101
|
Jia Z, Giehl RFH, von Wirén N. The Root Foraging Response under Low Nitrogen Depends on DWARF1-Mediated Brassinosteroid Biosynthesis. PLANT PHYSIOLOGY 2020; 183:998-1010. [PMID: 32398320 PMCID: PMC7333712 DOI: 10.1104/pp.20.00440] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/30/2020] [Indexed: 05/04/2023]
Abstract
Root developmental plasticity enables plants to adapt to limiting or fluctuating nutrient conditions in the soil. When grown under nitrogen (N) deficiency, plants develop a more exploratory root system by increasing primary and lateral root length. However, mechanisms underlying this so-called foraging response remain poorly understood. We performed a genome-wide association study in Arabidopsis (Arabidopsis thaliana) and we show here that noncoding variations of the brassinosteroid (BR) biosynthesis gene DWARF1 (DWF1) lead to variation of the DWF1 transcript level that contributes to natural variation of root elongation under low N. In addition to DWF1, other central BR biosynthesis genes upregulated under low N include CONSTITUTIVE PHOTOMORPHOGENIC DWARF, DWF4, and BRASSINOSTEROID-6-OXIDASE 2 Phenotypic characterization of knockout and knockdown mutants of these genes showed significant reduction of their root elongation response to low N, suggesting a systemic stimulation of BR biosynthesis to promote root elongation. Moreover, we show that low N-induced root elongation is associated with aboveground N content and that overexpression of DWF1 significantly improves plant growth and overall N accumulation. Our study reveals that mild N deficiency induces key genes in BR biosynthesis and that natural variation in BR synthesis contributes to the root foraging response, complementing the impact of enhanced BR signaling observed recently. Furthermore, these results suggest a considerable potential of BR biosynthesis to genetically engineer plants with improved N uptake.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| |
Collapse
|
102
|
Asim M, Ullah Z, Xu F, An L, Aluko OO, Wang Q, Liu H. Nitrate Signaling, Functions, and Regulation of Root System Architecture: Insights from Arabidopsis thaliana. Genes (Basel) 2020; 11:E633. [PMID: 32526869 PMCID: PMC7348705 DOI: 10.3390/genes11060633] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3-), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3- additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3-), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zia Ullah
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangzheng Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lulu An
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Oluwaseun Olayemi Aluko
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
| |
Collapse
|
103
|
Zhang Z, Hu B, Chu C. Towards understanding the hierarchical nitrogen signalling network in plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:60-65. [PMID: 32304938 DOI: 10.1016/j.pbi.2020.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 05/12/2023]
Abstract
Nitrogen (N) is the most abundant mineral elements in plants, and the application of inorganic N fertilizer makes huge contribution to the crop production and global food security. However, low N use efficiency (NUE) and overapplication of N fertilizers causes ever-growing environmental problems. Understanding the molecular mechanisms of N sensing and signalling in plants will provide molecular basis for NUE improvement of crops. Forward genetics screening and functional analysis have characterized the NRT1.1-NLP centered N signalling pathway at the cellular level. With the incorporation of systems biology approaches, a preliminary N regulatory network has been delineated. Meanwhile, long-distance N signalling has also been unveiled at the whole plant level. This review highlights most recent understanding of the N signalling network in plants, and also discusses how to further integrate hierarchical regulation of N signalling in plants.
Collapse
Affiliation(s)
- Zhihua Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Guangzhou University, Guangzhou 510006, China; Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
104
|
Asim M, Ullah Z, Oluwaseun A, Wang Q, Liu H. Signalling Overlaps between Nitrate and Auxin in Regulation of The Root System Architecture: Insights from the Arabidopsis thaliana. Int J Mol Sci 2020; 21:E2880. [PMID: 32326090 PMCID: PMC7215989 DOI: 10.3390/ijms21082880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
Nitrate (NO3-) and auxin are key regulators of root growth and development, modulating the signalling cascades in auxin-induced lateral root formation. Auxin biosynthesis, transport, and transduction are significantly altered by nitrate. A decrease in nitrate (NO3-) supply tends to promote auxin translocation from shoots to roots and vice-versa. This nitrate mediated auxin biosynthesis regulating lateral roots growth is induced by the nitrate transporters and its downstream transcription factors. Most nitrate responsive genes (short-term and long-term) are involved in signalling overlap between nitrate and auxin, thereby inducing lateral roots initiation, emergence, and development. Moreover, in the auxin signalling pathway, the varying nitrate supply regulates lateral roots development by modulating the auxin accumulation in the roots. Here, we focus on the roles of nitrate responsive genes in mediating auxin biosynthesis in Arabidopsis root, and the mechanism involved in the transport of auxin at different nitrate levels. In addition, this review also provides an insight into the significance of nitrate responsive regulatory module and their downstream transcription factors in root system architecture in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zia Ullah
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aluko Oluwaseun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.)
| |
Collapse
|
105
|
Iqbal A, Qiang D, Zhun W, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:61-74. [PMID: 32050119 DOI: 10.1016/j.plaphy.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Crops, including cotton, are sensitive to nitrogen (N) and excessive use can lead to an increase in production costs and environmental problems. We hypothesized that the use of cotton genotypes with substantial root systems and high genetic potentials for nitrogen-use efficiency (NUE) would best address these problems. Therefore, the interspecific variations and traits contributing to NUE in six cotton genotypes having contrasting NUEs were studied in response to various nitrate concentrations. Large genotypic variations were observed in morphophysiological and biochemical traits, especially shoot dry weight, root traits, and N-assimilating enzyme levels. The roots of all the cotton genotypes were more sensitive to low-than high-nitrate concentrations, and the genotype CCRI-69 had the largest root system irrespective of the nitrate concentration. The root morphological traits were positively correlated with N-utilization efficiency and were more affected by genotype than nitrate concentration. Conversely, growth and N-assimilating enzyme levels were more affected by nitrate concentration and were positively correlated with N-uptake efficiency. Based on shoot dry weight, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting root systems, N metabolism, and NUEs. In the future, multi-omics techniques will be performed to identify key genes/pathways involved in N metabolism, which may have the potential to improve root architecture and increase NUE.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Zhun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| |
Collapse
|
106
|
Pan W, You Y, Weng YN, Shentu JL, Lu Q, Xu QR, Liu HJ, Du ST. Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110104. [PMID: 31884326 DOI: 10.1016/j.ecoenv.2019.110104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 05/21/2023]
Abstract
Describing the mechanisms of zinc (Zn) accumulation in plants is essential to counteract the effects of excessive Zn uptake in crops grown in contaminated soils. Increasing evidence suggests that there is a positive correlation between nitrate supply and Zn accumulation in plants. However, the role of the primary nitrate transporter NRT1.1 in Zn accumulation in plants remains unknown. In this study, a Zn stress-induced increase in nitrate uptake and an increase in NRT1.1 protein levels in wild-type (Col-0) Arabidopsis plants were measured using microelectrode ion flux and green fluorescent protein (GFP)/β-glucuronidase (GUS) staining, respectively. Both agar and hydroponic cultures showed that mutants lacking the NRT1.1 function in nrt1.1 and chl1-5 (chlorate resistant 1) exhibited lower Zn levels in the roots and shoots of Zn-stressed plants than the wild-type. A lack of NRT1.1 activity also alleviated Zn-induced photosynthetic damage and growth inhibition in plants. Further, we used a rotation system with synchronous or asynchronous uptakes of nitrate and Zn to demonstrate differences in Zn levels between the Col-0 and nrt1.1/chl1-5 mutants. Significantly lower difference in Zn levels were noted in the nitrate/Zn asynchronous treatment than in the nitrate/Zn synchronous treatment. From these results, it can be concluded that NRT1.1 modulates Zn accumulation in plants via a nitrate-dependent pathway.
Collapse
Affiliation(s)
- Wei Pan
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yue You
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yi-Neng Weng
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jia-Li Shentu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qi Lu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qian-Ru Xu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hui-Jun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shao-Ting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
107
|
Iqbal A, Qiang D, Alamzeb M, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:904-914. [PMID: 31612486 DOI: 10.1002/jsfa.10085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 05/19/2023]
Abstract
A huge amount of nitrogenous fertilizer is used to increase crop production. This leads to an increase in the cost of production, and to human and environmental problems. It is therefore necessary to improve nitrogen use efficiency (NUE) and to design agronomic, biotechnological and breeding strategies for better fertilizer use. Nitrogen use efficiency relies primarily on how plants extract, uptake, transport, assimilate, and remobilize nitrogen. Many plants use nitrate as a preferred nitrogen source. It acts as a signaling molecule in the various important physiological processes required for growth and development. As nitrate is the main source of nitrogen in the soil, root nitrate transporters are important subjects for study. The latest reports have also discussed how nitrate transporter and assimilation genes can be used as molecular tools to improve NUE in crops. The purpose of this review is to describe the mechanisms and functions of nitrate as a specific factor that can be addressed to increase NUE. Improving factors such as nitrate uptake, transport, assimilation, and remobilization through activation by signaling, sensing, and regulatory processes will improve plant growth and NUE. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Madeeha Alamzeb
- Standardization of cotton planting technology, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| |
Collapse
|
108
|
Ravazzolo L, Trevisan S, Forestan C, Varotto S, Sut S, Dall’Acqua S, Malagoli M, Quaggiotti S. Nitrate and Ammonium Affect the Overall Maize Response to Nitrogen Availability by Triggering Specific and Common Transcriptional Signatures in Roots. Int J Mol Sci 2020; 21:ijms21020686. [PMID: 31968691 PMCID: PMC7013554 DOI: 10.3390/ijms21020686] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
Nitrogen (N) is an essential macronutrient for crops. Plants have developed several responses to N fluctuations, thus optimizing the root architecture in response to N availability. Nitrate and ammonium are the main inorganic N forms taken up by plants, and act as both nutrients and signals, affecting gene expression and plant development. In this study, RNA-sequencing was applied to gain comprehensive information on the pathways underlying the response of maize root, pre-treated in an N-deprived solution, to the provision of nitrate or ammonium. The analysis of the transcriptome shows that nitrate and ammonium regulate overlapping and distinct pathways, thus leading to different responses. Ammonium activates the response to stress, while nitrate acts as a negative regulator of transmembrane transport. Both the N-source repress genes related to the cytoskeleton and reactive oxygen species detoxification. Moreover, the presence of ammonium induces the accumulation of anthocyanins, while also reducing biomass and chlorophyll and flavonoids accumulation. Furthermore, the later physiological effects of these nutrients were evaluated through the assessment of shoot and root growth, leaf pigment content and the amino acid concentrations in root and shoot, confirming the existence of common and distinct features in response to the two nitrogen forms.
