101
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
102
|
He J, Zhao P, Hu Z, Liu S, Kuang Y, Zhang M, Li B, Yun C, Qiao X, Ye M. Molecular and Structural Characterization of a Promiscuous
C
‐Glycosyltransferase from
Trollius chinensis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jun‐Bin He
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Peng Zhao
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Zhi‐Min Hu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Cai‐Hong Yun
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
103
|
He JB, Zhao P, Hu ZM, Liu S, Kuang Y, Zhang M, Li B, Yun CH, Qiao X, Ye M. Molecular and Structural Characterization of a Promiscuous C-Glycosyltransferase from Trollius chinensis. Angew Chem Int Ed Engl 2019; 58:11513-11520. [PMID: 31163097 DOI: 10.1002/anie.201905505] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022]
Abstract
Herein, the catalytic promiscuity of TcCGT1, a new C-glycosyltransferase (CGT) from the medicinal plant Trollius chinensis is explored. TcCGT1 could efficiently and regio-specifically catalyze the 8-C-glycosylation of 36 flavones and other flavonoids and could also catalyze the O-glycosylation of diverse phenolics. The crystal structure of TcCGT1 in complex with uridine diphosphate was determined at 1.85 Å resolution. Molecular docking revealed a new model for the catalytic mechanism of TcCGT1, which is initiated by the spontaneous deprotonation of the substrate. The spacious binding pocket explains the substrate promiscuity, and the binding pose of the substrate determines C- or O-glycosylation activity. Site-directed mutagenesis at two residues (I94E and G284K) switched C- to O-glycosylation. TcCGT1 is the first plant CGT with a crystal structure and the first flavone 8-C-glycosyltransferase described. This provides a basis for designing efficient glycosylation biocatalysts.
Collapse
Affiliation(s)
- Jun-Bin He
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Peng Zhao
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhi-Min Hu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Cai-Hong Yun
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
104
|
Zhang Q, Liu Y, Lin Y, Kong W, Zhao X, Ruan T, Liu J, Schnoor JL, Jiang G. Multiple Metabolic Pathways of 2,4,6-Tribromophenol in Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7473-7482. [PMID: 31244074 PMCID: PMC6931395 DOI: 10.1021/acs.est.9b01514] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bromophenols occur naturally and are used globally as man-made additives in various industrial products. They are decomposition products of many emerging organic pollutants, such as tetrabromobisphenol A, polybrominated dibenzo- p-dioxin (PBDD), polybrominated diphenyl ethers (PBDE), and others. To characterize their biotransformation pathways, bromophenol congener 2,4,6-tribromophenol, being used most frequently in the synthesis of brominated flame retardants and having the greatest environmental abundance, was selected to hydroponically expose rice plants. After exposure for 5 days, 99.2% of 2,4,6-tribromophenol was metabolized by rice. Because of the lack of relative reference standards, an effective screening strategy was used to screen for potential metabolites that were further qualitatively identified by gas and liquid chromatography combined with high-resolution mass spectrometry. Forty transformation products were confirmed or tentatively identified at different confidence levels, including 9 phase I and 31 phase II metabolites. A large number of metabolites (39) were found in rice root, and 10 of them could be translocated and detected in rice stems or leaves. Many transformation pathways were proposed, including debromination, hydroxylation, methylation, coupling reactions, sulfation, and glycosylation. It was remarkable that a total of seven hydrophobic, persistent, and toxic OH-PBDEs and PBDD/Fs were found, indicating the biotic dimeric reactions of 2,4,6-tribromophenol that occurred in the rice plants. These results improve our understanding of the transformation and environmental fates of bromophenols, and they indicate new potential sources for OH-PBDEs and PBDD/Fs in the environment, especially in food chains.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding Author: Phone: +86-010-62849334.
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
105
|
Li J, Liu X, Gao Y, Zong G, Wang D, Liu M, Fei S, Wei Y, Yin Z, Chen J, Wang X, Shen Y. Identification of a UDP-Glucosyltransferase favouring substrate- and regio-specific biosynthesis of flavonoid glucosides in Cyclocarya paliurus. PHYTOCHEMISTRY 2019; 163:75-88. [PMID: 31030081 DOI: 10.1016/j.phytochem.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 05/06/2023]
Abstract
Cyclocarya paliurus (Batalin) Iljinsk is a medicinal plant belonging to the Juglandaceae family, and its leaves are used for a traditional sweet herbal tea with bioactivity against obesity and hyperglycaemia in China. It contains various bioactive specialised metabolites, such as flavonoids, triterpenes and their glucosides, while no glycosyltransferases (GTs) have been reported in C. paliurus to date. Herein, we identified and cloned the first glucosyltransferase C. paliurus GT1. The expression profiles of C. paliurus GT1 showed very high expression in young leaves, callus and branches, but relatively low expression in old leaves and bark and no expression in root. The recombinant C. paliurus GT1 protein was heterologously expressed in Escherichia coli and exhibited catalytic activity towards multiple flavonoids favouring substrate- and regio-specific biosynthesis. Further enzyme assays indicated a preference for certain hydroxyl group glucosylation by C. paliurus GT1. C. paliurus GT1 actively catalysed the glucosylation of flavones and flavonols, but it was less active towards isoflavones, flavanones or triterpenes. C. paliurus GT1 was also able to catalyse the attachment of sugars to the thiol (S-) or amine (N-) sites on aromatic compounds but not on aliphatic compounds. Molecular docking and site-directed mutagenesis analyses indicated that A43F, V84P, and M201Y dramatically altered the regio-selectivity and activity, and the W283M mutation and deletion of the V309-D320 region enhanced the activity and the formation of disaccharides. Herein, we present the identification and characterization of the first multi-functional glucosyltransferase in C. paliurus and provide a basis for understanding the biosynthesis of flavonoid glucosides. C. paliurus GT1 could be utilized as a synthetic biology tool for the synthesis of O-, N-, or S-glucosylated natural/unnatural products.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xiao Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanrong Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guangning Zong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dandan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Meizi Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shang Fei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoqiang Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China; Collaborative Innovation Center for Biotherapy and School of Medicine, Nankai University, Tianjin, 300071, China; Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
106
|
Zong G, Fei S, Liu X, Li J, Gao Y, Yang X, Wang X, Shen Y. Crystal structures of rhamnosyltransferase UGT89C1 from Arabidopsis thaliana reveal the molecular basis of sugar donor specificity for UDP-β-l-rhamnose and rhamnosylation mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:257-269. [PMID: 30893500 DOI: 10.1111/tpj.14321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/23/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Glycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was determined, and the structures of UGT89C1 in complexes with UDP-β-l-rhamnose and acceptor quercetin revealed the detailed interactions between the enzyme and its substrates. Structural and mutational analysis indicated that Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP-β-l-rhamnose. The mutant H357Q exhibited activity with both UDP-β-l-rhamnose and UDP-glucose. Structural comparison and mutagenesis confirmed that His21 is a key residue as the catalytic base and the only catalytic residue involved in catalysis independently as UGT89C1 lacks the other catalytic Asp that is highly conserved in other reported UGTs and forms a hydrogen bond with the catalytic base His. Ser124 is located in the corresponding position of the catalytic Asp in other UGTs and is not able to form a hydrogen bond with His21. Mutagenesis further showed that Ser124 may not be important in its catalysis, suggesting that His21 and acceptor may form an acceptor-His dyad and UGT89C1 utilizes a catalytic dyad in catalysis instead of catalytic triad. The information of structure and mutagenesis provides structural insights into rhamnosyltransferase substrate specificity and rhamnosylation mechanism.
Collapse
Affiliation(s)
- Guangning Zong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China
- College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Shuang Fei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China
- College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Xiao Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China
- College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Yanrong Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China
- College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Xiaoqiang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China
- College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
107
|
Molecular basis for branched steviol glucoside biosynthesis. Proc Natl Acad Sci U S A 2019; 116:13131-13136. [PMID: 31182573 DOI: 10.1073/pnas.1902104116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Steviol glucosides, such as stevioside and rebaudioside A, are natural products roughly 200-fold sweeter than sugar and are used as natural, noncaloric sweeteners. Biosynthesis of rebaudioside A, and other related stevia glucosides, involves formation of the steviol diterpenoid followed by a series of glycosylations catalyzed by uridine diphosphate (UDP)-dependent glucosyltransferases. UGT76G1 from Stevia rebaudiana catalyzes the formation of the branched-chain glucoside that defines the stevia molecule and is critical for its high-intensity sweetness. Here, we report the 3D structure of the UDP-glucosyltransferase UGT76G1, including a complex of the protein with UDP and rebaudioside A bound in the active site. The X-ray crystal structure and biochemical analysis of site-directed mutants identifies a catalytic histidine and how the acceptor site of UGT76G1 achieves regioselectivity for branched-glucoside synthesis. The active site accommodates a two-glucosyl side chain and provides a site for addition of a third sugar molecule to the C3' position of the first C13 sugar group of stevioside. This structure provides insight on the glycosylation of other naturally occurring sweeteners, such as the mogrosides from monk fruit, and a possible template for engineering of steviol biosynthesis.
