX5 after 1 h and down-regulation of GPX1, GPX2, GPX4 and GPX6 after 3-24 h. Exposure of roots to sodium nitroprusside (a nitric oxide donor) for 1 h increased the mRNA levels of GPX4 and GPX6 by 3.3- and 30-fold, respectively. Thereafter, the GPX6 mRNA level remained consistently higher than that of the control. Immunogold labelling revealed the presence of GPX proteins in root and nodule amyloplasts and in leaf chloroplasts of L. japonicus and other legumes. Labelling was associated with starch grains. These results underscore the differential regulation of GPX expression in response to cadmium, aluminium and nitric oxide, and strongly support a role for GPX6 and possibly other GPX genes in stress and/or metabolic signalling.
Collapse
Affiliation(s)
- Javier Ramos
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Loreto Naya
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Euan K James
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Nicolas Rouhier
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shusei Sato
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain;College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;UMR 1136 Tree-Microbes Interactions, IFR110, Nancy University, Vandoeuvre-les-Nancy, France;Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
103
|
Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A. Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. PHYSIOLOGIA PLANTARUM 2008; 134:508-21. [PMID: 18785901 DOI: 10.1111/j.1399-3054.2008.01159.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sulfur-deficient plants generate a lower yield and have a reduced nutritional value. The process of sulfur acquisition and assimilation play an integral role in plant metabolism, and response to sulfur deficiency involves a large number of plant constituents. Rice (Oryza sativa) is the second most consumed cereal grain, and the effects of sulfur deprivation in rice were analyzed by measuring changes in photosynthesis, carbohydrate metabolism, and antioxidants. The photosynthetic apparatus was severely affected under sulfur deficiency. The Chl content was reduced by 49% because of a general reduction of PSII and PSI and the associated light-harvesting antenna. The PSII efficiency was 31% lower at growth light, and the ability of PSI to photoreduce NADP+ was decreased by 61%. The Rubisco content was also significantly reduced in the sulfur-deprived plants. The imbalances between PSII and PSI, and between photosynthesis and carbon fixation led to a general over-reduction of the photosynthetic electron carriers (higher 1-q(P)). Chromatographic analysis showed that the level of monosaccharides was lower and starch content higher in the sulfur-deprived plants. In contrast, no changes in metabolite levels were found in the tricarboxylic acid or Calvin cycle. The level of the thiol-containing antioxidant, GSH, was 70% lower and the redox state was significantly more oxidized. These changes in GSH status led to an upregulation of the cytosolic isoforms of GSH reductase and monodehydroascorbate reductase. In addition, alternative antioxidants like flavonoids and anthocyanins were increased in the sulfur-deprived plants.
Collapse
Affiliation(s)
- Christina Lunde
- VKR Research Centre "Pro-Active Plants", Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|
104
|
Affiliation(s)
- Abderrakib Zahid
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
| | - Samia Afoulous
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
| | - Roland Cazalis
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
- Corresponding author. Phone: 33-561152989. Fax: 33-561153060. E-mail address:
| |
Collapse
|
105
|
Krügel U, Veenhoff LM, Langbein J, Wiederhold E, Liesche J, Friedrich T, Grimm B, Martinoia E, Poolman B, Kühn C. Transport and sorting of the solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification. THE PLANT CELL 2008; 20:2497-513. [PMID: 18790827 PMCID: PMC2570718 DOI: 10.1105/tpc.108.058271] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 08/25/2008] [Accepted: 09/03/2008] [Indexed: 05/18/2023]
Abstract
The plant sucrose transporter SUT1 from Solanum tuberosum revealed a dramatic redox-dependent increase in sucrose transport activity when heterologously expressed in Saccharomyces cerevisiae. Plant plasma membrane vesicles do not show any change in proton flux across the plasma membrane in the presence of redox reagents, indicating a SUT1-specific effect of redox reagents. Redox-dependent sucrose transport activity was confirmed electrophysiologically in Xenopus laevis oocytes with SUT1 from maize (Zea mays). Localization studies of green fluorescent protein fusion constructs showed that an oxidative environment increased the targeting of SUT1 to the plasma membrane where the protein concentrates in 200- to 300-nm raft-like microdomains. Using plant plasma membranes, St SUT1 can be detected in the detergent-resistant membrane fraction. Importantly, in yeast and in plants, oxidative reagents induced a shift in the monomer to dimer equilibrium of the St SUT1 protein and increased the fraction of dimer. Biochemical methods confirmed the capacity of SUT1 to form a dimer in plants and yeast cells in a redox-dependent manner. Blue native PAGE, chemical cross-linking, and immunoprecipitation, as well as the analysis of transgenic plants with reduced expression of St SUT1, confirmed the dimerization of St SUT1 and Sl SUT1 (from Solanum lycopersicum) in planta. The ability to form homodimers in plant cells was analyzed by the split yellow fluorescent protein technique in transiently transformed tobacco (Nicotiana tabacum) leaves and protoplasts. Oligomerization seems to be cell type specific since under native-like conditions, a phloem-specific reduction of the dimeric form of the St SUT1 protein was detectable in SUT1 antisense plants, whereas constitutively inhibited antisense plants showed reduction only of the monomeric form. The role of redox control of sucrose transport in plants is discussed.
Collapse
Affiliation(s)
- Undine Krügel
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc Natl Acad Sci U S A 2008; 105:10262-7. [PMID: 18635686 DOI: 10.1073/pnas.0800585105] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteomic analysis of mature sugarbeet seeds led to the identification of 759 proteins and their specific tissue expression in root, cotyledons, and perisperm. In particular, the proteome of the perispermic storage tissue found in many seeds of the Caryophyllales is described here. The data allowed us to reconstruct in detail the metabolism of the seeds toward recapitulating facets of seed development and provided insights into complex behaviors such as germination. The seed appears to be well prepared to mobilize the major classes of reserves (the proteins, triglycerides, phytate, and starch) during germination, indicating that the preparation of the seed for germination is mainly achieved during its maturation on the mother plant. Furthermore, the data revealed several pathways that can contribute to seed vigor, an important agronomic trait defined as the potential to produce vigorous seedlings, such as glycine betaine accumulation in seeds. This study also identified several proteins that, to our knowledge, have not previously been described in seeds. For example, the data revealed that the sugarbeet seed can initiate translation either through the traditional cap-dependent mechanism or by a cap-independent process. The study of the tissue specificity of the seed proteome demonstrated a compartmentalization of metabolic activity between the roots, cotyledons, and perisperm, indicating a division of metabolic tasks between the various tissues. Furthermore, the perisperm, although it is known as a dead tissue, appears to be very active biochemically, playing multiple roles in distributing sugars and various metabolites to other tissues of the embryo.
