101
|
He J, Sun C, Li T, Luo Z, Huang L, Song X, Li X, Abliz Z. A Sensitive and Wide Coverage Ambient Mass Spectrometry Imaging Method for Functional Metabolites Based Molecular Histology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800250. [PMID: 30479912 PMCID: PMC6247026 DOI: 10.1002/advs.201800250] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/19/2018] [Indexed: 05/21/2023]
Abstract
Histological examination with a deep link between functional metabolites and tissue structure and biofunctions will provide important in situ biochemical information, and then essentially reveal what has happened in tissue at the molecular level. However, due to the complexity and heterogeneity of tissue samples and the large number of metabolites, it is still a challenge to globally map the diverse metabolites, especially for those low-abundance functional ones. Here, a sensitive air flow-assisted desorption electrospray ionization mass spectrometry imaging method for the mapping of a broad range of metabolites is presented. It exhibits properties characteristic of wide coverage, high sensitivity, wide dynamic range, rapid analysis procedure, and high specificity for tissue metabolites imaging. More than 1500 metabolites, including cholines, polyamines, amino acids, carnitines, nucleosides, nucleotides, nitrogen bases, organic acids, carbohydrates, cholesterol sulfate, cholic acid, lipids, etc., can be visualized in an untargeted analysis. The distribution of metabolites shows good spatial match with tissue histological structure and biofunctions in heterogeneous rat kidney, rat brain, and human esophageal cancer tissue. This method possesses the ability to globally showcase the molecular processes in tissue, and provide an insightful way for structural and functional molecular recognition in histological examination, even for intraoperative decision-making.
Collapse
Affiliation(s)
- Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Chenglong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Luojiao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Xiaowei Song
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
- Center for Imaging and Systems BiologyMinzu University of ChinaBeijing100081P. R. China
| |
Collapse
|
102
|
Pirro V, Jarmusch AK, Alfaro CM, Hattab EM, Cohen-Gadol AA, Cooks RG. Utility of neurological smears for intrasurgical brain cancer diagnostics and tumour cell percentage by DESI-MS. Analyst 2018; 142:449-454. [PMID: 28112301 DOI: 10.1039/c6an02645a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Analysis of neurological smears by desorption electrospray ionization mass spectrometry (DESI-MS) is an emerging diagnostic strategy for intraoperative consultation in brain tumor resection. DESI-MS allows rapid sampling while providing accurate diagnostic information. We assess the chemical homogeneity of neurological smears using DESI-MS imaging and the quality of rapid DESI-MS diagnosis.
Collapse
Affiliation(s)
- V Pirro
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - A K Jarmusch
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - C M Alfaro
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - E M Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA.
| | - A A Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
103
|
Glycerophosphatidylcholine PC(36:1) absence and 3'-phosphoadenylate (pAp) accumulation are hallmarks of the human glioma metabolome. Sci Rep 2018; 8:14783. [PMID: 30283018 PMCID: PMC6170378 DOI: 10.1038/s41598-018-32847-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Glioma is the most prevalent malignant brain tumor. A comprehensive analysis of the glioma metabolome is still lacking. This study aims to explore new special metabolites in glioma tissues. A non-targeted human glioma metabolomics was performed by UPLC-Q-TOF/MS. The gene expressions of 18 enzymes associated with 3’-phosphoadenylate (pAp) metabolism was examined by qRT-PCR. Those enzymes cover the primary metabolic pathway of pAp. We identified 15 new metabolites (13 lipids and 2 nucleotides) that were significantly different between the glioma and control tissues. Glycerophosphatidylcholine [PC(36:1)] content was high and pAp content was significantly low in the control brain (p < 0.01). In glioma tissues, PC(36:1) was not detected and pAp content was significantly increased. The gene expressions of 3′-nucleotidases (Inositol monophosphatase (IMPAD-1) and 3′(2′),5′-bisphosphate nucleotidase 1(BPNT-1)) were dramatically down-regulated. Meanwhile, the gene expression of 8 sulfotransferases (SULT), 2 phosphoadenosine phosphosulfate synthases (PAPSS-1 and PAPSS-2) and L-aminoadipate-semialdehyde dehydrogenase-phosphopante-theinyl transferase (AASDHPPT) were up-regulated. PC(36:1) absence and pAp accumulation are the most noticeable metabolic aberration in glioma. The dramatic down-regulation of IMPAD-1 and BPNT-1 are the primary cause for pAp dramatic accumulation. Our findings suggest that differential metabolites discovered in glioma could be used as potentially novel therapeutic targets or diagnostic biomarkers and that abnormal metabolism of lipids and nucleotides play roles in the pathogenesis of glioma.
Collapse
|
104
|
Garza KY, Feider CL, Klein DR, Rosenberg JA, Brodbelt JS, Eberlin LS. Desorption Electrospray Ionization Mass Spectrometry Imaging of Proteins Directly from Biological Tissue Sections. Anal Chem 2018; 90:7785-7789. [PMID: 29800516 DOI: 10.1021/acs.analchem.8b00967] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Analysis of large biomolecules including proteins has proven challenging using ambient ionization mass spectrometry imaging techniques. Here, we have successfully optimized desorption electrospray ionization mass spectrometry (DESI-MS) to detect intact proteins directly from tissue sections and further integrated DESI-MS to a high field asymmetric waveform ion mobility (FAIMS) device for protein imaging. Optimized DESI-FAIMS-MS parameters were used to image mouse kidney, mouse brain, and human ovarian and breast tissue samples, allowing detection of 11, 16, 14, and 16 proteoforms, respectively. Identification of protein species detected by DESI-MS was performed on-tissue by top-down ultraviolet photodissociation (UVPD) and collision induced dissociation (CID) as well as using tissue extracts by bottom-up CID and top-down UVPD. Our results demonstrate that DESI-MS imaging is suitable for the analysis of the distribution of proteins within biological tissue sections.
Collapse
Affiliation(s)
- Kyana Y Garza
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Clara L Feider
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Dustin R Klein
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jake A Rosenberg
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Livia S Eberlin
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
105
|
Cooks RG, Yan X. Mass Spectrometry for Synthesis and Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:1-28. [PMID: 29894228 DOI: 10.1146/annurev-anchem-061417-125820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mass spectrometry is the science and technology of ions. As such, it is concerned with generating ions, measuring their properties, following their reactions, isolating them, and using them to build and transform materials. Instrumentation is an essential element of these activities, and analytical applications are one driving force. Work from the Aston Laboratories at Purdue University's Department of Chemistry is described here, with an emphasis on accelerated reactions of ions in solution and small-scale synthesis; ion/surface collision processes, including surface-induced dissociation (SID) and ion soft landing; and applications to tissue imaging. Our special interest in chirality and the chemistry behind the origins of life is also featured together with the exciting area of tissue diagnostics.
Collapse
Affiliation(s)
- R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
| | - Xin Yan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
- Current affiliation: Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
106
|
Distinguishing malignant from benign microscopic skin lesions using desorption electrospray ionization mass spectrometry imaging. Proc Natl Acad Sci U S A 2018; 115:6347-6352. [PMID: 29866838 DOI: 10.1073/pnas.1803733115] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Detection of microscopic skin lesions presents a considerable challenge in diagnosing early-stage malignancies as well as in residual tumor interrogation after surgical intervention. In this study, we established the capability of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to distinguish between micrometer-sized tumor aggregates of basal cell carcinoma (BCC), a common skin cancer, and normal human skin. We analyzed 86 human specimens collected during Mohs micrographic surgery for BCC to cross-examine spatial distributions of numerous lipids and metabolites in BCC aggregates versus adjacent skin. Statistical analysis using the least absolute shrinkage and selection operation (Lasso) was employed to categorize each 200-µm-diameter picture element (pixel) of investigated skin tissue map as BCC or normal. Lasso identified 24 molecular ion signals, which are significant for pixel classification. These ion signals included lipids observed at m/z 200-1,200 and Krebs cycle metabolites observed at m/z < 200. Based on these features, Lasso yielded an overall 94.1% diagnostic accuracy pixel by pixel of the skin map compared with histopathological evaluation. We suggest that DESI-MSI/Lasso analysis can be employed as a complementary technique for delineation of microscopic skin tumors.
