101
|
CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L. Int J Mol Sci 2018; 19:ijms19092716. [PMID: 30208656 PMCID: PMC6163266 DOI: 10.3390/ijms19092716] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Accepted: 09/07/2018] [Indexed: 02/04/2023] Open
Abstract
Targeted genome editing is a desirable means of basic science and crop improvement. The clustered, regularly interspaced, palindromic repeat (CRISPR)/Cas9 (CRISPR-associated 9) system is currently the simplest and most commonly used system in targeted genomic editing in plants. Single and multiplex genome editing in plants can be achieved under this system. In Arabidopsis, AtWRKY11 and AtWRKY70 genes were involved in JA- and SA-induced resistance to pathogens, in rapeseed (Brassica napus L.), BnWRKY11 and BnWRKY70 genes were found to be differently expressed after inoculated with the pathogenic fungus, Sclerotinia sclerotiorum (Lib.) de Bary. In this study, two Cas9/sgRNA constructs targeting two copies of BnWRKY11 and four copies of BnWRKY70 were designed to generate BnWRKY11 and BnWRKY70 mutants respectively. As a result, twenty-two BnWRKY11 and eight BnWRKY70 independent transformants (T0) were obtained, with the mutation ratios of 54.5% (12/22) and 50% (4/8) in BnWRKY11 and BnWRKY70 transformants respectively. Eight and two plants with two copies of mutated BnWRKY11 and BnWRKY70 were obtained respectively. In T1 generation of each plant examined, new mutations on target genes were detected with high efficiency. The vast majority of BnWRKY70 mutants showed editing in three copies of BnWRKY70 in examined T1 plants. BnWRKY70 mutants exhibited enhanced resistance to Sclerotinia, while BnWRKY11 mutants showed no significant difference in Sclerotinia resistance when compared to non-transgenic plants. In addition, plants that overexpressed BnWRKY70 showed increased sensitivity when compared to non-transgenic plants. Altogether, our results demonstrated that BnWRKY70 may function as a regulating factor to negatively control the Sclerotinia resistance and CRISPR/Cas9 system could be used to generate germplasm in B. napus with high resistance against Sclerotinia.
Collapse
|
102
|
Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease Resistance Mechanisms in Plants. Genes (Basel) 2018; 9:E339. [PMID: 29973557 PMCID: PMC6071103 DOI: 10.3390/genes9070339] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Plants have developed a complex defense system against diverse pests and pathogens. Once pathogens overcome mechanical barriers to infection, plant receptors initiate signaling pathways driving the expression of defense response genes. Plant immune systems rely on their ability to recognize enemy molecules, carry out signal transduction, and respond defensively through pathways involving many genes and their products. Pathogens actively attempt to evade and interfere with response pathways, selecting for a decentralized, multicomponent immune system. Recent advances in molecular techniques have greatly expanded our understanding of plant immunity, largely driven by potential application to agricultural systems. Here, we review the major plant immune system components, state of the art knowledge, and future direction of research on plant⁻pathogen interactions. In our review, we will discuss how the decentralization of plant immune systems have provided both increased evolutionary opportunity for pathogen resistance, as well as additional mechanisms for pathogen inhibition of such defense responses. We conclude that the rapid advances in bioinformatics and molecular biology are driving an explosion of information that will advance agricultural production and illustrate how complex molecular interactions evolve.
Collapse
Affiliation(s)
- Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Shaukat Ali
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Emmanuel Byamukama
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| |
Collapse
|
103
|
Zou LJ, Deng XG, Zhang LE, Zhu T, Tan WR, Muhammad A, Zhu LJ, Zhang C, Zhang DW, Lin HH. Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2018; 163:196-210. [PMID: 29215737 DOI: 10.1111/ppl.12677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Brassinosteroids (BRs) are growth-promoting plant hormones that play a crucial role in biotic stress responses. Here, we found that BR treatment increased nitric oxide (NO) accumulation, and a significant reduction of virus accumulation in Arabidopsis thaliana. However, the plants pre-treated with NO scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-1-oxyl-3-oxide (PTIO)] or nitrate reductase (NR) inhibitor (tungstate) hardly had any NO generation and appeared to have the highest viral replication and suffer more damages. Furthermore, the antioxidant system and photosystem parameters were up-regulated in brassinolide (BL)-treated plants but down regulated in PTIO- or tungstate-treated plants, suggesting NO may be involved in BRs-induced virus resistance in Arabidopsis. Further evidence showed that NIA1 pathway was responsible for BR-induced NO accumulation in Arabidopsis. These results indicated that NO participated in the BRs-induced systemic resistance in Arabidopsis. As BL treatment could not increase NO levels in nia1 plants in comparison to nia2 plants. And nia1 mutant exhibited decreased virus resistance relative to Col-0 or nia2 plants after BL treatment. Taken together, our study addressed that NIA1-mediated NO biosynthesis is involved in BRs-mediated virus resistance in A. thaliana.
Collapse
Affiliation(s)
- Li-Juan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
- Ecological Security and Protection Key Laboratory of Sichuan Province and Life Science and Technology College, Mianyang Normal University, Mianyang, 621000, China
| | - Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Li-E Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Wen-Rong Tan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Arfan Muhammad
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Li-Jun Zhu
- Ecological Security and Protection Key Laboratory of Sichuan Province and Life Science and Technology College, Mianyang Normal University, Mianyang, 621000, China
| | - Chao Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
104
|
Lei R, Ma Z, Yu D. WRKY2/34-VQ20 Modules in Arabidopsis thaliana Negatively Regulate Expression of a Trio of Related MYB Transcription Factors During Pollen Development. FRONTIERS IN PLANT SCIENCE 2018; 9:331. [PMID: 29616054 PMCID: PMC5867338 DOI: 10.3389/fpls.2018.00331] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/28/2018] [Indexed: 05/25/2023]
Abstract
Male gametogenesis in plants is tightly controlled and involves the complex and precise regulation of transcriptional reprogramming. Interactions between WRKY proteins and VQ motif-containing proteins are required to control these complicated transcriptional networks. However, our understanding of the mechanisms by which these complexes affect downstream gene expression is quite limited. In this study, we found that WRKY2 and WKRY34 repress MYB97, MYB101, and MYB120 expression during male gametogenesis. MYB expression was up-regulated in the wrky2-1 wrky34-1 vq20-1 triple mutant during male gametogenesis. The expression levels of six potential targets of the three MYBs increased the most in the wrky2-1 wrky34-1 vq20-1 triple mutant, followed by the wrky2-1 wrky34-1 double mutant, compared with in wild-type. Yeast one-hybrid and dual luciferase reporter assays indicated that WRKY2 and WRKY34 recognized the MYB97 promoter by binding to its W-boxes. MYB97 overexpression caused defects in pollen germination and pollen tube length, which impacted male fertility. Thus, WRKY2/34-VQ20 complexes appear to negatively regulate the expression of certain MYBs during plant male gametogenesis.
Collapse
Affiliation(s)
- Rihua Lei
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenbing Ma
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
105
|
Fan ZQ, Tan XL, Shan W, Kuang JF, Lu WJ, Chen JY. Characterization of a Transcriptional Regulator, BrWRKY6, Associated with Gibberellin-Suppressed Leaf Senescence of Chinese Flowering Cabbage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1791-1799. [PMID: 29400954 DOI: 10.1021/acs.jafc.7b06085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytohormone gibberellin (GA) and plant-specific WRKY transcription factors (TFs) are reported to play important roles in leaf senescence. The association of WRKY TFs with GA-mediated leaf senescence of economically important leafy vegetables like Chinese flowering cabbage, however, remains largely unknown. In this study, we showed that exogenous application of GA3 suppressed Chinese flowering cabbage leaf senescence, with GA3-treated cabbages maintaining a higher level of maximum quantum yield (Fv/Fm) and total chlorophyll content. GA3 treatment also led to lower electrolyte leakage and expression level of a series of senescence-associated genes (SAGs) including BrSAG12 and BrSAG19, and chlorophyll catabolic genes (CCGs) BrPPH1, BrNYC1, and BrSGRs. In addition, higher transcription levels of GA biosynthetic genes BrKAO2 and BrGA20ox2 were found after GA3 treatment. More importantly, a GA-repressible, nuclear-localized WRKY TF, BrWRKY6, a homologue of the Arabidopsis AtWRKY6, was identified and characterized. BrWRKY6 was GA-repressible and localized in the nucleus. Further experiments revealed that BrWRKY6 repressed the expression of BrKAO2 and BrGA20ox2, while it activated BrSAG12, BrNYC1, and BrSGR1, through binding to their promoters via the W-box cis-element. Together, the novel GA-WRKY link reported in our study provides new insight into the transcriptional regulation of GA-suppressed leaf senescence in Chinese flowering cabbage.