Collapse
|
107
|
Yano H, Kuroda S. Introduction of the Disulfide Proteome: Application of a Technique for the Analysis of Plant Storage Proteins as Well as Allergens. J Proteome Res 2008; 7:3071-9. [DOI: 10.1021/pr8003453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroyuki Yano
- National Institute of Crop Science, Tsukuba 305-8518, Japan, and BRAIN Tokyo Office, Minato-ku, Tokyo 105-0001, Japan
| | - Shigeru Kuroda
- National Institute of Crop Science, Tsukuba 305-8518, Japan, and BRAIN Tokyo Office, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
108
|
Abstract
Forty years ago, ferredoxin (Fdx) was shown to activate fructose 1,6-bisphosphatase in illuminated chloroplast preparations, thereby laying the foundation for the field now known as "redox biology." Enzyme activation was later shown to require the ubiquitous protein thioredoxin (Trx), reduced photosynthetically by Fdx via an enzyme then unknown-ferredoxin:thioredoxin reductase (FTR). These proteins, Fdx, FTR, and Trx, constitute a regulatory ensemble, the "Fdx/Trx system." The redox biology field has since grown beyond all expectations and now embraces a spectrum of processes throughout biology. Progress has been notable with plants that possess not only the plastid Fdx/Trx system, but also the earlier known NADP/Trx system in the cytosol, endoplasmic reticulum, and mitochondria. Plants contain at least 19 types of Trx (nine in chloroplasts). In this review, we focus on the structure and mechanism of action of members of the photosynthetic Fdx/Trx system and on biochemical processes linked to Trx. We also summarize recent evidence that extends the Fdx/Trx system to amyloplasts-heterotrophic plastids functional in the biosynthesis of starch and other cell components. The review highlights the plant as a model system to uncover principles of redox biology that apply to other organisms.
Collapse
Affiliation(s)
- Peter Schürmann
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Neuchâtel, Neuchâtel, Switzerland.
| | | |
Collapse
|
109
|
Zhang L, Häusler RE, Greiten C, Hajirezaei MR, Haferkamp I, Neuhaus HE, Flügge UI, Ludewig F. Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:453-64. [PMID: 18363632 DOI: 10.1111/j.1467-7652.2008.00332.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transgenic potato (Solanum tuberosum) plants simultaneously over-expressing a pea (Pisum sativum) glucose-6-phosphate/phosphate translocator (GPT) and an Arabidopsis thaliana adenylate translocator (NTT1) in tubers were generated. Double transformants exhibited an enhanced tuber yield of up to 19%, concomitant with an additional increased starch content of up to 28%, compared with control plants. The total starch content produced in tubers per plant was calculated to be increased by up to 44% in double transformants relative to the wild-type. Single over-expression of either gene had no effect on tuber starch content or tuber yield, suggesting that starch formation within amyloplasts is co-limited by the import of energy and the supply of carbon skeletons. As total adenosine diphosphate-glucose pyrophosphorylase and starch synthase activities remained unchanged in double transformants relative to the wild-type, they cannot account for the increased starch content found in tubers of double transformants. Rather, an optimized supply of amyloplasts with adenosine triphosphate and glucose-6-phosphate seems to favour increased starch synthesis, resulting in plants with increased starch content and yield of tubers.
Collapse
Affiliation(s)
- Lizhi Zhang
- Botanical Institute, University of Cologne, Gyrhofstr. 15, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Nuruzzaman M, Gupta M, Zhang C, Wang L, Xie W, Xiong L, Zhang Q, Lian X. Sequence and expression analysis of the thioredoxin protein gene family in rice. Mol Genet Genomics 2008; 280:139-51. [PMID: 18491141 DOI: 10.1007/s00438-008-0351-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 05/03/2008] [Indexed: 01/15/2023]
Abstract
Thioredoxin (Trx) proteins play important biological functions in cells by changing redox via thioldisulfide exchange. This system is especially widespread in plants. Through database search, we identified 30 potential Trx protein-encoding genes (OsTrx) in rice (Oryza sativa L.). An analysis of the complete set of OsTrx proteins is presented here, including chromosomal location, conserved motifs, domain duplication, and phylogenetic relationships. Our findings suggest that the expansion of the Trx gene family in rice, in large part, occurred due to gene duplication. A comprehensive expression profile of Trx genes family was investigated by analyzing the signal data of this family extracted from the whole genome microarray analysis of Minghui 63 and Zhenshan 97, two indica parents, and their hybrid Shanyou 63, using 27 different tissues representing the entire life cycle of rice. Results revealed specific expression of some members at germination transition as well as the 3-leaf stage during the vegetative growth phase of rice. OsTrx genes were also found to be differentially up- or down-regulated in rice seedlings subjected to treatments of phytohormones and light/dark conditions. The expression levels of the OsTrx genes in the different tissues and under different treatments were also checked by RT-PCR analysis. The identification of OsTrx genes showing differential expression in specific tissues among different genotypes or in response to different environmental cues could provide a new avenue for functional analyses in rice.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Dupont FM. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC PLANT BIOLOGY 2008; 8:39. [PMID: 18419817 PMCID: PMC2383896 DOI: 10.1186/1471-2229-8-39] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 04/17/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86) endosperm at 10 days after anthesis (DPA) detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined. RESULTS Analysis of 288 proteins detected in an amyloplast preparation predicted that 178 were amyloplast proteins. Criteria included homology with known plastid proteins, prediction of a plastid transit peptide for the wheat gene product or a close homolog, known plastid location of the pathway, and predicted plastid location for other members of the same pathway. Of these, 135 enzymes were arranged into 18 pathways for carbohydrate, lipid, amino acid, nucleic acid and other biosynthetic processes that are critical for grain-fill. Functions of the other proteins are also discussed. CONCLUSION The pathways outlined in this paper suggest that amyloplasts play a central role in endosperm metabolism. The interacting effects of genetics and environment on starch and protein production may be mediated in part by regulatory mechanisms within this organelle.