Collapse
|
108
|
Rahimi S, Kim J, Mijakovic I, Jung KH, Choi G, Kim SC, Kim YJ. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol Adv 2019; 37:107394. [PMID: 31078628 DOI: 10.1016/j.biotechadv.2019.04.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023]
Abstract
Triterpenoid saponins are naturally occurring structurally diverse glycosides of triterpenes that are widely distributed among plant species. Great interest has been expressed by pharmaceutical and agriculture industries for the glycosylation of triterpenes. Such modifications alter their taste and bio-absorbability, affect their intra-/extracellular transport and storage in plants, and induce novel biological activities in the human body. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze glycosylation using UDP sugar donors. These enzymes belong to a multigene family and recognize diverse natural products, including triterpenes, as the acceptor molecules. For this review, we collected and analyzed all of the UGT sequences found in Arabidopsis thaliana as well as 31 other species of triterpene-producing plants. To identify potential UGTs with novel functions in triterpene glycosylation, we screened and classified those candidates based on similarity with UGTs from Panax ginseng, Glycine max, Medicago truncatula, Saponaria vaccaria, and Barbarea vulgaris that are known to function in glycosylate triterpenes. We highlight recent findings on UGT inducibility by methyl jasmonate, tissue-specific expression, and subcellular localization, while also describing their catalytic activity in terms of regioselectivity for potential key UGTs dedicated to triterpene glycosylation in plants. Discovering these new UGTs expands our capacity to manipulate the biological and physicochemical properties of such valuable molecules.
Collapse
Affiliation(s)
- Shadi Rahimi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden.
| | - Jaewook Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
109
|
Lachagari VBR, Gupta R, Lekkala SP, Mahadevan L, Kuriakose B, Chakravartty N, Mohan Katta AVSK, Santhosh S, Reddy AR, Thomas G. Whole Genome Sequencing and Comparative Genomic Analysis Reveal Allelic Variations Unique to a Purple Colored Rice Landrace ( Oryza sativa ssp. indica cv. Purpleputtu). FRONTIERS IN PLANT SCIENCE 2019; 10:513. [PMID: 31134103 PMCID: PMC6516047 DOI: 10.3389/fpls.2019.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 05/27/2023]
Abstract
Purpleputtu (Oryza sativa ssp. indica cv. Purpleputtu) is a unique rice landrace from southern India that exhibits predominantly purple color. This study reports the underlying genetic complexity of the trait, associated domestication and de-domestication processes during its coevolution with present day cultivars. Along-with genome level allelic variations in the entire gene repertoire associated with the purple, red coloration of grain and other plant parts. Comparative genomic analysis using 'a panel of 108 rice lines' revealed a total of 3,200,951 variants including 67,774 unique variations in Purpleputtu (PP) genome. Multiple sequence alignment uncovered a 14 bp deletion in Rc (Red colored, a transcription factor of bHLH class) locus of PP, a key regulatory gene of anthocyanin biosynthetic pathway. Interestingly, this deletion in Rc gene is a characteristic feature of the present-day white pericarped rice cultivars. Phylogenetic analysis of Rc locus revealed a distinct clade showing proximity to the progenitor species Oryza rufipogon and O. nivara. In addition, PP genome exhibits a well conserved 4.5 Mbp region on chromosome 5 that harbors several loci associated with domestication of rice. Further, PP showed 1,387 unique when SNPs compared to 3,023 lines of rice (SNP-Seek database). The results indicate that PP genome is rich in allelic diversity and can serve as an excellent resource for rice breeding for a variety of agronomically important traits such as disease resistance, enhanced nutritional values, stress tolerance, and protection from harmful UV-B rays.
Collapse
Affiliation(s)
- V. B. Reddy Lachagari
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Ravi Gupta
- Medgenome Labs Ltd., Bengaluru, India
- SciGenom Labs Pvt. Ltd., Cochin, India
| | - Sivarama Prasad Lekkala
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Lakshmi Mahadevan
- Medgenome Labs Ltd., Bengaluru, India
- SciGenom Labs Pvt. Ltd., Cochin, India
| | - Boney Kuriakose
- SciGenom Research Foundation, Cheruthuruthy, India
- AgriGenome Labs Pvt. Ltd., Kakkanad, India
| | - Navajeet Chakravartty
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - A. V. S. K. Mohan Katta
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Sam Santhosh
- SciGenom Research Foundation, Cheruthuruthy, India
| | - Arjula R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - George Thomas
- SciGenom Research Foundation, Cheruthuruthy, India
- AgriGenome Labs Pvt. Ltd., Kakkanad, India
| |
Collapse
|
110
|
Su XN, Zhang JJ, Liu JT, Zhang N, Ma LY, Lu FF, Chen ZJ, Shi Z, Si WJ, Liu C, Yang H. Biodegrading Two Pesticide Residues in Paddy Plants and the Environment by a Genetically Engineered Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4947-4957. [PMID: 30994343 DOI: 10.1021/acs.jafc.8b07251] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Accumulating pesticide (and herbicide) residues in soils have become a serious environmental problem. This study focused on identifying the removal of two widely used pesticides, isoproturon (IPU) and acetochlor (ACT), by a genetically developed paddy (or rice) plant overexpressing an uncharacterized glycosyltransferase (IRGT1). IRGT1 conferred plant resistance to isoproturon-acetochlor, which was manifested by attenuated cellular injury and alleviated toxicity of rice under isoproturon-acetochlor stress. A short-term study showed that IRGT1-transformed lines removed 33.3-48.3% of isoproturon and 39.8-53.5% of acetochlor from the growth medium, with only 59.5-72.1 and 58.9-70.4% of the isoproturon and acetochlor remaining in the plants compared with the levels in untransformed rice. This phenotype was confirmed by IRGT1-expression in yeast ( Pichia pastoris) which grew better and contained less isoproturon-acetochlor than the control cells. A long-term study showed that isoproturon-acetochlor concentrations at all developmental stages were significantly lower in the transformed rice, which contain only 59.3-69.2% (isoproturon) and 51.7-57.4% (acetochlor) of the levels in wild type. In contrast, UPLC-Q-TOF-MS/MS analysis revealed that more isoproturon-acetochlor metabolites were detected in the transformed rice. Sixteen metabolites of isoproturon and 19 metabolites of acetochlor were characterized in rice for Phase I reactions, and 9 isoproturon and 13 acetochlor conjugates were characterized for Phase II reactions in rice; of these, 7 isoproturon and 6 acetochlor metabolites and conjugates were reported in plants for the first time.
Collapse
Affiliation(s)
- Xiang Ning Su
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , Nanjing 210095 , China
| | - Jing Jing Zhang
- College of Plant Protection , Henan Agricultural University , Zhengzhou 450002 , China
| | - Jin Tong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , Nanjing 210095 , China
| | - Zhan Shi
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Wen Jing Si
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Chang Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences , Nanjing Agricultural University , Nanjing 210095 , China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
111
|
Baek YS, Goodrich LV, Brown PJ, James BT, Moose SP, Lambert KN, Riechers DE. Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum. FRONTIERS IN PLANT SCIENCE 2019; 10:192. [PMID: 30906302 PMCID: PMC6418823 DOI: 10.3389/fpls.2019.00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/05/2019] [Indexed: 05/04/2023]
Abstract
Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for investigating plant responses to safener treatment in cereal crops, and most transcriptome analyses in response to safener treatments have been conducted in dicot model species that are not protected by safener from herbicide injury. In this study, three different approaches were utilized in grain sorghum (Sorghum bicolor (L.) Moench) to investigate mechanisms involved in safener-regulated signaling pathways. An initial transcriptome analysis was performed to examine global gene expression in etiolated shoot tissues of hybrid grain sorghum following treatment with the sorghum safener, fluxofenim. Most upregulated transcripts encoded detoxification enzymes, including P450s, GSTs, and UDP-dependent glucosyltransferases (UGTs). Interestingly, several of these upregulated transcripts are similar to genes involved with the biosynthesis and recycling/catabolism of dhurrin, an important chemical defense compound, in these seedling tissues. Secondly, 761 diverse sorghum inbred lines were evaluated in a genome-wide association study (GWAS) to determine key molecular-genetic factors governing safener-mediated signaling mechanisms and/or herbicide detoxification. GWAS revealed a significant single nucleotide polymorphism (SNP) associated with safener-induced response on chromosome 9, located within a phi-class SbGST gene and about 15-kb from a different phi-class SbGST. Lastly, the expression of these two candidate SbGSTs was quantified in etiolated shoot tissues of sorghum inbred BTx623 in response to fluxofenim treatment. SbGSTF1 and SbGSTF2 transcripts increased within 12-hr after fluxofenim treatment but the level of safener-induced expression differed between the two genes. In addition to identifying specific GSTs potentially involved in the safener-mediated detoxification pathway, this research elucidates a new direction for studying both constitutive and inducible mechanisms for chemical defense in cereal crop seedlings.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Loren V. Goodrich
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Jerseyville Research Center, Monsanto Company, Jerseyville, IL, United States
| | - Patrick J. Brown
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Brandon T. James
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Stephen P. Moose
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kris N. Lambert
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
112
|
Wilson AE, Wu S, Tian L. PgUGT95B2 preferentially metabolizes flavones/flavonols and has evolved independently from flavone/flavonol UGTs identified in Arabidopsis thaliana. PHYTOCHEMISTRY 2019; 157:184-193. [PMID: 30419412 DOI: 10.1016/j.phytochem.2018.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
UDP-dependent glycosyltransferases (UGTs) convert aglycones into more stable, bioactive, and structurally diverse glycosylated derivatives. Pomegranate (Punica granatum L.) produces various glycosylated phenolic metabolites, e.g. hydrolyzable tannins (HTs), anthocyanins, and flavonoids, and constitutes an excellent system for investigating the corresponding UGT activities. Here we report the cloning and functional characterization of a pomegranate UGT, PgUGT95B2, which is highly active towards flavones and flavonols and can glycosylate at more than one position in the substrate molecule. Particularly, PgUGT95B2 has the strongest activity towards tricetin (flavone with a tri-hydroxylated B-ring) and can act at the 4'-O position of its B-ring. In addition, PgUGT95B2 was able to glycosylate flavones present in pomegranate metabolite extracts. Conversely, PgUGT95B2 did not produce a galloylglucose ester (precursor for HT biosynthesis) or anthocyanins in enzyme assays. Our phylogenetic analysis suggested an independent evolution of PgUGT95B2 and flavone/flavonol UGTs identified in the model plant Arabidopsis thaliana through convergent evolution or gene loss.
