101
|
Nota F, Cambiagno DA, Ribone P, Alvarez ME. Expression and function of AtMBD4L, the single gene encoding the nuclear DNA glycosylase MBD4L in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:122-9. [PMID: 25900572 DOI: 10.1016/j.plantsci.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 05/21/2023]
Abstract
DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress.
Collapse
Affiliation(s)
- Florencia Nota
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Damián A Cambiagno
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Pamela Ribone
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María E Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
102
|
Lin YC, Liu YC, Nakamura Y. The Choline/Ethanolamine Kinase Family in Arabidopsis: Essential Role of CEK4 in Phospholipid Biosynthesis and Embryo Development. THE PLANT CELL 2015; 27:1497-511. [PMID: 25966764 PMCID: PMC4456650 DOI: 10.1105/tpc.15.00207] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 05/19/2023]
Abstract
Phospholipids are highly conserved and essential components of biological membranes. The major phospholipids, phosphatidylethanolamine and phosphatidylcholine (PtdCho), are synthesized by the transfer of the phosphoethanolamine or phosphocholine polar head group, respectively, to the diacylglycerol backbone. The metabolism of the polar head group characterizing each phospholipid class is poorly understood; thus, the biosynthetic pathway of major phospholipids remains elusive in Arabidopsis thaliana. The choline/ethanolamine kinase (CEK) family catalyzes the initial steps of phospholipid biosynthesis. Here, we analyzed the function of the four CEK family members present in Arabidopsis. Knocking out of CEK4 resulted in defective embryo development, which was complemented by transformation of genomic CEK4. Reciprocal genetic crossing suggested that CEK4 knockout causes embryonic lethality, and microscopy analysis of the aborted embryos revealed developmental arrest after the heart stage, with no defect being found in the pollen. CEK4 is preferentially expressed in the vasculature, organ boundaries, and mature embryos, and CEK4 was mainly localized to the plasma membrane. Overexpression of CEK4 in wild-type Arabidopsis increased the levels of PtdCho in seedlings and mature siliques and of major membrane lipids in seedlings and triacylglycerol in mature siliques. CEK4 may be the plasma membrane-localized isoform of the CEK family involved in the rate-limiting step of PtdCho biosynthesis and appears to be required for embryo development in Arabidopsis.
Collapse
Affiliation(s)
- Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
103
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
104
|
Pyott DE, Molnar A. Going mobile: non-cell-autonomous small RNAs shape the genetic landscape of plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:306-18. [PMID: 25756494 DOI: 10.1111/pbi.12353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 05/09/2023]
Abstract
RNA silencing is a form of genetic regulation, which is conserved across eukaryotes and has wide ranging biological functions. Recently, there has been a growing appreciation for the importance of mobility in RNA silencing pathways, particularly in plants. Moreover, in addition to the importance for mobile RNA silencing in an evolutionary context, the potential for utilizing mobile short silencing RNAs in biotechnological applications is becoming apparent. This review aims to set current knowledge of this topic in a historical context and provides examples to illustrate the importance of mobile RNA silencing in both natural and artificially engineered systems in plants.
Collapse
Affiliation(s)
- Douglas E Pyott
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
105
|
De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics 2015; 16:254. [PMID: 25887758 PMCID: PMC4451943 DOI: 10.1186/s12864-015-1439-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background St. John’s wort (Hypericum perforatum L.) is a medicinal plant that produces important metabolites with antidepressant and anticancer activities. Recently gained biological information has shown that this species is also an attractive model system for the study of a naturally occurring form of asexual reproduction called apomixis, which allows cloning plants through seeds. In aposporic gametogenesis, one or multiple somatic cells belonging to the ovule nucellus change their fate by dividing mitotically and developing functionally unreduced embryo sacs by mimicking sexual gametogenesis. Although the introduction of apomixis into agronomically important crops could have revolutionary implications for plant breeding, the genetic control of this mechanism of seed formation is still not well understood for most of the model species investigated so far. We used Roche 454 technology to sequence the entire H. perforatum flower transcriptome of whole flower buds and single flower verticils collected from obligately sexual and unrelated highly or facultatively apomictic genotypes, which enabled us to identify RNAs that are likely exclusive to flower organs (i.e., sepals, petals, stamens and carpels) or reproductive strategies (i.e., sexual vs. apomictic). Results Here we sequenced and annotated the flower transcriptome of H. perforatum with particular reference to reproductive organs and processes. In particular, in our study we characterized approximately 37,000 transcripts found expressed in male and/or female reproductive organs, including tissues or cells of sexual and apomictic flower buds. Ontological annotation was applied to identify major biological processes and molecular functions involved in flower development and plant reproduction. Starting from this dataset, we were able to recover and annotate a large number of transcripts related to meiosis, gametophyte/gamete formation, and embryogenesis, as well as genes that are exclusively or preferentially expressed in sexual or apomictic libraries. Real-Time RT-qPCR assays on pistils and anthers collected at different developmental stages from accessions showing alternative modes of reproduction were used to identify potential genes that are related to plant reproduction sensu lato in H. perforatum. Conclusions Our approach of sequencing flowers from two fully obligate sexual genotypes and two unrelated highly apomictic genotypes, in addition to different flower parts dissected from a facultatively apomictic accession, enabled us to analyze the complexity of the flower transcriptome according to its main reproductive organs as well as for alternative reproductive behaviors. Both annotation and expression data provided original results supporting the hypothesis that apomixis in H. perforatum relies upon spatial or temporal mis-expression of genes acting during female sexual reproduction. The present analyses aim to pave the way toward a better understanding of the molecular basis of flower development and plant reproduction, by identifying genes or RNAs that may differentiate or regulate the sexual and apomictic reproductive pathways in H. perforatum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1439-y) contains supplementary material, which is available to authorized users.