Collapse
Affiliation(s)
- Frances M Dupont
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710K, USA.
| |
Collapse
|
112
|
Bagnaresi P, Moschella A, Beretta O, Vitulli F, Ranalli P, Perata P. Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening. BMC Genomics 2008; 9:176. [PMID: 18416834 PMCID: PMC2358903 DOI: 10.1186/1471-2164-9-176] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 04/16/2008] [Indexed: 01/21/2023] Open
Abstract
Background Since its discovery more than 100 years ago, potato (Solanum tuberosum) tuber cold-induced sweetening (CIS) has been extensively investigated. Several carbohydrate-associated genes would seem to be involved in the process. However, many uncertainties still exist, as the relative contribution of each gene to the process is often unclear, possibly as the consequence of the heterogeneity of experimental systems. Some enzymes associated with CIS, such as β-amylases and invertases, have still to be identified at a sequence level. In addition, little is known about the early events that trigger CIS and on the involvement/association with CIS of genes different from carbohydrate-associated genes. Many of these uncertainties could be resolved by profiling experiments, but no GeneChip is available for the potato, and the production of the potato cDNA spotted array (TIGR) has recently been discontinued. In order to obtain an overall picture of early transcriptional events associated with CIS, we investigated whether the commercially-available tomato Affymetrix GeneChip could be used to identify which potato cold-responsive gene family members should be further studied in detail by Real-Time (RT)-PCR (qPCR). Results A tomato-potato Global Match File was generated for the interpretation of various aspects of the heterologous dataset, including the retrieval of best matching potato counterparts and annotation, and the establishment of a core set of highly homologous genes. Several cold-responsive genes were identified, and their expression pattern was studied in detail by qPCR over 26 days. We detected biphasic behaviour of mRNA accumulation for carbohydrate-associated genes and our combined GeneChip-qPCR data identified, at a sequence level, enzymatic activities such as β-amylases and invertases previously reported as being involved in CIS. The GeneChip data also unveiled important processes accompanying CIS, such as the induction of redox- and ethylene-associated genes. Conclusion Our Global Match File strategy proved critical for accurately interpretating heterologous datasets, and suggests that similar approaches may be fruitful for other species. Transcript profiling of early events associated with CIS revealed a complex network of events involving sugars, redox and hormone signalling which may be either linked serially or act in parallel. The identification, at a sequence level, of various enzymes long known as having a role in CIS provides molecular tools for further understanding the phenomenon.
Collapse
Affiliation(s)
- Paolo Bagnaresi
- CRA-GPG, Genomic Research Center, Via S, Protaso 302, I-29017 Fiorenzuola d'Arda (PC), Italy.
| | | | | | | | | | | |
Collapse
|
113
|
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP. Glutaredoxins and thioredoxins in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:589-600. [DOI: 10.1016/j.bbamcr.2007.10.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 12/22/2022]
|
114
|
Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D, Reinbothe S, Reinbothe C. Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci U S A 2008; 105:4933-8. [PMID: 18349143 PMCID: PMC2290756 DOI: 10.1073/pnas.0800378105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Indexed: 01/30/2023] Open
Abstract
Thioredoxins (Trxs) are ubiquitous small proteins with a redox-active disulfide bridge. In their reduced form, they constitute very efficient protein disulfide oxidoreductases. In chloroplasts, two types of Trxs (f and m) coexist and play central roles in the regulation of the Calvin cycle and other processes. Here, we identified a class of Trx targets in the inner plastid envelope membrane of chloroplasts that share a CxxC motif approximately 73 aa from their carboxyl-terminal end. Members of this group belong to a superfamily of Rieske iron-sulfur proteins involved in protein translocation and chlorophyll metabolism. These proteins include the protein translocon protein TIC55, the precursor NADPH:protochlorophyllide oxidoreductase translocon protein PTC52, which operates as protochlorophyllide a-oxygenase, and the lethal leaf spot protein LLS1, which is identical with pheophorbide a oxygenase. The role of these proteins in dark/light regulation and oxidative control by the Trx system is discussed.
Collapse
Affiliation(s)
- Sandra Bartsch
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Julie Monnet
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Kristina Selbach
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Françoise Quigley
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - John Gray
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606; and
| | - Diter von Wettstein
- Department of Crop and Soil Sciences and School of Molecular Biosciences, Washington State University, Pullman WA 99164-6420
| | - Steffen Reinbothe
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Christiane Reinbothe
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| |
Collapse
|
115
|
Traverso JA, Vignols F, Cazalis R, Serrato AJ, Pulido P, Sahrawy M, Meyer Y, Cejudo FJ, Chueca A. Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1267-77. [PMID: 18356145 DOI: 10.1093/jxb/ern037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plants are the organisms containing the most complex multigenic family for thioredoxins (TRX). Several types of TRXs are targeted to chloroplasts, which have been classified into four subgroups: m, f, x, and y. Among them, TRXs f and m were the first plastidial TRXs characterized, and their function as redox modulators of enzymes involved in carbon assimilation in the chloroplast has been well-established. Both TRXs, f and m, were named according to their ability to reduce plastidial fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase (MDH), respectively. Evidence is presented here based on the immunocytochemistry of the localization of f and m-type TRXs from Pisum sativum in non-photosynthetic tissues. Both TRXs showed a different spatial pattern. Whilst PsTRXm was localized to vascular tissues of all the organs analysed (leaves, stems, and roots), PsTRXf was localized to more specific cells next to xylem vessels and vascular cambium. Heterologous complementation analysis of the yeast mutant EMY63, deficient in both yeast TRXs, by the pea plastidial TRXs suggests that PsTRXm, but not PsTRXf, is involved in the mechanism of reactive oxygen species (ROS) detoxification. In agreement with this function, the PsTRXm gene was induced in roots of pea plants in response to hydrogen peroxide.