Collapse
Affiliation(s)
- Laura Ravazzolo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis—V.le dell’Università, 16, 35020 Legnaro (PD), Italy; (L.R.); (S.T.); (C.F.); (S.V.); (S.S.); (M.M.)
| | - Sara Trevisan
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis—V.le dell’Università, 16, 35020 Legnaro (PD), Italy; (L.R.); (S.T.); (C.F.); (S.V.); (S.S.); (M.M.)
| | - Cristian Forestan
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis—V.le dell’Università, 16, 35020 Legnaro (PD), Italy; (L.R.); (S.T.); (C.F.); (S.V.); (S.S.); (M.M.)
| | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis—V.le dell’Università, 16, 35020 Legnaro (PD), Italy; (L.R.); (S.T.); (C.F.); (S.V.); (S.S.); (M.M.)
| | - Stefania Sut
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis—V.le dell’Università, 16, 35020 Legnaro (PD), Italy; (L.R.); (S.T.); (C.F.); (S.V.); (S.S.); (M.M.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova—Via Marzolo 5, 35121 Padova, Italy;
| | - Mario Malagoli
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis—V.le dell’Università, 16, 35020 Legnaro (PD), Italy; (L.R.); (S.T.); (C.F.); (S.V.); (S.S.); (M.M.)
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis—V.le dell’Università, 16, 35020 Legnaro (PD), Italy; (L.R.); (S.T.); (C.F.); (S.V.); (S.S.); (M.M.)
- Correspondence: ; Tel.: +39-049-8272913
| |
Collapse
|
109
|
Teramoto S, Takayasu S, Kitomi Y, Arai-Sanoh Y, Tanabata T, Uga Y. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography. PLANT METHODS 2020; 16:66. [PMID: 32426023 PMCID: PMC7216661 DOI: 10.1186/s13007-020-00612-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/05/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND X-ray computed tomography (CT) allows us to visualize root system architecture (RSA) beneath the soil, non-destructively and in a three-dimensional (3-D) form. However, CT scanning, reconstruction processes, and root isolation from X-ray CT volumes, take considerable time. For genetic analyses, such as quantitative trait locus mapping, which require a large population size, a high-throughput RSA visualization method is required. RESULTS We have developed a high-throughput process flow for the 3-D visualization of rice (Oryza sativa) RSA (consisting of radicle and crown roots), using X-ray CT. The process flow includes use of a uniform particle size, calcined clay to reduce the possibility of visualizing non-root segments, use of a higher tube voltage and current in the X-ray CT scanning to increase root-to-soil contrast, and use of a 3-D median filter and edge detection algorithm to isolate root segments. Using high-performance computing technology, this analysis flow requires only 10 min (33 s, if a rough image is acceptable) for CT scanning and reconstruction, and 2 min for image processing, to visualize rice RSA. This reduced time allowed us to conduct the genetic analysis associated with 3-D RSA phenotyping. In 2-week-old seedlings, 85% and 100% of radicle and crown roots were detected, when 16 cm and 20 cm diameter pots were used, respectively. The X-ray dose per scan was estimated at < 0.09 Gy, which did not impede rice growth. Using the developed process flow, we were able to follow daily RSA development, i.e., 4-D RSA development, of an upland rice variety, over 3 weeks. CONCLUSIONS We developed a high-throughput process flow for 3-D rice RSA visualization by X-ray CT. The X-ray dose assay on plant growth has shown that this methodology could be applicable for 4-D RSA phenotyping. We named the RSA visualization method 'RSAvis3D' and are confident that it represents a potentially efficient application for 3-D RSA phenotyping of various plant species.
Collapse
Affiliation(s)
- Shota Teramoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| | - Satoko Takayasu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| | - Yuka Kitomi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| | - Yumiko Arai-Sanoh
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| | | | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| |
Collapse
|
110
|
Boer MD, Santos Teixeira J, Ten Tusscher KH. Modeling of Root Nitrate Responses Suggests Preferential Foraging Arises From the Integration of Demand, Supply and Local Presence Signals. FRONTIERS IN PLANT SCIENCE 2020; 11:708. [PMID: 32536935 PMCID: PMC7268170 DOI: 10.3389/fpls.2020.00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/05/2020] [Indexed: 05/02/2023]
Abstract
A plants' fitness to a large extent depends on its capacity to adapt to spatio-temporally varying environmental conditions. One such environmental condition to which plants display extensive phenotypic plasticity is soil nitrate levels and patterns. In response to heterogeneous nitrate distribution, plants show a so-called preferential foraging response. Herein root growth is enhanced in high nitrate patches and repressed in low nitrate locations beyond a level that can be explained from local nitrate sensing. Although various molecular players involved in this preferential foraging behavior have been identified, how these together shape root system adaptation has remained unresolved. Here we use a simple modeling approach in which we incrementally incorporate the known molecular pathways to investigate the combination of regulatory mechanisms that underly preferential root nitrate foraging. Our model suggests that instead of involving a growth suppressing supply signal, growth reduction on the low nitrate side may arise from reduced root foraging and increased competition for carbon. Additionally, our work suggests that the long distance CK signaling involved in preferential root foraging may function as a supply signal modulating demand signaling strength. We illustrate how this integration of demand and supply signals prevents excessive preferential foraging under conditions in which demand is not met by sufficient supply and a more generic foraging in search of nitrate should be maintained.
Collapse
|
111
|
Fan H, Quan S, Qi S, Xu N, Wang Y. Novel Aspects of Nitrate Regulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:574246. [PMID: 33362808 PMCID: PMC7758431 DOI: 10.3389/fpls.2020.574246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Nitrogen (N) is one of the most essential macronutrients for plant growth and development. Nitrate (NO3 -), the major form of N that plants uptake from the soil, acts as an important signaling molecule in addition to its nutritional function. Over the past decade, significant progress has been made in identifying new components involved in NO3 - regulation and starting to unravel the NO3 - regulatory network. Great reviews have been made recently by scientists on the key regulators in NO3 - signaling, NO3 - effects on plant development, and its crosstalk with phosphorus (P), potassium (K), hormones, and calcium signaling. However, several novel aspects of NO3 - regulation have not been previously reviewed in detail. Here, we mainly focused on the recent advances of post-transcriptional regulation and non-coding RNA (ncRNAs) in NO3 - signaling, and NO3 - regulation on leaf senescence and the circadian clock. It will help us to extend the general picture of NO3 - regulation and provide a basis for further exploration of NO3 - regulatory network.
Collapse
Affiliation(s)
- Hongmei Fan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Na Xu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- *Correspondence: Yong Wang,
| |
Collapse
|
112
|
Wang Z, Zhao Y, Zhang Y, Zhao B, Yang Z, Dong L. The role of seed appendage in improving the adaptation of a species in definite seasons: a case study of Atriplex centralasiatica. BMC PLANT BIOLOGY 2019; 19:538. [PMID: 31801470 PMCID: PMC6894244 DOI: 10.1186/s12870-019-2090-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/21/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND As a common accompanying dispersal structure, specialized seed appendages play a critical role in the successful germination and dispersal of many plants, and are regarded as an adaptation character for plants survival in diverse environments. However, little is known about how the appendages modulate the linkage between germination and environmental factors. Here, we tested the responses of germination to seasonal environmental signals (temperature and humidity) via seed appendages using Atriplex centralasiatica, which is widely distributed in salt marshlands with dry-cold winter in northern China. Three types of heteromorphic diaspores that differ in morphology of persistent bracteole and dormancy levels are produced in an individual plant of A. centralasiatica. RESULTS Except for the nondormant diaspore (type A, with a brown seed enclosed in a persistent bracteole), bracteoles regulated inner seed dormancy of the other two dormant diaspore types, i.e., type B (flat diaspore with a black inner seed) and type C (globular diaspore with a black inner seed). For types B and C, germination of bracteole-free seeds was higher than that of intact diaspores, and was limited severely when incubated in the bracteole-soaking solution. Dormancy was released at a low temperature (< 10 °C) and suitable humidity (5-15%) condition. Oppositely, high temperature and unfit humidity induced secondary dormancy via inhibitors released by bracteoles. Type C with deeper dormancy needed more stringent conditions for dormancy release and was easier for dormancy inducement than type B. The germination windows were broadened and the time needed for dormancy release decreased after the bracteole flushing for the two dormant types in the field condition. CONCLUSIONS Bracteoles determine the germination adaptation by bridging seeds and environmental signals and promising seedlings establishment only in proper seasons, which may also restrict species geographical distribution and shift species distributing ranges under the global climate change scenarios.