Collapse
Affiliation(s)
- Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, and Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Xiao-Li Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, and Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, and Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, and Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, and Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, and Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|
106
|
Yu Y, Wang L, Chen J, Liu Z, Park CM, Xiang F. WRKY71 Acts Antagonistically Against Salt-Delayed Flowering in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:414-422. [PMID: 29272465 DOI: 10.1093/pcp/pcx201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 05/06/2023]
Abstract
Soil salinity affects various aspects of plant growth and development including flowering. Usually, plants show a delayed flowering phenotype under high salinity conditions, whereas some plants will risk their life to continue to grow, thereby escaping serious salt stress to achieve reproductive success. However, the molecular mechanisms of the escape strategies are not clear yet. In this work, we report that the transcription factor WRKY71 helps escape salt stress in Arabidopsis. The expression of the WRKY71 wild-type (WT) allele was salinity inducible. Compared with Col-0, high salt stress caused only a marginal delay in the flowering time of the activation-tagged mutant WRKY71-1D. However, flowering in the RNA interference (RNAi)-based multiple WRKY knock-out mutant (w71w8 + 28RNAi) was dramatically later than in the WT under high salinity conditions. Meanwhile, expression of FLOWERING LOCUS T (FT) and LEAFY (LFY) was greater in WRKY71-1D than in the WT, and lower in w71w8 + 28RNAi under salinity-stressed conditions. The suggestion is that WRKY71 activity hastens flowering, thereby providing a means for the plant to complete its life cycle in the presence of salt stress.
Collapse
Affiliation(s)
- Yanchong Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, China
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Long Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jiacai Chen
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenhua Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Chung-Mo Park
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
107
|
Levy A, El-Mochtar C, Wang C, Goodin M, Orbovic V. A new toolset for protein expression and subcellular localization studies in citrus and its application to citrus tristeza virus proteins. PLANT METHODS 2018; 14:2. [PMID: 29339969 PMCID: PMC5759842 DOI: 10.1186/s13007-017-0270-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Transient gene expression is a powerful tool to study gene function in plants. In citrus, Agrobacterium transformation is the method of choice for transient expression studies, but this method does not work efficiently with many gene constructs, and there is a need for a more robust transient expression system in citrus leaves. Biolistic particle delivery is an alternative to Agrobacterium transformation, and in some plants, such as Arabidopsis, gives higher transformation rates in leaf tissues than Agrobacterium. RESULTS Here we describe an improved method for gene expression in epidermal cells of citrus leaves, using the Bio-Rad Helios gene-gun. Gene-gun bombardment of GFP-HDEL produced highly efficient gene expression in large number of cells and in different citrus varieties. We show here that transiently expressed proteins have maintained their functions in plants, and this is demonstrated by the subcellular localization of different organelle markers, and by a functional assay of Xanthomonas citri effector AvrGF1. To further expand the available tools for subcellular localization studies in citrus, we also generated a new set of transgenic citrus plants that contain organelle markers labelling the nuclei, actin and endoplasmic reticulum. Using these new tools, we were able to show that the coat protein of citrus tristeza virus localizes to the cytoplasm and nuclei when expressed in epidermal cells fused to GFP. CONCLUSION We have optimized a new method for transient expression in citrus leaves, to give highly reproducible and efficient transformation without producing a high level of injury or artifacts to the bombarded tissue. We also generated the first set organelle markers for use in citrus. These fluorescent protein markers label the nucleus and the actin. With these new resources, protein activity and subcellular localization can be studied in citrus rapidly and in high throughput. The handheld gene-gun device can also be used in the grove to deliver therapies for citrus diseases, such as canker and Huanglongbing, into trees.
Collapse
Affiliation(s)
- Amit Levy
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Gainesville, FL USA
| | - Choaa El-Mochtar
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Gainesville, FL USA
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL USA
| | - Michael Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY USA
| | - Vladimir Orbovic
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL USA
| |
Collapse
|
108
|
Zhang L, Chen L, Yu D. Transcription Factor WRKY75 Interacts with DELLA Proteins to Affect Flowering. PLANT PHYSIOLOGY 2018; 176:790-803. [PMID: 29133369 PMCID: PMC5761768 DOI: 10.1104/pp.17.00657] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/09/2017] [Indexed: 05/04/2023]
Abstract
Flowering time is tightly controlled by both endogenous and exogenous signals. Although several lines of evidence have suggested the involvement of WRKY transcription factors in floral initiation, the underlying mechanisms and signaling pathways involved remain elusive. Here, we newly identified Arabidopsis (Arabidopsis thaliana) WRKY DNA binding protein75 (WRKY75) as a positive regulator of flowering initiation. Mutation of WRKY75 resulted in a delay in flowering, whereas overexpression of WRKY75 significantly accelerated flowering in Arabidopsis. Gene expression analysis showed that the transcript abundance of the flowering time integrator gene FLOWERING LOCUS T (FT) was lower in wrky75 mutants than in the wild type, but greater in WRKY75-overexpressing plants. Chromatin immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of FT Both in vivo and in vitro biochemical analyses demonstrated that WRKY75 interacts with DELLA proteins. We found that both REPRESSOR OF ga1-3 (RGA) RGA-LIKE1 (RGL1) and GA INSENSITIVE (GAI) can repress the activation ability of WRKY75, thereby attenuating expression of its regulon. Genetic analyses indicated that WRKY75 positively regulates flowering in a FT-dependent manner and overexpression of RGL1 or gain-of-function of GAI could partially rescue the early flowering phenotype of WRKY75-overexpressing plants. Taken together, our results demonstrate that WRKY75 may function as a new component of the GA-mediated signaling pathway to positively regulate flowering in Arabidopsis.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ligang Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
109
|
Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. PLANTA 2017; 246:1215-1231. [PMID: 28861611 DOI: 10.1007/s00425-017-2766-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 05/20/2023]
Abstract
We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.
Collapse
Affiliation(s)
- Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Dai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Congsheng Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
110
|
Metabolites Produced by an Endophytic Phomopsis sp. and Their Anti-TMV Activity. Molecules 2017; 22:molecules22122073. [PMID: 29186928 PMCID: PMC6149851 DOI: 10.3390/molecules22122073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/08/2017] [Accepted: 11/25/2017] [Indexed: 11/16/2022] Open
Abstract
The fermentation and isolation of metabolites produced by an endophytic fungus, which was identified as Phomopsis sp. FJBR-11, based on phylogenetic analysis, led to the identification of six compounds, including dothiorelones A-C, and H, and cytosporones C and U. Among these compounds, cytosporone U exhibited potent inhibitory activity against Tobacco mosaic virus (TMV). Moreover, the crude and a purified exopolysaccharide were proved to possess strong inhibitory effects against the virus infection.