Collapse
Affiliation(s)
- José A Traverso
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), C/ Prof. Albareda 1, E-18008-Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Repellin A, Båga M, Chibbar RN. In vitro pullulanase activity of wheat (Triticum aestivum L.) limit-dextrinase type starch debranching enzyme is modulated by redox conditions. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
117
|
Clore AM, Doore SM, Tinnirello SMN. Increased levels of reactive oxygen species and expression of a cytoplasmic aconitase/iron regulatory protein 1 homolog during the early response of maize pulvini to gravistimulation. PLANT, CELL & ENVIRONMENT 2008; 31:144-158. [PMID: 18004982 DOI: 10.1111/j.1365-3040.2007.01744.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The maize (Zea mays L.) stem pulvinus is a disc of tissue located apical to each node that functions to return a tipped stem to a more upright position via increased cell elongation on its lower side. We investigated the possibility that reactive oxygen species (ROS) and hydrogen peroxide (H2O2), in particular, are involved in the gravitropic response of the pulvinus prior to initiation of the growth response by employing the cytochemical stain 3,3'-diaminobenzidine (DAB). DAB polymers were found in the bundle sheath cells of gravistimulated pulvini in association with amyloplasts after 1 min of gravistimulation, and the signal spread throughout the cytosol of these cells by 30 min. Furthermore, treatment of maize stem explants containing pulvini with 1 mm H2O2 on their upper sides caused reversal of bending polarity. Similar, though less dramatic, results were obtained via application of 1 mm ascorbic acid to the lower side of the explants. In addition, we determined that a maize cytoplasmic aconitase/iron regulatory protein 1 (IRP1) homolog is up-regulated in the pulvinus bundle sheath cells after gravistimulation using suppressive subtractive hybridization PCR (SSH PCR), real-time RT-PCR and in situ hybridization. Although we do not yet know the role of the IRP1 homolog in the pulvinus, the protein is known to be a redox sensor in other systems. Collectively, our results point to an increase in ROS quite early in the gravitropic signalling pathway and its possible role in determining the direction of bending of the pulvini. We speculate that an ROS burst may serve to link the physical phenomenon of amyloplast sedimentation to the changes in cellular biochemistry and gene expression that facilitate directional growth.
Collapse
Affiliation(s)
- A M Clore
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA.
| | | | | |
Collapse
|
118
|
Sakamoto W, Miyagishima SY, Jarvis P. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. THE ARABIDOPSIS BOOK 2008; 6:e0110. [PMID: 22303235 PMCID: PMC3243408 DOI: 10.1199/tab.0110] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
- Address correspondence to
| | | | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
119
|
de Dios Barajas-López J, Serrato AJ, Olmedilla A, Chueca A, Sahrawy M. Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs. PLANT PHYSIOLOGY 2007; 145:946-60. [PMID: 17885084 PMCID: PMC2048802 DOI: 10.1104/pp.107.105593] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 09/10/2007] [Indexed: 05/17/2023]
Abstract
Plant thioredoxins (TRXs) are involved in redox regulation of a wide variety processes and usually exhibit organ specificity. We report strong evidence that chloroplastic TRXs are localized in heterotrophic tissues and suggest some ways in which they might participate in several metabolic and developmental processes. The promoter regions of the chloroplastic f and m1 TRX genes were isolated from a pea (Pisum sativum) plant genomic bank. Histochemical staining for beta-glucuronidase (GUS) in transgenic homozygous Arabidopsis (Arabidopsis thaliana) plants showed preferential expression of the 444-bp PsTRXf1 promoter in early seedlings, stems, leaves, and roots, as well as in flowers, stigma, pollen grains, and filaments. GUS activity under the control of the 1,874-bp PsTRXm1 promoter was restricted to the leaves, roots, seeds, and flowers. To gain insight into the translational regulation of these genes, a series of deletions of 5' elements in both TRX promoters were analyzed. The results revealed that a 126-bp construct of the PsTRXf2 promoter was unable to reproduce the expression pattern observed with the full promoter. The differences in expression and tissue specificity between PsTRXm1 and the deleted promoters PsTRXm2 and PsTRXm3 suggest the existence of upstream positive or negative regulatory regions that affect tissue specificity, sucrose metabolism, and light regulation. PsTRXm1 expression is finely regulated by light and possibly by other metabolic factors. In situ hybridization experiments confirmed new localizations of these chloroplastic TRX transcripts in vascular tissues and flowers, and therefore suggest possible new functions in heterotrophic tissues related to cell division, germination, and plant reproduction.
Collapse
|
120
|
Alkhalfioui F, Renard M, Vensel WH, Wong J, Tanaka CK, Hurkman WJ, Buchanan BB, Montrichard F. Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. PLANT PHYSIOLOGY 2007; 144:1559-79. [PMID: 17513483 PMCID: PMC1914137 DOI: 10.1104/pp.107.098103] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Germination of cereals is accompanied by extensive change in the redox state of seed proteins. Proteins present in oxidized form in dry seeds are converted to the reduced state following imbibition. Thioredoxin (Trx) appears to play a role in this transition in cereals. It is not known, however, whether Trx-linked redox changes are restricted to cereals or whether they take place more broadly in germinating seeds. To gain information on this point, we have investigated a model legume, Medicago truncatula. Two complementary gel-based proteomic approaches were followed to identify Trx targets in seeds: Proteins were (1) labeled with a thiol-specific probe, monobromobimane (mBBr), following in vitro reduction by an NADP/Trx system, or (2) isolated on a mutant Trx affinity column. Altogether, 111 Trx-linked proteins were identified with few differences between axes and cotyledons. Fifty nine were new, 34 found previously in cereal or peanut seeds, and 18 in other plants or photosynthetic organisms. In parallel, the redox state of proteins assessed in germinating seeds using mBBr revealed that a substantial number of proteins that are oxidized or partly reduced in dry seeds became more reduced upon germination. The patterns were similar for proteins reduced in vivo during germination or in vitro by Trx. In contrast, glutathione and glutaredoxin were less effective as reductants in vitro. Overall, more than half of the potential targets identified with the mBBr labeling procedure were reduced during germination. The results provide evidence that Trx functions in the germination of seeds of dicotyledons as well as monocotyledons.