Collapse
|
107
|
Li CR, Li MN, Yang H, Li P, Gao W. Rapid characterization of chemical markers for discrimination of Moutan Cortex and its processed products by direct injection-based mass spectrometry profiling and metabolomic method. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 45:76-83. [PMID: 29685367 DOI: 10.1016/j.phymed.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/28/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Processing of herbal medicines is a characteristic pharmaceutical technique in Traditional Chinese Medicine, which can reduce toxicity and side effect, improve the flavor and efficacy, and even change the pharmacological action entirely. It is significant and crucial to perform a method to find chemical markers for differentiating herbal medicines in different processed degrees. PURPOSE The aim of this study was to perform a rapid and reasonable method to discriminate Moutan Cortex and its processed products, and to reveal the characteristics of chemical components depend on chemical markers. METHODS Thirty batches of Moutan Cortex and its processed products, including 11 batches of Raw Moutan Cortex (RMC), 9 batches of Moutan Cortex Tostus (MCT) and 10 batches of Moutan Cortex Carbonisatus (MCC), were directly injected in electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF MS) for rapid analysis in positive and negative mode. Without chromatographic separation, each run was completed within 3 min. The raw MS data were automatically extracted by background deduction and molecular feature (MF) extraction algorithm. In negative mode, a total of 452 MFs were obtained and then pretreated by data filtration and differential analysis. After that, the filtered 85 MFs were treated by principal component analysis (PCA) to reduce the dimensions. Subsequently, a partial least squares discrimination analysis (PLS-DA) model was constructed for differentiation and chemical markers detection of Moutan Cortex in different processed degrees. The positive mode data were treated as same as those in negative mode. RESULTS RMC, MCT and MCC were successfully classified. Moreover, 14 and 3 chemical markers from negative and positive mode respectively, were screened by the combination of their relative peak areas and the parameter variable importance in the projection (VIP) values in PLS-DA model. The content changes of these chemical markers were employed in order to illustrate chemical changes of Moutan Cortex after processed. CONCLUSION These results showed that the proposed method which combined non-targeted metabolomics analysis with multivariate statistics analysis is reasonable and effective. It could not only be applied to discriminate herbal medicines and their processing products, but also to reveal the characteristics of chemical components during processing.
Collapse
Affiliation(s)
- Chao-Ran Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
108
|
Zhang J, Rector J, Lin JQ, Young JH, Sans M, Katta N, Giese N, Yu W, Nagi C, Suliburk J, Liu J, Bensussan A, DeHoog RJ, Garza KY, Ludolph B, Sorace AG, Syed A, Zahedivash A, Milner TE, Eberlin LS. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med 2018; 9:9/406/eaan3968. [PMID: 28878011 DOI: 10.1126/scitranslmed.aan3968] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
Conventional methods for histopathologic tissue diagnosis are labor- and time-intensive and can delay decision-making during diagnostic and therapeutic procedures. We report the development of an automated and biocompatible handheld mass spectrometry device for rapid and nondestructive diagnosis of human cancer tissues. The device, named MasSpec Pen, enables controlled and automated delivery of a discrete water droplet to a tissue surface for efficient extraction of biomolecules. We used the MasSpec Pen for ex vivo molecular analysis of 20 human cancer thin tissue sections and 253 human patient tissue samples including normal and cancerous tissues from breast, lung, thyroid, and ovary. The mass spectra obtained presented rich molecular profiles characterized by a variety of potential cancer biomarkers identified as metabolites, lipids, and proteins. Statistical classifiers built from the histologically validated molecular database allowed cancer prediction with high sensitivity (96.4%), specificity (96.2%), and overall accuracy (96.3%), as well as prediction of benign and malignant thyroid tumors and different histologic subtypes of lung cancer. Notably, our classifier allowed accurate diagnosis of cancer in marginal tumor regions presenting mixed histologic composition. Last, we demonstrate that the MasSpec Pen is suited for in vivo cancer diagnosis during surgery performed in tumor-bearing mouse models, without causing any observable tissue harm or stress to the animal. Our results provide evidence that the MasSpec Pen could potentially be used as a clinical and intraoperative technology for ex vivo and in vivo cancer diagnosis.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - John Rector
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.,Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - John Q Lin
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan H Young
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Marta Sans
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Nitesh Katta
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Noah Giese
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Wendong Yu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James Suliburk
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alena Bensussan
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Rachel J DeHoog
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Kyana Y Garza
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Benjamin Ludolph
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Anna G Sorace
- Department of Internal Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Anum Syed
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Aydin Zahedivash
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E Milner
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Livia S Eberlin
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
109
|
Tang F, Guo C, Ma X, Zhang J, Su Y, Tian R, Shi R, Xia Y, Wang X, Ouyang Z. Rapid In Situ Profiling of Lipid C═C Location Isomers in Tissue Using Ambient Mass Spectrometry with Photochemical Reactions. Anal Chem 2018; 90:5612-5619. [PMID: 29624380 DOI: 10.1021/acs.analchem.7b04675] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid and in situ profiling of lipids using ambient mass spectrometry (AMS) techniques has great potential for clinical diagnosis, biological studies, and biomarker discovery. In this study, the online photochemical reaction involving carbon-carbon double bonds was coupled with a surface sampling technique to develop a direct tissue-analysis method with specificity to lipid C═C isomers. This method enabled the in situ analysis of lipids from the surface of various tissues or tissue sections, which allowed the structural characterization of lipid isomers within 2 min. Under optimized reaction conditions, we have established a method for the relative quantitation of lipid C═C location isomers by comparing the abundances of the diagnostic ions arising from each isomer, which has been proven effective through the established linear relationship ( R2 = 0.999) between molar ratio and diagnostic ion ratio of the FA 18:1 C═C location isomers. This method was then used for the rapid profiling of unsaturated lipid C═C isomers in the sections of rat brain, lung, liver, spleen, and kidney, as well as in normal and diseased rat tissues. Quantitative information on FA 18:1 and PC 16:0-18:1 C═C isomers was obtained, and significant differences were observed between different samples. To the best of our knowledge, this is the first study to report the direct analysis of lipid C═C isomers in tissues using AMS. Our results demonstrated that this method can serve as a rapid analytical approach for the profiling of unsaturated lipid C═C isomers in biological tissues and should contribute to functional lipidomics and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Chengan Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Jian Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Yuan Su
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Ran Tian
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Riyi Shi
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yu Xia
- Department of Chemistry , Tsinghua University , Beijing 100084 , China.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Xiaohao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
110
|
Cahill JF, Kertesz V, Porta T, LeBlanc JCY, Heeren RMA, Van Berkel GJ. Solvent effects on differentiation of mouse brain tissue using laser microdissection 'cut and drop' sampling with direct mass spectral analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:414-422. [PMID: 29297944 DOI: 10.1002/rcm.8053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/12/2023]
Abstract
RATIONALE Laser microdissection-liquid vortex capture/electrospray ionization mass spectrometry (LMD-LVC/ESI-MS) has potential for on-line classification of tissue but an investigation into what analytical conditions provide best spectral differentiation has not been conducted. The effects of solvent, ionization polarity, and spectral acquisition parameters on differentiation of mouse brain tissue regions are described. METHODS Individual 40 × 40 μm microdissections from cortex, white, grey, granular, and nucleus regions of mouse brain tissue were analyzed using different capture/ESI solvents, in positive and negative ion mode ESI, using time-of-flight (TOF)-MS and sequential window acquisitions of all theoretical spectra (SWATH)-MS (a permutation of tandem-MS), and combinations thereof. Principal component analysis-linear discriminant analysis (PCA-LDA), applied to each mass spectral dataset, was used to determine the accuracy of differentiation of mouse brain tissue regions. RESULTS Mass spectral differences associated with capture/ESI solvent composition manifested as altered relative distributions of ions rather than the presence or absence of unique ions. In negative ion mode ESI, 80/20 (v/v) methanol/water yielded spectra with low signal/noise ratios relative to other solvents. PCA-LDA models acquired using 90/10 (v/v) methanol/chloroform differentiated tissue regions with 100% accuracy while data collected using methanol misclassified some samples. The combination of SWATH-MS and TOF-MS data improved differentiation accuracy. CONCLUSIONS Combined TOF-MS and SWATH-MS data differentiated white, grey, granular, and nucleus mouse tissue regions with greater accuracy than when solely using TOF-MS data. Using 90/10 (v/v) methanol/chloroform, tissue regions were perfectly differentiated. These results will guide future studies looking to utilize the potential of LMD-LVC/ESI-MS for tissue and disease differentiation.