Collapse
|
106
|
Williams BP, Pignatta D, Henikoff S, Gehring M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 2015; 11:e1005142. [PMID: 25826366 PMCID: PMC4380477 DOI: 10.1371/journal.pgen.1005142] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. Organisms must adapt to dynamic and variable internal and external environments. Maintaining homeostasis in core biological processes is crucial to minimizing the deleterious consequences of environmental fluctuations. Genomes are also dynamic and variable, and must be robust against stresses, including the invasion of genomic parasites, such as transposable elements (TEs). In this work we present the discovery of an epigenetic rheostat in plants that maintains homeostasis in levels of DNA methylation. DNA methylation typically silences transcription of TEs. Because there is positive feedback between existing and de novo DNA methylation, it is critical that methylation is not allowed to spread and potentially silence transcription of genes. To maintain homeostasis, methylation promotes the production of a demethylase enzyme that removes methylation from gene-proximal regions. The demethylation of genes is therefore always maintained in concert with the levels of methylation suppressing TEs. In addition, this DNA demethylating enzyme also represses its own production in a negative feedback loop. Together, these feedback mechanisms shed new light on how the conflict between gene expression and genome defense is maintained in homeostasis. The presence of this rheostat in multiple species suggests it is an evolutionary conserved adaptation.
Collapse
Affiliation(s)
- Ben P. Williams
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniela Pignatta
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
107
|
Orozco-Arroyo G, Paolo D, Ezquer I, Colombo L. Networks controlling seed size in Arabidopsis. PLANT REPRODUCTION 2015; 28:17-32. [PMID: 25656951 DOI: 10.1007/s00497-015-0255-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/16/2015] [Indexed: 05/07/2023]
Abstract
Key message: Overview of seed size control. Human and livestock nutrition is largely based on calories derived from seeds, in particular cereals and legumes. Unveiling the control of seed size is therefore of remarkable importance in the frame of developing new strategies for crop improvement. The networks controlling the development of the seed coat, the endosperm and the embryo, as well as their interplay, have been described in Arabidopsis thaliana. In this review, we provide a comprehensive description of the current knowledge regarding the molecular mechanisms controlling seed size in Arabidopsis.
Collapse
Affiliation(s)
- Gregorio Orozco-Arroyo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milan, Italy
| | | | | | | |
Collapse
|
108
|
Schoft VK, Chumak N, Bindics J, Slusarz L, Twell D, Köhler C, Tamaru H. SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content. PLANT REPRODUCTION 2015; 28:61-72. [PMID: 25676347 DOI: 10.1007/s00497-015-0258-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
Key message: Purification of pollen nuclei. Germ cell epigenetics is a critical topic in plants and animals. The male gametophyte (pollen) of flowering plants is an attractive model to study genetic and epigenetic reprogramming during sexual reproduction, being composed of only two sperm cells contained within, its companion, vegetative cell. Here, we describe a simple and efficient method to purify SYBR Green-stained sperm and vegetative cell nuclei of Arabidopsis thaliana pollen using fluorescence-activated cell sorting to analyze chromatin and RNA profiles. The method obviates generating transgenic lines expressing cell-type-specific fluorescence reporters and facilitates functional genomic analysis of various mutant lines and accessions. We evaluate the purity and quality of the sorted pollen nuclei and analyze the technique's molecular basis. Our results show that both DNA and RNA contents contribute to SYBR Green-activated nucleus sorting and RNA content differences impact on the separation of sperm and vegetative cell nuclei. We demonstrate the power of the approach by sorting wild-type and polyploid mutant sperm and vegetative cell nuclei from mitotic and meiotic mutants, which is not feasible using cell-type-specific transgenic reporters. Our approach should be applicable to pollen nuclei of crop plants and possibly to cell/nucleus types and cell cycle phases of different species containing substantially different amounts of DNA and/or RNA.
Collapse
Affiliation(s)
- Vera K Schoft
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030, Vienna, Austria,
| | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Arabidopsis thaliana serves as a very good model organism to investigate the control of transposable elements (TEs) by genetic and genomic approaches. As TE movements are potentially deleterious to the hosts, hosts silence TEs by epigenetic mechanisms, such as DNA methylation. DNA methylation is controlled by DNA methyltransferases and other regulators, including histone modifiers and chromatin remodelers. RNAi machinery directs DNA methylation to euchromatic TEs, which is under developmental control. In addition to the epigenetic controls, some TEs are controlled by environmental factors. TEs often affect expression of nearby genes, providing evolutionary sources for epigenetic, developmental, and environmental gene controls, which could even be beneficial for the host.
Collapse
|
110
|
FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proc Natl Acad Sci U S A 2015; 112:E901-10. [PMID: 25675495 DOI: 10.1073/pnas.1417623112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Floral induction is a crucial developmental step in higher plants. Florigen, a mobile floral activator that is synthesized in the leaf and transported to the shoot apex, was recently identified as a protein encoded by FLOWERING LOCUS T (FT) and its orthologs; the rice florigen is Heading date 3a (Hd3a) protein. The 14-3-3 proteins mediate the interaction of Hd3a with the transcription factor OsFD1 to form a ternary structure called the florigen activation complex on the promoter of OsMADS15, a rice APETALA1 ortholog. However, crucial information, including the spatiotemporal overlap among FT-like proteins and the components of florigen activation complex and downstream genes, remains unclear. Here, we confirm that Hd3a coexists, in the same regions of the rice shoot apex, with the other components of the florigen activation complex and its transcriptional targets. Unexpectedly, however, RNA-sequencing analysis of shoot apex from wild-type and RNA-interference plants depleted of florigen activity revealed that 4,379 transposable elements (TEs; 58% of all classifiable rice TEs) were expressed collectively in the vegetative and reproductive shoot apex. Furthermore, in the reproductive shoot apex, 214 TEs were silenced by florigen. Our results suggest a link between floral induction and regulation of TEs.
Collapse
|
111
|
Li Y, Córdoba-Cañero D, Qian W, Zhu X, Tang K, Zhang H, Ariza RR, Roldán-Arjona T, Zhu JK. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected]. PLoS Genet 2015; 11:e1004905. [PMID: 25569774 PMCID: PMC4287435 DOI: 10.1371/journal.pgen.1004905] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/-zdp-/- mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis.