Collapse
Affiliation(s)
- Fatima Alkhalfioui
- Physiologie Moléculaire des Semences, Unité Mixte de Recherche 1191, Université d'Angers, Institut National d'Horticulture, Institut National de la Recherche Agronomique, Anjou Recherche Semences, Angers Cedex 01, France
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Kirchberger S, Leroch M, Huynen MA, Wahl M, Neuhaus HE, Tjaden J. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. J Biol Chem 2007; 282:22481-91. [PMID: 17562699 DOI: 10.1074/jbc.m702484200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synthesis of ZmBT1 in Escherichia coli cells leads to the functional integration of ZmBT1 into the bacterial cytoplasmic membrane. ZmBT1 transports ADP-Glc in counterexchange with ADP with apparent affinities of about 850 and 465 mum, respectively. Recently, a complete ferredoxin/thioredoxin system has been identified in cereal amyloplasts and BT1 has been proposed as a potential Trx target protein (Balmer, Y., Vensel, W. H., Cai, N., Manieri, W., Schurmann, P., Hurkman, W. J., and Buchanan, B. B. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 2988-2993). Interestingly, we revealed that the transport activity of ZmBT1 is reversibly regulated by redox reagents such as diamide and dithiothreitol. The expression of ZmBT1 is restricted to endosperm tissues during starch synthesis, whereas a recently identified BT1 maize homologue, the ZmBT1-2, exhibits a ubiquitous expression pattern in hetero- and autotrophic tissues indicating different physiological roles for both maize BT1 isoforms. BT1 homologues are present in both mono- and dicotyledonous plants. Phylogenetic analyses classify the BT1 family into two phylogenetically and biochemically distinct groups. The first group comprises BT1 orthologues restricted to cereals where they mediate the ADP-Glc transport into cereal endosperm storage plastids during starch synthesis. The second group occurs in mono- and dicotyledonous plants and is most probably involved in the export of adenine nucleotides synthesized inside plastids.
Collapse
Affiliation(s)
- Simon Kirchberger
- Abteilung Pflanzenphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, P. O. Box 3049, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
122
|
Stitt M, Gibon Y, Lunn JE, Piques M. Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:526-549. [PMID: 32689382 DOI: 10.1071/fp06249] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 12/06/2006] [Indexed: 06/11/2023]
Abstract
Plants alternate between a net surplus of carbon in the light and a net deficit at night. This is buffered by accumulating starch in the light and degrading it at night. Enough starch is accumulated to support degradation throughout the night, with a small amount remaining at the end of the 24-h diurnal cycle. This review discusses how this balance between the supply and utilisation of carbon is achieved in Arabidopsis. It is important to regulate starch turnover to avoid an acute carbon deficiency. A 2-4 h extension of the night leads to exhaustion of starch, a collapse of sugars, a switch from biosynthesis to catabolism and an acute inhibition of growth by low carbon, which is not immediately reversed when carbon becomes available again. In starchless pgm mutants, where sugars are depleted each night, this leads to a recurring inhibition of growth that is not reversed until 5-6 h into the following light period. Several lines of evidence show that starch accumulation is regulated in response to events that are initiated during periods of low carbon. Starch accumulation is decreased when small amounts of sucrose are included in the growth medium. Sets of sugar-responsive genes were identified by supplying sugars to carbon-starved seedlings, or by illuminating 5-week-old plants in the presence of 350 or 50 ppm [CO2]. Almost all of these genes show large diurnal changes in starchless pgm mutants, which are driven by the depletion of carbon during the night. Many show significant diurnal changes in wild type plants, showing that 'anticipatory' changes in signalling pathways occur before acute carbon limitation develops. However, these diurnal changes of transcripts do not lead to immediate changes of enzyme activities. Whereas an extension of the night leads to major changes of transcripts within 4-6 h, changes in enzyme activities require several days. In pgm, enzyme activities and the levels of >150 metabolites resemble those found in wild type plants after several days in the dark. It is concluded that diurnal changes in transcript levels are integrated, over days, as changes in the levels of enzymes. We hypothesise that this facilitates an adjustment of metabolism to a mid-term shift in the conditions, while ignoring noise due to diurnal changes and day-to-day fluctuations. The rapid adjustment of starch synthesis after a period of acute carbon depletion is a consequence of the transient inhibition of growth. This leads to accumulation of sugars when carbon becomes available again, which triggers a large increase in trehalose-6-phosphate. This signal metabolite promotes thioredoxin-dependent post-translational activation of ADP glucose pyrophosphorylase. Mid-term acclimation to a decreased carbon supply may be mediated by a combination of post-translational regulation, longer-term changes in enzyme activities, and a decrease in the rate of growth.