Collapse
Affiliation(s)
- John F Cahill
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Tiffany Porta
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | | | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Gary J Van Berkel
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| |
Collapse
|
111
|
Maleki H, Karanji AK, Majuta S, Maurer MM, Valentine SJ. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:230-241. [PMID: 28956290 PMCID: PMC5942887 DOI: 10.1007/s13361-017-1798-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 05/11/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate (in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Ahmad K Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Sandra Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Megan M Maurer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
112
|
Pînzariu O, Georgescu B, Georgescu CE. Metabolomics-A Promising Approach to Pituitary Adenomas. Front Endocrinol (Lausanne) 2018; 9:814. [PMID: 30705668 PMCID: PMC6345099 DOI: 10.3389/fendo.2018.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Metabolomics-the novel science that evaluates the multitude of low-molecular-weight metabolites in a biological system, provides new data on pathogenic mechanisms of diseases, including endocrine tumors. Although development of metabolomic profiling in pituitary disorders is at an early stage, it seems to be a promising approach in the near future in identifying specific disease biomarkers and understanding cellular signaling networks. Objectives: To review the metabolomic profile and the contributions of metabolomics in pituitary adenomas (PA). Methods: A systematic review was conducted via PubMed, Web of Science Core Collection and Scopus databases, summarizing studies that have described metabolomic aspects of PA. Results: Liquid chromatography tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectrometry, which are traditional techniques employed in metabolomics, suggest amino acids metabolism appears to be primarily altered in PA. N-acetyl aspartate, choline-containing compounds and creatine appear as highly effective in differentiating PA from healthy tissue. Deoxycholic and 4-pyridoxic acids, 3-methyladipate, short chain fatty acids and glucose-6-phosphate unveil metabolite biomarkers in patients with Cushing's disease. Phosphoethanolamine, N-acetyl aspartate and myo-inositol are down regulated in prolactinoma, whereas aspartate, glutamate and glutamine are up regulated. Phosphoethanolamine, taurine, alanine, choline-containing compounds, homocysteine, and methionine were up regulated in unclassified PA across studies. Intraoperative use of ultra high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which allows localization and delineation between functional PA and healthy pituitary tissue, may contribute to achievement of complete tumor resection in addition to preservation of pituitary cell lines and vasopressin secretory cells, thus avoiding postoperative diabetes insipidus. Conclusion: Implementation of ultra high performance metabolomics analysis techniques in the study of PA will significantly improve diagnosis and, potentially, the therapeutic approach, by identifying highly specific disease biomarkers in addition to novel molecular pathogenic mechanisms. Ultra high mass resolution MALDI-MSI emerges as a helpful clinical tool in the neurosurgical treatment of pituitary tumors. Therefore, metabolomics appears to be a science with a promising prospect in the sphere of PA, and a starting point in pituitary care.
Collapse
Affiliation(s)
- Oana Pînzariu
- 6 Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Georgescu
- Department of Ecology, Environmental Protection and Zoology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen E. Georgescu
- 6 Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania
- *Correspondence: Carmen E. Georgescu
| |
Collapse
|
113
|
Ren JL, Zhang AH, Kong L, Wang XJ. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 2018; 8:22335-22350. [PMID: 35539746 PMCID: PMC9081429 DOI: 10.1039/c8ra01574k] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolomics is the systematic study of all the metabolites present within a biological system, which consists of a mass of molecules, having a variety of physical and chemical properties and existing over an extensive dynamic range in biological samples. Diverse analytical techniques are needed to achieve higher coverage of metabolites. The application of mass spectrometry (MS) in metabolomics has increased exponentially since the discovery and development of electrospray ionization and matrix-assisted laser desorption ionization techniques. Significant advances have also occurred in separation-based MS techniques (gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and ion mobility-mass spectrometry), as well as separation-free MS techniques (direct infusion-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, mass spectrometry imaging, and direct analysis in real time mass spectrometry) in the past decades. This review presents a brief overview of the recent advanced MS techniques and their latest applications in metabolomics. The software/websites for MS result analyses are also reviewed. Metabolomics is the systematic study of all the metabolites present within a biological system, supply functional information and has received extensive attention in the field of life sciences.![]()
Collapse
Affiliation(s)
- Jun-Ling Ren
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ling Kong
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
114
|
Feng J, Zhang Q, Zhou Y, Yu S, Hong L, Zhao S, Yang J, Wan H, Xu G, Zhang Y, Li C. Integration of Proteomics and Metabolomics Revealed Metabolite-Protein Networks in ACTH-Secreting Pituitary Adenoma. Front Endocrinol (Lausanne) 2018; 9:678. [PMID: 30532734 PMCID: PMC6266547 DOI: 10.3389/fendo.2018.00678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
An effective treatment for the management of adrenocorticotropic hormone-secreting pituitary adenomas (ACTH-PA) is currently lacking, although surgery is a treatment option. We have integrated information obtained at the metabolomic and proteomic levels to identify critical networks and signaling pathways that may play important roles in the metabolic regulation of ACTH-PA and therefore hopefully represent potential therapeutic targets. Six ACTH-PAs and seven normal pituitary glands were investigated via gas chromatography-mass spectrometry (GC-MS) analysis for metabolomics. Five ACTH-PAs and five normal pituitary glands were subjected to proteomics analysis via nano liquid chromatography tandem-mass spectrometry (nanoLC-MS/MS). The joint pathway analysis and network analysis was performed using MetaboAnalyst 3.0. software. There were significant differences of metabolites and protein expression levels between the ACTH-PAs and normal pituitary glands. A proteomic analysis identified 417 differentially expressed proteins that were significantly enriched in the Myc signaling pathway. The protein-metabolite joint pathway analysis showed that differentially expressed proteins and metabolites were significantly enriched in glycolysis/gluconeogenesis, pyruvate metabolism, citrate cycle (TCA cycle), and the fatty acid metabolism pathway in ACTH-PA. The protein-metabolite molecular interaction network identified from the metabolomics and proteomics investigation resulted in four subnetworks. Ten nodes in subnetwork 1 were the most significantly enriched in cell amino acid metabolism and pyrimidine nucleotide metabolism. Additionally, the metabolite-gene-disease interaction network established nine subnetworks. Ninety-two nodes in subnetwork 1 were the most significantly enriched in carboxylic acid metabolism and organic acid metabolism. The present study clarified the pathway networks that function in ACTH-PA. Our results demonstrated the presence of downregulated glycolysis and fatty acid synthesis in this tumor type. We also revealed that the Myc signaling pathway significantly participated in the metabolic changes and tumorigenesis of ACTH-PA. This data may provide biomarkers for ACTH-PA diagnosis and monitoring, and could also lead to the development of novel strategies for treating pituitary adenomas.
Collapse
Affiliation(s)
- Jie Feng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shenyuan Yu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lichuan Hong
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sida Zhao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Yang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuzhong Li
| |
Collapse
|
115
|
Rustam YH, Reid GE. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal Chem 2017; 90:374-397. [PMID: 29166560 DOI: 10.1021/acs.analchem.7b04836] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yepy H Rustam
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia.,School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
116
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
117
|
Sarode GS, Choudhary N, Sarode SC, Patil S. Is the Pen really Mightier than the Scalpel? J Contemp Dent Pract 2017; 18:987-988. [PMID: 29109307 DOI: 10.5005/jp-journals-10024-2161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the most crucial aspects of cancer diagnosis and treatment is to determine the thin boundary between lesional and normal tissues. So it is important to assess an accurate negative margin and to completely excise the tumor for a prolonged disease-free state and increase the overall survival of the patient.
Collapse
Affiliation(s)
- Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India, Phone: +919823871462, e-mail:
| | - Nilookumari Choudhary
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune Maharashtra, India
| | - Shankargouda Patil
- Department of Diagnostic Sciences, Division of Oral Pathology College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
118
|
Lamont L, Baumert M, Ogrinc Potočnik N, Allen M, Vreeken R, Heeren RMA, Porta T. Integration of Ion Mobility MS E after Fully Automated, Online, High-Resolution Liquid Extraction Surface Analysis Micro-Liquid Chromatography. Anal Chem 2017; 89:11143-11150. [PMID: 28945354 PMCID: PMC5677252 DOI: 10.1021/acs.analchem.7b03512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Direct
analysis by mass spectrometry (imaging) has become increasingly
deployed in preclinical and clinical research due to its rapid and
accurate readouts. However, when it comes to biomarker discovery or
histopathological diagnostics, more sensitive and in-depth profiling
from localized areas is required. We developed a comprehensive, fully
automated online platform for high-resolution liquid extraction surface
analysis (HR-LESA) followed by micro–liquid chromatography
(LC) separation and a data-independent acquisition strategy for untargeted
and low abundant analyte identification directly from tissue sections.
Applied to tissue sections of rat pituitary, the platform demonstrated
improved spatial resolution, allowing sample areas as small as 400
μm to be studied, a major advantage over conventional LESA.