Collapse
Affiliation(s)
- Yan Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing, China
| | - Dolores Córdoba-Cañero
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing, China
| | - Xiaohong Zhu
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Kai Tang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rafael R. Ariza
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
- * E-mail: (TRA); (JKZ)
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (TRA); (JKZ)
| |
Collapse
|
112
|
Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:917-22. [PMID: 25561534 DOI: 10.1073/pnas.1413053112] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, RNA-directed DNA methylation (RdDM), a mechanism where epigenetic modifiers are guided to target loci by small RNAs, plays a major role in silencing of transposable elements (TEs) to maintain genome integrity. So far, two RdDM pathways have been identified: RNA Polymerase IV (PolIV)-RdDM and RNA-dependent RNA Polymerase 6 (RDR6)-RdDM. PolIV-RdDM involves a self-reinforcing feedback mechanism that maintains TE silencing, but cannot explain how epigenetic silencing is first initiated. A function of RDR6-RdDM is to reestablish epigenetic silencing of active TEs, but it is unknown if this pathway can induce DNA methylation at naïve, non-TE loci. To investigate de novo establishment of RdDM, we have used virus-induced gene silencing (VIGS) of an active flowering Wageningen epiallele. Using genetic mutants we show that unlike PolIV-RdDM, but like RDR6-RdDM, establishment of VIGS-mediated RdDM requires PolV and DRM2 but not Dicer like-3 and other PolIV pathway components. DNA methylation in VIGS is likely initiated by a process guided by virus-derived small (s) RNAs that are 21/22-nt in length and reinforced or maintained by 24-nt sRNAs. We demonstrate that VIGS-RdDM as a tool for gene silencing can be enhanced by use of mutant plants with increased production of 24-nt sRNAs to reinforce the level of RdDM.
Collapse
|
113
|
Kim JM, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:114. [PMID: 25784920 PMCID: PMC4345800 DOI: 10.3389/fpls.2015.00114] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 05/11/2023]
Abstract
Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Taku Sasaki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Motoaki Seki, Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan e-mail:
| |
Collapse
|
114
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
115
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
116
|
The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes. Proc Natl Acad Sci U S A 2014; 111:16166-71. [PMID: 25344531 DOI: 10.1073/pnas.1418564111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction.
Collapse
|
117
|
Schatlowski N, Wolff P, Santos-González J, Schoft V, Siretskiy A, Scott R, Tamaru H, Köhler C. Hypomethylated pollen bypasses the interploidy hybridization barrier in Arabidopsis. THE PLANT CELL 2014; 26:3556-68. [PMID: 25217506 PMCID: PMC4213165 DOI: 10.1105/tpc.114.130120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/12/2014] [Accepted: 08/22/2014] [Indexed: 05/22/2023]
Abstract
Plants of different ploidy levels are separated by a strong postzygotic hybridization barrier that is established in the endosperm. Deregulated parent-of-origin specific genes cause the response to interploidy hybridizations, revealing an epigenetic basis of this phenomenon. In this study, we present evidence that paternal hypomethylation can bypass the interploidy hybridization barrier by alleviating the requirement for the Polycomb Repressive Complex 2 (PRC2) in the endosperm. PRC2 epigenetically regulates gene expression by applying methylation marks on histone H3. Bypass of the barrier is mediated by suppressed expression of imprinted genes. We show that the hypomethylated pollen genome causes de novo CHG methylation directed to FIS-PRC2 target genes, suggesting that different epigenetic modifications can functionally substitute for each other. Our work presents a method for the generation of viable triploids, providing an impressive example of the potential of epigenome manipulations for plant breeding.
Collapse
Affiliation(s)
- Nicole Schatlowski
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| | - Philip Wolff
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zurich, Switzerland
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| | - Vera Schoft
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Alexey Siretskiy
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| | - Rod Scott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 4QR, United Kingdom
| | - Hisashi Tamaru
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| |
Collapse
|
118
|
Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 2014; 15:613-24. [DOI: 10.1038/nrg3685] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
119
|
Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, Gehring M. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife 2014; 3:e03198. [PMID: 24994762 PMCID: PMC4115658 DOI: 10.7554/elife.03198] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Imprinted gene expression occurs during seed development in plants and is associated with differential DNA methylation of parental alleles, particularly at proximal transposable elements (TEs). Imprinting variability could contribute to observed parent-of-origin effects on seed development. We investigated intraspecific variation in imprinting, coupled with analysis of DNA methylation and small RNAs, among three Arabidopsis strains with diverse seed phenotypes. The majority of imprinted genes were parentally biased in the same manner among all strains. However, we identified several examples of allele-specific imprinting correlated with intraspecific epigenetic variation at a TE. We successfully predicted imprinting in additional strains based on methylation variability. We conclude that there is standing variation in imprinting even in recently diverged genotypes due to intraspecific epiallelic variation. Our data demonstrate that epiallelic variation and genomic imprinting intersect to produce novel gene expression patterns in seeds. DOI:http://dx.doi.org/10.7554/eLife.03198.001 When animals or plants reproduce sexually, the DNA in a sperm or pollen is combined with that in an egg cell to generate an offspring that inherits two copies of each gene, one from each parent. For a very small number of genes, the copy from one of the parents is consistently turned off. This process—called imprinting—means that the same gene can have different effects depending on if it is inherited from the mother or the father. In plants, imprinting is vital for the production of seeds and