Collapse
Affiliation(s)
- Alexander E Wilson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Sheng Wu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
113
|
Zong G, Li J, Gao Y, Fei S, Liu X, Wang X, Shen Y. Overexpression, purification, biochemical and structural characterization of rhamnosyltransferase UGT89C1 from Arabidopsis thaliana. Protein Expr Purif 2018; 156:44-49. [PMID: 30597216 DOI: 10.1016/j.pep.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022]
Abstract
The uridine diphosphate glycosyltransferase (UGT) plays the central role in glycosylation of small molecules by transferring sugars to various acceptors including bioactive natural products in plants. UGT89C1 from Arabidopsis thaliana is a novel UGT, a rhamnosyltransferase, specifically recognizes UDP-l-rhamnose as donor. To provide an insight into the sugar specificity for UDP-l-rhamnose and interactions between UGT89C1 and its substrates, the UGT89C1 was expressed in Escherichia coli and purified toward biochemical and structural studies. Enzyme activity assay was performed, and the recombinant UGT89C1 recognized UDP-l-rhamnose and rhamnosylated kaempferol. Crystals of AtUGT89C1 were obtained, they diffracted to 2.7 Å resolution and belonged to space group I41. AtUGT89C1 was also co-crystallized with UDP. Interestingly, two crystal forms were obtained in the same crystallization condition, including the previous I41 crystal form, and the new crystal form that diffracted to 3.0 Å resolution and belonged to space group P21.
Collapse
Affiliation(s)
- Guangning Zong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, PR China; College of Pharmacy, Nankai University, Tianjin, 300353, PR China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, PR China; College of Pharmacy, Nankai University, Tianjin, 300353, PR China
| | - Yanrong Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, PR China; Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300353, PR China
| | - Shuang Fei
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, PR China; College of Pharmacy, Nankai University, Tianjin, 300353, PR China
| | - Xiao Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, PR China; Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300353, PR China
| | - Xiaoqiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, PR China; College of Pharmacy, Nankai University, Tianjin, 300353, PR China.
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, PR China; Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300353, PR China.
| |
Collapse
|
114
|
Wang H, Wang C, Fan W, Yang J, Appelhagen I, Wu Y, Zhang P. A novel glycosyltransferase catalyses the transfer of glucose to glucosylated anthocyanins in purple sweet potato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5444-5459. [PMID: 30124996 PMCID: PMC6255700 DOI: 10.1093/jxb/ery305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 05/23/2023]
Abstract
Glycosylation contributes to the diversity and stability of anthocyanins in plants. The process is catalysed by various glucosyltransferases using different anthocyanidin aglycones and glycosyl donors. In this study, we found that an anthocyanidin 3-O-glucoside-2″-O-glucosyltransferase (3GGT) from purple sweet potato (Ipomoea batatas) catalyses the conversion of anthocyanidin 3-O-glucoside into anthocyanidin 3-O-sophoroside, which is functionally different from the 3GGT ortholog of Arabidopsis. Phylogenetic analysis indicated regioselectivity of 3GGT using uridine-5'-diphosphate (UDP)-xylose or UDP-glucose as the glycosyl is divergent between Convolvulaceae and Arabidopsis. Homology-based protein modeling and site-directed mutagenesis of Ib3GGT and At3GGT suggested that the Thr-138 of Ib3GGT is a key amino acid residue for UDP-glucose recognition and that it plays a major role in sugar-donor selectivity. Wild-type and ugt79b1 mutants (defective in UDP carbohydrate-dependent glycosyltransferases, UGTs) of Arabidopsis plants overexpressing Ib3GGT produced the new component cyanidin 3-O-sophoroside. Moreover, Ib3GGT expression was associated with anthocyanin accumulation in different tissues during I. batatas plant development and was regulated by the transcription factor IbMYB1. Localization assays for Ib3GGT showed that glycosyl extension occurs in the cytosol and not in the endoplasmic reticulum. This study therefore reveals the function of Ib3GGT in glycosyl extension of anthocyanins and demonstrates that Thr-138 is the key amino acid residue for UDP-glucose recognition.
Collapse
Affiliation(s)
- Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
| | - Chengyuan Wang
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Weijuan Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ingo Appelhagen
- John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | - Yinliang Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
115
|
Functional and informatics analysis enables glycosyltransferase activity prediction. Nat Chem Biol 2018; 14:1109-1117. [DOI: 10.1038/s41589-018-0154-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/19/2018] [Indexed: 11/08/2022]
|
116
|
Singh S, Patel KA, Sonawane PD, Vishwakarma RK, Khan BM. Enhanced activity of Withania somnifera family-1 glycosyltransferase (UGT73A16) via mutagenesis. World J Microbiol Biotechnol 2018; 34:150. [PMID: 30255239 DOI: 10.1007/s11274-018-2534-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022]
Abstract
This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein-ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2-3 fold and 6-7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.
Collapse
Affiliation(s)
- Somesh Singh
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India. .,Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Krunal A Patel
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Prashant D Sonawane
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Rishi K Vishwakarma
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Bashir M Khan
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
| |
Collapse
|
117
|
Takahashi M, Izumi Y, Iwahashi F, Nakayama Y, Iwakoshi M, Nakao M, Yamato S, Fukusaki E, Bamba T. Highly Accurate Detection and Identification Methodology of Xenobiotic Metabolites Using Stable Isotope Labeling, Data Mining Techniques, and Time-Dependent Profiling Based on LC/HRMS/MS. Anal Chem 2018; 90:9068-9076. [DOI: 10.1021/acs.analchem.8b01388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Masatomo Takahashi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Izumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Fukumatsu Iwahashi
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| | - Yasumune Nakayama
- Division of Applied Microbial Technology, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mitsuhiko Iwakoshi
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| | - Motonao Nakao
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Yamato
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
118
|
Bjarnholt N, Neilson EHJ, Crocoll C, Jørgensen K, Motawia MS, Olsen CE, Dixon DP, Edwards R, Møller BL. Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1109-1125. [PMID: 29659075 DOI: 10.1111/tpj.13923] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/13/2018] [Accepted: 03/13/2018] [Indexed: 05/20/2023]
Abstract
Cyanogenic glucosides are nitrogen-containing specialized metabolites that provide chemical defense against herbivores and pathogens via the release of toxic hydrogen cyanide. It has been suggested that cyanogenic glucosides are also a store of nitrogen that can be remobilized for general metabolism via a previously unknown pathway. Here we reveal a recycling pathway for the cyanogenic glucoside dhurrin in sorghum (Sorghum bicolor) that avoids hydrogen cyanide formation. As demonstrated in vitro, the pathway proceeds via spontaneous formation of a dhurrin-derived glutathione conjugate, which undergoes reductive cleavage by glutathione transferases of the plant-specific lambda class (GSTLs) to produce p-hydroxyphenyl acetonitrile. This is further metabolized to p-hydroxyphenylacetic acid and free ammonia by nitrilases, and then glucosylated to form p-glucosyloxyphenylacetic acid. Two of the four GSTLs in sorghum exhibited high stereospecific catalytic activity towards the glutathione conjugate, and form a subclade in a phylogenetic tree of GSTLs in higher plants. The expression of the corresponding two GSTLs co-localized with expression of the genes encoding the p-hydroxyphenyl acetonitrile-metabolizing nitrilases at the cellular level. The elucidation of this pathway places GSTs as key players in a remarkable scheme for metabolic plasticity allowing plants to reverse the resource flow between general and specialized metabolism in actively growing tissue.
Collapse
Affiliation(s)
- Nanna Bjarnholt
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Elizabeth H J Neilson
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Mohammed Saddik Motawia
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Carl Erik Olsen
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - David P Dixon
- Center for Bioactive Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Robert Edwards
- Center for Bioactive Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| |
Collapse
|
119
|
Huang FC, Giri A, Daniilidis M, Sun G, Härtl K, Hoffmann T, Schwab W. Structural and Functional Analysis of UGT92G6 Suggests an Evolutionary Link Between Mono- and Disaccharide Glycoside-Forming Transferases. PLANT & CELL PHYSIOLOGY 2018; 59:857-870. [PMID: 29444327 DOI: 10.1093/pcp/pcy028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/30/2018] [Indexed: 05/05/2023]
Abstract
Glycosylation mediated by UDP-dependent glycosyltransferase (UGT) is one of the most common reactions for the biosynthesis of small molecule glycosides. As glycosides have various biological roles, we characterized UGT genes from grapevine (Vitis vinifera). In silico analysis of VvUGT genes that were highly expressed in leaves identified UGT92G6 which showed sequence similarity to both monosaccharide and disaccharide glucoside-forming transferases. The recombinant UGT92G6 glucosylated phenolics, among them caffeic acid, carvacrol, eugenol and raspberry ketone, and also accepted geranyl glucoside and citronellyl glucoside. Thus, UGT92G6 formed mono- and diglucosides in vitro from distinct compounds. The enzyme specificity constant Vmax/Km ratios indicated that UGT92G6 exhibited the highest specificity towards caffeic acid, producing almost equal amounts of the 3- and 4-O-glucoside. Transient overexpression of UGT92G6 in Nicotiana benthamiana leaves confirmed the production of caffeoyl glucoside; however, the level of geranyl diglucoside was not elevated upon overexpression of UGT92G6, even after co-expression of genes encoding geraniol synthase and geraniol UGT to provide sufficient precursor. Comparative sequence and 3-D structure analysis identified a sequence motif characteristic for monoglucoside-forming UGTs in UGT92G6, suggesting an evolutionary link between mono- and disaccharide glycoside UGTs. Thus, UGT92G6 functions as a mono- and diglucosyltransferase in vitro, but acts as a caffeoyl glucoside UGT in N. benthamiana.