The platform integrates an online buffer exchange and washing step
for removal of salts and other endogenous contamination that originates
from local tissue extraction. Our carry over–free platform
showed high reproducibility, with an interextraction variability below
30%. Another strength of the platform is the additional selectivity
provided by a postsampling gas-phase ion mobility separation. This
allowed distinguishing coeluted isobaric compounds without requiring
additional separation time. Furthermore, we identified untargeted
and low-abundance analytes, including neuropeptides deriving from
the pro-opiomelanocortin precursor protein and localized a specific
area of the pituitary gland (i.e., adenohypophysis) known to secrete
neuropeptides and other small metabolites related to development,
growth, and metabolism. This platform can thus be applied for the
in-depth study of small samples of complex tissues with histologic
features of ∼400 μm or more, including potential neuropeptide
markers involved in many diseases such as neurodegenerative diseases,
obesity, bulimia, and anorexia nervosa.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands
| | | | - Nina Ogrinc Potočnik
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands
| | - Mark Allen
- Advion , Harlow CM20 2NQ, United Kingdom
| | - Rob Vreeken
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands.,Janssen Pharmaceutica , Beerse, Belgium
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands
| | - Tiffany Porta
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands
| |
Collapse
|
119
|
Liu C, Gómez-Ríos GA, Schneider BB, Le Blanc J, Reyes-Garcés N, Arnold DW, Covey TR, Pawliszyn J. Fast quantitation of opioid isomers in human plasma by differential mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface. Anal Chim Acta 2017; 991:89-94. [DOI: 10.1016/j.aca.2017.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/01/2022]
|
120
|
Cordeiro FB, Ferreira CR, Sobreira TJP, Yannell KE, Jarmusch AK, Cedenho AP, Lo Turco EG, Cooks RG. Multiple reaction monitoring (MRM)-profiling for biomarker discovery applied to human polycystic ovarian syndrome. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1462-1470. [PMID: 28656689 DOI: 10.1002/rcm.7927] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE We describe multiple reaction monitoring (MRM)-profiling, which provides accelerated discovery of discriminating molecular features, and its application to human polycystic ovary syndrome (PCOS) diagnosis. The discovery phase of the MRM-profiling seeks molecular features based on some prior knowledge of the chemical functional groups likely to be present in the sample. It does this through use of a limited number of pre-chosen and chemically specific neutral loss and/or precursor ion MS/MS scans. The output of the discovery phase is a set of precursor/product transitions. In the screening phase these MRM transitions are used to interrogate multiple samples (hence the name MRM-profiling). METHODS MRM-profiling was applied to follicular fluid samples of 22 controls and 29 clinically diagnosed PCOS patients. Representative samples were delivered by flow injection to a triple quadrupole mass spectrometer set to perform a number of pre-chosen and chemically specific neutral loss and/or precursor ion MS/MS scans. The output of this discovery phase was a set of 1012 precursor/product transitions. In the screening phase each individual sample was interrogated for these MRM transitions. Principal component analysis (PCA) and receiver operating characteristic (ROC) curves were used for statistical analysis. RESULTS To evaluate the method's performance, half the samples were used to build a classification model (testing set) and half were blinded (validation set). Twenty transitions were used for the classification of the blind samples, most of them (N = 19) showed lower abundances in the PCOS group and corresponded to phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Agreement of 73% with clinical diagnosis was found when classifying the 26 blind samples. CONCLUSIONS MRM-profiling is a supervised method characterized by its simplicity, speed and the absence of chromatographic separation. It can be used to rapidly isolate discriminating molecules in healthy/disease conditions by tailored screening of signals associated with hundreds of molecules in complex samples.
Collapse
Affiliation(s)
- Fernanda B Cordeiro
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Sao Paulo, Brazil
| | - Christina R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
| | | | - Karen E Yannell
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
| | - Alan K Jarmusch
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
| | - Agnaldo P Cedenho
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Sao Paulo, Brazil
| | - Edson G Lo Turco
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Sao Paulo, Brazil
| | - R Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
121
|
Woolman M, Ferry I, Kuzan-Fischer CM, Wu M, Zou J, Kiyota T, Isik S, Dara D, Aman A, Das S, Taylor MD, Rutka JT, Ginsberg HJ, Zarrine-Afsar A. Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption probe. Chem Sci 2017; 8:6508-6519. [PMID: 28989676 PMCID: PMC5628578 DOI: 10.1039/c7sc01974b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/21/2017] [Indexed: 12/25/2022] Open
Abstract
Medulloblastoma (MB), the most prevalent malignant childhood brain tumour, consists of at least 4 distinct subgroups each of which possesses a unique survival rate and response to treatment. To rapidly determine MB subgroup affiliation in a manner that would be actionable during surgery, we subjected murine xenograft tumours of two MB subgroups (SHH and Group 3) to Mass Spectrometry (MS) profiling using a handheld Picosecond InfraRed Laser (PIRL) desorption probe and interface developed by our group. This platform provides real time MS profiles of tissue based on laser desorbed lipids and small molecules with only 5-10 seconds of sampling. PIRL-MS analysis of ex vivo MB tumours offered a 98% success rate in subgroup determination, observed over 194 PIRL-MS datasets collected from 19 independent tumours (∼10 repetitions each) utilizing 6 different established MB cell lines. Robustness was verified by a 5%-leave-out-and-remodel test. PIRL ablated tissue material was collected on a filter paper and subjected to high resolution LC-MS to provide ion identity assignments for the m/z values that contribute most to the statistical discrimination between SHH and Group 3 MB. Based on this analysis, rapid classification of MB with PIRL-MS utilizes a variety of fatty acid chains, glycerophosphates, glycerophosphoglycerols and glycerophosphocholines rapidly extracted from the tumours. In this work, we provide evidence that 5-10 seconds of sampling from ex vivo MB tissue with PIRL-MS can allow robust tumour subgroup classification, and have identified several biomarker ions responsible for the statistical discrimination of MB Group 3 and the SHH subgroup. The existing PIRL-MS platform used herein offers capabilities for future in vivo use.
Collapse
Affiliation(s)
- Michael Woolman
- Techna Institute for the Advancement of Technology for Health , University Health Network , 100 College Street , Toronto , ON M5G 1P5 , Canada .
- Department of Medical Biophysics , University of Toronto , 101 College Street , Toronto , ON M5G 1L7 , Canada
| | - Isabelle Ferry
- Peter Gilgan Centre for Research and Learning , Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre , The Hospital for Sick Children , Toronto , ON M5G 1X8 , Canada
- Developmental & Stem Cell Biology Program , The Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
| | - Claudia M Kuzan-Fischer
- Peter Gilgan Centre for Research and Learning , Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre , The Hospital for Sick Children , Toronto , ON M5G 1X8 , Canada
- Developmental & Stem Cell Biology Program , The Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
| | - Megan Wu
- Peter Gilgan Centre for Research and Learning , Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre , The Hospital for Sick Children , Toronto , ON M5G 1X8 , Canada
- Developmental & Stem Cell Biology Program , The Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
| | - Jing Zou
- Techna Institute for the Advancement of Technology for Health , University Health Network , 100 College Street , Toronto , ON M5G 1P5 , Canada .
| | - Taira Kiyota
- Drug Discovery Program , Ontario Institute for Cancer Research , 661 University Avenue , Toronto , ON M5G 0A3 , Canada
| | - Semra Isik
- Peter Gilgan Centre for Research and Learning , Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
| | - Delaram Dara
- Techna Institute for the Advancement of Technology for Health , University Health Network , 100 College Street , Toronto , ON M5G 1P5 , Canada .
| | - Ahmed Aman
- Drug Discovery Program , Ontario Institute for Cancer Research , 661 University Avenue , Toronto , ON M5G 0A3 , Canada
| | - Sunit Das
- Peter Gilgan Centre for Research and Learning , Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
- Department of Surgery , University of Toronto , 149 College Street , Toronto , ON M5T 1P5 , Canada
- Keenan Research Center for Biomedical Science , The Li Ka Shing Knowledge Institute , St. Michael's Hospital , 30 Bond Street , Toronto , ON M5B 1W8 , Canada
| | - Michael D Taylor
- Peter Gilgan Centre for Research and Learning , Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
- Department of Surgery , University of Toronto , 149 College Street , Toronto , ON M5T 1P5 , Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre , The Hospital for Sick Children , Toronto , ON M5G 1X8 , Canada
- Developmental & Stem Cell Biology Program , The Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
| | - James T Rutka
- Peter Gilgan Centre for Research and Learning , Hospital for Sick Children , 686 Bay Street , Toronto , ON M5G 0A4 , Canada
- Department of Surgery , University of Toronto , 149 College Street , Toronto , ON M5T 1P5 , Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre , The Hospital for Sick Children , Toronto , ON M5G 1X8 , Canada
| | - Howard J Ginsberg
- Techna Institute for the Advancement of Technology for Health , University Health Network , 100 College Street , Toronto , ON M5G 1P5 , Canada .