Collapse
Affiliation(s)
- Zhaoren Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yufei Zhao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang People’s Republic of China
| | - Yuanyuan Zhang
- College of life science, Shanxi Normal University, Linfen, Shanxi People’s Republic of China
| | - Baoshan Zhao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang People’s Republic of China
| | - Zhen’an Yang
- College of Life Science, China West Normal University, Nanchong, Sichuan, People’s Republic of China
| | - Lijia Dong
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang People’s Republic of China
| |
Collapse
|
113
|
Zhu J, Fang XZ, Dai YJ, Zhu YX, Chen HS, Lin XY, Jin CW. Nitrate transporter 1.1 alleviates lead toxicity in Arabidopsis by preventing rhizosphere acidification. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6363-6374. [PMID: 31414122 PMCID: PMC6859734 DOI: 10.1093/jxb/erz374] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/05/2019] [Indexed: 05/04/2023]
Abstract
Identification of the mechanisms that control lead (Pb) concentration in plants is a prerequisite for minimizing dietary uptake of Pb from contaminated crops. This study examines how nitrate uptake by roots affects Pb uptake and reveals a new resistance strategy for plants to cope with Pb contamination. We investigated the interaction between nitrate transporter (NRT)-mediated NO3- uptake and exposure to Pb in Arabidopsis using NRT-related mutants. Exposure to Pb specifically stimulated NRT1.1-mediated nitrate uptake. Loss of function of NRT1.1 in nrt1.1-knockout mutants resulted in greater Pb toxicity and higher Pb accumulation in nitrate-sufficient growth medium, whereas no difference was seen between wild-type plants and null-mutants for NRT1.2, NRT2.1, NRT2.2, NRT2.4, and NRT2.5. These results indicate that only NRT1.1-mediated NO3- uptake alleviated Pb toxicity in the plants. Further examination indicated that rhizosphere acidification, which favors Pb entry to roots by increasing its availability, is prevented when NRT1.1 is functional and both NO3- and NH4+ are present in the medium.
Collapse
Affiliation(s)
| | | | - Yu Jie Dai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Hong Shan Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xian Yong Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
- Correspondence: or
| | | |
Collapse
|
114
|
Głazowska S, Baldwin L, Mravec J, Bukh C, Fangel JU, Willats WG, Schjoerring JK. The source of inorganic nitrogen has distinct effects on cell wall composition in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6461-6473. [PMID: 31504748 PMCID: PMC6859728 DOI: 10.1093/jxb/erz388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/19/2019] [Indexed: 05/22/2023]
Abstract
Plants have evolved different strategies to utilize various forms of nitrogen (N) from the environment. While regulation of plant growth and development in response to application of inorganic N forms has been characterized, our knowledge about the effect on cell wall structure and composition is quite limited. In this study, we analysed cell walls of Brachypodium distachyon supplied with three types of inorganic N (NH4NO3, NO3-, or NH4+). Cell wall profiles showed distinct alterations in both the quantity and structures of individual polymers. Nitrate stimulated cellulose, but inhibited lignin deposition at the heading growth stage. On the other hand, ammonium supply resulted in higher concentration of mixed linkage glucans. In addition, the chemical structure of pectins and hemicelluloses was strongly influenced by the form of N. Supply of only NO3- led to alteration in xylan substitution and to lower esterification of homogalacturonan. We conclude that the physiological response to absorption of different inorganic N forms includes pleotropic remodelling of type II cell walls.
Collapse
Affiliation(s)
- Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Laetitia Baldwin
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Christian Bukh
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jonathan U Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - William Gt Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | |
Collapse
|
115
|
SiMYB3 in Foxtail Millet ( Setaria italica) Confers Tolerance to Low-Nitrogen Stress by Regulating Root Growth in Transgenic Plants. Int J Mol Sci 2019; 20:ijms20225741. [PMID: 31731735 PMCID: PMC6888739 DOI: 10.3390/ijms20225741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Foxtail millet (Setaria italica), which originated in China, has a strong tolerance to low nutrition stresses. However, the mechanism of foxtail millet tolerance to low-nitrogen stress is still unknown. In this study, the transcriptome of foxtail millet under low-nitrogen stress was systematically analyzed. Expression of 1891 genes was altered, including 1318 up-regulated genes and 573 down-regulated genes. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed that 3% of these genes were involved in membrane transport and 5% were involved in redox processes. There were 74 total transcription factor (TF) genes in the DEGs (differentially expressed genes), and MYB-like transcription factors accounted for one-third (25) of the TF genes. We systematically analyzed the characteristics, expression patterns, chromosome locations, and protein structures of 25 MYB-like genes. The analysis of gene function showed that Arabidopsis and rice overexpressing SiMYB3 had better root development than WT under low-nitrogen stress. Moreover, EMSA results showed that SiMYB3 protein could specifically bind MYB elements in the promoter region of TAR2, an auxin synthesis related gene and MYB3-TAR2 regulate pair conserved in rice and foxtail millet. These results suggested that SiMYB3 can regulate root development by regulating plant root auxin synthesis under low-nitrogen conditions.
Collapse
|
116
|
Rashid M, Bera S, Banerjee M, Medvinsky AB, Sun GQ, Li BL, Sljoka A, Chakraborty A. Feedforward Control of Plant Nitrate Transporter NRT1.1 Biphasic Adaptive Activity. Biophys J 2019; 118:898-908. [PMID: 31699333 DOI: 10.1016/j.bpj.2019.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022] Open
Abstract
Defective nitrate signaling in plants causes disorder in nitrogen metabolism, and it negatively affects nitrate transport systems, which toggle between high- and low-affinity modes in variable soil nitrate conditions. Recent discovery of a plasma membrane nitrate transceptor protein NRT1.1-a transporter cum sensor-provides a clue on this toggling mechanism. However, the general mechanistic description still remains poorly understood. Here, we illustrate adaptive responses and regulation of NRT1.1-mediated nitrate signaling in a wide range of extracellular nitrate concentrations. The results show that the homodimeric structure of NRT1.1 and its dimeric switch play an important role in eliciting specific cytosolic calcium waves sensed by the calcineurin-B-like calcium sensor CBL9, which activates the kinase CIPK23, in low nitrate concentration that is, however, impeded in high nitrate concentration. Nitrate binding at the high-affinity unit initiates NRT1.1 dimer decoupling and priming of the Thr101 site for phosphorylation by CIPK23. This phosphorylation stabilizes the NRT1.1 monomeric state, acting as a high-affinity nitrate transceptor. However, nitrate binding in both monomers, retaining the unmodified NRT1.1 state through dimerization, attenuates CIPK23 activity and thereby maintains the low-affinity mode of nitrate signaling and transport. This phosphorylation-led modulation of NRT1.1 activity shows bistable behavior controlled by an incoherent feedforward loop, which integrates nitrate-induced positive and negative regulatory effects on CIPK23. These results, therefore, advance our molecular understanding of adaptation in fluctuating nutrient availability and are a way forward for improving plant nitrogen use efficiency.
Collapse
Affiliation(s)
- Mubasher Rashid
- School of Mathematics, Statistics and Computational Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, India
| | - Soumen Bera
- School of Mathematics, Statistics and Computational Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, India
| | - Malay Banerjee
- Department of Mathematics, Indian Institute of Technology, Kanpur, India
| | | | - Gui-Quan Sun
- Department of Mathematics, North University of China, Shanxi, China; Complex Systems Research Center, Shanxi University, Shanxi, China.
| | - Bai-Lian Li
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan; Department of Chemistry, University of Toronto, Ontario, Canada
| | - Amit Chakraborty
- School of Mathematics, Statistics and Computational Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, India.