Collapse
Affiliation(s)
- Fong-Chin Huang
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Ashok Giri
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411 008, India
| | - Melina Daniilidis
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Katja Härtl
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| |
Collapse
|
120
|
Hsu TM, Welner DH, Russ ZN, Cervantes B, Prathuri RL, Adams PD, Dueber JE. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat Chem Biol 2018; 14:256-261. [PMID: 29309053 PMCID: PMC5866135 DOI: 10.1038/nchembio.2552] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/14/2017] [Indexed: 11/09/2022]
Abstract
Indigo is an ancient dye uniquely capable of producing the signature tones in blue denim; however, the dyeing process requires chemical steps that are environmentally damaging. We describe a sustainable dyeing strategy that not only circumvents the use of toxic reagents for indigo chemical synthesis but also removes the need for a reducing agent for dye solubilization. This strategy utilizes a glucose moiety as a biochemical protecting group to stabilize the reactive indigo precursor indoxyl to form indican, preventing spontaneous oxidation to crystalline indigo during microbial fermentation. Application of a β-glucosidase removes the protecting group from indican, resulting in indigo crystal formation in the cotton fibers. We identified the gene coding for the glucosyltransferase PtUGT1 from the indigo plant Polygonum tinctorium and solved the structure of PtUGT1. Heterologous expression of PtUGT1 in Escherichia coli supported high indican conversion, and biosynthesized indican was used to dye cotton swatches and a garment.
Collapse
Affiliation(s)
- Tammy M Hsu
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Ditte H Welner
- Joint BioEnergy Institute, Emeryville, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California, USA
| | - Zachary N Russ
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Bernardo Cervantes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Ramya L Prathuri
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Paul D Adams
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
- Joint BioEnergy Institute, Emeryville, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California, USA
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
121
|
Sengoku T, Suzuki T, Dohmae N, Watanabe C, Honma T, Hikida Y, Yamaguchi Y, Takahashi H, Yokoyama S, Yanagisawa T. Structural basis of protein arginine rhamnosylation by glycosyltransferase EarP. Nat Chem Biol 2018; 14:368-374. [PMID: 29440735 DOI: 10.1038/s41589-018-0002-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
Abstract
Protein glycosylation regulates many cellular processes. Numerous glycosyltransferases with broad substrate specificities have been structurally characterized. A novel inverting glycosyltransferase, EarP, specifically transfers rhamnose from dTDP-β-L-rhamnose to Arg32 of bacterial translation elongation factor P (EF-P) to activate its function. Here we report a crystallographic study of Neisseria meningitidis EarP. The EarP structure contains two tandem Rossmann-fold domains, which classifies EarP in glycosyltransferase superfamily B. In contrast to other structurally characterized protein glycosyltransferases, EarP binds the entire β-sheet structure of EF-P domain I through numerous interactions that specifically recognize its conserved residues. Thus Arg32 is properly located at the active site, and causes structural change in a conserved dTDP-β-L-rhamnose-binding loop of EarP. Rhamnosylation by EarP should occur via an SN2 reaction, with Asp20 as the general base. The Arg32 binding and accompanying structural change of EarP may induce a change in the rhamnose-ring conformation suitable for the reaction.
Collapse
Affiliation(s)
- Toru Sengoku
- RIKEN Structural Biology Laboratory, Yokohama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Chiduru Watanabe
- Structure-Based Molecular Design Team, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Teruki Honma
- Structure-Based Molecular Design Team, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | | | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology, National Institute of Infectious Disease, Tokyo, Japan
| | | | | |
Collapse
|
122
|
Brazier‐Hicks M, Gershater M, Dixon D, Edwards R. Substrate specificity and safener inducibility of the plant UDP-glucose-dependent family 1 glycosyltransferase super-family. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:337-348. [PMID: 28640934 PMCID: PMC5785338 DOI: 10.1111/pbi.12775] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 05/05/2023]
Abstract
Plants contain large numbers of family 1 UDP-glucose-dependent glycosyltransferases (UGTs), including members that conjugate xenobiotics. Arabidopsis contains 107 UGT genes with 99 family members successfully expressed as glutathione transferase (GST)-fusion proteins in E. coli. A high-throughput catalytic screen was developed based on quantification of the fusion by measuring GST activity. UGT activity using UDP-glucose as donor was then determined using 11 synthetic acceptors bearing hydroxyl, amino and thiol groups that had been shown to undergo conjugation in plant extracts. In total, 44 UGTs, largely members of the D and E groups, were active towards xenobiotics, glucosylating phenol and thiol acceptors. In contrast, N-glucosyltransferase (NGT) activity was almost exclusively restricted to a single enzyme, UGT72B1. Using DNA microarrays, the induction of UGT transcripts following treatment with the herbicide safener fenclorim was compared in Arabidopsis and rice. D and L group members were the most safener-inducible UGTs in both species. The respective Arabidopsis enzymes showed low conjugating activity towards xenobiotics. Using Genevestigator, a small group of safened D and L UGTs were consistently induced in response to biotic and abiotic stress suggestive of protective activities beyond xenobiotic detoxification in both species. The induction of other detoxifying gene families following treatment with fenclorim, namely cytochromes P450 and glutathione transferases, further confirmed the selective enhancement of related subfamily members in the two species giving new insight into the safening response in cereals, where herbicide tolerance is enhanced compared with dicots, which are unresponsive to these treatments.
Collapse
Affiliation(s)
- Melissa Brazier‐Hicks
- School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK
| | | | | | - Robert Edwards
- School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
123
|
Zhou Y, Li W, You W, Di Z, Wang M, Zhou H, Yuan S, Wong NK, Xiao Y. Discovery of Arabidopsis UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes. Chem Commun (Camb) 2018; 54:7179-7182. [DOI: 10.1039/c7cc09951g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for rapidly mining biological parts from plants for synthetic biology utilizing natural product-derived chemical probes has been reported.
Collapse
Affiliation(s)
- Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Wenjing You
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Zhengao Di
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Mingli Wang
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Haiyan Zhou
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Switzerland
| | - Nai-Kei Wong
- State Key Discipline of Infection Diseases
- Shenzhen Third People's Hospital
- The Second Affiliated Hospital
- Shenzhen University
- Shenzhen 518112
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| |
Collapse
|
124
|
Inoue S, Moriya T, Morita R, Kuwata K, Thul ST, Sarangi BK, Minami Y. Characterization of UDP-glucosyltransferase from Indigofera tinctoria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:226-233. [PMID: 29156217 DOI: 10.1016/j.plaphy.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/11/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Indican is a secondary metabolite in Indigofera tinctoria; its synthesis from indoxyl and UDP-glucose is catalyzed by a UDP-glucosyltransferase (UGT). In this study, we partially purified UGT extracted from I. tinctoria leaves and analyzed the protein by peptide mass fingerprinting. We identified two fragments that were homologous to UGT after comparison with the transcriptomic data of I. tinctoria leaves. The fragments were named itUgt1 and itUgt2 and were amplified using rapid amplification of cDNA ends polymerase chain reaction to obtain full-length cDNAs. The resultant nucleotide sequences of itUgt1 and itUgt2 encoded peptides of 477 and 475 amino acids, respectively. The primary structure of itUGT1 was 89% identical to that of itUGT2 and contained an important plant secondary product glycosyltransferase (PSPG) box sequence and a UGT motif. The recombinant proteins expressed in Escherichia coli were found to possess high indican synthesis activity. Although the properties of the two proteins itUGT1 and itUGT2 were very similar, itUGT2 was more stable at high temperatures than itUGT1. Expression levels of itUGT mRNA and protein in plant tissues were examined by UGT assay, immunoblotting, and semi-quantitative reverse transcription polymerase chain reaction. So far, we presume that itUGT1, but not itUGT2, primarily catalyzes indican synthesis in I. tinctoria leaves.