- Department of Surgery , University of Toronto , 149 College Street , Toronto , ON M5T 1P5 , Canada
- Keenan Research Center for Biomedical Science , The Li Ka Shing Knowledge Institute , St. Michael's Hospital , 30 Bond Street , Toronto , ON M5B 1W8 , Canada
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , ON M5S 3G9 , Canada
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health , University Health Network , 100 College Street , Toronto , ON M5G 1P5 , Canada .
- Department of Medical Biophysics , University of Toronto , 101 College Street , Toronto , ON M5G 1L7 , Canada
- Department of Surgery , University of Toronto , 149 College Street , Toronto , ON M5T 1P5 , Canada
- Keenan Research Center for Biomedical Science , The Li Ka Shing Knowledge Institute , St. Michael's Hospital , 30 Bond Street , Toronto , ON M5B 1W8 , Canada
| |
Collapse
|
122
|
Dhillon J, Ferreira CR, Sobreira TJP, Mattes RD. Multiple Reaction Monitoring Profiling to Assess Compliance with an Almond Consumption Intervention. Curr Dev Nutr 2017; 1:e001545. [PMID: 29955720 PMCID: PMC5998771 DOI: 10.3945/cdn.117.001545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/16/2017] [Accepted: 09/06/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Almonds are extremely rich sources of lipids and flavonoids, and their consumption is associated with several health benefits. However, there are no analytical methods available to document compliance with prescribed or self-reported chronic almond consumption. Objective: The aim was to use an analytical approach that identifies metabolic profiles associated with long-term almond consumption to ascertain compliance with prescribed consumption. Methods: A multiple reaction monitoring (MRM)-profiling strategy was designed to isolate metabolic changes in erythrocytes after 12 wk of almond consumption. MRM-profiling data acquisition and analysis involve performing separate discovery and screening steps to detect molecular features related to metabolic changes between experimental groups. Samples used for this research were erythrocytes recovered at baseline, after 12 wk of almond consumption (W12-almond group), and after 12 wk of a nut-free diet (W12-control group). For the MRM-profiling discovery step, representative samples (pools) of erythrocytes from individuals of all groups were interrogated by precursor ion and neutral loss scan experiments on the basis of previous knowledge of chemical functional groups present in the samples. The outputs of the discovery phase were methods used for the MRM-profiling screening phase to interrogate individual samples on the basis of fast-MRM measurements. In addition, we screened the literature for flavonoids identified in almond skins and included them for individual sample screening. Results: Of the 254 m/z values monitored, 5 ratios and combinations of specific ions with receiver operating characteristic curve AUCs >0.89 provided a sensitivity of 74.2% and a specificity of 90% for blind samples presented in the model. Eight of the 31 participants (25.8%) in the W12-almond group and 3 of the 30 (10%) participants in the W12-control group were misclassified by all 5 ratios. Ratios and combinations of specific transitions were mainly related to membrane lipids. Conclusion: The misclassifications observed as a result of ratio performance evaluation may indicate noncompliance as supported by the dietary intake data. The parent trial was registered at www.clinicaltrials.gov as NCT02360787.
Collapse
Affiliation(s)
- Jaapna Dhillon
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | | | | | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
123
|
Abstract
Since the introduction of desorption electrospray ionization (DESI) mass spectrometry (MS), ambient MS methods have seen increased use in a variety of fields from health to food science. Increasing its popularity in metabolomics, ambient MS offers limited sample preparation, rapid and direct analysis of liquids, solids, and gases, in situ and in vivo analysis, and imaging. The metabolome consists of a constantly changing collection of small (<1.5 kDa) molecules. These include endogenous molecules that are part of primary metabolism pathways, secondary metabolites with specific functions such as signaling, chemicals incorporated in the diet or resulting from environmental exposures, and metabolites associated with the microbiome. Characterization of the responsive changes of this molecule cohort is the principal goal of any metabolomics study. With adjustments to experimental parameters, metabolites with a range of chemical and physical properties can be selectively desorbed and ionized and subsequently analyzed with increased speed and sensitivity. This review covers the broad applications of a variety of ambient MS techniques in four primary fields in which metabolomics is commonly employed.
Collapse
Affiliation(s)
- Chaevien S. Clendinen
- School of Chemistry and Biochemistry & Petit Institute for Bioengineering & Bioscience (IBB), Georgia Institute of Technology, 901 Atlantic Drive NW. Atlanta, GA
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry & Petit Institute for Bioengineering & Bioscience (IBB), Georgia Institute of Technology, 901 Atlantic Drive NW. Atlanta, GA
| |
Collapse
|
124
|
Sorokin A, Zhvansky E, Shurkhay V, Bocharov K, Popov I, Levin N, Zubtsov D, Bormotov D, Kostyukevich Y, Potapov A, Nikolaev E. Feature selection algorithm for spray-from-tissue mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:237-241. [PMID: 29028388 DOI: 10.1177/1469066717721843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Detection of the brain tumor margins is one of the most significant problems in neurosurgery. Several mass spectrometry-based approaches have been proposed recently for tumor boundary detection. One of them, spray from tissue does not require sample preparation but needs special algorithms for analysis of its spectra. Here we proposed the feature selection algorithm designed for analysis of spray-from-tissue data.
Collapse
Affiliation(s)
- Anatoly Sorokin
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Evgeny Zhvansky
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Vsevolod Shurkhay
- 3 Federal State Autonomous Institution "N.N. Burdenko National Scientific and Practical Center for Neurosurgery" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Konstantin Bocharov
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Igor Popov
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 4 Emanuel Institute for Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Nikita Levin
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Dmitry Zubtsov
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Denis Bormotov
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Yury Kostyukevich
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander Potapov
- 3 Federal State Autonomous Institution "N.N. Burdenko National Scientific and Practical Center for Neurosurgery" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Eugene Nikolaev
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
- 4 Emanuel Institute for Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
- 5 Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
125
|
Zhang W, Wang X, Xia Y, Ouyang Z. Ambient Ionization and Miniature Mass Spectrometry Systems for Disease Diagnosis and Therapeutic Monitoring. Theranostics 2017; 7:2968-2981. [PMID: 28839457 PMCID: PMC5566099 DOI: 10.7150/thno.19410] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/06/2017] [Indexed: 12/26/2022] Open
Abstract
Mass spectrometry has become a powerful tool in the field of biomedicine. The combination of ambient ionization and miniature mass spectrometry systems could most likely fulfill a significant need in medical diagnostics, providing highly specific molecular information in real time for clinical and even point-of-care analysis. In this review, we discuss the recent development of ambient ionization and miniature mass spectrometers as well as their potential in disease diagnosis and therapeutic monitoring, with an emphasis on their capability in analysis of biofluids and tissues. We also speculate the future development of the integrated, miniature MS systems and provide our perspectives on the challenges in technical development as well as possible solutions for path forward.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 10084, China
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
126
|
Pirro V, Guffey SC, Sepúlveda MS, Mahapatra CT, Ferreira CR, Jarmusch AK, Cooks RG. Lipid dynamics in zebrafish embryonic development observed by DESI-MS imaging and nanoelectrospray-MS. MOLECULAR BIOSYSTEMS 2017; 12:2069-79. [PMID: 27120110 DOI: 10.1039/c6mb00168h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The zebrafish Danio rerio is a model vertebrate organism for understanding biological mechanisms. Recent studies have explored using zebrafish as a model for lipid-related diseases, for in vivo fish bioassays, and for embryonic toxicity experiments. Mass spectrometry (MS) and MS imaging are established tools for lipid profiling and spatial mapping of biomolecules and offer rapid, sensitive, and simple analytical protocols for zebrafish analysis. When ambient ionization techniques are used, ions are generated in native environmental conditions, requiring neither sample preparation nor separation of molecules prior to MS. We used two direct MS techniques to describe the dynamics of the lipid profile during zebrafish embryonic development from 0 to 96 hours post-fertilization and to explore these analytical approaches as molecular diagnostic assays. Desorption electrospray ionization (DESI) MS imaging followed by nanoelectrospray (nESI) MS and tandem MS (MS/MS) were used in positive and negative ion modes, allowing the detection of a large variety of phosphatidylglycerols, phosphatidylcholines, phosphatidylinositols, free fatty acids, triacylglycerols, ubiquinone, squalene, and other lipids, and revealed information on the spatial distributions of lipids within the embryo and on lipid molecular structure. Differences were observed in the relative ion abundances of free fatty acids, triacylglycerols, and ubiquinone - essentially localized to the yolk - across developmental stages, whereas no relevant differences were found in the distribution of complex membrane glycerophospholipids, indicating conserved lipid constitution. Embryos exposed to trichloroethylene for 72 hours exhibited an altered lipid profile, indicating the potential utility of this technique for testing the effects of environmental contaminants.