| |
Collapse
|
117
|
Zhang X, Cui Y, Yu M, Su B, Gong W, Baluška F, Komis G, Šamaj J, Shan X, Lin J. Phosphorylation-Mediated Dynamics of Nitrate Transceptor NRT1.1 Regulate Auxin Flux and Nitrate Signaling in Lateral Root Growth. PLANT PHYSIOLOGY 2019; 181:480-498. [PMID: 31431511 PMCID: PMC6776865 DOI: 10.1104/pp.19.00346] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/09/2019] [Indexed: 05/22/2023]
Abstract
The dual-affinity nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) has two modes of transport and signaling, governed by Thr-101 (T101) phosphorylation. NRT1.1 regulates lateral root (LR) development by modulating nitrate-dependent basipetal auxin export and nitrate-mediated signal transduction. Here, using the Arabidopsis (Arabidopsis thaliana) NRT1.1T101D phosphomimetic and NRT1.1T101A nonphosphorylatable mutants, we found that the phosphorylation state of NRT1.1 plays a key role in NRT1.1 function during LR development. Single-particle tracking revealed that phosphorylation affected NRT1.1 spatiotemporal dynamics. The phosphomimetic NRT1.1T101D form showed fast lateral mobility and membrane partitioning that facilitated auxin flux under low-nitrate conditions. By contrast, nonphosphorylatable NRT1.1T101A showed low lateral mobility and oligomerized at the plasma membrane (PM), where it induced endocytosis via the clathrin-mediated endocytosis and microdomain-mediated endocytosis pathways under high-nitrate conditions. These behaviors promoted LR development by suppressing NRT1.1-controlled auxin transport on the PM and stimulating Ca2+-ARABIDOPSIS NITRATE REGULATED1 signaling from the endosome.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Bodan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Wei Gong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, D-53115, Germany
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 78301, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 78301, Czech Republic
| | - Xiaoyi Shan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| |
Collapse
|
118
|
Muller B, Guédon Y, Passot S, Lobet G, Nacry P, Pagès L, Wissuwa M, Draye X. Lateral Roots: Random Diversity in Adversity. TRENDS IN PLANT SCIENCE 2019; 24:810-825. [PMID: 31320193 DOI: 10.1016/j.tplants.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Lateral roots are essential for soil foraging and uptake of minerals and water. They feature a large morphological diversity that results from divergent primordia or root growth and development patterns. Besides a structured diversity, resulting from the hierarchical and developmental organization of root systems, there exists a random diversity, occurring between roots of similar age, of the same hierarchical order, and exposed to uniform conditions. The physiological bases and functional consequences of this random diversity are largely ignored. Here we review the evidence for such random diversity throughout the plant kingdom, present innovative approaches based on statistical modeling to account for such diversity, and set the list of its potential benefits in front of a variable and unpredictable soil environment.
Collapse
Affiliation(s)
- Bertrand Muller
- INRA, Supagro, Université Montpellier, UMR 759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France.
| | - Yann Guédon
- CIRAD, Université Montpellier, UMR 1334 Adaptation Génétique et Amélioration des Plantes, 34398, Montpellier, France
| | - Sixtine Passot
- Université catholique de Louvain, Earth and Life Institute, 1348 Louvain-la-Neuve, Belgium
| | - Guillaume Lobet
- Université catholique de Louvain, Earth and Life Institute, 1348 Louvain-la-Neuve, Belgium; Forschungszentrum Juelich GmbH, IBG3 Agrosphere, 52428 Juelich, Germany
| | - Philippe Nacry
- INRA, Supagro, CNRS, Université Montpellier, UMR 5004 Biochimie et Physiologie Moléculaire des Plantes, 340660 Montpellier, France
| | - Loïc Pagès
- INRA, UR, 1115 Plantes et Systèmes de culture Horticoles, Site Agroparc, 84914 Avignon, France
| | - Matthias Wissuwa
- Japan International Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Xavier Draye
- Université catholique de Louvain, Earth and Life Institute, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
119
|
Zuluaga DL, Sonnante G. The Use of Nitrogen and Its Regulation in Cereals: Structural Genes, Transcription Factors, and the Role of miRNAs. PLANTS 2019; 8:plants8080294. [PMID: 31434274 PMCID: PMC6724420 DOI: 10.3390/plants8080294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/31/2023]
Abstract
Cereals and, especially, rice, maize, and wheat, are essential commodities, on which human nutrition is based. Expanding population and food demand have required higher production which has been achieved by increasing fertilization, and especially nitrogen supply to cereal crops. In fact, nitrogen is a crucial nutrient for the plant, but excessive use poses serious environmental and health issues. Therefore, increasing nitrogen use efficiency in cereals is of pivotal importance for sustainable agriculture. The main steps in the use of nitrogen are uptake and transport, reduction and assimilation, and translocation and remobilization. Many studies have been carried out on the genes involved in these phases, and on transcription factors regulating these genes. Lately, increasing attention has been paid to miRNAs responding to abiotic stress, including nutrient deficiency. Many miRNAs have been found to regulate transcription factors acting on the expression of specific genes for nitrogen uptake or remobilization. Recent studies on gene regulatory networks have also demonstrated that miRNAs can interact with several nodes in the network, functioning as key regulators in nitrogen metabolism.
Collapse
Affiliation(s)
- Diana L Zuluaga
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy.
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
120
|
Vergara C, Araujo KEC, Sperandio MVL, Santos LA, Urquiaga S, Zilli JÉ. Dark septate endophytic fungi increase the activity of proton pumps, efficiency of 15N recovery from ammonium sulphate, N content, and micronutrient levels in rice plants. Braz J Microbiol 2019; 50:825-838. [PMID: 31090019 PMCID: PMC6863334 DOI: 10.1007/s42770-019-00092-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/04/2019] [Indexed: 11/25/2022] Open
Abstract
Plants colonised by dark septate endophytic (DSE) fungi show increased uptake of nutrients available in the environment. The objective of the present study was to evaluate the impact of DSE fungi on the activity of proton pumps, nitrogen (N) recovery from ammonium sulphate, and nutrient accumulation in rice plants. Treatments consisted of non-inoculated plants and plants inoculated with two isolates of DSE fungi, A101 and A103. To determine N recovery from the soil, ammonium sulphate enriched with 15N was added to a non-sterile substrate while parameters associated with the activity of proton pumps and with NO3- uptake were determined in a sterile environment. The A101 and A103 fungal isolates colonised the roots of rice plants, promoting 15N uptake, growth, and accumulation of nutrients as compared with the mock control. A103 induced the expression of the plasma membrane H+-ATPase (PM H+-ATPase) isoforms OsA5 and OsA8, the activity of the PM H+-ATPase and H+-pyrophosphatase. Our results suggest that the inoculation of rice plants with DSE fungi represents a strategy to improve the N recovery from ammonium sulphate and rice plant growth through the induction of OsA5 and OsA8 isoforms and stimulation of the PM H+-ATPase and H+-pyrophosphatase.
Collapse
Affiliation(s)
- Carlos Vergara
- Universidade Federal Rural do Rio de Janeiro, Instituto de Agronomia, Seropédica, RJ, Brazil
| | | | | | - Leandro Azevedo Santos
- Universidade Federal Rural do Rio de Janeiro, Instituto de Agronomia, Seropédica, RJ, Brazil
| | - Segundo Urquiaga
- Embrapa Agrobiologia, BR 465, km 07, Seropédica, RJ, 23891-000, Brazil
| | - Jerri Édson Zilli
- Embrapa Agrobiologia, BR 465, km 07, Seropédica, RJ, 23891-000, Brazil.
| |
Collapse
|
121
|
Ye JY, Tian WH, Jin CW. A reevaluation of the contribution of NRT1.1 to nitrate uptake in Arabidopsis under low-nitrate supply. FEBS Lett 2019; 593:2051-2059. [PMID: 31172512 DOI: 10.1002/1873-3468.13473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
Abstract
NRT1.1 has been previously characterized as a dual-affinity nitrate transporter in Arabidopsis, though several lines of evidence have raised questions regarding its high-affinity function in nitrate uptake. Here, we show that the induction of NRT2.1- and NRT2.2-mediated nitrate uptake interferes with measurements of the contribution of NRT1.1 to high-affinity uptake using nrt1.1 mutants. Therefore, a nrt1.1/2.1/2.2 triple mutant was generated to reevaluate the role of NRT1.1 in high-affinity nitrate uptake. This triple mutant has a lower rate of nitrate uptake than the nrt2.1/2.2 double mutant under low external nitrate supply, resulting in a lower growth rate than that of the double mutant. Therefore, we conclude that NRT1.1-mediated high-affinity nitrate uptake is necessary for plant growth under low-nitrate conditions.
Collapse
Affiliation(s)
- Jia Yuan Ye
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wen Hao Tian
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
122
|
Santos Teixeira JA, Ten Tusscher KH. The Systems Biology of Lateral Root Formation: Connecting the Dots. MOLECULAR PLANT 2019; 12:784-803. [PMID: 30953788 DOI: 10.1016/j.molp.2019.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxin-centered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.
Collapse
Affiliation(s)
- J A Santos Teixeira
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - K H Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
123
|
Huang S, Liang Z, Chen S, Sun H, Fan X, Wang C, Xu G, Zhang Y. A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation. PLANT PHYSIOLOGY 2019; 180:882-895. [PMID: 30886113 PMCID: PMC6548263 DOI: 10.1104/pp.19.00142] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 05/19/2023]
Abstract
Root nitrate uptake adjusts to the plant's nitrogen demand for growth. Here, we report that OsMADS57, a MADS-box transcription factor, modulates nitrate translocation from rice (Oryza sativa) roots to shoots under low-nitrate conditions. OsMADS57 is abundantly expressed in xylem parenchyma cells of root stele and is induced by nitrate. Compared with wild-type rice plants supplied with 0.2 mM nitrate, osmads57 mutants had 31% less xylem loading of nitrate, while overexpression lines had 2-fold higher levels. Shoot-root 15N content ratios were 40% lower in the mutants and 76% higher in the overexpression lines. Rapid NO3 - root influx experiments showed that mutation of OsMADS57 did not affect root nitrate uptake. Reverse transcription quantitative PCR analysis of OsNRT2 nitrate transporter genes showed that after 5 min in 0.2 mM nitrate, only OsNRT2.3a (a vascular-specific high-affinity nitrate transporter) had reduced (by two-thirds) expression levels. At 60 min of nitrate treatment, lower expression levels were also observed for three additional NRT2 genes (OsNRT2.1/2.2/2.4). Conversely, in the overexpression lines, four NRT2 genes had much higher expression profiles at all time points tested. As previously reported, OsNRT2.3a functions in nitrate translocation, indicating the possible interaction between OsMADS57 and OsNRT2.3a Yeast one-hybrid and transient expression assays demonstrated that OsMADS57 binds to the CArG motif (CATTTTATAG) within the OsNRT2.3a promoter. Moreover, seminal root elongation was inhibited in osmads57 mutants, which may be associated with higher auxin levels in and auxin polar transport to root tips of mutant plants. Taken together, these results suggest that OsMADS57 has a role in regulating nitrate translocation from root to shoot via OsNRT2.3a.