Collapse
Affiliation(s)
- Shintaro Inoue
- Okayama University of Science, Department of Biochemistry, Faculty of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Toshiki Moriya
- Okayama University of Science, Department of Biochemistry, Faculty of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Rihito Morita
- Okayama University of Science, Department of Biochemistry, Faculty of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Sanjog T Thul
- CSIR-National Environmental Engineering Research Institute (NEERI), Department of Science & Technology, Govt. of India, Nehru Marg, Nagpur 440020, India
| | - Bijaya K Sarangi
- CSIR-National Environmental Engineering Research Institute (NEERI), Department of Science & Technology, Govt. of India, Nehru Marg, Nagpur 440020, India
| | - Yoshiko Minami
- Okayama University of Science, Department of Biochemistry, Faculty of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
125
|
Wetterhorn KM, Gabardi K, Michlmayr H, Malachova A, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I. Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from Oryza sativa. Biochemistry 2017; 56:6585-6596. [DOI: 10.1021/acs.biochem.7b01007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Karl M. Wetterhorn
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kaitlyn Gabardi
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Herbert Michlmayr
- Department
of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Alexandra Malachova
- Christian
Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical
Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse
20, 3430 Tulln, Austria
| | - Mark Busman
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Susan P. McCormick
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Franz Berthiller
- Christian
Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical
Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse
20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department
of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ivan Rayment
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
126
|
Wilson AE, Feng X, Ono NN, Holland D, Amir R, Tian L. Characterization of a UGT84 Family Glycosyltransferase Provides New Insights into Substrate Binding and Reactivity of Galloylglucose Ester-Forming UGTs. Biochemistry 2017; 56:6389-6400. [PMID: 29140084 DOI: 10.1021/acs.biochem.7b00946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galloylated plant specialized metabolites play important roles in plant-environment interactions and in the promotion of human and animal health. The galloylation reactions are mediated by the formation of galloylglucose esters from gallic acid and UDP-glucose, catalyzed by the plant UGT84 family glycosyltransferases. To explore and exploit the structural determinants of UGT84 activities, we performed homology modeling and substrate docking of PgUGT84A23, a galloylglucose ester-forming family 84 UGT, as well as sequence comparisons of PgUGT84A23 with other functionally characterized plant UGTs. By employing site-directed mutagenesis of candidate amino acids, enzyme assays with analogous substrates, and kinetic analysis, we elucidated key amino acid sites for PgUGT84A23 substrate binding and reactivity. The galloylglucose ester-forming UGT84s have not been shown to glycosylate genistein (an isoflavonoid) in vivo. Unexpectedly, amino acids highly conserved among UGT84s that affect specifically the binding of genistein but not gallic acid or other tested sugar acceptors were identified. This result suggests that genistein may resemble the substrate profile for the enzyme ancestor of the galloylglucose ester-forming UGTs and recruited during transition from a general to a more specialized defense function. Overall, a better understanding of the structure-function relationship of UGT84s will facilitate enzyme engineering for the production of pharmaceutically and industrially valuable glycosylated compounds.
Collapse
Affiliation(s)
- Alexander E Wilson
- Department of Plant Sciences, University of California , Davis, California 95616, United States
| | - Xiaoxue Feng
- Department of Plant Sciences, University of California , Davis, California 95616, United States
| | - Nadia N Ono
- Department of Plant Sciences, University of California , Davis, California 95616, United States
| | - Doron Holland
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization , Ramat Yishay 30095, Israel
| | - Rachel Amir
- Migal Galilee Technology Center , P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Li Tian
- Department of Plant Sciences, University of California , Davis, California 95616, United States.,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden , Shanghai 201602, China.,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences , Shanghai 201602, China
| |
Collapse
|
127
|
Keith BK, Burns EE, Bothner B, Carey CC, Mazurie AJ, Hilmer JK, Biyiklioglu S, Budak H, Dyer WE. Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L. PEST MANAGEMENT SCIENCE 2017; 73:2267-2281. [PMID: 28485049 DOI: 10.1002/ps.4605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Intensive use of herbicides has led to the evolution of two multiple herbicide-resistant (MHR) Avena fatua (wild oat) populations in Montana that are resistant to members of all selective herbicide families available for A. fatua control in US small grain crops. We used transcriptome and proteome surveys to compare constitutive changes in MHR and herbicide-susceptible (HS) plants associated with non-target site resistance. RESULTS Compared to HS plants, MHR plants contained constitutively elevated levels of differentially expressed genes (DEGs) with functions in xenobiotic catabolism, stress response, redox maintenance and transcriptional regulation that are similar to abiotic stress-tolerant phenotypes. Proteome comparisons identified similarly elevated proteins including biosynthetic and multifunctional enzymes in MHR plants. Of 25 DEGs validated by RT-qPCR assay, differential regulation of 21 co-segregated with flucarbazone-sodium herbicide resistance in F3 families, and a subset of 10 of these were induced or repressed in herbicide-treated HS plants. CONCLUSION Although the individual and collective contributions of these DEGs and proteins to MHR remain to be determined, our results support the idea that intensive herbicide use has selected for MHR populations with altered, constitutively regulated patterns of gene expression that are similar to those in abiotic stress-tolerant plants. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Barbara K Keith
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Erin E Burns
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry Research, Montana State University, Bozeman, MT, USA
| | - Charles C Carey
- Research Cyberinfrastructure, Montana State University, Bozeman, MT, USA
| | - Aurélien J Mazurie
- Research Cyberinfrastructure, Montana State University, Bozeman, MT, USA
| | - Jonathan K Hilmer
- Information Technology Center, Montana State University, Bozeman, MT, USA
| | - Sezgi Biyiklioglu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - William E Dyer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
128
|
Zhang JJ, Gao S, Xu JY, Lu YC, Lu FF, Ma LY, Su XN, Yang H. Degrading and Phytoextracting Atrazine Residues in Rice (Oryza sativa) and Growth Media Intensified by a Phase II Mechanism Modulator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11258-11268. [PMID: 28872855 DOI: 10.1021/acs.est.7b02346] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atrazine (ATZ) residue in farmland is one of the environmental contaminants seriously affecting crop production and food safety. Understanding the regulatory mechanism for ATZ metabolism and degradation in plants is important to help reduce ATZ potential toxicity to both plants and human health. Here, we report our newly developed engineered rice overexpressing a novel Phase II metabolic enzyme glycosyltransfearse1 (ARGT1) responsible for transformation of ATZ residues in rice. Our results showed that transformed lines, when exposed to environmentally realistic ATZ concentration (0.2-0.8 mg/L), displayed significantly high tolerance, with 8-27% biomass and 36-56% chlorophyll content higher, but 37-69% plasma membrane injury lower than untransformed lines. Such results were well confirmed by ARGT1 expression in Arabidopsis. ARGT1-transformed rice took up 1.6-2.7 fold ATZ from its growth medium compared to its wild type (WT) and accumulated ATZ 10%-43% less than that of WT. A long-term study also showed that ATZ in the grains of ARGT1-transformed rice was reduced by 30-40% compared to WT. The ATZ-degraded products were characterized by UPLC/Q-TOF-MS/MS. More ATZ metabolites and conjugates accumulated in ARGT1-transformed rice than in WT. Eight ATZ metabolites for Phase I reaction and 10 conjugates for Phase II reaction in rice were identified, with three ATZ-glycosylated conjugates that have never been reported before. These results indicate that ARGT1 expression can facilitate uptake of ATZ from environment and metabolism in rice plants.
Collapse
Affiliation(s)
- Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University , Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University , Nanjing 210095, China
| | - Shuai Gao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University , Nanjing 210095, China
- College of Life Sciences, Fudan University , Shanghai, 200433 China
| | - Jiang Yan Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Yi Chen Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University , Nanjing 210095, China
- College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211800, China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Xiang Ning Su
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University , Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University , Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University , Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University , Nanjing 210095, China
| |
Collapse
|
129
|
Docampo M, Olubu A, Wang X, Pasinetti G, Dixon RA. Glucuronidated Flavonoids in Neurological Protection: Structural Analysis and Approaches for Chemical and Biological Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7607-7623. [PMID: 28789524 PMCID: PMC5954986 DOI: 10.1021/acs.jafc.7b02633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Both plant and mammalian cells express glucuronosyltransferases that catalyze glucuronidation of polyphenols such as flavonoids and other small molecules. Oral administration of select polyphenolic compounds leads to the accumulation of the corresponding glucuronidated metabolites at μM and sub-μM concentrations in the brain, associated with amelioration of a range of neurological symptoms. Determining the mechanisms whereby botanical extracts impact cognitive wellbeing and psychological resiliency will require investigation of the modes of action of the brain-targeted metabolites. Unfortunately, many of these compounds are not commercially available. This article describes the latest approaches for the analysis and synthesis of glucuronidated flavonoids. Synthetic schemes include both standard organic synthesis, semisynthesis, enzymatic synthesis and use of synthetic biology utilizing heterologous enzymes in microbial platform organisms.
Collapse
Affiliation(s)
- Maite Docampo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Adiji Olubu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Xiaoqiang Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Giulio Pasinetti
- Department of Psychiatry, The Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
130
|
Ati J, Lafite P, Daniellou R. Enzymatic synthesis of glycosides: from natural O- and N-glycosides to rare C- and S-glycosides. Beilstein J Org Chem 2017; 13:1857-1865. [PMID: 29062404 PMCID: PMC5629408 DOI: 10.3762/bjoc.13.180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/17/2017] [Indexed: 01/02/2023] Open
Abstract
Carbohydrate related enzymes, like glycosyltransferases and glycoside hydrolases, are nowadays more easily accessible and are thought to represent powerful and greener alternatives to conventional chemical glycosylation procedures. The knowledge of their corresponding mechanisms has already allowed the development of efficient biocatalysed syntheses of complex O-glycosides. These enzymes can also now be applied to the formation of rare or unnatural glycosidic linkages.