Collapse
|
111
|
Zhao S, Hong W, Wu J, Wang Y, Ji S, Zhu S, Wei C, Zhang J, Li Y. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. eLife 2017; 6. [PMID: 28994391 PMCID: PMC5634785 DOI: 10.7554/elife.27529] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1, were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1-knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection. Rice provides food for billions of people all over the world, but diseases caused by plant-infecting viruses cause serious risks to the production of rice. As a result, there is an urgent demand for developing new and impactful ways to help defend rice plants from harmful viruses. Toward this goal, it will be important to better understand how viruses actually cause diseases in plants. Plants make chemicals known as hormones to control their own development, and hormone production is often disturbed when viruses infect rice plants. Many viruses cause infected plants to make more of a gaseous hormone called ethylene, which benefits the viruses. Yet, it is still not known how virus infection induces the production of more ethylene. Zhao, Hong et al. have exposed rice plants to infection with a virus called rice dwarf virus. Infected plants made more ethylene than normal, which did indeed help the virus to infect. Further experiments then showed that an enzyme that makes one of the building blocks needed to produce ethylene became more active after infection with this virus. Next, Zhao, Hong et al. engineered rice plants to make more or less of this building block – which is known as S-adenosyl-L-methionine or SAM for short. Plants with too much SAM were less able to defend themselves against the virus, while plants that lacked SAM were better able to fight off viral infection. Zhao, Hong et al. suggest that engineering rice plants to make less of the SAM-producing enzyme could make them more resistant to viruses. Further work will also be needed to find out why ethylene benefits viral infection, and to confirm whether ethylene also performs similar roles when rice is infected with other viruses.
Collapse
Affiliation(s)
- Shanshan Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Wei Hong
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.,The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shaoyi Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shuyi Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Chunhong Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Jinsong Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
112
|
Collum TD, Culver JN. Tobacco mosaic virus infection disproportionately impacts phloem associated translatomes in Arabidopsis thaliana and Nicotiana benthamiana. Virology 2017; 510:76-89. [PMID: 28710959 DOI: 10.1016/j.virol.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
In this study we use vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem associated translatome responses to infection by tobacco mosaic virus (TMV) in systemic hosts Arabidopsis thaliana ecotype Shahdara and Nicotiana benthamiana. Results demonstrate that in both hosts the number of translatome gene alterations that occurred in response to infection is at least four fold higher in phloem specific translatomes than in non-phloem translatomes. This finding indicates that phloem functions as a key responsive tissue to TMV infection. In addition, host comparisons of translatome alterations reveal both similarities and differences in phloem responses to infection, representing both conserved virus induced phloem alterations involved in promoting infection and virus spread as well as host specific alterations that reflect differences in symptom responses. Combined these results suggest phloem tissues play a disproportion role in the mediation and control of host responses to virus infection.
Collapse
Affiliation(s)
- Tamara D Collum
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
113
|
Chen L, Xiang S, Chen Y, Li D, Yu D. Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence. MOLECULAR PLANT 2017; 10:1174-1189. [PMID: 28735023 DOI: 10.1016/j.molp.2017.07.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 05/22/2023]
Abstract
Leaf senescence can be triggered and promoted by various environmental stressors, developmental cues, and endogenous hormone signals. Several lines of evidence have suggested the involvement of WRKY transcription factors in regulating leaf senescence, but the underlying mechanisms and signaling pathways involved remain elusive. In this study, we identified Arabidopsis thaliana WRKY DNA-binding protein 45 (WRKY45) as a positive regulator of age-triggered leaf senescence. Loss of WRKY45 function resulted in increased leaf longevity in age-triggered senescence, whereas overexpression of WRKY45 significantly accelerated age-triggered leaf senescence. Consistently, expression of SENESCENCE-ASSOCIATED GENEs (SAGs) was significantly reduced in wrky45 mutants but markedly enhanced in transgenic plants overexpressing WRKY45. Chromatin immunoprecipitation assays revealed that WRKY45 directly binds the promoters of several SAGs such as SAG12, SAG13, SAG113, and SEN4. Both in vivo and in vitro biochemical analyses demonstrated that WRKY45 interacts with the DELLA protein RGA-LIKE1 (RGL1), a repressor of the gibberellin (GA) signaling pathway. We found that RGL1 repressed the transcription activation function of WRKY45, thereby attenuating the expression of its regulon. Consistent with this finding, overexpression of RGL1 resulted in significantly increased leaf longevity in age-triggered senescence. Taken together, our results provide compelling evidence that WRKY45 functions as a critical component of the GA-mediated signaling pathway to positively regulate age-triggered leaf senescence.
Collapse
Affiliation(s)
- Ligang Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shengyuan Xiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daibo Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
114
|
Effect of elevated CO 2 and O 3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:816-825. [PMID: 28785951 DOI: 10.1007/s11427-017-9126-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Climatic variations are becoming important limiting factors for agriculture productivity, as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests. Elevated CO2 and O3 are two important climatic factors that have been widely studied before. Elevated CO2 or O3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants. Many studies have shown that elevated CO2 or O3 decreases the plant nitrogen content, which modulates the characteristics of vector insects. Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO2 or O3. In the current review, we describe how elevated CO2 or O3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways. We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO2 or O3. We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO2 or O3.
Collapse
|
115
|
Wang J, Tao F, Tian W, Guo Z, Chen X, Xu X, Shang H, Hu X. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS One 2017; 12:e0181963. [PMID: 28742872 PMCID: PMC5526533 DOI: 10.1371/journal.pone.0181963] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
WRKY transcription factors (TFs) play crucial roles in plant resistance responses to pathogens. Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat (Triticum aestivum) worldwide. In this study, the two WRKY genes TaWRKY49 and TaWRKY62 were originally identified in association with high-temperature seedling-plant resistance to Pst (HTSP) resistance in wheat cultivar Xiaoyan 6 by RNA-seq. Interestingly, the expression levels of TaWRKY49 and TaWRKY62 were down- and up-regulated, respectively, during HTSP resistance in response to Pst. Silencing of TaWRKY49 enhanced whereas silencing TaWRKY62 reduced HTSP resistance. The enhanced resistance observed on leaves following the silencing of TaWRKY49 was coupled with increased expression of salicylic acid (SA)- and jasmonic acid (JA)-responsive genes TaPR1.1 and TaAOS, as well as reactive oxygen species (ROS)-associated genes TaCAT and TaPOD; whereas the ethylene (ET)-responsive gene TaPIE1 was suppressed. The decreased resistance observed on leaves following TaWRKY62 silencing was associated with increased expression of TaPR1.1 and TaPOD, and suppression of TaAOS and TaPIE1. Furthermore, SA, ET, MeJA (methyl jasmonate), hydrogen peroxide (H2O2) and abscisic acid (ABA) treatments increased TaWRKY62 expression. On the other hand, MeJA did not affect the expression of TaWRKY49, and H2O2 reduced TaWRKY49 expression. In conclusion, TaWRKY49 negatively regulates while TaWRKY62 positively regulates wheat HTSP resistance to Pst by differential regulation of SA-, JA-, ET and ROS-mediated signaling.
Collapse
Affiliation(s)
- Junjuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhongfeng Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianming Chen
- Agricultural Research Service, Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Xiangming Xu
- NIAB East Malling Research, East Malling, Kent, United Kingdom
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
116
|
Luo DL, Ba LJ, Shan W, Kuang JF, Lu WJ, Chen JY. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3627-3635. [PMID: 28445050 DOI: 10.1021/acs.jafc.7b00915] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.
Collapse
Affiliation(s)
- Dong-Lan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
- School of Food and Pharmaceutical Engineering/Guizhou Engineering Research Center for Fruit Processing, Guiyang College , Guiyang, 550003, People's Republic of China
| | - Liang-Jie Ba
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
- School of Food and Pharmaceutical Engineering/Guizhou Engineering Research Center for Fruit Processing, Guiyang College , Guiyang, 550003, People's Republic of China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University , Guangzhou, 510642, People's Republic of China
| |
Collapse
|
117
|
Alazem M, He MH, Moffett P, Lin NS. Abscisic Acid Induces Resistance against Bamboo Mosaic Virus through Argonaute2 and 3. PLANT PHYSIOLOGY 2017; 174:339-355. [PMID: 28270624 PMCID: PMC5411131 DOI: 10.1104/pp.16.00015] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/03/2017] [Indexed: 05/21/2023]
Abstract
Plant resistance to pathogens is tuned by defense-related hormones. Of these, abscisic acid (ABA) is well documented to moderate resistance against fungi and bacteria. However, ABA's contribution to resistance against viruses is pleiotropic. ABA affects callose deposition at plasmodesmata (therefore hindering the viral cell-to-cell movement), but here, we show that when callose synthase is down-regulated, ABA still induces resistance against infection with Bamboo mosaic virus (BaMV). By examining the potential connections between the ABA and RNA-silencing pathways in Arabidopsis (Arabidopsis thaliana), we showed that ABA regulates the expression of almost the whole ARGONAUTE (AGO) gene family, of which some are required for plant resistance against BaMV Our data show that BaMV infection and ABA treatment regulate the same set of AGOs, with positive effects on AGO1, AGO2, and AGO3, no effect on AGO7, and negative effects on AGO4 and AGO10 The BaMV-mediated regulation of AGO1, AGO2, and AGO3 is ABA dependent, because the accumulation of these AGOs in BaMV-infected ABA mutants did not reach the levels observed in infected wild-type plants. In addition, the AGO1-miR168a complex is dispensable for BaMV resistance, while AGO2 and AGO3 were important for ABA-mediated resistance. While most ago mutants showed increased susceptibility to BaMV infection (except ago10), ago1-27 showed reduced BaMV titers, which was attributed to the up-regulated levels of AGO2, AGO3, and AGO4 We have established that ABA regulates the expression of several members of the AGO family, and this regulation partially contributes to ABA-mediated resistance against BaMV These findings reveal another role for ABA in plants.