Collapse
Affiliation(s)
- V Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| | - S C Guffey
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| | - M S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| | - C T Mahapatra
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| | - C R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA and Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - A K Jarmusch
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| | - R G Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
127
|
Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. Proc Natl Acad Sci U S A 2017; 114:6700-6705. [PMID: 28607048 DOI: 10.1073/pnas.1706459114] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intraoperative desorption electrospray ionization-mass spectrometry (DESI-MS) is used to characterize tissue smears by comparison with a library of DESI mass spectra of pathologically determined tissue types. Measurements are performed in the operating room within 3 min. These mass spectra provide direct information on tumor infiltration into white or gray brain matter based on N-acetylaspartate (NAA) and on membrane-derived complex lipids. The mass spectra also indicate the isocitrate dehydrogenase mutation status of the tumor via detection of 2-hydroxyglutarate, currently assessed postoperatively on biopsied tissue using immunohistochemistry. Intraoperative DESI-MS measurements made at surgeon-defined positions enable assessment of relevant disease state of tissue within the tumor mass and examination of the resection cavity walls for residual tumor. Results for 73 biopsies from 10 surgical resection cases show that DESI-MS allows detection of glioma and estimation of high tumor cell percentage (TCP) at surgical margins with 93% sensitivity and 83% specificity. TCP measurements from NAA are corroborated by indirect measurements based on lipid profiles. Notably, high percentages (>50%) of unresected tumor were found in one-half of the margin biopsy smears, even in cases where postoperative MRI suggested gross total tumor resection. Unresected tumor causes recurrence and malignant progression, as observed within a year in one case examined in this study. These results corroborate the utility of DESI-MS in assessing surgical margins for maximal safe tumor resection. Intraoperative DESI-MS analysis of tissue smears, ex vivo, can be inserted into the current surgical workflow with no alterations. The data underscore the complexity of glioma infiltration.
Collapse
|
128
|
Aberrant ganglioside composition in glioblastoma multiforme and peritumoral tissue: A mass spectrometry characterization. Biochimie 2017; 137:56-68. [DOI: 10.1016/j.biochi.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
129
|
Sans M, Gharpure K, Tibshirani R, Zhang J, Liang L, Liu J, Young JH, Dood RL, Sood AK, Eberlin LS. Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging. Cancer Res 2017; 77:2903-2913. [PMID: 28416487 DOI: 10.1158/0008-5472.can-16-3044] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/10/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
Ovarian high-grade serous carcinoma (HGSC) results in the highest mortality among gynecological cancers, developing rapidly and aggressively. Dissimilarly, serous borderline ovarian tumors (BOT) can progress into low-grade serous carcinomas and have relatively indolent clinical behavior. The underlying biological differences between HGSC and BOT call for accurate diagnostic methodologies and tailored treatment options, and identification of molecular markers of aggressiveness could provide valuable biochemical insights and improve disease management. Here, we used desorption electrospray ionization (DESI) mass spectrometry (MS) to image and chemically characterize the metabolic profiles of HGSC, BOT, and normal ovarian tissue samples. DESI-MS imaging enabled clear visualization of fine papillary branches in serous BOT and allowed for characterization of spatial features of tumor heterogeneity such as adjacent necrosis and stroma in HGSC. Predictive markers of cancer aggressiveness were identified, including various free fatty acids, metabolites, and complex lipids such as ceramides, glycerophosphoglycerols, cardiolipins, and glycerophosphocholines. Classification models built from a total of 89,826 individual pixels, acquired in positive and negative ion modes from 78 different tissue samples, enabled diagnosis and prediction of HGSC and all tumor samples in comparison with normal tissues, with overall agreements of 96.4% and 96.2%, respectively. HGSC and BOT discrimination was achieved with an overall accuracy of 93.0%. Interestingly, our classification model allowed identification of three BOT samples presenting unusual histologic features that could be associated with the development of low-grade carcinomas. Our results suggest DESI-MS as a powerful approach for rapid serous ovarian cancer diagnosis based on altered metabolic signatures. Cancer Res; 77(11); 2903-13. ©2017 AACR.
Collapse
Affiliation(s)
- Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Kshipra Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Tibshirani
- Departments of Biomedical Data Sciences and Statistics, Stanford University, Stanford, California
| | - Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Li Liang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan H Young
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Robert L Dood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
130
|
Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc Natl Acad Sci U S A 2017; 114:4300-4305. [PMID: 28400509 DOI: 10.1073/pnas.1617709114] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
KRAS gene mutation causes lung adenocarcinoma. KRAS activation has been associated with altered glucose and glutamine metabolism. Here, we show that KRAS activates lipogenesis, and this activation results in distinct proteomic and lipid signatures. By gene expression analysis, KRAS is shown to be associated with a lipogenesis gene signature and specific induction of fatty acid synthase (FASN). Through desorption electrospray ionization MS imaging (DESI-MSI), specific changes in lipogenesis and specific lipids are identified. By the nanoimmunoassay (NIA), KRAS is found to activate the protein ERK2, whereas ERK1 activation is found in non-KRAS-associated human lung tumors. The inhibition of FASN by cerulenin, a small molecule antibiotic, blocked cellular proliferation of KRAS-associated lung cancer cells. Hence, KRAS is associated with activation of ERK2, induction of FASN, and promotion of lipogenesis. FASN may be a unique target for KRAS-associated lung adenocarcinoma remediation.
Collapse
|
131
|
Woolman M, Gribble A, Bluemke E, Zou J, Ventura M, Bernards N, Wu M, Ginsberg HJ, Das S, Vitkin A, Zarrine-Afsar A. Optimized Mass Spectrometry Analysis Workflow with Polarimetric Guidance for ex vivo and in situ Sampling of Biological Tissues. Sci Rep 2017; 7:468. [PMID: 28352074 PMCID: PMC5428042 DOI: 10.1038/s41598-017-00272-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 02/02/2023] Open
Abstract
Spatially Targeted Mass Spectrometry (MS) analysis using survey scans with an imaging modality often requires consecutive tissue slices, because of the tissue damage during survey scan or due to incompatible sample preparation requirements between the survey modality and MS. We report two spatially targeted MS analysis workflows based on polarized light imaging guidance that use the same tissue sample for survey and targeted analysis. The first workflow is applicable for thin-slice analysis, and uses transmission-polarimetry-guided Desorption ElectroSpray Ionization Mass Spectrometry (DESI-MS), and confirmatory H&E histopathology analysis on the same slice; this is validated using quantitative digital pathology methods. The second workflow explores a polarimetry-guided MS platform for thick tissue assessment by developing reflection-mode polarimetric imaging coupled with a hand-held Picosecond InfraRed Laser (PIRL) MS ablation probe that requires minimal tissue removal to produce detectable signal. Tissue differentiation within 5–10 s of sampling with the hand-held probe is shown using multivariate statistical methods of the MS profiles. Both workflows were tasked with differentiating necrotic cancer sites from viable cancers using a breast tumour model, and their performance was evaluated. The use of the same tissue surface addresses mismatches in guidance due to intrinsic changes in tissue morphology over consecutive sections.
Collapse
Affiliation(s)
- Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON, M5G 1L7, Canada
| | - Adam Gribble
- Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON, M5G 1L7, Canada
| | - Emma Bluemke
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
| | - Jing Zou
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
| | - Manuela Ventura
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
| | - Nicholas Bernards
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
| | - Megan Wu
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G-0A4, Canada
| | - Howard J Ginsberg
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada.,Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T-1P5, Canada.,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B-1W8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Sunit Das
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G-0A4, Canada.,Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T-1P5, Canada.,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B-1W8, Canada
| | - Alex Vitkin
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G-0A4, Canada.,Department of Radiation Oncology, University of Toronto, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.,Division of Biophysics and Bioimaging, Ontario Cancer Institute, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada. .,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON, M5G 1L7, Canada. .,Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T-1P5, Canada. .,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B-1W8, Canada.
| |
Collapse
|
132
|
Meher AK, Chen YC. Electrospray Modifications for Advancing Mass Spectrometric Analysis. ACTA ACUST UNITED AC 2017; 6:S0057. [PMID: 28573082 DOI: 10.5702/massspectrometry.s0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022]
Abstract
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented.