Collapse
Affiliation(s)
- Jihen Ati
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Pierre Lafite
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Richard Daniellou
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| |
Collapse
|
131
|
Zhang L, Rylott EL, Bruce NC, Strand SE. Phytodetoxification of TNT by transplastomic tobacco (Nicotiana tabacum) expressing a bacterial nitroreductase. PLANT MOLECULAR BIOLOGY 2017; 95:99-109. [PMID: 28762129 DOI: 10.1007/s11103-017-0639-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE Expression of the bacterial nitroreductase gene, nfsI, in tobacco plastids conferred the ability to detoxify TNT. The toxic pollutant 2,4,6-trinitrotoluene (TNT) is recalcitrant to degradation in the environment. Phytoremediation is a potentially low cost remediation technique that could be applied to soil contaminated with TNT; however, progress is hindered by the phytotoxicity of this compound. Previous studies have demonstrated that plants transformed with the bacterial nitroreductase gene, nfsI have increased ability to tolerate and detoxify TNT. It has been proposed that plants engineered to express nfsI could be used to remediate TNT on military ranges, but this could require steps to mitigate transgene flow to wild populations. To address this, we have developed nfsI transplastomic tobacco (Nicotiana tabacum L.) to reduce pollen-borne transgene flow. Here we have shown that when grown on solid or liquid media, the transplastomic tobacco expressing nfsI were significantly more tolerant to TNT, produced increased biomass and removed more TNT from the media than untransformed plants. Additionally, transplastomic plants expressing nfsI regenerated with high efficiency when grown on medium containing TNT, suggesting that nfsI and TNT could together be used to provide a selectable screen for plastid transformation.
Collapse
Affiliation(s)
- Long Zhang
- Department of Civil and Environmental Engineering, University of Washington, Box 355014, Seattle, WA, 98195-5014, USA
| | | | - Neil C Bruce
- CNAP, Department of Biology, University of York, York, YO10 5DD, UK
| | - Stuart E Strand
- Department of Civil and Environmental Engineering, University of Washington, Box 355014, Seattle, WA, 98195-5014, USA.
| |
Collapse
|
132
|
Dai X, Zhuang J, Wu Y, Wang P, Zhao G, Liu Y, Jiang X, Gao L, Xia T. Identification of a Flavonoid Glucosyltransferase Involved in 7-OH Site Glycosylation in Tea plants (Camellia sinensis). Sci Rep 2017; 7:5926. [PMID: 28725058 PMCID: PMC5517534 DOI: 10.1038/s41598-017-06453-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
Flavonol glycosides, which are often converted from aglycones in a process catalyzed by UDP-glycosyltransferases (UGTs), play an important role for the health of plants and animals. In the present study, a gene encoding a flavonoid 7-O-glycosyltransferase (CsUGT75L12) was identified in tea plants. Recombinant CsUGT75L12 protein displayed glycosyltransferase activity on the 7-OH position of multiple phenolic compounds. In relative comparison to wild-type seeds, the levels of flavonol-glucosides increased in Arabidopsis seeds overexpressing CsUGT75L12. In order to determine the key amino acid residues responsible for the catalytic activity of the protein, a series of site-directed mutagenesis and enzymatic assays were performed based on the 3D structural modeling and docking analyses. These results suggested that residue Q54 is a double binding site that functions as both a sugar receptor and donor. Residues H56 and T151, corresponding to the basic active residues H20 and D119 of VvGT1, were not irreplaceable for CsUGT75L12. In addition, residues Y182, S223, P238, T239, and F240 were demonstrated to be responsible for a ‘reversed’ sugar receptor binding model. The results of single and triple substitutions confirmed that the function of residues P238, T239, and F240 may substitute or compensate with each other for the flavonoid 7-O-glycosyltransferase activity.
Collapse
Affiliation(s)
- Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.,School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yingling Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Guifu Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
133
|
Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana. Sci Rep 2017; 7:46629. [PMID: 28425481 PMCID: PMC5397973 DOI: 10.1038/srep46629] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/22/2017] [Indexed: 11/08/2022] Open
Abstract
Salicylic acid (SA) is a signaling molecule utilized by plants in response to various stresses. Through conjugation with small organic molecules such as glucose, an inactive form of SA is generated which can be transported into and stored in plant vacuoles. In the model organism Arabidopsis thaliana, SA glucose conjugates are formed by two homologous enzymes (UGT74F1 and UGT74F2) that transfer glucose from UDP-glucose to SA. Despite being 77% identical and with conserved active site residues, these enzymes catalyze the formation of different products: UGT74F1 forms salicylic acid glucoside (SAG), while UGT74F2 forms primarily salicylic acid glucose ester (SGE). The position of the glucose on the aglycone determines how SA is stored, further metabolized, and contributes to a defense response. We determined the crystal structures of the UGT74F2 wild-type and T15S mutant enzymes, in different substrate/product complexes. On the basis of the crystal structures and the effect on enzyme activity of mutations in the SA binding site, we propose the catalytic mechanism of SGE and SAG formation and that SA binds to the active site in two conformations, with each enzyme selecting a certain binding mode of SA. Additionally, we show that two threonines are key determinants of product specificity.
Collapse
|
134
|
Xie K, Chen R, Chen D, Li J, Wang R, Yang L, Dai J. EnzymaticN-Glycosylation of Diverse Arylamine Aglycones by a Promiscuous Glycosyltransferase fromCarthamus tinctorius. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Jianhua Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Ruishan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Lin Yang
- College of Life and Environmental Sciences; Minzu University of China; 27 Zhong Guan Cun Southern Street Beijing 100081 People's Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| |
Collapse
|
135
|
Chen HY, Li X. Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:195-203. [PMID: 27411741 DOI: 10.1111/tpj.13271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
UDP-glycosyltransferase (UGT) plays a major role in the diversity and reactivity of plant specialized metabolites by catalyzing the transfer of the sugar moiety from activated UDP-sugars to various acceptors. Arabidopsis UGT89A2 was previously identified from a genome-wide association study as a key factor that affects the differential accumulation of dihydroxybenzoic acid (DHBA) glycosides in distinct Arabidopsis natural accessions, including Col-0 and C24. The in vitro enzyme assays indicate that these distinct metabolic phenotypes reflect the divergence of UGT89A2 enzyme properties in the Col-0 and C24 accessions. UGT89A2 from Col-0 is highly selective toward UDP-xylose as the sugar donor, and the isoform from C24 can utilize both UDP-glucose and UDP-xylose but with a higher affinity to the glucose donor. The sequences of the two isozymes only differ at six amino acid residues. Examination of these amino acid residues in more natural accessions revealed a strong correlation between the amino acid polymorphism at position 153 and the DHBA glycoside accumulation pattern. Site-directed mutagenesis that swapped residue 153 between UGT89A2 from Col-0 and C24 reversed the UDP-sugar preferences, indicating that residue 153 plays an important role in determining sugar donor specificity of UGT89A2. This study provides insight into the key amino acid changes that confer sugar donor selectivity on UGTs, and demonstrates the usefulness of natural variation in understanding the structure-function relationship of enzymes involved in specialized metabolism.
Collapse
Affiliation(s)
- Han-Yi Chen
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xu Li
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
136
|
Hsu YH, Tagami T, Matsunaga K, Okuyama M, Suzuki T, Noda N, Suzuki M, Shimura H. Functional characterization of UDP-rhamnose-dependent rhamnosyltransferase involved in anthocyanin modification, a key enzyme determining blue coloration in Lobelia erinus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:325-337. [PMID: 27696560 DOI: 10.1111/tpj.13387] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 05/19/2023]
Abstract
Because structural modifications of flavonoids are closely related to their properties, such as stability, solubility, flavor and coloration, characterizing the enzymes that catalyze the modification reactions can be useful for engineering agriculturally beneficial traits of flavonoids. In this work, we examined the enzymes involved in the modification pathway of highly glycosylated and acylated anthocyanins that accumulate in Lobelia erinus. Cultivar Aqua Blue (AB) of L. erinus is blue-flowered and accumulates delphinidin 3-O-p-coumaroylrutinoside-5-O-malonylglucoside-3'5'-O-dihydroxycinnamoylglucoside (lobelinins) in its petals. Cultivar Aqua Lavender (AL) is mauve-flowered, and LC-MS analyses showed that AL accumulated delphinidin 3-O-glucoside (Dp3G), which was not further modified toward lobelinins. A crude protein assay showed that modification processes of lobelinin were carried out in a specific order, and there was no difference between AB and AL in modification reactions after rhamnosylation of Dp3G, indicating that the lack of highly modified anthocyanins in AL resulted from a single mutation of rhamnosyltransferase catalyzing the rhamnosylation of Dp3G. We cloned rhamnosyltransferase genes (RTs) from AB and confirmed their UDP-rhamnose-dependent rhamnosyltransferase activities on Dp3G using recombinant proteins. In contrast, the RT gene in AL had a 5-bp nucleotide deletion, resulting in a truncated polypeptide without the plant secondary product glycosyltransferase box. In a complementation test, AL that was transformed with the RT gene from AB produced blue flowers. These results suggest that rhamnosylation is an essential process for lobelinin synthesis, and thus the expression of RT has a great impact on the flower color and is necessary for the blue color of Lobelia flowers.