Collapse
Affiliation(s)
- Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14424 Golm, Germany
| | - Yves Gibon
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14424 Golm, Germany
| | - John E Lunn
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14424 Golm, Germany
| | - Maria Piques
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14424 Golm, Germany
| |
Collapse
|
123
|
Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E. Thioredoxins in chloroplasts. Curr Genet 2007; 51:343-65. [PMID: 17431629 DOI: 10.1007/s00294-007-0128-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 01/03/2023]
Abstract
Thioredoxins (TRXs) are small disulfide oxidoreductases of ca. 12 kDa found in all free living organisms. In plants, two chloroplastic TRXs, named TRX f and TRX m, were originally identified as light dependent regulators of several carbon metabolism enzymes including Calvin cycle enzymes. The availability of genome sequences revealed an unsuspected multiplicity of TRXs in photosynthetic eukaryotes, including new chloroplastic TRX types. Moreover, proteomic approaches and focused studies allowed identification of 90 potential chloroplastic TRX targets. Lately, recent studies suggest the existence of a complex interplay between TRXs and other redox regulators such as glutaredoxins (GRXs) or glutathione. The latter is involved in a post-translational modification, named glutathionylation that could be controlled by GRXs. Glutathionylation appears to specifically affect the activity of TRX f and other chloroplastic enzymes and could thereby constitute a previously undescribed regulatory mechanism of photosynthetic metabolism under oxidative stress. After summarizing the initial studies on TRX f and TRX m, this review will focus on the most recent developments with special emphasis on the contributions of genomics and proteomics to the field of TRXs. Finally, new emerging interactions with other redox signaling pathways and perspectives for future studies will also be discussed.
Collapse
Affiliation(s)
- Stéphane D Lemaire
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Univ Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
124
|
Ado K, Taniguchi Y. Pressure effects on the structure and function of human thioredoxin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:813-21. [PMID: 17574940 DOI: 10.1016/j.bbapap.2007.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 12/15/2022]
Abstract
Thioredoxin is one of the major proteins that catalyze disulfide reduction and defines the thioredoxin superfamily bearing the CXXC structural motif. Human thioredoxin contains only 1 Trp residue proximal to the active site (WCGPC). We are interested in thioredoxin structure-function relationships, in particular, active site hydration and flexibility. Hence, in this study, we used hydrostatic pressure as a perturbation and monitored the conformational changes around the active site of thioredoxin by analyzing Trp fluorescence. The structure of thioredoxin was drastically altered by increasing pressure and did not completely refold after pressure release. The conformation in the active site vicinity was modified at low pressure (less than 100 MPa) and the Trp residue was completely exposed to aqueous medium at pressures above 350 MPa. Upon pressure release, thioredoxin showed no activity, although it folded 80% of the alpha-helical content relative to the native state. According to these results, pressure denaturation induces critical damage for the activity of thioredoxin, indicating extreme fragility of the active site with respect to pressure. This result is in contrast to the pressure effect on protein disulfide isomerase (PDI) which is organized by four thioredoxin-like domains including two WCGHC motifs.
Collapse
Affiliation(s)
- Kazuyoshi Ado
- Department of Applied Chemistry, College of Science and Engineering, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | | |
Collapse
|
125
|
Kleffmann T, von Zychlinski A, Russenberger D, Hirsch-Hoffmann M, Gehrig P, Gruissem W, Baginsky S. Proteome dynamics during plastid differentiation in rice. PLANT PHYSIOLOGY 2007; 143:912-23. [PMID: 17189339 PMCID: PMC1803725 DOI: 10.1104/pp.106.090738] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have analyzed proteome dynamics during light-induced development of rice (Oryza sativa) chloroplasts from etioplasts using quantitative two-dimensional gel electrophoresis and tandem mass spectrometry protein identification. In the dark, the etioplast allocates the main proportion of total protein mass to carbohydrate and amino acid metabolism and a surprisingly high number of proteins to the regulation and expression of plastid genes. Chaperones, proteins for photosynthetic energy metabolism, and enzymes of the tetrapyrrole pathway were identified among the most abundant etioplast proteins. The detection of 13 N-terminal acetylated peptides allowed us to map the exact localization of the transit peptide cleavage site, demonstrating good agreement with the prediction for most proteins. Based on the quantitative etioplast proteome map, we examined early light-induced changes during chloroplast development. The transition from heterotrophic metabolism to photosynthesis-supported autotrophic metabolism was already detectable 2 h after illumination and affected most essential metabolic modules. Enzymes in carbohydrate metabolism, photosynthesis, and gene expression were up-regulated, whereas enzymes in amino acid and fatty acid metabolism were significantly decreased in relative abundance. Enzymes involved in nucleotide metabolism, tetrapyrrole biosynthesis, and redox regulation remained unchanged. Phosphoprotein-specific staining at different time points during chloroplast development revealed light-induced phosphorylation of a nuclear-encoded plastid RNA-binding protein, consistent with changes in plastid RNA metabolism. Quantitative information about all identified proteins and their regulation by light is available in plprot, the plastid proteome database (http://www.plprot.ethz.ch).
Collapse
Affiliation(s)
- Torsten Kleffmann
- Institute of Plant Sciences, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
126
|
Milani M, Balconi E, Aliverti A, Mastrangelo E, Seeber F, Bolognesi M, Zanetti G. Ferredoxin-NADP+ reductase from Plasmodium falciparum undergoes NADP+-dependent dimerization and inactivation: functional and crystallographic analysis. J Mol Biol 2007; 367:501-13. [PMID: 17258767 DOI: 10.1016/j.jmb.2007.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/22/2006] [Accepted: 01/03/2007] [Indexed: 11/30/2022]
Abstract
The completion of the Plasmodium falciparum genome sequence has recently promoted the search for new antimalarial drugs. More specifically, metabolic pathways of the apicoplast, a key organelle for survival of the parasite, have been recognized as potential targets for the development of specific new antimalarial agents. As most apicomplexan parasites, P. falciparum displays a plant-type ferredoxin-NADP(+) reductase, yielding reduced ferredoxin for essential biosynthetic pathways in the apicoplast. Here we report a molecular, kinetic and ligand binding characterization of the recombinant ferredoxin-NADP(+) reductase from P. falciparum, in the light of current data available for plant ferredoxin-NADP(+) reductases. In parallel with the functional characterization, we describe the crystal structures of P. falciparum ferredoxin-NADP(+) reductase in free form and in complex with 2'-phospho-AMP (at 2.4 and 2.7 A resolution, respectively). The enzyme displays structural properties likely to be unique to plasmodial reductases. In particular, the two crystal structures highlight a covalent dimer, which relies on the oxidation of residue Cys99 in two opposing subunits, and a helix-coil transition that occurs in the NADP-binding domain, triggered by 2'-phospho-AMP binding. Studies in solution show that NADP(+), as well as 2'-phospho-AMP, promotes the formation of the disulfide-stabilized dimer. The isolated dimer is essentially inactive, but full activity is recovered upon disulfide reduction. The occurrence of residues unique to the plasmodial enzyme, and the discovery of specific conformational properties, highlight the NADP-binding domain of P. falciparum ferredoxin-NADP(+) reductase as particularly suited for the rational development of antimalarial compounds.