typically occurs in the endosperm: the tissue within a seed that provides nourishment to the plant embryo. One way genes can be imprinted is by adding small chemical marks—called methyl groups—on to the DNA that makes up the gene or nearby sequences. These marks can either switch on, or switch off, the expression of the gene. DNA methylation also immobilises stretches of DNA called transposable elements, stopping them from moving from one location to another in the genome. These stretches of DNA are identified and targeted for methylation by small molecules of RNA that match their DNA sequences. Genes that are imprinted in the endosperm of the model plant Arabidopsis are often associated with transposable elements, which can be methylated differently in the naturally occurring varieties, or strains, of Arabidopsis. However it is unclear how many genes are differently imprinted between these different strains. Pignatta et al. looked for differences in gene imprinting, DNA methylation and small RNA production in the seeds, embryos and endosperm tissue from three strains of Arabidopsis. They also examined seeds from crosses between these three strains. While most genes had the same imprinting pattern in all strains and crosses examined, 12 genes were imprinted differently depending on whether they were inherited from the male or female of a given strain. For example, for some genes the copy inherited from the male parent is always turned off, unless it is inherited via the pollen of one specific Arabidopsis strain. Half of this variation could be explained by a transposable element near to each gene that was methylated differently among the strains. By comparing the differentially methylated regions in the genomes of 140 Arabidopsis strains, Pignatta et al. found that differences in methylation may affect 11% of imprinted genes—and went on to confirm variable imprinting in some Arabidopsis strains based on the presence or absence of DNA methylation. Future work is needed to understand how variation in gene imprinting might affect the traits of hybrid seeds, and how it might affect the evolution of new traits in hybrid plants. DOI:http://dx.doi.org/10.7554/eLife.03198.002
Collapse
Affiliation(s)
- Daniela Pignatta
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Robert M Erdmann
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Elias Scheer
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Colette L Picard
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, United States
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
120
|
Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nat Commun 2014; 5:4062. [PMID: 24898766 PMCID: PMC4097119 DOI: 10.1038/ncomms5062] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/07/2014] [Indexed: 11/25/2022] Open
Abstract
DNA methylation is a reversible epigenetic mark regulating genome stability and function in many eukaryotes. In Arabidopsis, active DNA demethylation depends on the function of the ROS1 subfamily of genes that encode 5-methylcytosine DNA glycosylases/lyases. ROS1-mediated DNA demethylation plays a critical role in the regulation of transgenes, transposable elements and some endogenous genes, but there have been no reports of clear developmental phenotypes in ros1 mutant plants. Here we report that, in the ros1 mutant, the promoter region of the peptide ligand gene EPF2 is hypermethylated, which greatly reduces EPF2 expression and thereby leads to a phenotype of overproduction of stomatal lineage cells. EPF2 gene expression in ros1 is restored and the defective epidermal cell patterning is suppressed by mutations in genes in the RNA-directed DNA methylation pathway. Our results show that active DNA demethylation combats the activity of RNA-directed DNA methylation to influence the initiation of stomatal lineage cells.
Collapse
|
121
|
Borges F, Martienssen RA. Establishing epigenetic variation during genome reprogramming. RNA Biol 2014; 10:490-4. [PMID: 23774895 DOI: 10.4161/rna.24085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transgenerational reprogramming of DNA methylation is important for transposon silencing and epigenetic inheritance. A stochastic regulation of methylation states in the germline may lead to epigenetic variation and the formation of epialleles that contribute to phenotypic variation. In Arabidopsis thaliana inbred lines, the frequency of single base variation of DNA methylation is much higher than genetic mutation and, interestingly, variable epialleles are pre-methylated in the male germline. However, these same alleles are targeted for demethylation in the pollen vegetative nucleus, by a mechanism that seems to contribute to the accumulation of small RNAs that reinforce transcriptional gene silencing in the gametes. These observations are paving the way toward understanding the extent of epigenetic reprogramming in higher plants, and the mechanisms regulating the stability of acquired epigenetic states across generations.
Collapse
Affiliation(s)
- Filipe Borges
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | |
Collapse
|
122
|
Bai F, Settles AM. Imprinting in plants as a mechanism to generate seed phenotypic diversity. FRONTIERS IN PLANT SCIENCE 2014; 5:780. [PMID: 25674092 PMCID: PMC4307191 DOI: 10.3389/fpls.2014.00780] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/16/2014] [Indexed: 05/21/2023]
Abstract
Normal plant development requires epigenetic regulation to enforce changes in developmental fate. Genomic imprinting is a type of epigenetic regulation in which identical alleles of genes are expressed in a parent-of-origin dependent manner. Deep sequencing of transcriptomes has identified hundreds of imprinted genes with scarce evidence for the developmental importance of individual imprinted loci. Imprinting is regulated through global DNA demethylation in the central cell prior to fertilization and directed repression of individual loci with the Polycomb Repressive Complex 2 (PRC2). There is significant evidence for transposable elements and repeat sequences near genes acting as cis-elements to determine imprinting status of a gene, implying that imprinted gene expression patterns may evolve randomly and at high frequency. Detailed genetic analysis of a few imprinted loci suggests an imprinted pattern of gene expression is often dispensable for seed development. Few genes show conserved imprinted expression within or between plant species. These data are not fully explained by current models for the evolution of imprinting in plant seeds. We suggest that imprinting may have evolved to provide a mechanism for rapid neofunctionalization of genes during seed development to increase phenotypic diversity of seeds.