Collapse
Affiliation(s)
- Yang-Hsin Hsu
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takayoshi Tagami
- College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Kana Matsunaga
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Masayuki Okuyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takashi Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Naonobu Noda
- NARO Institute of Floricultural Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8519, Japan
| | - Masahiko Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hanako Shimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
137
|
Yin Q, Shen G, Chang Z, Tang Y, Gao H, Pang Y. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:597-612. [PMID: 28204516 PMCID: PMC5444469 DOI: 10.1093/jxb/erw420] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flavonols are one of the largest groups of flavonoids that confer benefits for the health of plants and animals. Flavonol glycosides are the predominant flavonoids present in the model legume Lotus japonicus. The molecular mechanisms underlying the biosynthesis of flavonol glycosides as yet remain unknown in L. japonicus. In the present study, we identified a total of 188 UDP-glycosyltransferases (UGTs) in L. japonicus by genome-wide searching. Notably, 12 UGTs from the UGT72 family were distributed widely among L. japonicus chromosomes, expressed in all tissues, and showed different docking scores in an in silico bioinformatics docking analysis. Further enzymatic assays showed that five recombinant UGTs (UGT72AD1, UGT72AF1, UGT72AH1, UGT72V3, and UGT72Z2) exhibit activity toward flavonol, flavone, and isoflavone aglycones. In particular, UGT72AD1, UGT72AH1, and UGT72Z2 are flavonol-specific UGTs with different kinetic properties. In addition, the overexpression of UGT72AD1 and UGT72Z2 led to increased accumulation of flavonol rhamnosides in L. japonicus and Arabidopsis thaliana. Moreover, the increase of kaempferol 3-O-rhamnoside-7-O-rhamnoside in transgenic A. thaliana inhibited root growth as compared with the wild-type control. These results highlight the significance of the UGT72 family in flavonol glycosylation and the role of flavonol rhamnosides in plant growth.
Collapse
Affiliation(s)
- Qinggang Yin
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoan Shen
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhong Tang
- Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | - Hongwen Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhen Pang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
138
|
Olsson K, Carlsen S, Semmler A, Simón E, Mikkelsen MD, Møller BL. Microbial production of next-generation stevia sweeteners. Microb Cell Fact 2016; 15:207. [PMID: 27923373 PMCID: PMC5142139 DOI: 10.1186/s12934-016-0609-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. RESULTS In the metabolic glycosylation grid leading to production of Reb D and Reb M, UGT76G1 was found to catalyze eight different reactions all involving 1,3-glucosylation of steviol C 13- and C 19-bound glucoses. Four of these reactions lead to Reb D and Reb M while the other four result in formation of side-products unwanted for production. In this work, side-product formation was reduced by targeted optimization of UGT76G1 towards 1,3 glucosylation of steviol glucosides that are already 1,2-diglucosylated. The optimization of UGT76G1 was based on homology modelling, which enabled identification of key target amino acids present in the substrate-binding pocket. These residues were then subjected to site-saturation mutagenesis and a mutant library containing a total of 1748 UGT76G1 variants was screened for increased accumulation of Reb D or M, as well as for decreased accumulation of side-products. This screen was performed in a Saccharomyces cerevisiae strain expressing all enzymes in the rebaudioside biosynthesis pathway except for UGT76G1. CONCLUSIONS Screening of the mutant library identified mutations with positive impact on the accumulation of Reb D and Reb M. The effect of the introduced mutations on other reactions in the metabolic grid was characterized. This screen made it possible to identify variants, such as UGT76G1Thr146Gly and UGT76G1His155Leu, which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired Reb D or Reb M sweeteners. This improvement in a key enzyme of the Stevia sweetener biosynthesis pathway represents a significant step towards the commercial production of next-generation stevia sweeteners.
Collapse
Affiliation(s)
- Kim Olsson
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Simon Carlsen
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | - Angelika Semmler
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | - Ernesto Simón
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen Denmark
| |
Collapse
|
139
|
Wetterhorn KM, Newmister SA, Caniza RK, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I. Crystal Structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase Involved in the Detoxification of Deoxynivalenol. Biochemistry 2016; 55:6175-6186. [DOI: 10.1021/acs.biochem.6b00709] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karl M. Wetterhorn
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Sean A. Newmister
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Rachell K. Caniza
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mark Busman
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Susan P. McCormick
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Franz Berthiller
- Christian
Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical
Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse
20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department
of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ivan Rayment
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
140
|
Zhang T, Liang J, Wang P, Xu Y, Wang Y, Wei X, Fan M. Purification and characterization of a novel phloretin-2'-O-glycosyltransferase favoring phloridzin biosynthesis. Sci Rep 2016; 6:35274. [PMID: 27731384 PMCID: PMC5059724 DOI: 10.1038/srep35274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023] Open
Abstract
Phloretin-2'-O-glycosyltransferase (P2'GT) catalyzes the last glycosylation step in the biosynthesis of phloridzin that contributes to the flavor, color and health benefits of apples and processed apple products. In this work, a novel P2'GT of Malus x domestica (MdP2'GT) with a specific activity of 46.82 μkat/Kg protein toward phloretin and uridine diphosphate glucose (UDPG) at an optimal temperature of 30 °C and pH 8.0 was purified from the engineered Pichia pastoris broth to homogeneity by anion exchange chromatography, His-Trap affinity chromatography and gel filtration. The purified MdP2'GT was low N-glycosylated and secreted as a stable dimer with a molecular mass of 70.7 kDa in its native form. Importantly, MdP2'GT also exhibited activity towards quercetin and adenosine diphosphate glucose (ADPG), kaempferol and UDPG, quercetin and UDP-galactose, isoliquiritigenin and UDPG, and luteolin and UDPG, producing only one isoquercitrin, astragalin, hyperoside, isoliquiritin, or cynaroside, respectively. This broad spectrum of activities make MdP2'GT a promising biocatalyst for the industrial preparation of the corresponding polyphenol glycosides, preferably for their subsequent isolation and purification. Besides, MdP2'GT displayed the lowest Km and the highest kcat/Km for phloretin and UDPG compared to all previously reported P2'GTs, making MdP2'GT favor phloridzin synthesis the most.
Collapse
Affiliation(s)
- Tingjing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Jianqiang Liang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panxue Wang
- Department of Food Science, University of Massachusetts, Amherst, MA01003, USA
| | - Ying Xu
- College of Life Science and Engineering, Shaanxi University of Science &Technology, Xi'an, Shaanxi, 710021, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| |
Collapse
|
141
|
Guo DD, Liu F, Tu YH, He BX, Gao Y, Guo ML. Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis. PLoS One 2016; 11:e0158159. [PMID: 27391785 PMCID: PMC4938162 DOI: 10.1371/journal.pone.0158159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant in China. Flavonoids are the dominant active medical compounds. UDP-glycosyltransferase plays an essential role in the biosynthesis and storage of flavonoids in safflower. In this study, 45 UGT unigenes were screened from our transcriptomic database of safflower. Among them, 27 UGT unigenes were predicted to own a complete open reading frame with various pI and Mw. The phylogenetic tree showed that CtUGT3 and CtUGT16 were classified under the UGT71 subfamily involved in metabolite process, whereas CtUGT25 has high identities with PoUGT both catalyzing the glycosylation of flavonoids and belonging to the UGT90 subfamily. cDNA microarray exhibited that the three UGT genes displayed temporal difference in two chemotype safflower lines. To functionally characterize UGT in safflower, CtUGT3, CtUGT16 and CtUGT25 were cloned and analyzed. Subcellular localization suggested that the three UGTs might be located in the cell cytoplasm and chloroplast. The expression pattern showed that the three UGTs were all suppressed in two lines responsive to methyl jasmonate induction. The co-expression relation of expression pattern and metabolite accumulation demonstrated that CtUGT3 and CtUGT25 were positively related to kaempferol-3-O-β-D-glucoside and CtUGT16 was positively related to quercetin-3-O-β-D-glucoside in yellow line, whereas CtUGT3 and CtUGT25 were positively related to quercetin-3-O-β-D-glucoside in white line. This study indicates that the three CtUGTs play a significant and multiple role in flavonoids biosynthesis with presenting different functional characterization in two safflower lines.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Fei Liu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Yan-Hua Tu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Bei-Xuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Yue Gao
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
- * E-mail: (MLG); (YG)
| | - Mei-Li Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
- * E-mail: (MLG); (YG)
| |
Collapse
|
142
|
Identification and Characterization of DcUSAGT1, a UDP-Glucose: Sinapic Acid Glucosyltransferase from Purple Carrot Taproots. PLoS One 2016; 11:e0154938. [PMID: 27171142 PMCID: PMC4865115 DOI: 10.1371/journal.pone.0154938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022] Open
Abstract
Purple carrots accumulate abundant cyanidin-based anthocyanins in taproots. UDP-glucose: sinapic acid glucosyltransferase (USAGT) can transfer the glucose moiety to the carboxyl group of sinapic acid thereby forming the ester bond between the carboxyl-C and the C1 of glucose (1-O-sinapoylglucose). 1-O-sinapoylglucose can serve as an acyl donor in acylation of anthocyanins and generate cyanidin 3-xylosyl (sinapoylglucosyl) galactoside in purple carrots. This final product helps stabilize the accumulation of anthocyanins. In this study, a gene named DcUSAGT1 encoding USAGT was cloned from ‘Deep purple’ carrot taproots. Enzymatic activity was determined using high performance liquid chromatography (HPLC). The optimal temperature and pH value were 30°C and 7.0, respectively. Kinetic analysis suggested a Km (sinapic acid) of 0.59 mM. Expression profiles of DcUSAGT1 showed high expression levels in the taproots of all the three purple carrot cultivars but low expression levels in those of non-purple carrot cultivars. The USAGT activity of different carrots in vitro indicated that crude enzyme extracted from the purple carrot taproots rather than non-purple carrot taproots exhibited USAGT activity. These results indicated that DcUSAGT1 may influence anthocyanin biosynthesis of purple carrot taproots.