Collapse
Affiliation(s)
- Shuangjie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Zhihao Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Si Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huwei Sun
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Cailin Wang
- Institute of Food Crops of Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
124
|
Jia Z, Giehl RFH, Meyer RC, Altmann T, von Wirén N. Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nat Commun 2019; 10:2378. [PMID: 31147541 PMCID: PMC6542857 DOI: 10.1038/s41467-019-10331-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/30/2019] [Indexed: 12/02/2022] Open
Abstract
Developmental plasticity of root system architecture is crucial for plant performance in nutrient-poor soils. Roots of plants grown under mild nitrogen (N) deficiency show a foraging response characterized by increased root length but mechanisms underlying this developmental plasticity are still elusive. By employing natural variation in Arabidopsis accessions, we show that the brassinosteroid (BR) signaling kinase BSK3 modulates root elongation under mild N deficiency. In particular, a proline to leucine substitution in the predicted kinase domain of BSK3 enhances BR sensitivity and signaling to increase the extent of root elongation. We further show that low N specifically upregulates transcript levels of the BR co-receptor BAK1 to activate BR signaling and stimulate root elongation. Altogether, our results uncover a role of BR signaling in root elongation under low N. The BSK3 alleles identified here provide targets for improving root growth of crops growing under limited N conditions. Plant roots elongate under mild nitrogen deficiency as part of a foraging response that facilitates nutrient uptake. Here the authors show that natural variation in this response among Arabidopsis accessions depends on the brassinosteroid (BR) signaling kinase BSK3, which can enhance BR sensitivity and root growth.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Rhonda C Meyer
- Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Thomas Altmann
- Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany.
| |
Collapse
|
125
|
Overexpression of Nitrate Transporter OsNRT2.1 Enhances Nitrate-Dependent Root Elongation. Genes (Basel) 2019; 10:genes10040290. [PMID: 30970675 PMCID: PMC6523718 DOI: 10.3390/genes10040290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Root morphology is essential for plant survival. NO3− is not only a nutrient, but also a signal substance affecting root growth in plants. However, the mechanism of NO3−-mediated root growth in rice remains unclear. In this study, we investigated the effect of OsNRT2.1 on root elongation and nitrate signaling-mediated auxin transport using OsNRT2.1 overexpression lines. We observed that the overexpression of OsNRT2.1 increased the total root length in rice, including the seminal root length, total adventitious root length, and total lateral root length in seminal roots and adventitious roots under 0.5-mM NO3− conditions, but not under 0.5-mM NH4+ conditions. Compared with wild type (WT), the 15NO3− influx rate of OsNRT2.1 transgenic lines increased by 24.3%, and the expressions of auxin transporter genes (OsPIN1a/b/c and OsPIN2) also increased significantly under 0.5-mM NO3− conditions. There were no significant differences in root length, ß-glucuronidase (GUS) activity, and the expressions of OsPIN1a/b/c and OsPIN2 in the pDR5::GUS transgenic line between 0.5-mM NO3− and 0.5-mM NH4+ treatments together with N-1-naphthylphalamic acid (NPA) treatment. When exogenous NPA was added to 0.5-mM NO3− nutrient solution, there were no significant differences in the total root length and expressions of OsPIN1a/b/c and OsPIN2 between transgenic plants and WT, although the 15NO3− influx rate of OsNRT2.1 transgenic lines increased by 25.2%. These results indicated that OsNRT2.1 is involved in the pathway of nitrate-dependent root elongation by regulating auxin transport to roots; i.e., overexpressing OsNRT2.1 promotes an effect on root growth upon NO3− treatment that requires active polar auxin transport.
Collapse
|
126
|
|
127
|
Jian S, Luo J, Liao Q, Liu Q, Guan C, Zhang Z. NRT1.1 Regulates Nitrate Allocation and Cadmium Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:384. [PMID: 30972097 PMCID: PMC6445965 DOI: 10.3389/fpls.2019.00384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/13/2019] [Indexed: 05/21/2023]
Abstract
Abiotic stress induces nitrate (NO3 -) allocation to roots, which increases stress tolerance in plants. NRT1.1 is broadly involved in abiotic stress tolerance in plants, but the relationship between NRT1.1 and NO3 - allocation under stress conditions is unclear. In this study, we found that Arabidopsis wild-type Col-0 was more cadmium (Cd2+)-tolerant than the nrt1.1 mutant at 20 μM CdCl2. Cd2+ exposure repressed NRT1.5 but upregulated NRT1.8 in roots of Col-0 plants, resulting in increased NO3 - allocation to roots and higher [NO3 -] root-to-shoot (R:S) ratios. Interestingly, NITRATE REGULATORY GENE2 (NRG2) was upregulated by Cd2+ stress in Col-0 but not in nrt1.1. Under Cd2+ stress, nrg2 and nrg2-3chl1-13 mutants exhibited similar phenotypes and NO3 - allocation patterns as observed in the nrt1.1 mutant, but overexpression of NRG2 in Col-0 and nrt1.1 increased the [NO3 -] R:S ratio and restored Cd2+ stress tolerance. Our results indicated that NRT1.1 and NRG2 regulated Cd2+ stress-induced NO3 - allocation to roots and that NRG2 functioned downstream of NRT1.1. Cd2+ uptake did not differ between Col-0 and nrt1.1, but Cd2+ allocation to roots was higher in Col-0 than in nrt1.1. Stressed Col-0 plants increased Cd2+ and NO3 - allocation to root vacuoles, which reduced their cytosolic allocation and transport to the shoots. Our results suggest that NRT1.1 regulates NO3 - allocation to roots by coordinating Cd2+ accumulation in root vacuoles, which facilitates Cd2+ detoxification.
Collapse
Affiliation(s)
- Shaofen Jian
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Jingsong Luo
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Qiong Liao
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Qiang Liu
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Chunyun Guan
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| |
Collapse
|
128
|
Fredes I, Moreno S, Díaz FP, Gutiérrez RA. Nitrate signaling and the control of Arabidopsis growth and development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:112-118. [PMID: 30496968 DOI: 10.1016/j.pbi.2018.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 05/07/2023]
Abstract
Coordination between plant development and nutrient availability ensures a suitable supply of macromolecules for growth and developmental programs. Nitrate is an important source of nitrogen (N) that acts as a signal molecule to modulate gene expression, physiological, growth and developmental responses throughout the life of the plant. New key players in the nitrate signaling pathway have been described and knowledge of the molecular mechanics of how it impacts growth and developmental processes is increasing fast. Importantly, mechanisms for nitrate-control of growth and developmental processes have been proposed for both local as well as systemic responses. This article provides a synthesis of recent insights into molecular mechanisms by which nitrate impacts growth and development over Arabidopsis life-cycle.
Collapse
Affiliation(s)
- Isabel Fredes
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Sebastián Moreno
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Francisca P Díaz
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile.
| |
Collapse
|
129
|
Nutrient-Responsive Small Signaling Peptides and Their Influence on the Root System Architecture. Int J Mol Sci 2018; 19:ijms19123927. [PMID: 30544528 PMCID: PMC6321020 DOI: 10.3390/ijms19123927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
The root system architecture (RSA) of plants is highly dependent on the surrounding nutrient environment. The uptake of essential nutrients triggers various signaling cascades and fluctuations in plant hormones to elicit physical changes in RSA. These pathways may involve signaling components known as small signaling peptides (SSPs), which have been implicated in a variety of plant developmental processes. This review discusses known nutrient-responsive SSPs with a focus on several subclasses that have been shown to play roles in root development. Most functionally well-characterized cases of SSP-mediated changes in RSA are found in responses to nitrogen (N) and phosphorus (P) availability, but other nutrients have also been known to affect the expression of SSP-encoding genes. These nutrient-responsive SSPs may interact downstream with leucine-rich repeat receptor kinases (LRR-RKs) to modulate hormone signaling and cellular processes impacting plant root development. SSPs responsive to multiple nutrient cues potentially act as mediators of crosstalk between the signaling pathways. Study of SSP pathways is complicated because of functional redundancy within peptide and receptor families and due to their functionality partly associated with post-translational modifications; however, as genomic research and techniques progress, novel SSP-encoding genes have been identified in many plant species. Understanding and characterizing the roles of SSPs influencing the root phenotypes will help elucidate the processes that plants use to optimize nutrient acquisition in the environment.