Collapse
Affiliation(s)
| | - A. M. Settles
- *Correspondence: A. M. Settles, Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, P. O. Box 110690, Gainesville, FL 32611-0690, USA e-mail:
| |
Collapse
|
123
|
Kapazoglou A, Drosou V, Argiriou A, Tsaftaris AS. The study of a barley epigenetic regulator, HvDME, in seed development and under drought. BMC PLANT BIOLOGY 2013; 13:172. [PMID: 24175960 PMCID: PMC4228467 DOI: 10.1186/1471-2229-13-172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/17/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved by specific DNA glycosylases, including AtDME (DEMETER) and AtROS1 (REPRESSOR OF SILENCING1), which have been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal crop, during seed development and in response to conditions of drought. RESULTS An HvDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HvDME gene contains the 5' and 3' Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3' downstream region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally, remarkable induction of HvDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar. Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were detected in two different cultivars. CONCLUSION A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in barley. Expression analysis during seed development and under dehydration conditions suggested a role for HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA methylation patterns within the gene in two different cultivars suggested epigenetic regulation of HvDME. The study of a barley DME gene will contribute to our understanding of epigenetic mechanisms operating during seed development and stress response in agronomically important cereal crops.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Institute of Applied Biosciences (INAB), CERTH, Thermi-Thessaloniki GR-57001, Greece
| | - Vicky Drosou
- Institute of Applied Biosciences (INAB), CERTH, Thermi-Thessaloniki GR-57001, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences (INAB), CERTH, Thermi-Thessaloniki GR-57001, Greece
| | - Athanasios S Tsaftaris
- Institute of Applied Biosciences (INAB), CERTH, Thermi-Thessaloniki GR-57001, Greece
- Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| |
Collapse
|
124
|
Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol 2013; 24:100-7. [PMID: 24012194 DOI: 10.1016/j.tcb.2013.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that inheritance of phenotypes in plants is more likely to involve epigenetics than in mammals. There are two reasons for this difference. First, there is a RNA-based system in plants involving small (s)RNAs that influences de novo establishment and maintenance of DNA methylation at many sites in plant genomes. These regions of methylated DNA are epigenetic marks with the potential to affect gene expression that are transmitted between dividing cells of the same generation. Second, unlike mammals, DNA methyltransferases in plants are active during gametogenesis and embryogenesis so that patterns of DNA methylation can persist from parent to progeny and do not need to be reset. We discuss how the effects of stress and genome interactions in hybrid plants are two systems that illustrate how RNA-based mechanisms can influence heritable phenotypes in plants.
Collapse
|
125
|
Abstract
Imprinted gene expression--the biased expression of alleles dependent on their parent of origin--is an important type of epigenetic gene regulation in flowering plants and mammals. In plants, genes are imprinted primarily in the endosperm, the triploid placenta-like tissue that surrounds and nourishes the embryo during its development. Differential allelic expression is correlated with active DNA demethylation by DNA glycosylases and repressive targeting by the Polycomb group proteins. Imprinted gene expression is one consequence of a large-scale remodeling to the epigenome, primarily directed at transposable elements, that occurs in gametes and seeds. This remodeling could be important for maintaining the epigenome in the embryo as well as for establishing gene imprinting.
Collapse
Affiliation(s)
- Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;
| |
Collapse
|
126
|
Vu TM, Nakamura M, Calarco JP, Susaki D, Lim PQ, Kinoshita T, Higashiyama T, Martienssen RA, Berger F. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 2013; 140:2953-60. [PMID: 23760956 DOI: 10.1242/dev.092981] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals and plants, parental genomic imprinting restricts the expression of specific loci to one parental allele. Imprinting in mammals relies on sex-dependent de novo deposition of DNA methylation during gametogenesis but a comparable mechanism was not shown in plants. Rather, paternal silencing by the maintenance DNA methyltransferase 1 (MET1) and maternal activation by the DNA demethylase DEMETER (DME) cause maternal expression. However, genome-wide studies suggested other DNA methylation-dependent imprinting mechanisms. Here, we show that de novo RNA-directed DNA methylation (RdDM) regulates imprinting at specific loci expressed in endosperm. RdDM in somatic tissues is required to silence expression of the paternal allele. By contrast, the repression of RdDM in female gametes participates with or without DME requirement in the activation of the maternal allele. The contrasted activity of DNA methylation between male and female gametes appears sufficient to prime imprinted maternal expression. After fertilization, MET1 maintains differential expression between the parental alleles. RdDM depends on small interfering RNAs (siRNAs). The involvement of RdDM in imprinting supports the idea that sources of siRNAs such as transposons and de novo DNA methylation were recruited in a convergent manner in plants and mammals in the evolutionary process leading to selection of imprinted loci.
Collapse
Affiliation(s)
- Thiet Minh Vu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Progress in studying epigenetic reprogramming in plants has been impeded by the difficulty in obtaining tissue for analysis. Now, using a combination of fluorescent reporters and translational fusions, a new study sheds some light on this process.
Collapse
Affiliation(s)
- Joseph P Calarco
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | | |
Collapse
|
128
|
Abstract
Seeds are complex structures that unite diploid maternal tissues with filial tissues that may be haploid (gametophyte), diploid (embryo), or triploid (endosperm). Maternal tissues are predicted to favor smaller seeds than are favored by filial tissues, and filial genes of maternal origin are predicted to favor smaller seeds than are favored by filial genes of paternal origin. Consistent with these predictions, seed size is determined by an interplay between growth of maternal integuments, which limits seed size, and of filial endosperm, which promotes larger seeds. Within endosperm, genes of paternal origin favor delayed cellularization of endosperm and larger seeds, whereas genes of maternal origin favor early cellularization and smaller seeds. The ratio of maternal and paternal gene products in endosperm contributes to the failure of crosses between different ploidy levels of the same species and crosses between species. Maternally expressed small-interfering RNAs (siRNAs) are predicted to associate with growth-enhancing genes.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;
| |
Collapse
|
129
|
Borges F, Calarco JP, Martienssen RA. Reprogramming the epigenome in Arabidopsis pollen. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 77:1-5. [PMID: 23619015 DOI: 10.1101/sqb.2013.77.014969] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epigenetic reprogramming in Arabidopsis thaliana occurs in developing pollen. The male gametophyte is derived from haploid microspores via two postmeiotic cell divisions to give rise to the gametes (sperm cells, SC) and the vegetative cell (VC). The purification of individual cell types during pollen development coupled with genome-wide DNA methylation analysis and small RNA sequencing has revealed a dynamic regulation of the epigenome during gametogenesis. Interestingly, imprinted loci and previously identified variable epialleles are hypermethylated in the germline; however, their stability after fertilization appears to require targeted demethylation in the neighboring vegetative cell nucleus, possibly by releasing mobile small RNAs that reinforce transcriptional gene silencing and DNA methylation in the gametes. These results have led to a new model for the establishment and transgenerational maintenance of epigenetic marks in flowering plants.