Collapse
Affiliation(s)
- Mario Milani
- CNR-INFM, Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133-Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
127
|
Traverso JA, Vignols F, Cazalis R, Pulido A, Sahrawy M, Cejudo FJ, Meyer Y, Chueca A. PsTRXh1 and PsTRXh2 are both pea h-type thioredoxins with antagonistic behavior in redox imbalances. PLANT PHYSIOLOGY 2007; 143:300-11. [PMID: 17098852 PMCID: PMC1761970 DOI: 10.1104/pp.106.089524] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/06/2006] [Indexed: 05/09/2023]
Abstract
Thioredoxins (TRXs) are small ubiquitous oxidoreductases involved in disulfide bond reduction of a large panel of target proteins. The most complex cluster in the family of plant TRXs is formed by h-type TRXs. In Arabidopsis (Arabidopsis thaliana), nine members of this subgroup were described, which are less well known than their plastidial counterparts. The functional study of type-h TRXs is difficult because of the high number of isoforms and their similar biochemical characteristics, thus raising the question whether they have specific or redundant functions. Type-h TRXs are involved in seed germination and self incompatibility in pollen-pistil interaction. Their function as antioxidants has recently been proposed, but further work is needed to clarify this function in plants. In this study, we describe two new h-type TRXs from pea (Pisum sativum; stated PsTRXh1 and PsTRXh2). By functional complementation of a yeast (Saccharomyces cerevisiae) trx1Delta trx2Delta double mutant, we demonstrate that PsTRXh1 is involved in the redox-imbalance control, possibly through its interaction with peroxiredoxins. In contrast, PsTRXh2 provokes a phenotype of hypersensitivity to hydrogen peroxide in the yeast mutant. Furthermore, we show differential gene expression and protein accumulation of the two isoforms, PsTRXh1 protein being abundantly detected in vascular tissue and flowers, whereas PsTRXh2 gene expression was hardly detectable. By comparison with previous data of additional PsTRXh isoforms, our results indicate specific functions for the pea h-type TRXs so far described.
Collapse
Affiliation(s)
- José A Traverso
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, 18008 Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Hurkman WJ, Tanaka CK. Extraction of wheat endosperm proteins for proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 849:344-50. [PMID: 17161663 DOI: 10.1016/j.jchromb.2006.11.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 11/20/2006] [Accepted: 11/27/2006] [Indexed: 11/29/2022]
Abstract
Total protein extracts of wheat endosperm are widely used for the analysis of the highly abundant gliadins and glutenins. In this review, the most popular total endosperm extraction methods are compared for their effectiveness in proteome coverage. A drawback of total endosperm extracts is that the enormous dynamic range of protein abundance limits the detection, quantification, and identification of low abundance proteins. Protein fractionation is invaluable for improving proteome coverage, because it reduces sample complexity while enriching for specific classes of less abundant proteins. A wide array of techniques is available for isolating protein subpopulations. Sequential extraction is a method particularly suited for subfractionation of wheat endosperm proteins, because it takes advantage of the specific solubility properties of the different classes of endosperm proteins. This method effectively separates the highly abundant gliadins and glutenins from the much less abundant albumins and globulins. Subcellular fractionation of tissue homogenates is a classical technique for isolating membranes and organelles for functional analysis. This approach is suitable for defining the biochemical processes associated with amyloplasts, specialized organelles in the endosperm that function in the synthesis and storage of starch. Subproteome fractionation, when combined with 2-DE and protein identification, provides a powerful approach for defining endosperm protein composition and providing new insights into cellular functions.
Collapse
Affiliation(s)
- William J Hurkman
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan St., Albany, CA 94710, USA.
| | | |
Collapse
|
129
|
Abstract
Starch is a primary product of photosynthesis in leaves. In most plants, a large fraction of the carbon assimilated during the day is stored transiently in the chloroplast as starch for use during the subsequent night. Photosynthetic partitioning into starch is finely regulated, and the amount of carbohydrate stored is dependent on the environmental conditions, particularly day length. This regulation is applied at several levels to control the flux of carbon from the Calvin cycle into starch biosynthesis. Starch is composed primarily of branched glucans with an architecture that allows the formation of a semi-crystalline insoluble granule. Biosynthesis has been most intensively studied in non-photosynthetic starch-storing organs, such as developing seeds and tubers. Biosynthesis in leaves has received less attention, but recent reverse-genetic studies of Arabidopsis (thale cress) have produced data generally consistent with what is known for storage tissues. The pathway involves starch synthases, which elongate the glucan chains, and branching enzymes. Remarkably, enzymes that partially debranch glucans are also required for normal amylopectin synthesis. In the last decade, our understanding of starch breakdown in leaves has advanced considerably. Starch is hydrolysed to maltose and glucose at night via a pathway that requires recently discovered proteins in addition to well-known enzymes. These sugars are exported from the plastid to support sucrose synthesis, respiration and growth. In the present review we provide an overview of starch biosynthesis, starch structure and starch degradation in the leaves of plants. We focus on recent advances in each area and highlight outstanding questions.