Collapse
Affiliation(s)
- Mazen Alazem
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Meng-Hsun He
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Peter Moffett
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| |
Collapse
|
118
|
Genome-wide identification and characterization of the WRKY gene family in potato ( Solanum tuberosum ). BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
119
|
Calil IP, Fontes EPB. Plant immunity against viruses: antiviral immune receptors in focus. ANNALS OF BOTANY 2017; 119:711-723. [PMID: 27780814 PMCID: PMC5604577 DOI: 10.1093/aob/mcw200] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/05/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. SCOPE AND CONCLUSION This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement.
Collapse
Affiliation(s)
- Iara P. Calil
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
| | - Elizabeth P. B. Fontes
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
- For correspondence. E-mail
| |
Collapse
|
120
|
Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:86-101. [PMID: 27995748 DOI: 10.1111/jipb.12513] [Citation(s) in RCA: 515] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/16/2016] [Indexed: 05/20/2023]
Abstract
The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.
Collapse
Affiliation(s)
- Jingjing Jiang
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Shenghui Ma
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Nenghui Ye
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Ming Jiang
- Ecology Key Discipline of Zhejiang Province, College of Life Science, Taizhou University, Jiaojiang 318000, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
121
|
Aamir M, Singh VK, Meena M, Upadhyay RS, Gupta VK, Singh S. Structural and Functional Insights into WRKY3 and WRKY4 Transcription Factors to Unravel the WRKY-DNA (W-Box) Complex Interaction in Tomato ( Solanum lycopersicum L.). A Computational Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:819. [PMID: 28611792 PMCID: PMC5447077 DOI: 10.3389/fpls.2017.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
The WRKY transcription factors (TFs), play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3), and WRKY4 (SlWRKY4) using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433) and WRKY4 (AtWRKY4: NP_172849) protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2) and AtWRKY1 (PDBID:2AYD) as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates). The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the initial flanking sequences also get involved in binding. In contrast, the SlWRKY3 made interaction with RKYGQK along with the residues from zinc finger motifs. Protein-protein interactions studies were done using STRING version 10.0 to explore all the possible protein partners involved in associative functional interaction networks. The Gene ontology enrichment analysis revealed the functional dimension and characterized the identified WRKYs based on their functional annotation.
Collapse
Affiliation(s)
- Mohd Aamir
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Vinay K. Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ram S. Upadhyay
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of TechnologyTallinn, Estonia
| | - Surendra Singh
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
- *Correspondence: Surendra Singh
| |
Collapse
|
122
|
Qin L, Mo N, Zhang Y, Muhammad T, Zhao G, Zhang Y, Liang Y. CaRDR1, an RNA-Dependent RNA Polymerase Plays a Positive Role in Pepper Resistance against TMV. FRONTIERS IN PLANT SCIENCE 2017; 8:1068. [PMID: 28702034 PMCID: PMC5487767 DOI: 10.3389/fpls.2017.01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
RNA silencing functions as a major natural antiviral defense mechanism in plants. RNA-dependent RNA polymerases (RDRs) that catalyze the synthesis of double-stranded RNAs, are considered as a fundamental element in RNA silencing pathways. In Arabidopsis thaliana, RDR1, 2 and 6 play important roles in anti-viral RNA silencing. Expression of RDR1 can be elevated following plant treatment with defense hormones and virus infection. RDR1 has been studied in several crop species, but not in pepper (Capsicum annuum L.). Here, a RDR1 gene was isolated from Capsicum annuum L., designated as CaRDR1. The full-length cDNA of CaRDR1 was 3,351 bp, encoding a 1,116-amino acid protein, which contains conserved regions, such as the most remarkable motif DLDGD. The transcripts of CaRDR1 could be induced by salicylic acid (SA), abscisic acid (ABA), H2O2, and tobacco mosaic virus (TMV). Silencing of CaRDR1 in pepper resulted in increased susceptibility to TMV as evident by severe symptom, increased of TMV-CP transcript, higher malondialdehyde (MDA) content and lower antioxidant enzymes activities compared with that of control plants. CaRDR1-overexpressing in Nicotiana benthamiana showed mild disease symptom and reduced TMV-CP transcripts than that of empty vector (EV) following TMV inoculation. The RNA silencing related genes, including NbAGO2, NbDCL2, NbDCL3, and NbDCL4 elevated expression in overexpressed plants. Alternative oxidase (AOX), the terminal oxidase of the cyanide (CN)-resistant alternative respiratory pathway, catalyze oxygen-dependent oxidation of ubiquinol in plants. It has an important function in plant defense against TMV. In addition, CaRDR1 overexpression promoted the expression of NbAOX1a and NbAOX1b. In conclusion, these results suggest that CaRDR1 plays a positive role in TMV resistance by regulating antioxidant enzymes activities and RNA silencing-related genes expression to suppress the replication and movement of TMV.
Collapse
|
123
|
Alazem M, Lin NS. Antiviral Roles of Abscisic Acid in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1760. [PMID: 29075279 PMCID: PMC5641568 DOI: 10.3389/fpls.2017.01760] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA) pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV) is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.