Collapse
Affiliation(s)
- F Borges
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
130
|
Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. Proc Natl Acad Sci U S A 2013; 110:7934-9. [PMID: 23613580 DOI: 10.1073/pnas.1306164110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arabidopsis thaliana endosperm, a transient tissue that nourishes the embryo, exhibits extensive localized DNA demethylation on maternally inherited chromosomes. Demethylation mediates parent-of-origin-specific (imprinted) gene expression but is apparently unnecessary for the extensive accumulation of maternally biased small RNA (sRNA) molecules detected in seeds. Endosperm DNA in the distantly related monocots rice and maize is likewise locally hypomethylated, but whether this hypomethylation is generally parent-of-origin specific is unknown. Imprinted expression of sRNA also remains uninvestigated in monocot seeds. Here, we report high-coverage sequencing of the Kitaake rice cultivar that enabled us to show that localized hypomethylation in rice endosperm occurs solely on the maternal genome, preferring regions of high DNA accessibility. Maternally expressed imprinted genes are enriched for hypomethylation at putative promoter regions and transcriptional termini and paternally expressed genes at promoters and gene bodies, mirroring our recent results in A. thaliana. However, unlike in A. thaliana, rice endosperm sRNA populations are dominated by specific strong sRNA-producing loci, and imprinted 24-nt sRNAs are expressed from both parental genomes and correlate with hypomethylation. Overlaps between imprinted sRNA loci and imprinted genes expressed from opposite alleles suggest that sRNAs may regulate genomic imprinting. Whereas sRNAs in seedling tissues primarily originate from small class II (cut-and-paste) transposable elements, those in endosperm are more uniformly derived, including sequences from other transposon classes, as well as genic and intergenic regions. Our data indicate that the endosperm exhibits a unique pattern of sRNA expression and suggest that localized hypomethylation of maternal endosperm DNA is conserved in flowering plants.
Collapse
|
131
|
Feng X, Zilberman D, Dickinson H. A Conversation across Generations: Soma-Germ Cell Crosstalk in Plants. Dev Cell 2013; 24:215-25. [DOI: 10.1016/j.devcel.2013.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/15/2022]
|
132
|
Zhang H, Zhu JK. Active DNA demethylation in plants and animals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2012. [PMID: 23197304 DOI: 10.1101/sqb.2012.77.014936] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders.
Collapse
Affiliation(s)
- H Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
133
|
Martínez G, Slotkin RK. Developmental relaxation of transposable element silencing in plants: functional or byproduct? CURRENT OPINION IN PLANT BIOLOGY 2012; 15:496-502. [PMID: 23022393 DOI: 10.1016/j.pbi.2012.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/12/2012] [Accepted: 09/05/2012] [Indexed: 05/14/2023]
Abstract
In plants, the developmental relaxation of transposable element silencing (DRTS) occurs at distinct spatial and temporal points in the normal development of a wild-type individual. Several examples of DRTS have now been described, including in maize shoot apical meristems, and in Arabidopsis meiocytes, endosperm and nurse cells of gametophytes. In this opinion article, we review the known DRTS events and speculate on the function, if any, of DRTS in plants.
Collapse
Affiliation(s)
- Germán Martínez
- The Department of Molecular Genetics and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
134
|
Borges F, Gardner R, Lopes T, Calarco JP, Boavida LC, Slotkin RK, Martienssen RA, Becker JD. FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei. PLANT METHODS 2012; 8:44. [PMID: 23075219 PMCID: PMC3502443 DOI: 10.1186/1746-4811-8-44] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/08/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND The male germline in flowering plants differentiates by asymmetric division of haploid uninucleated microspores, giving rise to a vegetative cell enclosing a smaller generative cell, which eventually undergoes a second mitosis to originate two sperm cells. The vegetative cell and the sperm cells activate distinct genetic and epigenetic mechanisms to control pollen tube growth and germ cell specification, respectively. Therefore, a comprehensive characterization of these processes relies on efficient methods to isolate each of the different cell types throughout male gametogenesis. RESULTS We developed stable transgenic Arabidopsis lines and reliable purification tools based on Fluorescence-Activated Cell Sorting (FACS) in order to isolate highly pure and viable fractions of each cell/nuclei type before and after pollen mitosis. In the case of mature pollen, this was accomplished by expressing GFP and RFP in the sperm and vegetative nuclei, respectively, resulting in 99% pure sorted populations. Microspores were also purified by FACS taking advantage of their characteristic small size and autofluorescent properties, and were confirmed to be 98% pure. CONCLUSIONS We provide simple and efficient FACS-based purification protocols for Arabidopsis microspores, vegetative nuclei and sperm cells. This paves the way for subsequent molecular analysis such as transcriptomics, DNA methylation analysis and chromatin immunoprecipitation, in the developmental context of microgametogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Filipe Borges
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Telma Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Joseph P Calarco
- Cold Spring Harbor Laboratory, 1 Bungtown Road, 11724, Cold Spring Harbor, NY, USA
| | - Leonor C Boavida
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, 43210, Columbus, OH, USA
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, 1 Bungtown Road, 11724, Cold Spring Harbor, NY, USA
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| |
Collapse
|
135
|
Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen RA. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 2012; 151:194-205. [PMID: 23000270 PMCID: PMC3697483 DOI: 10.1016/j.cell.2012.09.001] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/14/2012] [Accepted: 08/30/2012] [Indexed: 11/20/2022]
Abstract
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.
Collapse
Affiliation(s)
- Joseph P. Calarco
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Filipe Borges
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Mark T.A. Donoghue
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Frédéric Van Ex
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Pauline E. Jullien
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Telma Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Frédéric Berger
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - José A. Feijó
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Vegetal, Campo Grande C2, 1749-016 Lisboa, Portugal
| | - Jörg D. Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Robert A. Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
136
|
Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 2012; 337:1360-1364. [PMID: 22984074 PMCID: PMC4034762 DOI: 10.1126/science.1224839] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA-directed DNA methylation of transposons in sperm. Our results demonstrate that demethylation in companion cells reinforces transposon methylation in plant gametes and likely contributes to stable silencing of transposable elements across generations.