Collapse
|
130
|
Chen H, Xu N, Wu Q, Yu B, Chu Y, Li X, Huang J, Jin L. OsMADS27 regulates the root development in a NO 3--Dependent manner and modulates the salt tolerance in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:20-32. [PMID: 30466586 DOI: 10.1016/j.plantsci.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 09/04/2018] [Indexed: 06/09/2023]
Abstract
OsMADS27 is one of the ANR1-like homologues in rice, whreas its functions in plant growth and development as well as the abiotic stress responses remain unclear. Here we investigated the roles of OsMADS27 in the root development in response to NO3- availability. Constitutive expression of OsMADS27 significantly inhibited the elongation of primary root (PR), but enhanced lateral root (LR) formation in a NO3--dependent manner. Furthermore, OsMADS27 overexpression promoted NO3- accumulation as well as the expression of NO3- transporter genes. ABA is reported to play an important role in mediating the effects of NO3- on the root development, thus it is supposed that OsMADS27 might regulate the root growth and development by ABA pathway. The root growth and development in OsMADS27 overexpression lines was shown to be more sensitive to exogenous ABA than wild type. Moreover, under NO3- conditions, higher levels of ABA accumulates in OsMADS27 overexpression plants. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays showed that OsMADS27 physically interacts with ABA-INSENSITIVE5 (OsABI5) via DELLA protein OsSLR1. More importantly, OsMADS27 overexpression could enhance the salt tolerance. Taken together, our findings suggested that OsMADS27 is an important regulator controlling the root system development and adaption to osmotic stress in rice.
Collapse
Affiliation(s)
- Hongli Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China.
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China.
| |
Collapse
|
131
|
Yu Z, Islam S, She M, Diepeveen D, Zhang Y, Tang G, Zhang J, Juhasz A, Yang R, Ma W. Wheat grain protein accumulation and polymerization mechanisms driven by nitrogen fertilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1160-1177. [PMID: 30230644 DOI: 10.1111/tpj.14096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 05/09/2023]
Abstract
In wheat (Triticum aestivum) grain yield and grain protein content are negatively correlated, making the simultaneous increase of the two traits challenging. Apart from genetic approaches, modification of nitrogen fertilization offers a feasible option to achieve this aim. In this study, a range of traits related to nitrogen-use efficiency in six Australian bread wheat varieties were investigated under different nitrogen treatments using 3-year multisite field trials. Changes in the individual storage protein composition were detected by high-performance liquid chromatography. Our results indicated that wheat grain yield and grain protein content reacted similarly to nitrogen availability, with grain yield being slightly more sensitive than grain protein content, and that genotype is a vital determinant of grain protein yield. Measurement of the glutamine synthetase activity of flag leaves and developing grains revealed that high nitrogen availability prompted the participation of glutamine in biological processes. In addition, a more significant accumulation of gluten macropolymer was observed under the high-nitrogen treatment from 21 days post-anthesis, and the underlying mechanism was elucidated by a comparative proteomics study. A yeast two-hybrid experiment confirmed this mechanism. The results of this study revealed that peptidyl-prolyl cis-trans isomerase (PPIase) was SUMOylated with the assistance of small ubiquitin-related modifier 1 and that high nitrogen availability facilitated this connection for the subsequent protein polymerization. Additionally, luminal-binding protein 2 in the endoplasmic reticulum played a similar role to PPIase in the aggregation of protein under high-nitrogen conditions.
Collapse
Affiliation(s)
- Zitong Yu
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia
| | - Dean Diepeveen
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Western Australian Department of Agriculture and Food, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Yujuan Zhang
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
| | - Guixiang Tang
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia
| | - Angela Juhasz
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia
| | - Rongchang Yang
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
132
|
Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae. Arch Microbiol 2018; 201:547-558. [PMID: 30448870 DOI: 10.1007/s00203-018-1594-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Maize is highly responsive to the application of nitrogen to achieve high productivity. Inoculation with diazotrophic bacteria can improve plant growth with low N fertilization. The objective was to evaluate the inoculation of two species of diazotrophs on N metabolism in maize plants, in the presence of two concentrations of nitrogen in a hydroponic system. A factorial arrangement composed of two N levels (3.0 and 0.3 mM), with the presence of Hs-Herbaspirillum seropedicae, and Ab-Azospirillum brasilense or not. The parameters used were dry mass; N, P, and K accumulation; nitrate reductase activity; soluble fractions in roots and leaves. The inoculation altered the N metabolism and promoted greater development of maize plants, as well as a higher accumulation of P and K in the shoots. A more intensive process of N assimilation was evidenced when the plants were inoculated with H. seropedicae, leading to increased levels of NO3- and reduced N-amino, sugars, and NH4+ in leaves associated with high N level, opposite of A. brasilense.
Collapse
|
133
|
Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, Bågman AM, Foret J, Abbitt S, Tang M, Li B, Runcie DE, Kliebenstein DJ, Shen B, Frank MJ, Ware D, Brady SM. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 2018; 563:259-264. [PMID: 30356219 DOI: 10.1038/s41586-018-0656-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/22/2018] [Indexed: 11/09/2022]
Abstract
Nitrogen is an essential macronutrient for plant growth and basic metabolic processes. The application of nitrogen-containing fertilizer increases yield, which has been a substantial factor in the green revolution1. Ecologically, however, excessive application of fertilizer has disastrous effects such as eutrophication2. A better understanding of how plants regulate nitrogen metabolism is critical to increase plant yield and reduce fertilizer overuse. Here we present a transcriptional regulatory network and twenty-one transcription factors that regulate the architecture of root and shoot systems in response to changes in nitrogen availability. Genetic perturbation of a subset of these transcription factors revealed coordinate transcriptional regulation of enzymes involved in nitrogen metabolism. Transcriptional regulators in the network are transcriptionally modified by feedback via genetic perturbation of nitrogen metabolism. The network, genes and gene-regulatory modules identified here will prove critical to increasing agricultural productivity.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Joel Rodriguez-Medina
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Cold Spring Harbor, NY, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Cold Spring Harbor, NY, USA
| | | | - Anne-Maarit Bågman
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Jessica Foret
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Michelle Tang
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA.,Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA.,DynaMo Center of Excellence, University of Copenhagen, Frederiksberg C, Denmark
| | - Bo Shen
- DuPont Pioneer, Johnston, IA, USA
| | | | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Cold Spring Harbor, NY, USA.,US Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
134
|
Sun CH, Yu JQ, Duan X, Wang JH, Zhang QY, Gu KD, Hu DG, Zheng CS. The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. HORTICULTURE RESEARCH 2018; 5:52. [PMID: 30302256 PMCID: PMC6165851 DOI: 10.1038/s41438-018-0061-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 05/20/2023]
Abstract
Plant root systems are essential for many physiological processes, including water and nutrient absorption. MADS-box transcription factor (TF) genes have been characterized as the important regulators of root development in plants; however, the underlying mechanism is largely unknown, including chrysanthemum. Here, it was found that the overexpression of CmANR1, a chrysanthemum MADS-box TF gene, promoted both adventitious root (AR) and lateral root (LR) development in chrysanthemum. Whole transcriptome sequencing analysis revealed a series of differentially expressed unigenes (DEGs) in the roots of CmANR1-transgenic chrysanthemum plants compared to wild-type plants. Functional annotation of these DEGs by alignment with Gene Ontology (GO) terms and biochemical pathway Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that CmANR1 TF exhibited "DNA binding" and "catalytic" activity, as well as participated in "phytohormone signal transduction". Both chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) and gel electrophoresis mobility shift assays (EMSA) indicated the direct binding of CmPIN2 to the recognition site CArG-box motif by CmANR1. Finally, a firefly luciferase imaging assay demonstrated the transcriptional activation of CmPIN2 by CmANR1 in vivo. Overall, our results provide novel insights into the mechanisms of MADS-box TF CmANR1 modulation of both AR and LR development, which occurs by directly regulating auxin transport gene CmPIN2 in chrysanthemum.
Collapse
Affiliation(s)
- Cui-Hui Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Jian-Qiang Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Xi Duan
- Shandong Agricultural and Engineering University, Ji-Nan, Shandong China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Cheng-Shu Zheng
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| |
Collapse
|
135
|
Gu J, Li Z, Mao Y, Struik PC, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:320-331. [PMID: 30080619 DOI: 10.1016/j.plantsci.2018.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 05/03/2023]
Abstract
Nitrogen is an essential, often limiting, factor in plant growth and development. To regulate growth under limited nitrogen supply, plants sense the internal and external nitrogen status, and coordinate various metabolic processes and developmental programs accordingly. This coordination requires the transmission of various signaling molecules that move across the entire plant. Cytokinins, phytohormones derived from adenine and synthesized in various parts of the plant, are considered major local and long-distance messengers. Cytokinin metabolism and signaling are closely associated with nitrogen availability. They are systemically transported via the vasculature from plant roots to shoots, and vice versa, thereby coordinating shoot and root development. Tight linkage exists between the nitrogen signaling network and cytokinins during diverse developmental and physiological processes. However, the cytokinin-nitrogen interactions and the communication systems involved in sensing rhizospheric nitrogen status and in regulating canopy development remain obscure. We review current knowledge on cytokinin biosynthesis, transport and signaling, nitrogen acquisition, metabolism and signaling, and their interactive roles in regulating root-shoot morphological and physiological characteristics. We also discuss the role of spatio-temporal regulation of cytokinins in enhancing beneficial crop traits of yield and nitrogen use efficiency.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhikang Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yiqi Mao
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Science, Wageningen University, PO Box 430, Wageningen, 6700 AK, The Netherlands
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
136
|
Liang Y, Zhao X, Jones AM, Gao Y. G proteins sculp root architecture in response to nitrogen in rice and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:129-136. [PMID: 30080596 DOI: 10.1016/j.plantsci.2018.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/19/2018] [Accepted: 05/21/2018] [Indexed: 05/20/2023]
Abstract
Nitrogen is a key nutrient for plant growth and development. Plants regulate nitrogen availability and uptake efficiency through controlling root architecture. While the heterotrimeric G protein complex is an important element to regulate root morphology, it remains unknown whether the G protein regulates the root architecture in response to nitrogen supply. We used rice and Arabidopsis G protein mutants to study the root architecture in response to different nitrogen concentrations. We found that nitrogen inhibits root horizontal projection area (network area), root perimeter, total length, but not root diameter (average root width). Nitrogen influenced bushiness and root spatial distribution by inhibiting horizontal growth and promoting vertical expansion. The dynamic changes of the rice G protein mutant DK22 at different concentrations of nitrogen from day 7 to day 9 were different from the wild type with regard to bushiness and spatial distribution. The agb1-2 mutant in Arabidopsis lacked the inhibitory effect of nitrate on root growth. The heterotrimeric G protein complex regulates the inhibitory effect on root growth caused by high nitrogen supply and root spatial distribution in response to different nitrogen concentrations.