Collapse
|
124
|
Li H, Wang Y, Wu M, Li L, Li C, Han Z, Yuan J, Chen C, Song W, Wang C. Genome-Wide Identification of AP2/ERF Transcription Factors in Cauliflower and Expression Profiling of the ERF Family under Salt and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:946. [PMID: 28642765 PMCID: PMC5462956 DOI: 10.3389/fpls.2017.00946] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
The AP2/ERF transcription factors (TFs) comprise one of the largest gene superfamilies in plants. These TFs perform vital roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, 171 AP2/ERF TFs were identified in cauliflower (Brassica oleracea L. var. botrytis), one of the most important horticultural crops in Brassica. Among these TFs, 15, 9, and 1 TFs were classified into the AP2, RAV, and Soloist family, respectively. The other 146 TFs belong to ERF family, which were further divided into the ERF and DREB subfamilies. The ERF subfamily contained 91 TFs, while the DREB subfamily contained 55 TFs. Phylogenetic analysis results indicated that the AP2/ERF TFs can be classified into 13 groups, in which 25 conserved motifs were confirmed. Some motifs were group- or subgroup- specific, implying that they are significant to the functions of the AP2/ERF TFs of these clades. In addition, 35 AP2/ERF TFs from the 13 groups were selected randomly and then used for expression pattern analysis under salt and drought stresses. The majority of these AP2/ERF TFs exhibited positive responses to these stress conditions. In specific, Bra-botrytis-ERF054a, Bra-botrytis-ERF056, and Bra-botrytis-CRF2a demonstrated rapid responses. By contrast, six AP2/ERF TFs were showed to delay responses to both stresses. The AP2/ERF TFs exhibiting specific expression patterns under salt or drought stresses were also confirmed. Further functional analysis indicated that ectopic overexpression of Bra-botrytis-ERF056 could increase tolerance to both salt and drought treatments. These findings provide new insights into the AP2/ERF TFs present in cauliflower, and offer candidate AP2/ERF TFs for further studies on their roles in salt and drought stress tolerance.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, Nankai UniversityTianjin, China
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Yu Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Wu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lihong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Cong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhanpin Han
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Jiye Yuan
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Wenqin Song
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
- *Correspondence: Chunguo Wang
| |
Collapse
|
125
|
Yang T, Meng Y, Chen LJ, Lin HH, Xi DH. The Roles of Alpha-Momorcharin and Jasmonic Acid in Modulating the Response of Momordica charantia to Cucumber Mosaic Virus. Front Microbiol 2016; 7:1796. [PMID: 27881976 PMCID: PMC5101195 DOI: 10.3389/fmicb.2016.01796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/25/2016] [Indexed: 01/25/2023] Open
Abstract
Alpha-momorcharin (α-MMC) is a type-I ribosome inactivating protein with a molecular weight of 29 kDa that is found in Momordica charantia, and has been shown to be effective against a broad range of human viruses as well as having anti-tumor activities. However, the role of endogenous α-MMC under viral infection and the mechanism of the anti-viral activities of α-MMC in plants are still unknown. To study the effect of α-MMC on plant viral defense and how α-MMC increases plant resistance to virus, the M. charantia–cucumber mosaic virus (CMV) interaction system was investigated. The results showed that the α-MMC level was positively correlated with the resistance of M. charantia to CMV. α-MMC treatment could alleviate photosystem damage and enhance the ratio of glutathione/glutathione disulfide in M. charantia under CMV infection. The relationship of α-MMC and defense related phytohormones, and their roles in plant defense were further investigated. α-MMC treatment led to a significant increase of jasmonic acid (JA) and vice versa, while there was no obvious relevance between salicylic acid and α-MMC. In addition, reactive oxygen species (ROS) were induced in α-MMC-pretreated plants, in a similar way to the ROS burst in JA-pretreated plants. The production of ROS in both ibuprofen (JA inhibitor) and (α-MMC+ibuprofen)-pretreated plants was reduced markedly, leading to a greater susceptibility of M. charantia to CMV. Our results indicate that the anti-viral activities of α-MMC in M. charantia may be accomplished through the JA related signaling pathway.
Collapse
Affiliation(s)
- Ting Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - Yao Meng
- School of Medical Laboratory Science, Chengdu Medical College Chengdu, China
| | - Li-Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| |
Collapse
|
126
|
Li W, Wang H, Yu D. Arabidopsis WRKY Transcription Factors WRKY12 and WRKY13 Oppositely Regulate Flowering under Short-Day Conditions. MOLECULAR PLANT 2016; 9:1492-1503. [PMID: 27592586 DOI: 10.1016/j.molp.2016.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 05/19/2023]
Abstract
In plants, photoperiod is an important cue for determining flowering. The floral transition in Arabidopsis thaliana is earlier under long-day (LD) than under short-day (SD) conditions. Flowering of Arabidopsis plants under SD conditions is mainly regulated by the plant hormone gibberellin (GA). Here, we report two WRKY transcription factors function oppositely in controlling flowering time under SD conditions. Phenotypic analysis showed that disruption of WRKY12 caused a delay in flowering, while loss of WRKY13 function promoted flowering. WRKY12 and WRKY13 displayed negatively correlated expression profiles and function successively to regulate flowering. Molecular and genetic analyses demonstrated that FRUITFULL (FUL) is a direct downstream target gene of WRKY12 and WRKY13. Interestingly, we found that DELLA proteins GIBBERELLIN INSENSITIVE (GAI) and RGA-LIKE1 (RGL1) interacted with WRKY12 and WRKY13, and their interactions interfered with the transcriptional activity of the WRKY12 and WRKY13. Further studies suggested thatWRKY12 and WRKY13 partly mediated the effect of GA3 on controlling flowering time. Taken together, our results indicate that WRKY12 and WRKY13 oppositely modulate flowering time under SD conditions, which at least partially involves the action of GA.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Department of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230022, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
127
|
Hashimoto M, Neriya Y, Yamaji Y, Namba S. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Front Microbiol 2016; 7:1695. [PMID: 27833593 PMCID: PMC5080351 DOI: 10.3389/fmicb.2016.01695] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
128
|
Han XY, Li PX, Zou LJ, Tan WR, Zheng T, Zhang DW, Lin HH. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis. Biochem Biophys Res Commun 2016; 477:626-632. [DOI: 10.1016/j.bbrc.2016.06.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
|
129
|
Zou LJ, Deng XG, Han XY, Tan WR, Zhu LJ, Xi DH, Zhang DW, Lin HH. Role of Transcription Factor HAT1 in Modulating Arabidopsis thaliana Response to Cucumber mosaic virus. PLANT & CELL PHYSIOLOGY 2016; 57:1879-1889. [PMID: 27328697 DOI: 10.1093/pcp/pcw109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Arabidopsis thaliana homeodomain-leucine zipper protein 1 (HAT1) belongs to the homeodomain-leucine zipper (HD-Zip) family class II that plays important roles in plant growth and development as a transcription factor. To elucidate further the role of HD-Zip II transcription factors in plant defense, the A. thaliana hat1, hat1hat3 and hat1hat2hat3 mutants and HAT1 overexpression plants (HAT1OX) were challenged with Cucumber mosaic virus (CMV). HAT1OX displayed more susceptibility, while loss-of-function mutants of HAT1 exhibited less susceptibility to CMV infection. HAT1 and its close homologs HAT2 and HAT3 function redundantly, as the triple mutant hat1hat2hat3 displayed increased virus resistance compared with the hat1 and hat1hat3 mutants. Furthermore, the induction of the antioxidant system (the activities and expression of enzymatic antioxidants) and the expression of defense-associated genes were down-regulated in HAT1OX but up-regulated in hat1hat2hat3 when compared with Col-0 after CMV infection. Further evidence showed that the involvement of HAT1 in the anti-CMV defense response might be dependent on salicylic acid (SA) but not jasmonic acid (JA). The SA level or expression of SA synthesis-related genes was decreased in HAT1OX but increased in hat1hat2hat3 compared with Col-0 after CMV infection, but there were little difference in JA level or JA synthesis-related gene expression among HAT1OX or defective plants. In addition, HAT1 expression is dependent on SA accumulation. Taken together, our study indicated that HAT1 negatively regulates plant defense responses to CMV.
Collapse
Affiliation(s)
- Li-Juan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China Life Science and Technology College and Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China These authors contributed equally to this work
| | - Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China These authors contributed equally to this work
| | - Xue-Ying Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Wen-Rong Tan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Jun Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China Life Science and Technology College and Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China These authors contributed equally to this work.
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
130
|
Yang Y, Chi Y, Wang Z, Zhou Y, Fan B, Chen Z. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4727-42. [PMID: 27335454 PMCID: PMC4973743 DOI: 10.1093/jxb/erw252] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
WRKY transcription factors constitute a large protein superfamily with a predominant role in plant stress responses. In this study we report that two structurally related soybean WRKY proteins, GmWRKY58 and GmWRKY76, play a critical role in plant growth and flowering. GmWRKY58 and GmWRKY76 are both Group III WRKY proteins with a C2HC zinc finger domain and are close homologs of AtWRKY70 and AtWRKY54, two well-characterized Arabidopsis WRKY proteins with an important role in plant responses to biotic and abiotic stresses. GmWRKY58 and GmWRKY76 are both localized to the nucleus, recognize the TTGACC W-box sequence with a high specificity, and function as transcriptional activators in both yeast and plant cells. Expression of GmWRKY58 and GmWRKY76 was detected at low levels in roots, stem, leaves, flowers, and pods. Expression of the two genes in leaves increased substantially during the first 4 weeks after germination but steadily declined thereafter with increased age. To determine their biological functions, transgenic Arabidopsis plants were generated overexpressing GmWRKY58 or GmWRKY76 Unlike AtWRKY70 and AtWRKY54, overexpression of GmWRKY58 or GmWRKY76 had no effect on disease resistance and only small effects on abiotic stress tolerance of the transgenic plants. Significantly, transgenic Arabidopsis plants overexpressing GmWRKY58 or GmWRKY76 flowered substantially earlier than control plants and this early flowering phenotype was associated with increased expression of several flowering-promoting genes, some of which are enriched in W-box sequences in their promoters recognized by GmWRKY58 and GmWRKY76. In addition, virus-induced silencing of GmWRKY58 and GmWRKY76 in soybean resulted in stunted plants with reduced leaf expansion and terminated stem growth. These results provide strong evidence for functional divergence among close structural homologs of WRKY proteins from different plant species.