Collapse
Affiliation(s)
- Christian A. Ibarra
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Xiaoqi Feng
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Vera K. Schoft
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Rie Uzawa
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Jessica A. Rodrigues
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Assaf Zemach
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Nina Chumak
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Adriana Machlicova
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Toshiro Nishimura
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Denisse Rojas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Robert L. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Hisashi Tamaru
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
137
|
Rea M, Zheng W, Chen M, Braud C, Bhangu D, Rognan TN, Xiao W. Histone H1 affects gene imprinting and DNA methylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:776-86. [PMID: 22519754 PMCID: PMC3429642 DOI: 10.1111/j.1365-313x.2012.05028.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imprinting, i.e. parent-of-origin expression of alleles, plays an important role in regulating development in mammals and plants. DNA methylation catalyzed by DNA methyltransferases plays a pivotal role in regulating imprinting by silencing parental alleles. DEMETER (DME), a DNA glycosylase functioning in the base-excision DNA repair pathway, can excise 5-methylcytosine from DNA and regulate genomic imprinting in Arabidopsis. DME demethylates the maternal MEDEA (MEA) promoter in endosperm, resulting in expression of the maternal MEA allele. However, it is not known whether DME interacts with other proteins in regulating gene imprinting. Here we report the identification of histone H1.2 as a DME-interacting protein in a yeast two-hybrid screen, and confirmation of their interaction by the in vitro pull-down assay. Genetic analysis of the loss-of-function histone h1 mutant showed that the maternal histone H1 allele is required for DME regulation of MEA, FWA and FIS2 imprinting in Arabidopsis endosperm but the paternal allele is dispensable. Furthermore, we show that mutations in histone H1 result in an increase of DNA methylation in the maternal MEA and FWA promoter in endosperm. Our results suggest that histone H1 is involved in DME-mediated DNA methylation and gene regulation at imprinted loci.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenyan Xiao
- For correspondence: Fax, 314-977-3658; Tel, 314-977-2547;
| |
Collapse
|
138
|
Ono A, Yamaguchi K, Fukada-Tanaka S, Terada R, Mitsui T, Iida S. A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:564-74. [PMID: 22448681 DOI: 10.1111/j.1365-313x.2012.05009.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genes that promote DNA methylation and demethylation in plants have been characterized mainly in Arabidopsis. Arabidopsis DNA demethylation is mediated by bi-functional DNA enzymes with glycosylase activity that removes 5-methylcytosine and lyase activity that nicks double-stranded DNA at an abasic site. Homologous recombination-promoted knock-in targeting of the ROS1a gene, the longest of six putative DNA demethylase genes in the rice genome, by fusing its endogenous promoter to the GUS reporter gene, led to reproducibly disrupted ROS1a in primary (T(0)) transgenic plants in the heterozygous condition. These T(0) plants exhibited no overt morphological phenotypes during the vegetative phase, and GUS staining showed ROS1a expression in pollen, unfertilized ovules and meristematic cells. Interestingly, neither the maternal nor paternal knock-in null allele, ros1a-GUS1, was virtually detected in the progeny; such an intransmittable null mutation is difficult to isolate by conventional mutagenesis techniques that are usually used to identify and isolate mutants in the progeny population. Even in the presence of the wild-type paternal ROS1a allele, the maternal ros1a-GUS1 allele caused failure of early-stage endosperm development, resulting in incomplete embryo development, with embryogenesis producing irregular but viable embryos that failed to complete seed dormancy, implying non-equivalent maternal and paternal contribution of ROS1a in endosperm development. The paternal ros1a-GUS1 allele was not transmitted to progeny, presumably because of a male gametophytic defect(s) prior to fertilization. Thus, ROS1a is indispensable in both male and female gametophytes, and DNA demethylation must plays important roles in both gametophytes.
Collapse
Affiliation(s)
- Akemi Ono
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
139
|
Jiang H, Köhler C. Evolution, function, and regulation of genomic imprinting in plant seed development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4713-22. [PMID: 22922638 DOI: 10.1093/jxb/ers145] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon whereby genetically identical alleles are differentially expressed dependent on their parent-of-origin. Genomic imprinting has independently evolved in flowering plants and mammals. In both organism classes, imprinting occurs in embryo-nourishing tissues, the placenta and the endosperm, respectively, and it has been proposed that imprinted genes regulate the transfer of nutrients to the developing progeny. Many imprinted genes are located in the vicinity of DNA-methylated transposon or repeat sequences, implying that transposon insertions are associated with the evolution of imprinted loci. The antagonistic action of DNA methylation and Polycomb group-mediated histone methylation seems important for the regulation of many imprinted plant genes, whereby the position of such epigenetic modifications can determine whether a gene will be mainly expressed from either the maternally or paternally inherited alleles. Furthermore, long non-coding RNAs seem to play an as yet underappreciated role for the regulation of imprinted plant genes. Imprinted expression of a number of genes is conserved between monocots and dicots, suggesting that long-term selection can maintain imprinted expression at some loci.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| | | |
Collapse
|
140
|
Wöhrmann HJP, Gagliardini V, Raissig MT, Wehrle W, Arand J, Schmidt A, Tierling S, Page DR, Schöb H, Walter J, Grossniklaus U. Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus. Genes Dev 2012; 26:1837-50. [PMID: 22855791 DOI: 10.1101/gad.195123.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1. We report the systematic functional dissection of the MEA cis-regulatory region, resulting in the identification of a 200-bp fragment that is necessary and sufficient to mediate MEA activation and imprinted expression, thus containing the imprinting control region (ICR). Notably, imprinted MEA expression mediated by this ICR is independent of DME and MET1, consistent with the lack of any significant DNA methylation in this region. This is the first example of an ICR without differential DNA methylation, suggesting that factors other than DME and MET1 are required for imprinting at the MEA locus.