Collapse
Affiliation(s)
- Samuel C Zeeman
- Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland.
| | | | | |
Collapse
|
130
|
Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrín JV. Plant proteome analysis: A 2004–2006 update. Proteomics 2006; 6:5529-48. [PMID: 16991197 DOI: 10.1002/pmic.200600260] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the appearance of the review entitled "Plant Proteome Analysis" in Proteomics in February 2004 (Cánovas, F. M., Dumas-Gaudot, E., Recorbert, G., Jorrín, J. et al., Proteomics 2004, 4, 285-298), about 200 original articles focusing on plant proteomics have been published. Although this represents less than 1% of the global proteomics output during this period, it nevertheless reflects an increase in activity over the period 1999-2004. These papers concern the proteome of at least 35 plant species but have concentrated mainly on thale cress (Arabidopsis thaliana) and rice (Oryza sativa). The scientific objectives have ranged from a proteomic analysis of organs, tissues, cell suspensions, or subcellular fractions to the study of plant development and response to various stresses. A number of contributions have covered PTMs and protein interactions. The dominant analytical platform has been 2-DE coupled to MS, but "second generation" techniques such as DIGE, multidimensional protein identification technology, isotope-coded affinity tags, and stable isotope labeling by amino acids in cell culture have begun to make an impact. This review aims to provide an update of the contribution of proteomics to plant biology during the period 2004-2006, and is divided into six sections: introduction, subcellular proteomes, plant development, responses to biotic and abiotic stresses, PTMs, and protein interactions. The conclusions summarize a view of the major pitfalls and challenges of plant proteomics.
Collapse
|
131
|
Motohashi K, Hisabori T. HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 2006; 281:35039-47. [PMID: 16997915 DOI: 10.1074/jbc.m605938200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
HCF164 is a membrane-anchored thioredoxin-like protein known to be indispensable for assembly of cytochrome b6 f in the thylakoid membranes. In this study, we report the finding that chloroplast stroma m-type thioredoxin is the source of reducing equivalents for reduction of HCF164 in the thylakoid lumen, providing strong evidence that higher plant chloroplasts possess a trans-membrane reducing equivalent transfer system similar to that found in bacteria. To probe the function of HCF164 in the lumen, a screen to identify the reducing equivalent acceptor proteins of HCF164 was carried out by using a resin-immobilized HCF164 single cysteine mutant, leading to the isolation of putative target thylakoid proteins. Among the newly identified target proteins, the reduction of the PSI-N subunit of photosystem I by HCF164 was confirmed both in vitro and in isolated thylakoids. Two components of the cytochrome b6 f complex, the cytochrome f and Rieske FeS proteins, were also identified as novel potential target proteins. The data presented here suggest that HCF164 serves as an important transducer of reducing equivalents to proteins in the thylakoid lumen.
Collapse
Affiliation(s)
- Ken Motohashi
- The ATP System Project, ERATO, JST, Nagatsuta 5800-3, Midori-ku, Yokohama, Japan
| | | |
Collapse
|
132
|
Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. PLANT PHYSIOLOGY 2006; 141:840-50. [PMID: 16698902 PMCID: PMC1489908 DOI: 10.1104/pp.106.079186] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 05/09/2023]
Abstract
Nine genes of Arabidopsis (Arabidopsis thaliana) encode for beta-amylase isozymes. Six members of the family are predicted to be extrachloroplastic isozymes and three contain predicted plastid transit peptides. Among the latter, chloroplast-targeted beta-amylase (At4g17090) and thioredoxin-regulated beta-amylase (TR-BAMY; At3g23920; this work) are experimentally demonstrated to be targeted to plastids. Recombinant TR-BAMY was catalytically active only when expressed as a mature protein, i.e. with no transit peptide. Mature TR-BAMY was a monomer of 60 kD, hydrolyzing soluble starch with optimal activity between pH 6.0 and 8.0. The activity of recombinant TR-BAMY was strictly dependent on redox potential with an Em,7.0 of -302 +/- 14 mV. Thioredoxins f1, m1, and y1 of Arabidopsis were all able to mediate the reductive activation of oxidized TR-BAMY. Site-specific mutants showed that TR-BAMY oxidative inhibition depended on the formation of a disulfide bridge between Cys-32 and Cys-470. Consistent with TR-BAMY redox dependency, total beta-amylase activity in Arabidopsis chloroplasts was partially redox regulated and required reducing conditions for full activation. In Arabidopsis, TR-BAMY transcripts were detected in leaves, roots, flowers, pollen, and seeds. TR-BAMY may be the only beta-amylase of nonphotosynthetic plastids suggesting a redox regulation of starch metabolism in these organelles. In leaves, where chloroplast-targeted beta-amylase is involved in physiological degradation of starch in the dark, TR-BAMY is proposed to participate to a redox-regulated pathway of starch degradation under specific stress conditions.
Collapse
Affiliation(s)
- Francesca Sparla
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, I-40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
133
|
Sokolov LN, Dominguez-Solis JR, Allary AL, Buchanan BB, Luan S. A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation. Proc Natl Acad Sci U S A 2006; 103:9732-7. [PMID: 16772378 PMCID: PMC1480475 DOI: 10.1073/pnas.0603329103] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Starch is the ultimate storage molecule formed in the photosynthetic fixation of carbon dioxide by chloroplasts. Starch accumulates during the day and is degraded at night to intermediates that are exported to heterotrophic organs. The mechanism by which diurnal cycles control the transitory biosynthesis and degradation of chloroplast starch has long remained a mystery. We now report evidence that a dual-specificity protein phosphatase, DSP4, binds to starch granules during the day and dissociates at night. Disruption of the DSP4 gene resulted in a dramatic increase in the level of starch in mutant Arabidopsis plants. Moreover, although composition was apparently unchanged, the morphology of the starch granule was significantly altered compared to the wild type counterpart. Two regulatory factors linked to light (i.e., pH and redox status) changed both the activity and the starch-binding capacity of DSP4. The results further revealed that DSP4 represents a major fraction of granule-bound phosphatase activity during the day but not at night. Our study suggests that DSP4 acts as a bridge between light-induced redox changes and protein phosphorylation in the regulation of starch accumulation.
Collapse
Affiliation(s)
- Lubomir N. Sokolov
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| | - Jose R. Dominguez-Solis
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| | - Anne-Laure Allary
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| | - Bob B. Buchanan
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
- To whom correspondence may be addressed. E-mail:
or
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|