Collapse
Affiliation(s)
- Yan Yang
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China
| | - Yingjun Chi
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China
| | - Ze Wang
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China
| | - Yuan Zhou
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
131
|
Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1368-80. [PMID: 26563848 DOI: 10.1111/pbi.12501] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 05/20/2023]
Abstract
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fiona Filardo
- Queensland Department of Agriculture and Fisheries (QDAF), Ecosciences Precinct, Brisbane, Old, Australia
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
132
|
Collum TD, Padmanabhan MS, Hsieh YC, Culver JN. Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading. Proc Natl Acad Sci U S A 2016; 113:E2740-9. [PMID: 27118842 PMCID: PMC4868455 DOI: 10.1073/pnas.1524390113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. In this study, an interaction between the replication protein of tobacco mosaic virus (TMV) and phloem-specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading in an age-dependent manner. Promoter expression studies show that in mature tissues TMV 126/183-kDa-interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CCs). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus. In situ analysis of virus spread shows that the inability to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at moving out of older plant tissues than a noninteracting virus. Similarly, CC expression and overaccumulation of a degradation-resistant Aux/IAA-interacting protein was found to inhibit TMV accumulation and phloem loading selectively in flowering plants. Transcriptional expression studies demonstrate a role for Aux/IAA-interacting proteins in the regulation of salicylic and jasmonic acid host defense responses as well as virus-specific movement factors, including pectin methylesterase, that are involved in regulating plasmodesmata size-exclusion limits and promoting virus cell-to-cell movement. Combined, these findings indicate that TMV directs the reprogramming of auxin-regulated gene expression within the vascular phloem of mature tissues as a means to enhance phloem loading and systemic spread.
Collapse
Affiliation(s)
- Tamara D Collum
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Meenu S Padmanabhan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Yi-Cheng Hsieh
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| |
Collapse
|
133
|
Gao R, Liu P, Yong Y, Wong SM. Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Sci Rep 2016; 6:24604. [PMID: 27086702 PMCID: PMC4834565 DOI: 10.1038/srep24604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/01/2016] [Indexed: 11/16/2022] Open
Abstract
Turnip crinkle virus (TCV) is a carmovirus that infects many Arabidopsis ecotypes. Most studies mainly focused on discovery of resistance genes against TCV infection, and there is no Next Generation Sequencing based comparative genome wide transcriptome analysis reported. In this study, RNA-seq based transcriptome analysis revealed that 238 (155 up-regulated and 83 down-regulated) significant differentially expressed genes with at least 15-fold change were determined. Fifteen genes (including upregulated, unchanged and downregulated) were selected for RNA-seq data validation using quantitative real-time PCR, which showed consistencies between these two sets of data. GO enrichment analysis showed that numerous terms such as stress, immunity, defence and chemical stimulus were affected in TCV-infected plants. One putative plant defence related gene named WRKY61 was selected for further investigation. It showed that WRKY61 overexpression plants displayed reduced symptoms and less virus accumulation, as compared to wild type (WT) and WRKY61 deficient lines, suggesting that higher WRKY61 expression level reduced TCV viral accumulation. In conclusion, our transcriptome analysis showed that global gene expression was detected in TCV-infected Arabidopsis thaliana. WRKY61 gene was shown to be negatively correlated with TCV infection and viral symptoms, which may be connected to plant immunity pathways.
Collapse
Affiliation(s)
- Ruimin Gao
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Peng Liu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yuhan Yong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore.,Temasek Life Sciences Laboratory, Singapore.,National University of Singapore Suzhou Research Institute, Suzhou Industrial Park, Jiangsu, China
| |
Collapse
|
134
|
Shen L, Liu Z, Yang S, Yang T, Liang J, Wen J, Liu Y, Li J, Shi L, Tang Q, Shi W, Hu J, Liu C, Zhang Y, Lin W, Wang R, Yu H, Mou S, Hussain A, Cheng W, Cai H, He L, Guan D, Wu Y, He S. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2439-51. [PMID: 26936828 PMCID: PMC4809298 DOI: 10.1093/jxb/erw069] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH.
Collapse
Affiliation(s)
- Lei Shen
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tong Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiaqi Liang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiayu Wen
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yanyan Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiazhi Li
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lanping Shi
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qian Tang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Shi
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Lin
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Rongzhang Wang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Huanxin Yu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shaoliang Mou
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Cheng
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hanyang Cai
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Li He
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Deyi Guan
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yang Wu
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
135
|
W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci Rep 2016; 6:20881. [PMID: 26864250 PMCID: PMC4749992 DOI: 10.1038/srep20881] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Plant cis-elements play important roles in global regulation of gene expression. Based on microarray data from rice flag leaves during early senescence, we identified W-box and G-box cis-elements as positive regulators of senescence in the important rice variety Minghui 63. Both cis-elements were bound by leaf senescence-specific proteins in vitro and influenced senescence in vivo. Furthermore, combination of the two elements drove enhanced expression during leaf senescence, and copy numbers of the cis-elements significantly affected the levels of expression. The W-box is the cognate cis-element for WRKY proteins, while the G-box is the cognate cis-element for bZIP, bHLH and NAC proteins. Consistent with this, WRKY, bZIP, bHLH and NAC family members were overrepresented among transcription factor genes up-regulated according during senescence. Crosstalk between ABA, CTK, BR, auxin, GA and JA during senescence was uncovered by comparing expression patterns of senescence up-regulated transcription factors. Together, our results indicate that hormone-mediated signaling could converge on leaf senescence at the transcriptional level through W-box and G-box elements. Considering that there are very few documented early senescence-related cis-elements, our results significantly contribute to understanding the regulation of flag leaf senescence and provide prioritized targets for stay-green trait improvement.
Collapse
|
136
|
Huang Y, Feng CZ, Ye Q, Wu WH, Chen YF. Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development. PLoS Genet 2016; 12:e1005833. [PMID: 26829043 PMCID: PMC4734665 DOI: 10.1371/journal.pgen.1005833] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 01/08/2016] [Indexed: 11/18/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression. The WRKY6 protein is a WRKY transcription factor which plays important roles in plant pathogen defense, phosphate translocation, and arsenate resistance. This study demonstrated that the expression of WRKY6 was obviously repressed during seed germination and significantly induced by exogenous ABA. In the presence of exogenous ABA, the two wrky6 mutants showed ABA-insensitive phenotypes, whereas the WRKY6-overexpressing lines were hypersensitive to ABA. The WRKY6 transcription factor repressed RAV1 expression and enhanced the expression of ABI3, ABI4 and ABI5, which was down-regulated by RAV1. The WRKY6 protein could bind to the W-box motif within the RAV1 promoter, indicating that WRKY6 directly regulated RAV1 expression. Overexpression of RAV1 abolished the ABA-sensitivity of WRKY6-overexpressing lines, and repression of RAV1 impaired the ABA-insensitivity of wrky6 mutants. Our results reveal the important roles of WRKY6 in ABA signaling during seed germination and early seedling development.