Collapse
Affiliation(s)
- Ying Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599-3280, USA
| | - Xiaoyu Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599-3280, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, 27599-3280, USA
| | - Yajun Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
137
|
Raviv B, Godwin J, Granot G, Grafi G. The Dead Can Nurture: Novel Insights into the Function of Dead Organs Enclosing Embryos. Int J Mol Sci 2018; 19:E2455. [PMID: 30126259 PMCID: PMC6121506 DOI: 10.3390/ijms19082455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 11/23/2022] Open
Abstract
Plants have evolved a variety of dispersal units whereby the embryo is enclosed by various dead protective layers derived from maternal organs of the reproductive system including seed coats (integuments), pericarps (ovary wall, e.g., indehiscent dry fruits) as well as floral bracts (e.g., glumes) in grasses. Commonly, dead organs enclosing embryos (DOEEs) are assumed to provide a physical shield for embryo protection and means for dispersal in the ecosystem. In this review article, we highlight recent studies showing that DOEEs of various species across families also have the capability for long-term storage of various substances including active proteins (hydrolases and ROS detoxifying enzymes), nutrients and metabolites that have the potential to support the embryo during storage in the soil and assist in germination and seedling establishment. We discuss a possible role for DOEEs as natural coatings capable of "engineering" the seed microenvironment for the benefit of the embryo, the seedling and the growing plant.
Collapse
Affiliation(s)
- Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| | - James Godwin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| | - Gila Granot
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
138
|
Nishida H, Suzaki T. Nitrate-mediated control of root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:129-136. [PMID: 29684704 DOI: 10.1016/j.pbi.2018.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/14/2023]
Abstract
Nitrogen is an indispensable inorganic nutrient that is required by plants throughout their life. Root nodule symbiosis (RNS) is an important strategy mainly adopted by legumes to enhance nitrogen acquisition, where several key processes required for the establishment of the symbiosis, are pleiotropically controlled by nitrate availability in soil. Although the autoregulation of nodulation (AON), a systemic long-range signaling, has been suggested to be implicated in nitrate-induced control of RNS, AON alone is insufficient to fully explain the pleiotropic regulation that is induced by nitrate. A recent elucidation of the function of a NIN-LIKE PROTEIN transcription factor has provided greater insights into the genetic mechanisms underlying nitrate-induced control of RNS in varying nitrate environments.
Collapse
Affiliation(s)
- Hanna Nishida
- National Institute for Basic Biology, Okazaki, Aichi, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
139
|
Molecular Regulation of Nitrate Responses in Plants. Int J Mol Sci 2018; 19:ijms19072039. [PMID: 30011829 PMCID: PMC6073361 DOI: 10.3390/ijms19072039] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Nitrogen is an essential macronutrient that affects plant growth and development. Improving the nitrogen use efficiency of crops is of great importance for the economic and environmental sustainability of agriculture. Nitrate (NO3−) is a major form of nitrogen absorbed by most crops and also serves as a vital signaling molecule. Research has identified key molecular components in nitrate signaling mainly by employing forward and reverse genetics as well as systems biology. In this review, we focus on advances in the characterization of genes involved in primary nitrate responses as well as the long-term effects of nitrate, especially in terms of how nitrate regulates root development.
Collapse
|
140
|
Poitout A, Crabos A, Petřík I, Novák O, Krouk G, Lacombe B, Ruffel S. Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots. THE PLANT CELL 2018; 30:1243-1257. [PMID: 29764985 PMCID: PMC6048791 DOI: 10.1105/tpc.18.00011] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/19/2018] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Plants face temporal and spatial variation in nitrogen (N) availability. This includes heterogeneity in soil nitrate (NO3-) content. To overcome these constraints, plants modify their gene expression and physiological processes to optimize N acquisition. This plasticity relies on a complex long-distance root-shoot-root signaling network that remains poorly understood. We previously showed that cytokinin (CK) biosynthesis is required to trigger systemic N signaling. Here, we performed split-root experiments and used a combination of CK-related mutant analyses, hormone profiling, transcriptomic analysis, NO3- uptake assays, and root growth measurements to gain insight into systemic N signaling in Arabidopsis thaliana By comparing wild-type plants and mutants affected in CK biosynthesis and ABCG14-dependent root-to-shoot translocation of CK, we revealed an important role for active trans-zeatin (tZ) in systemic N signaling. Both rapid sentinel gene regulation and long-term functional acclimation to heterogeneous NO3- supply, including NO3- transport and root growth regulation, are likely mediated by the integration of tZ content in shoots. Furthermore, shoot transcriptome profiling revealed that glutamate/glutamine metabolism is likely a target of tZ root-to-shoot translocation, prompting an interesting hypothesis regarding shoot-to-root communication. Finally, this study highlights tZ-independent pathways regulating gene expression in shoots as well as NO3- uptake activity in response to total N deprivation.
Collapse
Affiliation(s)
- Arthur Poitout
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Amandine Crabos
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Ivan Petřík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Gabriel Krouk
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Benoît Lacombe
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Sandrine Ruffel
- BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| |
Collapse
|
141
|
Li Y, Li J, Yan Y, Liu W, Zhang W, Gao L, Tian Y. Knock-Down of CsNRT2.1, a Cucumber Nitrate Transporter, Reduces Nitrate Uptake, Root length, and Lateral Root Number at Low External Nitrate Concentration. FRONTIERS IN PLANT SCIENCE 2018; 9:722. [PMID: 29911677 PMCID: PMC5992502 DOI: 10.3389/fpls.2018.00722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/14/2018] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) is a macronutrient that plays a crucial role in plant growth and development. Nitrate ( NO 3 - ) is the most abundant N source in aerobic soils. Plants have evolved two adaptive mechanisms such as up-regulation of the high-affinity transport system (HATS) and alteration of the root system architecture (RSA), allowing them to cope with the temporal and spatial variation of NO 3 - . However, little information is available regarding the nitrate transporter in cucumber, one of the most important fruit vegetables in the world. In this study we isolated a nitrate transporter named CsNRT2.1 from cucumber. Analysis of the expression profile of the CsNRT2.1 showed that CsNRT2.1 is a high affinity nitrate transporter which mainly located in mature roots. Subcellular localization analysis revealed that CsNRT2.1 is a plasma membrane transporter. In N-starved CsNRT2.1 knock-down plants, both of the constitutive HATS (cHATS) and inducible HATS (iHATS) were impaired under low external NO 3 - concentration. Furthermore, the CsNRT2.1 knock-down plants showed reduced root length and lateral root numbers. Together, our results demonstrated that CsNRT2.1 played a dual role in regulating the HATS and RSA to acquire NO 3 - effectively under N limitation.
Collapse
Affiliation(s)
- Yang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Juanqi Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yan Yan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
142
|
Sun H, Feng F, Liu J, Zhao Q. Nitric Oxide Affects Rice Root Growth by Regulating Auxin Transport Under Nitrate Supply. FRONTIERS IN PLANT SCIENCE 2018; 9:659. [PMID: 29875779 PMCID: PMC5974057 DOI: 10.3389/fpls.2018.00659] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) is a major essential nutrient for plant growth, and rice is an important food crop globally. Although ammonium (NH4+) is the main N source for rice, nitrate (NO3-) is also absorbed and utilized. Rice responds to NO3- supply by changing root morphology. However, the mechanisms of rice root growth and formation under NO3- supply are unclear. Nitric oxide (NO) and auxin are important regulators of root growth and development under NO3- supply. How the interactions between NO and auxin in regulating root growth in response to NO3- are unknown. In this study, the levels of indole-3-acetic acid (IAA) and NO in roots, and the responses of lateral roots (LRs) and seminal roots (SRs) to NH4+ and NO3-, were investigated using wild-type (WT) rice, as well as osnia2 and ospin1b mutants. NO3- supply promoted LR formation and SR elongation. The effects of NO donor and NO inhibitor/scavenger supply on NO levels and the root morphology of WT and nia2 mutants under NH4+ or NO3- suggest that NO3--induced NO is generated by the nitrate reductase (NR) pathway rather than the NO synthase (NOS)-like pathway. IAA levels, [3H] IAA transport, and PIN gene expression in roots were enhanced under NO3- relative to NH4+ supply. These results suggest that NO3- regulates auxin transport in roots. Application of SNP under NH4+ supply, or of cPTIO under NO3- supply, resulted in auxin levels in roots similar to those under NO3- and NH4+ supply, respectively. Compared to WT, the roots of the ospin1b mutant had lower auxin levels, fewer LRs, and shorter SRs. Thus, NO affects root growth by regulating auxin transport in response to NO3-. Overall, our findings suggest that NO3- influences LR formation and SR elongation by regulating auxin transport via a mechanism involving NO.