Collapse
Affiliation(s)
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University
| |
Collapse
|
133
|
Lou S, Balluff B, Cleven AHG, Bovée JVMG, McDonnell LA. Prognostic Metabolite Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:376-383. [PMID: 27873216 PMCID: PMC5227002 DOI: 10.1007/s13361-016-1544-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 05/22/2023]
Abstract
Metabolites can be an important read-out of disease. The identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients is one of the main current research aspects. Mass spectrometry has become the technique of choice for metabolomics studies, and mass spectrometry imaging (MSI) enables their visualization in patient tissues. In this study, we used MSI to identify prognostic metabolite biomarkers in high grade sarcomas; 33 high grade sarcoma patients, comprising osteosarcoma, leiomyosarcoma, myxofibrosarcoma, and undifferentiated pleomorphic sarcoma were analyzed. Metabolite MSI data were obtained from sections of fresh frozen tissue specimens with matrix-assisted laser/desorption ionization (MALDI) MSI in negative polarity using 9-aminoarcridine as matrix. Subsequent annotation of tumor regions by expert pathologists resulted in tumor-specific metabolite signatures, which were then tested for association with patient survival. Metabolite signals with significant clinical value were further validated and identified by high mass resolution Fourier transform ion cyclotron resonance (FTICR) MSI. Three metabolite signals were found to correlate with overall survival (m/z 180.9436 and 241.0118) and metastasis-free survival (m/z 160.8417). FTICR-MSI identified m/z 241.0118 as inositol cyclic phosphate and m/z 160.8417 as carnitine. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sha Lou
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin Balluff
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Arjen H G Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy.
| |
Collapse
|
134
|
Petras D, Jarmusch AK, Dorrestein PC. From single cells to our planet-recent advances in using mass spectrometry for spatially resolved metabolomics. Curr Opin Chem Biol 2017; 36:24-31. [PMID: 28086192 DOI: 10.1016/j.cbpa.2016.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022]
Abstract
Spatial information in the form of 3D digital content has been increasingly integrated into our daily lives. Metabolomic studies parallel this trend with spatial and time resolved information being acquired. Mass spectrometry imaging (MSI), which combines qualitative and quantitative molecular information with spatial information, plays a crucial role in mass spectrometry-based metabolomics. The lateral spatial resolution obtained by MSI continues to improve and allows mass spectrometers to be used as molecular microscopes-enabling the exploration of the cellular and subcellular metabolome. Towards the other end of the scale, MS is also being used to map (image) molecules on our skin, habitats, and entire ecosystems. In this article, we provide a perspective of imaging mass spectrometry for metabolomic studies from the subcellular to planetary scale.
Collapse
Affiliation(s)
- Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
135
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
136
|
Woolman M, Tata A, Bluemke E, Dara D, Ginsberg HJ, Zarrine-Afsar A. An Assessment of the Utility of Tissue Smears in Rapid Cancer Profiling with Desorption Electrospray Ionization Mass Spectrometry (DESI-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:145-153. [PMID: 27730523 DOI: 10.1007/s13361-016-1506-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging with desorption electrospray ionization mass spectrometry (DESI-MS) is used to characterize cancer from ex vivo slices of tissues. The process is time-consuming. The use of tissue smears for DESI-MS analysis has been proposed as it eliminates the time required to snap-freeze and section the tissue. To assess the utility of tissue smears for rapid cancer characterization, principal component analysis (PCA) was performed to evaluate the concordance between DESI-MS profiles of breast cancer from tissue slices and smears prepared on various surfaces. PCA suggested no statistical discrimination between DESI-MS profiles of tissue sections and tissue smears prepared on glass, polytetrafluoroethylene (PTFE), and porous PTFE. However, the abundances of cancer biomarker ions varied between sections and smears, with DESI-MS analysis of tissue sections yielding higher ion abundances of cancer biomarkers compared with smears. Coefficient of variance (CV) analysis suggests DESI-MS profiles from tissue smears are as reproducible as the ones from tissue sections. The limit of detection with smear samples from single pixel analysis is comparable to tissue sections that average the signal from a tissue area of 0.01 mm2. The smears prepared on the PTFE surface possessed a higher degree of homogeneity compared with the smears prepared on the glass surface. This allowed single MS scans (~1 s) from random positions across the surface of the smear to be used in rapid cancer typing with good reproducibility, providing pathologic information for cancer typing at speeds suitable for clinical utility. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
| | - Alessandra Tata
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
| | - Emma Bluemke
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
| | - Delaram Dara
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
| | - Howard J Ginsberg
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T-1P5, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B-1W8, Canada
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON, M5G-1P5, Canada.
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T-1P5, Canada.
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B-1W8, Canada.
- Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
137
|
Collection and Preparation of Clinical Samples for Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:19-44. [DOI: 10.1007/978-3-319-47656-8_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
138
|
Pirro V, Jarmusch AK, Ferreira CR, Cooks RG. Ambient Lipidomic Analysis of Brain Tissue Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. NEUROMETHODS 2017. [DOI: 10.1007/978-1-4939-6946-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
139
|
Vartholomatos G, Alexiou GA, Lianos GD, Kyritsis AP. From bench to operating theater: has the time come for a molecular scalpel? Future Oncol 2017; 13:121-123. [DOI: 10.2217/fon-2016-0413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- George Vartholomatos
- Haematology Laboratory-Unit of Molecular Biology, University of Ioannina School of Medicine, 45110, Ioannina, Greece
| | - George A Alexiou
- Neurosurgical Institute, University of Ioannina School of Medicine, 45110, Ioannina, Greece
| | - Georgios D Lianos
- Neurosurgical Institute, University of Ioannina School of Medicine, 45110, Ioannina, Greece
| | - Athanasios P Kyritsis
- Neurosurgical Institute, University of Ioannina School of Medicine, 45110, Ioannina, Greece
| |
Collapse
|
140
|
Feider CL, Elizondo N, Eberlin LS. Ambient Ionization and FAIMS Mass Spectrometry for Enhanced Imaging of Multiply Charged Molecular Ions in Biological Tissues. Anal Chem 2016; 88:11533-11541. [PMID: 27782388 PMCID: PMC5317180 DOI: 10.1021/acs.analchem.6b02798] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ambient ionization mass spectrometry imaging (MSI) has been increasingly used to investigate the molecular distribution of biological tissue samples. Here, we report the integration and optimization of desorption electrospray ionization (DESI) and liquid-microjunction surface sampling probe (LMJ-SSP) with a chip-based high-field asymmetric waveform ion mobility spectrometry (FAIMS) device to image metabolites, lipids, and proteins in biological tissue samples. Optimized FAIMS parameters for specific molecular classes enabled semitargeted detection of multiply charged molecular species at enhanced signal-to-noise ratios (S/N), improved visualization of spatial distributions, and, most importantly, allowed detection of species which were unseen by ambient ionization MSI alone. Under static DESI-FAIMS conditions selected for transmission of doubly charged cardiolipins (CL), for example, detection of 71 different CL species was achieved in rat brain, 23 of which were not observed by DESI alone. Diagnostic CL were imaged in a human thyroid tumor sample with reduced interference of isobaric species. LMJ-SSP-FAIMS enabled detection of 84 multiply charged protein ions in rat brain tissue, 66 of which were exclusive to this approach. Spatial visualization of proteins in substructures of rat brain, and in human ovarian cancerous, necrotic, and normal tissues was achieved. Our results indicate that integration of FAIMS with ambient ionization MS allows improved detection and imaging of selected molecular species. We show that this methodology is valuable in biomedical applications of MSI for detection of multiply charged lipids and proteins from biological tissues.
Collapse
Affiliation(s)
- Clara L Feider
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Natalia Elizondo
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
141
|
|
142
|
Rapid Detection of Necrosis in Breast Cancer with Desorption Electrospray Ionization Mass Spectrometry. Sci Rep 2016; 6:35374. [PMID: 27734938 PMCID: PMC5062153 DOI: 10.1038/srep35374] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023] Open
Abstract
Identification of necrosis in tumors is of prognostic value in treatment planning, as necrosis is associated with aggressive forms of cancer and unfavourable outcomes. To facilitate rapid detection of necrosis with Mass Spectrometry (MS), we report the lipid MS profile of necrotic breast cancer with Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) imaging validated with statistical analysis and correlating pathology. This MS profile is characterized by (1) the presence of the ion of m/z 572.48 [Cer(d34:1) + Cl]− which is a ceramide absent from the viable cancer subregions; (2) the absence of the ion of m/z 391.25 which is present in small abundance only in viable cancer subregions; and (3) a slight increase in the relative intensity of known breast cancer biomarker ions of m/z 281.25 [FA(18:1)-H]− and 303.23 [FA(20:4)-H]−. Necrosis is accompanied by alterations in the tissue optical depolarization rate, allowing tissue polarimetry to guide DESI-MS analysis for rapid MS profiling or targeted MS imaging. This workflow, in combination with the MS profile of necrosis, may permit rapid characterization of necrotic tumors from tissue slices. Further, necrosis-specific biomarker ions are detected in seconds with single MS scans of necrotic tumor tissue smears, which further accelerates the identification workflow by avoiding tissue sectioning and slide preparation.