Collapse
Affiliation(s)
- Yun Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing, China
| | - Cui-Zhu Feng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing, China
| | - Qing Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing, China
- * E-mail:
| |
Collapse
|
137
|
Guo D, Qin G. EXB1/WRKY71 transcription factor regulates both shoot branching and responses to abiotic stresses. PLANT SIGNALING & BEHAVIOR 2016; 11:e1150404. [PMID: 26914912 PMCID: PMC4883898 DOI: 10.1080/15592324.2016.1150404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As the sessile organisms, plants evolve different strategies to survive in adverse environmental conditions. The elaborate regulation of shoot branching is an important strategy for plant morphological adaptation to various environments, while the regulation of reactive oxygen species (ROS), salicylic acid (SA) and jasmonic acid (JA) is pivotal for plant responses to biotic and abiotic stresses. Recently, we have demonstrated that Arabidopsis EXB1, a WRKY transcription factor, is a positive regulator of shoot branching as a cover story in Plant Cell. Here we show that WRKY23, an EXB1 close member, has a redundant role in control of shoot branching. We further show that EXB1 is induced by H2O2, ABA or mannitol treatments, suggesting that EXB1 may also play roles in plant responses to abiotic stresses. RNA-sequencing (RNA-seq) analysis using 4EnhpEXB1-EXB1GR inducible line indicates that the genes involved in oxidative stress, oxidation reduction, SA or JA signaling pathway are regulated by EXB1 induction in a short time. We suggest that EXB1/WRKY71 transcription factor may play pivotal roles in plant adaptation to environments by both morphological and physiological ways.
Collapse
Affiliation(s)
- Dongshu Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, People's Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
138
|
Ma Y, Mao XY, Huang LJ, Fan YM, Gu W, Yan C, Huang T, Zhang JX, Yuan CM, Hao XJ. Diterpene alkaloids and diterpenes from Spiraea japonica and their anti-tobacco mosaic virus activity. Fitoterapia 2015; 109:8-13. [PMID: 26625838 DOI: 10.1016/j.fitote.2015.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/16/2023]
Abstract
Five new naturally occurring natural products, including two atisine-type diterpene alkaloids (1 and 2), two atisane-type diterpenes (3 and 4), and a new natural product spiramine C2 (5), along with nine known ones (6-14), were isolated from the ethanolic extracts of the whole plant of Spiraea japonica var. acuminata Franch. Their structures were elucidated by extensive spectroscopic analysis. The anti-tobacco mosaic virus (TMV) activities of all the compounds were evaluated by the conventional half-leaf method. Six compounds (2, 3, 6, 7, 11, and 12) exhibited moderate activities at 100 μg/mL with inhibition rates in the range of 69.4-92.9%, which were higher than that of the positive control, ningnanmycin. Their preliminary structure-activity relationships were also discussed.
Collapse
Affiliation(s)
- Yuan Ma
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China; The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China
| | - Xin-Ying Mao
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China
| | - Lie-Jun Huang
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China
| | - Yi-Min Fan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China; The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China
| | - Wei Gu
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China
| | - Chen Yan
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China
| | - Tao Huang
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China
| | - Jian-Xin Zhang
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China
| | - Chun-Mao Yuan
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China.
| | - Xiao-Jiang Hao
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, People's Republic of China.
| |
Collapse
|
139
|
ThWRKY4 from Tamarix hispida Can Form Homodimers and Heterodimers and Is Involved in Abiotic Stress Responses. Int J Mol Sci 2015; 16:27097-106. [PMID: 26580593 PMCID: PMC4661867 DOI: 10.3390/ijms161126009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/13/2023] Open
Abstract
WRKY proteins are a large family of transcription factors that are involved in diverse developmental processes and abiotic stress responses in plants. However, our knowledge of the regulatory mechanisms of WRKYs participation in protein–protein interactions is still fragmentary, and such protein–protein interactions are fundamental in understanding biological networks and the functions of proteins. In this study, we report that a WRKY protein from Tamarix hispida, ThWRKY4, can form both homodimers and heterodimers with ThWRKY2 and ThWRKY3. In addition, ThWRKY2 and ThWRKY3 can both bind to W-box motif with binding affinities similar to that of ThWRKY4. Further, the expression patterns of ThWRKY2 and ThWRKY3 are similar to that of ThWRKY4 when plants are exposed to abscisic acid (ABA). Subcellular localization shows that these three ThWRKY proteins are nuclear proteins. Taken together, these results demonstrate that ThWRKY4 is a dimeric protein that can form functional homodimers or heterodimers that are involved in abiotic stress responses.
Collapse
|
140
|
Guo D, Zhang J, Wang X, Han X, Wei B, Wang J, Li B, Yu H, Huang Q, Gu H, Qu LJ, Qin G. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis. THE PLANT CELL 2015; 27:3112-27. [PMID: 26578700 PMCID: PMC4682308 DOI: 10.1105/tpc.15.00829] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/31/2015] [Indexed: 05/15/2023]
Abstract
Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways.
Collapse
Affiliation(s)
- Dongshu Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xinlei Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiang Han
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Baoye Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianqiao Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Boxun Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingpei Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
141
|
Li P, Song A, Gao C, Jiang J, Chen S, Fang W, Zhang F, Chen F. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 95:26-34. [PMID: 26184088 DOI: 10.1016/j.plaphy.2015.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 05/20/2023]
Abstract
Members of the large WRKY transcription factor family are responsible for the regulation of plant growth, development and the stress response. Here, five WRKY members were isolated from chrysanthemum. They each contained a single WRKY domain and a C2H2 zinc finger motif, so were classified into group II. Transient expression experiments demonstrated that all five were expressed in the nucleus, although CmWRKY42 was also expressed in the cytoplasm. When expressed heterologously in yeast, the products of CmWRKY22 and CmWRKY48 exhibited transactivation activity, while those of CmWRKY21, CmWRKY40 and CmWRKY42 did not. The transcription of the five CmWRKY genes was profiled when the plants were challenged with a variety of abiotic and biotic stress agents, as well as being treated with various phytohormones. CmWRKY21 proved to be markedly induced by salinity stress, and suppressed by high temperature exposure; CmWRKY22 was induced by high temperature exposure; CmWRKY40 was highly induced by salinity stress, and treatment with either abscisic acid (ABA) or methyl jasmonate (MeJA); CmWRKY42 was up-regulated by salinity stress, low temperature, ABA and MeJA treatment and aphid infestation; CmWRKY48 was induced by drought stress, ABA and MeJA treatment and aphid infestation. The function of CmWRKY48 was further investigated by over-expressing it transgenically. The constitutive expression of this transcription factor inhibited the aphids' population growth capacity, suggesting that it may represent an important component of the plant's defense machinery against aphids.
Collapse
Affiliation(s)
- Peiling Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
142
|
Casteel CL, De Alwis M, Bak A, Dong H, Whitham SA, Jander G. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector. PLANT PHYSIOLOGY 2015; 169:209-18. [PMID: 26091820 PMCID: PMC4577379 DOI: 10.1104/pp.15.00332] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/17/2015] [Indexed: 05/19/2023]
Abstract
Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations.
Collapse
Affiliation(s)
- Clare L Casteel
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Manori De Alwis
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Haili Dong
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Steven A Whitham
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| | - Georg Jander
- Department of Plant Pathology, University of California, Davis, California 95616 (C.L.C., A.B.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (M.D.A., G.J.); andDepartment of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 (H.D., S.A.W.)
| |
Collapse
|
143
|
Levy A. Turnip vein clearing virus movement protein nuclear activity: Do Tobamovirus movement proteins play a role in immune response suppression? PLANT SIGNALING & BEHAVIOR 2015; 10:e1066951. [PMID: 26237173 PMCID: PMC4883906 DOI: 10.1080/15592324.2015.1066951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 05/11/2023]
Abstract
Plant viruses' cell-to-cell movement requires the function of virally encoded movement proteins (MPs). The Tobamovirus, Tobacco mosaic virus (TMV) has served as the model virus to study the activities of single MPs. However, since TMV does not infect the model plant Arabidopsis thaliana I have used a related Tobamovirus, Turnip vein-clearing virus (TVCV). I recently showed that, despite belonging to the same genus, the behavior of the 2 viruses MPs differ significantly during infection. Most notably, MP(TVCV), but not MP(TMV), targets the nucleus and induces the formation of F actin-containing filaments that associate with chromatin. Mutational analyses showed that nuclear localization of MP(TVCV) was necessary for TVCV local and systemic infection in both Nicotiana benthamiana and Arabidopsis. In this addendum, I propose possible targets for the MP(TVCV) nuclear activity, and suggest viewing MPs as viral effector-like proteins, playing a role in the inhibition of plant defense.