Collapse
Affiliation(s)
- Huwei Sun
- *Correspondence: Huwei Sun, Quanzhi Zhao,
| | | | | | - Quanzhi Zhao
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
143
|
Wang YY, Cheng YH, Chen KE, Tsay YF. Nitrate Transport, Signaling, and Use Efficiency. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:85-122. [PMID: 29570365 DOI: 10.1146/annurev-arplant-042817-040056] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitrogen accounts for approximately 60% of the fertilizer consumed each year; thus, it represents one of the major input costs for most nonlegume crops. Nitrate is one of the two major forms of nitrogen that plants acquire from the soil. Mechanistic insights into nitrate transport and signaling have enabled new strategies for enhancing nitrogen utilization efficiency, for lowering input costs for farming, and, more importantly, for alleviating environmental impacts (e.g., eutrophication and production of the greenhouse gas N2O). Over the past decade, significant progress has been made in understanding how nitrate is acquired from the surroundings, how it is efficiently distributed into different plant tissues in response to environmental changes, how nitrate signaling is perceived and transmitted, and how shoot and root nitrogen status is communicated. Several key components of these processes have proven to be novel tools for enhancing nitrate- and nitrogen-use efficiency. In this review, we focus on the roles of NRT1 and NRT2 in nitrate uptake and nitrate allocation among different tissues; we describe the functions of the transceptor NRT1.1, transcription factors, and small signaling peptides in nitrate signaling and tissue communication; and we compile the new strategies for improving nitrogen-use efficiency.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Hsuan Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan;
- Molecular and Cell Biology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-En Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
144
|
Taleski M, Imin N, Djordjevic MA. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1829-1836. [PMID: 29579226 DOI: 10.1093/jxb/ery037] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secreted peptide hormones play pivotal roles in plant growth and development. So far, CEPs (C-TERMINALLY ENCODED PEPTIDEs) have been shown to act through CEP receptors (CEPRs) to control nitrogen (N)-demand signalling, nodulation, and lateral root development. Secreted CEP peptides can enter the xylem stream to act as long-distance signals, but evidence also exists for CEPs acting in local circuits. Recently, CEP peptide species varying in sequence, length, and post-translational modifications have been identified. A more comprehensive understanding of CEP biology requires insight into the in planta function of CEP genes, CEP peptide biogenesis, the components of CEP signalling cascades and, finally, how CEP peptide length, amino-acid composition, and post-translational modifications affect biological activity. In this review, we highlight recent studies that have advanced our understanding in these key areas and discuss some future directions.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| | - Nijat Imin
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| |
Collapse
|
145
|
Steyfkens F, Zhang Z, Van Zeebroeck G, Thevelein JM. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Front Pharmacol 2018; 9:191. [PMID: 29662449 PMCID: PMC5890159 DOI: 10.3389/fphar.2018.00191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae. In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA) pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s) induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in the development of receptors from nutrient transporters during evolution. The nutrient-sensing transceptor system in yeast for activation of the PKA pathway has served as a paradigm for similar studies on candidate nutrient transceptors in other eukaryotes and we succinctly discuss the many examples of transceptors that have already been documented in other yeast species, filamentous fungi, plants, and animals, including the examples in human cells.
Collapse
Affiliation(s)
- Fenella Steyfkens
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| |
Collapse
|
146
|
Wei J, Zheng Y, Feng H, Qu H, Fan X, Yamaji N, Ma JF, Xu G. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1095-1107. [PMID: 29385597 DOI: 10.1093/jxb/erx486] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/19/2017] [Indexed: 05/14/2023]
Abstract
Plant NRT2 nitrate transporters commonly require a partner protein, NAR2, for transporting nitrate at low concentrations, but their role in plants is not well understood. In this study, we characterized the gene for one of these transporters in the rice genome, OsNRT2.4, in terms of its activity and roles in rice grown in environments with different N supply. In Xenopus oocytes, OsNRT2.4 alone without OsNAR2 co-expression facilitated nitrate uptake showing biphasic kinetics at a wide concentration range, with high- and low-affinity KM values of 0.15 and 4 mM, respectively. OsNRT2.4 did not have nitrate efflux or IAA influx activity. In rice roots, OsNRT2.4 was expressed mainly in the base of lateral root primordia. Knockout of OsNRT2.4 decreased lateral root number and length, and the total N uptake per plant at both 0.25 and 2.5 mM NO3- levels. In the shoots, OsNRT2.4 was expressed mainly in vascular tissues, and its knockout decreased the growth and NO3--N distribution. Knockout of OsNRT2.4, however, did not affect rice growth and N uptake under conditions without N or with only NH4+ supply. We conclude that OsNRT2.4 functions as a dual-affinity nitrate transporter and is required for nitrate-regulated root and shoot growth of rice.
Collapse
Affiliation(s)
- Jia Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, China
| | - Yi Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, China
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Japan
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, China
| |
Collapse
|
147
|
Plett DC, Holtham LR, Okamoto M, Garnett TP. Nitrate uptake and its regulation in relation to improving nitrogen use efficiency in cereals. Semin Cell Dev Biol 2018; 74:97-104. [DOI: 10.1016/j.semcdb.2017.08.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022]
|
148
|
Sánchez-Bel P, Sanmartín N, Pastor V, Mateu D, Cerezo M, Vidal-Albalat A, Pastor-Fernández J, Pozo MJ, Flors V. Mycorrhizal tomato plants fine tunes the growth-defence balance upon N depleted root environments. PLANT, CELL & ENVIRONMENT 2018; 41:406-420. [PMID: 29194658 DOI: 10.1111/pce.13105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 05/06/2023]
Abstract
In low nutritive environments, the uptake of N by arbuscular mycorrhizal (AM) fungi may confer competitive advantages for the host. The present study aims to understand how mycorrhizal tomato plants perceive and then prepare for an N depletion in the root environment. Plants colonized by Rhizophagus irregularis displayed improved responses to a lack of N than nonmycorrhizal (NM) plants. These responses were accomplished by a complex metabolic and transcriptional rearrangement that mostly affected the gibberellic acid and jasmonic acid pathways involving DELLA and JAZ1 genes, which were responsive to changes in the C/N imbalance of the plant. N starved mycorrhizal plants showed lower C/N equilibrium in the shoots than starved NM plants and concomitantly a downregulation of the JAZ1 repressor and the increased expression of the DELLA gene, which translated into a more active oxylipin pathway in mycorrhizal plants. In addition, the results support a priorization in AM plants of stress responses over growth. Therefore, these plants were better prepared for an expected stress. Furthermore, most metabolites that were severely reduced in NM plants following the N depletion remained unaltered in starved AM plants compared with those normally fertilized, suggesting that the symbiosis buffered the stress, improving plant development in a stressed environment.
Collapse
Affiliation(s)
- P Sánchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - N Sanmartín
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - V Pastor
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - D Mateu
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - M Cerezo
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - A Vidal-Albalat
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Castellón, 12071, Spain
| | - J Pastor-Fernández
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - M J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, 18160, Spain
| | - V Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| |
Collapse
|
149
|
Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. Semin Cell Dev Biol 2018; 74:89-96. [DOI: 10.1016/j.semcdb.2017.08.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022]
|
150
|
Zhao L, Zhang W, Yang Y, Li Z, Li N, Qi S, Crawford NM, Wang Y. The Arabidopsis NLP7 gene regulates nitrate signaling via NRT1.1-dependent pathway in the presence of ammonium. Sci Rep 2018; 8:1487. [PMID: 29367694 PMCID: PMC5784019 DOI: 10.1038/s41598-018-20038-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023] Open
Abstract
Nitrate is not only an important nutrient but also a signaling molecule for plants. A few of key molecular components involved in primary nitrate responses have been identified mainly by forward and reverse genetics as well as systems biology, however, many underlining mechanisms of nitrate regulation remain unclear. In this study, we show that the expression of NRT1.1, which encodes a nitrate sensor and transporter (also known as CHL1 and NPF6.3), is modulated by NIN-like protein 7 (NLP7). Genetic and molecular analyses indicate that NLP7 works upstream of NRT1.1 in nitrate regulation when NH4+ is present, while in absence of NH4+, it functions in nitrate signaling independently of NRT1.1. Ectopic expression of NRT1.1 in nlp7 resulted in partial or complete restoration of nitrate signaling (expression from nitrate-regulated promoter NRP), nitrate content and nitrate reductase activity in the transgenic lines. Transcriptome analysis revealed that four nitrogen-related clusters including amino acid synthesis-related genes and members of NRT1/PTR family were modulated by both NLP7 and NRT1.1. In addition, ChIP and EMSA assays results indicated that NLP7 may bind to specific regions of the NRT1.1 promoter. Thus, NLP7 acts as an important factor in nitrate signaling via regulating NRT1.1 under NH4+ conditions.
Collapse
Affiliation(s)
- Lufei Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wenjing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zehui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Na Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|