Collapse
Affiliation(s)
- Heike J P Wöhrmann
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Ikeda Y. Plant imprinted genes identified by genome-wide approaches and their regulatory mechanisms. PLANT & CELL PHYSIOLOGY 2012; 53:809-816. [PMID: 22492232 DOI: 10.1093/pcp/pcs049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon found in mammals and flowering plants that leads to differential allelic gene expression depending on their parent of origin. In plants, genomic imprinting primarily occurs in the endosperm, and it is associated with seed development. The imprinted expression is driven by the epigenetic memory programmed in each lineage of female and male germlines. Several imprinted genes have been identified based on genetic studies in maize and Arabidopsis. Recent advances in genome-wide analyses made it possible to identify multiple imprinted genes including many nuclear proteins, such as transcription factors and chromatin-related proteins in different plant species. Some of these genes are conserved in Arabidopsis, rice and maize, but many are species specific. Genome-wide analyses also clarified the regulation mechanism of imprinted genes orchestrated by DNA methylation and histone methylation marks. Additionally, genetic analyses using Arabidopsis revealed new regulatory factors of DNA demethylation and imprinting and shed light on the more precise mechanisms.
Collapse
Affiliation(s)
- Yoko Ikeda
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, Japan.
| |
Collapse
|
142
|
Gutierrez-Marcos JF, Dickinson HG. Epigenetic reprogramming in plant reproductive lineages. PLANT & CELL PHYSIOLOGY 2012; 53:817-23. [PMID: 22505692 DOI: 10.1093/pcp/pcs052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Monoecious flowering plants produce both microgametophytes (pollen) and megagametophytes (embryo sacs) containing the male and female gametes, respectively, which participate in double fertilization. Much is known about cellular and developmental processes giving rise to these reproductive structures and the formation of gametes. However, little is known about the role played by changes in the epigenome in dynamically shaping these defining events during plant sexual reproduction. This has in part been hampered by the inaccessibility of these structures-especially the female gametes, which are embedded within the female reproductive tissues of the plant sporophyte. However, with the recent development of new cellular isolation technologies that can be coupled to next-generation sequencing, a new wave of epigenomic studies indicate that an intricate epigenetic regulation takes place during the formation of male and female reproductive lineages. In this mini review, we assess the fast growing body of evidence for the epigenetic regulation of the developmental fate and function of plant gametes. We describe how small interfereing RNAs and DNA methylation machinery play a part in setting up unique epigenetic landscapes in different gametes, which may be responsible for their different fates and functions during fertilization. Collectively these studies will shed light on the dynamic epigenomic landscape of plant gametes or 'epigametes' and help to answer important unresolved questions on the sexual reproduction of flowering plants, especially those underpinning the formation of two products of fertilization, the embryo and the endosperm.
Collapse
|
143
|
Wollmann H, Berger F. Epigenetic reprogramming during plant reproduction and seed development. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:63-69. [PMID: 22035873 DOI: 10.1016/j.pbi.2011.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 05/31/2023]
Abstract
Epigenetic processes such as DNA methylation are crucial for the development of flowering plants, and for protection of genome integrity via silencing of transposable elements (TEs). Recent advances in genome-wide profiling suggest that during reproduction DNA methylation patterns are at least partially transmitted or even enhanced in the next generation to ensure stable silencing of TEs. At the same time, parent-of-origin specific removal of DNA methylation in the accompanying tissue allows imprinted expression of genes. Here we summarize the dynamics of DNA methylation as a major epigenetic regulatory pathway during reproduction and seed development.
Collapse
Affiliation(s)
- Heike Wollmann
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | | |
Collapse
|
144
|
Köhler C, Wolff P, Spillane C. Epigenetic mechanisms underlying genomic imprinting in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:331-52. [PMID: 22404470 DOI: 10.1146/annurev-arplant-042811-105514] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genomic imprinting, the differential expression of an autosomal gene that is dependent on its parent of origin, has independently evolved in flowering plants and mammals. In both of these organism classes, imprinting occurs in embryo-nourishing tissues-the placenta and the endosperm, respectively. It has been proposed that some imprinted genes control nutrient flow from the mother to the offspring. Genome-wide analyses of imprinted genes in plants have revealed that many imprinted genes are located in the vicinity of transposon or repeat sequences, implying that transposon insertions are associated with the evolution of imprinted loci. Imprinted expression of a number of genes is conserved between monocots and dicots, suggesting that long-term selection can maintain imprinted expression at some loci. In terms of epigenetic mechanisms, imprinted expression is largely controlled by an antagonistic action of DNA methylation and Polycomb group-mediated histone methylation in the vicinity of imprinted genes, whereby the position of such epigenetic modifications can determine whether a gene will be expressed mainly from either the maternally or paternally inherited alleles.
Collapse
Affiliation(s)
- Claudia Köhler
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | |
Collapse
|
145
|
Saze H. Transgenerational inheritance of induced changes in the epigenetic state of chromatin in plants. Genes Genet Syst 2012; 87:145-52. [DOI: 10.1266/ggs.87.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University
- PRESTO, Japan Science and Technology Agency (JST)
| |
Collapse
|
146
|
Ikeda Y, Kinoshita Y, Susaki D, Ikeda Y, Iwano M, Takayama S, Higashiyama T, Kakutani T, Kinoshita T. HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis. Dev Cell 2011; 21:589-96. [PMID: 21920319 DOI: 10.1016/j.devcel.2011.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/14/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
In Arabidopsis, DEMETER (DME) DNA demethylase contributes to reprogramming of the epigenetic state of the genome in the central cell. However, other aspects of the active DNA demethylation processes remain elusive. Here we show that Arabidopsis SSRP1, known as an HMG domain-containing component of FACT histone chaperone, is required for DNA demethylation and for activation and repression of many parentally imprinted genes in the central cell. Although loss of DNA methylation releases silencing of the imprinted FWA-GFP, double ssrp1-3;met1-3 mutants surprisingly showed limited activation of maternal FWA-GFP in the central cell, and only became fully active after several nuclear divisions in the endosperm. This behavior was in contrast to the dme-1;met1 double mutant in which hypomethylation of FWA-GFP by met1 suppressed the DNA demethylation defect of dme-1. We propose that active DNA demethylation by DME requires SSRP1 function through a distinctly different process from direct DNA methylation control.
Collapse
Affiliation(s)
- Yoko Ikeda
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|