Collapse
|
143
|
Tiwari P, Sangwan RS, Sangwan NS. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnol Adv 2016; 34:714-739. [PMID: 27131396 DOI: 10.1016/j.biotechadv.2016.03.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/06/2016] [Accepted: 03/19/2016] [Indexed: 02/04/2023]
Abstract
The multigene family of enzymes known as glycosyltransferases or popularly known as GTs catalyze the addition of carbohydrate moiety to a variety of synthetic as well as natural compounds. Glycosylation of plant secondary metabolites is an emerging area of research in drug designing and development. The unsurpassing complexity and diversity among natural products arising due to glycosylation type of alterations including glycodiversification and glycorandomization are emerging as the promising approaches in pharmacological studies. While, some GTs with broad spectrum of substrate specificity are promising candidates for glycoengineering while others with stringent specificity pose limitations in accepting molecules and performing catalysis. With the rising trends in diseases and the efficacy/potential of natural products in their treatment, glycosylation of plant secondary metabolites constitutes a key mechanism in biogeneration of their glycoconjugates possessing medicinal properties. The present review highlights the role of glycosyltransferases in plant secondary metabolism with an overview of their identification strategies, catalytic mechanism and structural studies on plant GTs. Furthermore, the article discusses the biotechnological and biomedical application of GTs ranging from detoxification of xenobiotics and hormone homeostasis to the synthesis of glycoconjugates and crop engineering. The future directions in glycosyltransferase research should focus on the synthesis of bioactive glycoconjugates via metabolic engineering and manipulation of enzyme's active site leading to improved/desirable catalytic properties. The multiple advantages of glycosylation in plant secondary metabolomics highlight the increasing significance of the GTs, and in near future, the enzyme superfamily may serve as promising path for progress in expanding drug targets for pharmacophore discovery and development.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India; Center of Innovative and Applied Bioprocessing (CIAB), A National Institute under Department of Biotechnology, Government of India, C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali 160071, Punjab, India
| | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
144
|
Taylor VL, Hoage JFJ, Thrane SW, Huszczynski SM, Jelsbak L, Lam JS. A Bacteriophage-Acquired O-Antigen Polymerase (Wzyβ) from P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyα. Front Microbiol 2016; 7:393. [PMID: 27065964 PMCID: PMC4815439 DOI: 10.3389/fmicb.2016.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a serotype converting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3′ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphatase activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272, and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the P. aeruginosa host to avoid self-inhibition during serotype conversion.
Collapse
Affiliation(s)
- Véronique L Taylor
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Jesse F J Hoage
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | | | - Steven M Huszczynski
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark Kongens Lyngby, Denmark
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
145
|
Devaiah SP, Owens DK, Sibhatu MB, Sarkar TR, Strong CL, Mallampalli VKPS, Asiago J, Cooke J, Kiser S, Lin Z, Wamucho A, Hayford D, Williams BE, Loftis P, Berhow M, Pike LM, McIntosh CA. Identification, Recombinant Expression, and Biochemical Analysis of Putative Secondary Product Glucosyltransferases from Citrus paradisi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1957-1969. [PMID: 26888166 DOI: 10.1021/acs.jafc.5b05430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Flavonoid and limonoid glycosides influence taste properties as well as marketability of Citrus fruit and products, particularly grapefruit. In this work, nine grapefruit putative natural product glucosyltransferases (PGTs) were resolved by either using degenerate primers against the semiconserved PSPG box motif, SMART-RACE RT-PCR, and primer walking to full-length coding regions; screening a directionally cloned young grapefruit leaf EST library; designing primers against sequences from other Citrus species; or identifying PGTs from Citrus contigs in the harvEST database. The PGT proteins associated with the identified full-length coding regions were recombinantly expressed in Escherichia coli and/or Pichia pastoris and then tested for activity with a suite of substrates including flavonoid, simple phenolic, coumarin, and/or limonoid compounds. A number of these compounds were eliminated from the predicted and/or potential substrate pool for the identified PGTs. Enzyme activity was detected in some instances with quercetin and catechol glucosyltransferase activities having been identified.
Collapse
Affiliation(s)
- Shivakumar P Devaiah
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Daniel K Owens
- Natural Products Utilization Research Unit, ARS, U.S. Department of Agriculture , P.O. Box 1848, University, Mississippi 38677, United States
| | - Mebrahtu B Sibhatu
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Tapasree Roy Sarkar
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Christy L Strong
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Venkata K P S Mallampalli
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Josephat Asiago
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Jennifer Cooke
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Starla Kiser
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Zhangfan Lin
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Anye Wamucho
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Deborah Hayford
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Bruce E Williams
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Peri Loftis
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Mark Berhow
- Functional Foods Research Unit, ARS, U.S. Department of Agriculture , Peoria, Illinois 61604, United States
| | - Lee M Pike
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
| | - Cecilia A McIntosh
- Department of Biological Sciences, East Tennessee State University , P.O. Box 70703, Johnson City, Tennessee 37614, United States
- School of Graduate Studies, East Tennessee State University , P.O. Box 70720, Johnson City, Tennessee 37614, United States
| |
Collapse
|
146
|
Marroun S, Montaut S, Marquès S, Lafite P, Coadou G, Rollin P, Jousset G, Schuler M, Tatibouët A, Oulyadi H, Daniellou R. UGT74B1 from Arabidopsis thaliana as a versatile biocatalyst for the synthesis of desulfoglycosinolates. Org Biomol Chem 2016; 14:6252-61. [DOI: 10.1039/c6ob01003b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A glucosyltransferase is able to catalyze the formation of the thioglycosidic bond and lead to desulfoglycosinolates.
Collapse
Affiliation(s)
- Sami Marroun
- Normandie Univ
- COBRA
- UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS
- IRCOF
- 76821 Mont Saint Aignan Cedex
| | - Sabine Montaut
- Department of Chemistry and Biochemistry
- Biomolecular Sciences Programme
- Laurentian University
- Sudbury
- Canada
| | | | | | - Gaël Coadou
- Normandie Univ
- COBRA
- UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS
- IRCOF
- 76821 Mont Saint Aignan Cedex
| | | | | | | | | | - Hassan Oulyadi
- Normandie Univ
- COBRA
- UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS
- IRCOF
- 76821 Mont Saint Aignan Cedex
| | | |
Collapse
|
147
|
Yang Y, Wang HM, Tong YF, Liu MZ, Cheng KD, Wu S, Wang W. Systems metabolic engineering of Escherichia coli to enhance the production of flavonoid glucuronides. RSC Adv 2016. [DOI: 10.1039/c6ra03304k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Through modulating UDPGA biosynthetic pathway and introducting SbUGT, an engineered strain was constructed to enhance the production of flavonoid glucuronides.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Hui-Min Wang
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Yuan-Feng Tong
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Min-Zhi Liu
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Ke-Di Cheng
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| |
Collapse
|
148
|
Lu YC, Zhang JJ, Luo F, Huang MT, Yang H. RNA-sequencing Oryza sativa transcriptome in response to herbicide isoprotruon and characterization of genes involved in IPU detoxification. RSC Adv 2016. [DOI: 10.1039/c5ra25986j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The comprehensive analysis of transcriptome and UPLC-MS/MS in rice was performed to explore the regulatory mechanism of mRNA level and chemical metabolism in response to herbicide isoproturon.
Collapse
Affiliation(s)
- Yi Chen Lu
- Jiangsu Key Laboratory of Pesticide Science
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Fang Luo
- Jiangsu Key Laboratory of Pesticide Science
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Meng Tian Huang
- Jiangsu Key Laboratory of Pesticide Science
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|
149
|
Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:735. [PMID: 27303427 PMCID: PMC4880792 DOI: 10.3389/fpls.2016.00735] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/12/2016] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity.
Collapse
|
150
|
Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol Genet Genomics 2015; 291:323-36. [PMID: 26334613 DOI: 10.1007/s00438-015-1111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Studies in diploid parental species of polyploid plants are important to understand their contributions to the formation of plant and species evolution. Coffea eugenioides is a diploid species that is considered to be an ancestor of allopolyploid Coffea arabica together with Coffea canephora. Despite its importance in the evolutionary history of the main economic species of coffee, no study has focused on C. eugenioides molecular genetics. RNA-seq creates the possibility to generate reference transcriptomes and identify coding genes and potential candidates related to important agronomic traits. Therefore, the main objectives were to obtain a global overview of transcriptionally active genes in this species using next-generation sequencing and to analyze specific genes that were highly expressed in leaves and fruits with potential exploratory characteristics for breeding and understanding the evolutionary biology of coffee. A de novo assembly generated 36,935 contigs that were annotated using eight databases. We observed a total of ~5000 differentially expressed genes between leaves and fruits. Several genes exclusively expressed in fruits did not exhibit similarities with sequences in any database. We selected ten differentially expressed unigenes in leaves and fruits to evaluate transcriptional profiles using qPCR. Our study provides the first gene catalog for C. eugenioides and enhances the knowledge concerning the mechanisms involved in the C. arabica homeologous. Furthermore, this work will open new avenues for studies into specific genes and pathways in this species, especially related to fruit, and our data have potential value in assisted breeding applications.
Collapse
|