Collapse
Affiliation(s)
- Amit Levy
- Boyce Thompson Institute for Plant Research; Ithaca, NY USA
- Section of Plant Pathology and Plant Microbe Biology; School of Integrative Plant Science; Cornell University; Ithaca, NY USA
| |
Collapse
|
144
|
Sun Y, Yu D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. PLANT CELL REPORTS 2015; 34:1295-306. [PMID: 25861729 DOI: 10.1007/s00299-015-1787-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/09/2015] [Accepted: 03/30/2015] [Indexed: 05/02/2023]
Abstract
AtWRKY53 is an early factor in drought response and activated expression of AtWRKY53 regulates stomatal movement via reduction of H 2 O 2 content and promotion of starch metabolism in guard cells. Drought is one of the most serious environmental factors limiting the productivity of agricultural crops worldwide. However, the mechanisms underlying drought tolerance in plants remain unclear. AtWRKY53 belongs to the group III of WRKY transcription factors. In this study, we observed both the mRNA and protein products of this gene are rapidly induced under drought conditions. Phenotypic analysis showed AtWRKY53 overexpression lines were hypersensitive to drought stress compared with Col-0 plants. The results of stomatal movement assays and abscisic acid (ABA) content detection indicated that the impaired stomatal closure of 53OV lines was independent of ABA. Further analysis found that WRKY53 regulated stomatal movement via reducing the H2O2 content and promoting the starch metabolism in guard cells. The results of quantitative real-time reverse transcriptase PCR showed that the expression levels of CAT2, CAT3 and QQS were up-regulated in 53OV lines. Chromatin immunoprecipitation assays demonstrated that AtWRKY53 can directly bind to the QQS promoter sequences, thus led to increased starch metabolism. In summary, our results indicated that the activated expression of AtWRKY53 inhibited stomatal closure by reducing H2O2 content and facilitated stomatal opening by promoting starch degradation.
Collapse
Affiliation(s)
- Yiding Sun
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | | |
Collapse
|
145
|
Häffner E, Konietzki S, Diederichsen E. Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense. PLANTS (BASEL, SWITZERLAND) 2015; 4:449-88. [PMID: 27135337 PMCID: PMC4844401 DOI: 10.3390/plants4030449] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding.
Collapse
Affiliation(s)
- Eva Häffner
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
| | - Sandra Konietzki
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Elke Diederichsen
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
- Norddeutsche Pflanzenzucht H.G. Lembke KG, Hohenlieth, D-24363 Holtsee, Germany.
| |
Collapse
|
146
|
Li W, Tian Z, Yu D. WRKY13 acts in stem development in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:205-213. [PMID: 26025534 DOI: 10.1016/j.plantsci.2015.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/23/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
Stems are important for plants to grow erectly. In stems, sclerenchyma cells must develop secondary cell walls to provide plants with physical support. The secondary cell walls are mainly composed of lignin, xylan and cellulose. Deficiency of overall stem development could cause weakened stems. Here we prove that WRKY13 acts in stem development. The wrky13 mutants take on a weaker stem phenotype. The number of sclerenchyma cells, stem diameter and the number of vascular bundles were reduced in wrky13 mutants. Lignin-synthesis-related genes were repressed in wrky13 mutants. Chromatin immunoprecipitation assays proved that WRKY13 could directly bind to the promoter of NST2. Taken together, we proposed that WRKY13 affected the overall development of stem. Identification of the role of WRKY13 may help to resolve agricultural problems caused by weaker stems.
Collapse
Affiliation(s)
- Wei Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Zhaoxia Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
147
|
Cai H, Yang S, Yan Y, Xiao Z, Cheng J, Wu J, Qiu A, Lai Y, Mou S, Guan D, Huang R, He S. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3163-74. [PMID: 25873659 DOI: 10.1093/jxb/erv125] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High temperature (HT), high humidity (HH), and pathogen infection often co-occur and negatively affect plant growth. However, these stress factors and plant responses are generally studied in isolation. The mechanisms of synergistic responses to combined stresses are poorly understood. We isolated the subgroup IIb WRKY family member CaWRKY6 from Capsicum annuum and performed quantitative real-time PCR analysis. CaWRKY6 expression was upregulated by individual or simultaneous treatment with HT, HH, combined HT and HH (HTHH), and Ralstonia solanacearum inoculation, and responded to exogenous application of jasmonic acid (JA), ethephon, and abscisic acid (ABA). Virus-induced gene silencing of CaWRKY6 enhanced pepper plant susceptibility to R. solanacearum and HTHH, and downregulated the hypersensitive response (HR), JA-, ethylene (ET)-, and ABA-induced marker gene expression, and thermotolerance-associated expression of CaHSP24, ER-small CaSHP, and Chl-small CaHSP. CaWRKY6 overexpression in pepper attenuated the HTHH-induced suppression of resistance to R. solanacearum infection. CaWRKY6 bound to and activated the CaWRKY40 promoter in planta, which is a pepper WRKY that regulates heat-stress tolerance and R. solanacearum resistance. CaWRKY40 silencing significantly blocked HR-induced cell death and reduced transcriptional expression of CaWRKY40. These data suggest that CaWRKY6 is a positive regulator of R. solanacearum resistance and heat-stress tolerance, which occurs in part by activating CaWRKY40.
Collapse
Affiliation(s)
- Hanyang Cai
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yan Yan
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhuoli Xiao
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Junbin Cheng
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ji Wu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ailian Qiu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yan Lai
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shaoliang Mou
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Deyi Guan
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ronghua Huang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
148
|
Alazem M, Lin NS. Roles of plant hormones in the regulation of host-virus interactions. MOLECULAR PLANT PATHOLOGY 2015; 16:529-40. [PMID: 25220680 PMCID: PMC6638471 DOI: 10.1111/mpp.12204] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones.
Collapse
Affiliation(s)
- Mazen Alazem
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan
| | | |
Collapse
|
149
|
WRKY transcription factors: links between phytohormones and plant processes. SCIENCE CHINA-LIFE SCIENCES 2015; 58:501-2. [PMID: 25863498 DOI: 10.1007/s11427-015-4849-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
|
150
|
Abreu PMV, Antunes TFS, Magaña-Álvarez A, Pérez-Brito D, Tapia-Tussell R, Ventura JA, Fernandes AAR, Fernandes PMB. A current overview of the Papaya meleira virus, an unusual plant virus. Viruses 2015; 7:1853-70. [PMID: 25856636 PMCID: PMC4411680 DOI: 10.3390/v7041853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease, which is characterized by a spontaneous exudation of fluid and aqueous latex from the papaya fruit and leaves. The latex oxidizes after atmospheric exposure, resulting in a sticky feature on the fruit from which the name of the disease originates. PMeV is an isometric virus particle with a double-stranded RNA (dsRNA) genome of approximately 12 Kb. Unusual for a plant virus, PMeV particles are localized on and linked to the polymers present in the latex. The ability of the PMeV to inhabit such a hostile environment demonstrates an intriguing interaction of the virus with the papaya. A hypersensitivity response is triggered against PMeV infection, and there is a reduction in the proteolytic activity of papaya latex during sticky disease. In papaya leaf tissues, stress responsive proteins, mostly calreticulin and proteasome-related proteins, are up regulated and proteins related to metabolism are down-regulated. Additionally, PMeV modifies the transcription of several miRNAs involved in the modulation of genes related to the ubiquitin-proteasome system. Until now, no PMeV resistant papaya genotype has been identified and roguing is the only viral control strategy available. However, a single inoculation of papaya plants with PMeV dsRNA delayed the progress of viral infection.
Collapse
Affiliation(s)
- Paolla M V Abreu
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
| | - Tathiana F S Antunes
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
| | - Anuar Magaña-Álvarez
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Mérida 97200, Yucatán, Mexico.
| | - Daisy Pérez-Brito
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Mérida 97200, Yucatán, Mexico.
| | - Raúl Tapia-Tussell
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Mérida 97200, Yucatán, Mexico.
| | - José A Ventura
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória 29050790, Espírito Santo, Brazil.
| | - Antonio A R Fernandes
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
| | - Patricia M B Fernandes
- Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29040090, Espírito Santo, Brazil.
| |
Collapse
|