Collapse
|
143
|
Min W, Dai D, Wang J, Zhang D, Zhang Y, Han G, Zhang L, Chen C, Li X, Li Y, Yue Z. Long Noncoding RNA miR210HG as a Potential Biomarker for the Diagnosis of Glioma. PLoS One 2016; 11:e0160451. [PMID: 27673330 PMCID: PMC5038942 DOI: 10.1371/journal.pone.0160451] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioma remains a diagnostic challenge because of its variable clinical presentation and a lack of reliable screening tools. Long noncoding RNAs (lncRNAs) regulate gene function in a wide range of pathophysiological processes and are therefore emerging biomarkers for prostate cancer, hepatic cancer, and other tumor diseases. However, the effective use of lncRNAs as biomarkers for the diagnosis of glioma remains unproven. METHODS This study included 42 glioma patients and 10 healthy controls. lncRNA and mRNA microarray chips were used to identify dysregulated lncRNAs in tumor tissue and tumor-adjacent normal tissue, and SYBR Green-based miRNA quantitative real-time reverse transcription polymerase chain reactions were used to validate upregulated lncRNAs. A receiver operating characteristic curve analysis was conducted to evaluate the diagnostic accuracy of the lncRNA identified as the candidate biomarker. RESULTS miR210HG levels were significantly higher in tumor tissue than in tumor-adjacent normal tissue in participating glioma patients. Serum miR210HG levels were also significantly higher in glioma patients than in healthy controls. The receiver operating characteristic curve showed that serum miR210HG was a specific diagnostic predictor of acute pulmonary embolism with an area under the curve of 0.8323 (95% confidence interval, 0.7347 to 0.9299, p < 0.001). CONCLUSION Our findings indicate that miR210HG could be an important biomarker for the diagnosis of glioma, and, as such, large-scale investigations are urgently needed to pave the way from basic research to clinical use.
Collapse
Affiliation(s)
- Weijie Min
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Dongwei Dai
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jiaqi Wang
- Clinical Research Center, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Dandan Zhang
- Clinical Research Center, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yuhui Zhang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Guosheng Han
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Lei Zhang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiulong Li
- Department of Neurosurgery, People’s Hospital of Yinan, Yinan, 276300, China
| | - Yanan Li
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhijian Yue
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
144
|
Jarmusch AK, Alfaro CM, Pirro V, Hattab EM, Cohen-Gadol AA, Cooks RG. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization - Mass Spectrometry Imaging. PLoS One 2016; 11:e0163180. [PMID: 27658243 PMCID: PMC5033406 DOI: 10.1371/journal.pone.0163180] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
Desorption electrospray ionization—mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component–linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component–linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins.
Collapse
Affiliation(s)
- Alan K. Jarmusch
- Department of Chemistry and Center for Analytical Instrument Development, Purdue University, West Lafayette, Indiana, United States of America
| | - Clint M. Alfaro
- Department of Chemistry and Center for Analytical Instrument Development, Purdue University, West Lafayette, Indiana, United States of America
| | - Valentina Pirro
- Department of Chemistry and Center for Analytical Instrument Development, Purdue University, West Lafayette, Indiana, United States of America
| | - Eyas M. Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Aaron A. Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - R. Graham Cooks
- Department of Chemistry and Center for Analytical Instrument Development, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
145
|
Zhang J, Yu W, Ryu SW, Lin J, Buentello G, Tibshirani R, Suliburk J, Eberlin LS. Cardiolipins Are Biomarkers of Mitochondria-Rich Thyroid Oncocytic Tumors. Cancer Res 2016; 76:6588-6597. [PMID: 27659048 DOI: 10.1158/0008-5472.can-16-1545] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022]
Abstract
Oncocytic tumors are characterized by an excessive eosinophilic, granular cytoplasm due to aberrant accumulation of mitochondria. Mutations in mitochondrial DNA occur in oncocytic thyroid tumors, but there is no information about their lipid composition, which might reveal candidate theranostic molecules. Here, we used desorption electrospray ionization mass spectrometry (DESI-MS) to image and chemically characterize the lipid composition of oncocytic thyroid tumors, as compared with nononcocytic thyroid tumors and normal thyroid samples. We identified a novel molecular signature of oncocytic tumors characterized by an abnormally high abundance and chemical diversity of cardiolipins (CL), including many oxidized species. DESI-MS imaging and IHC experiments confirmed that the spatial distribution of CLs overlapped with regions of accumulation of mitochondria-rich oncocytic cells. Fluorescent imaging and mitochondrial isolation showed that both mitochondrial accumulation and alteration in CL composition of mitochondria occurred in oncocytic tumors cells, thus contributing the aberrant molecular signatures detected. A total of 219 molecular ions, including CLs, other glycerophospholipids, fatty acids, and metabolites, were found at increased or decreased abundance in oncocytic, nononcocytic, or normal thyroid tissues. Our findings suggest new candidate targets for clinical and therapeutic use against oncocytic tumors. Cancer Res; 76(22); 6588-97. ©2016 AACR.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Wendong Yu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Seung Woo Ryu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - John Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | | | - Robert Tibshirani
- Biomedical Data Sciences, Stanford University, Stanford, California.,Department of Statistics, Stanford University, Stanford, California
| | - James Suliburk
- Department of Surgery, Baylor College of Medicine, Houston, Texas.
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
146
|
Zhang J, Yu W, Suliburk J, Eberlin LS. Will Ambient Ionization Mass Spectrometry Become an Integral Technology in the Operating Room of the Future? Clin Chem 2016; 62:1172-4. [PMID: 27430706 DOI: 10.1373/clinchem.2016.258723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jialing Zhang
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Wendong Yu
- Departments of Pathology and Immunology and
| | | | - Livia S Eberlin
- Department of Chemistry, University of Texas at Austin, Austin, TX;
| |
Collapse
|
147
|
QnAs with Graham Cooks. Proc Natl Acad Sci U S A 2016; 113:6583-4. [DOI: 10.1073/pnas.1607586113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
148
|
Ambient ionization mass spectrometric analysis of human surgical specimens to distinguish renal cell carcinoma from healthy renal tissue. Anal Bioanal Chem 2016; 408:5407-14. [PMID: 27206411 DOI: 10.1007/s00216-016-9627-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 01/12/2023]
Abstract
Touch spray-mass spectrometry (TS-MS) is an ambient ionization technique (ionization of unprocessed samples in the open air) that may find intraoperative applications in quickly identifying the disease state of cancerous tissues and in defining surgical margins. In this study, TS-MS was performed on fresh kidney tissue (∼1-5 cm(3)), within 1 h of resection, from 21 human subjects afflicted by renal cell carcinoma (RCC). The preliminary diagnostic value of TS-MS data taken from freshly resected tissue was evaluated. Principal component analysis (PCA) of the negative ion mode (m/z 700-1000) data provided the separation between RCC (16 samples) and healthy renal tissue (13 samples). Linear discriminant analysis (LDA) on the PCA-compressed data estimated sensitivity (true positive rate) and specificity (true negative rate) of 98 and 95 %, respectively, based on histopathological evaluation. The results indicate that TS-MS might provide rapid diagnostic information in spite of the complexity of unprocessed kidney tissue and the presence of interferences such as urine and blood. Desorption electrospray ionization-MS imaging (DESI-MSI) in the negative ionization mode was performed on the tissue specimens after TS-MS analysis as a reference method. The DESI imaging experiments provided phospholipid profiles (m/z 700-1000) that also separated RCC and healthy tissue in the PCA space, with PCA-LDA sensitivity and specificity of 100 and 89 %, respectively. The TS and DESI loading plots indicated that different ions contributed most to the separation of RCC from healthy renal tissue (m/z 794 [PC 34:1 + Cl](-) and 844 [PC 38:4 + Cl](-) for TS vs. m/z 788 [PS 36:1 - H](-) and 810 [PS 38:4 - H](-) for DESI), while m/z 885 ([PI 38:4 - H](-)) was important in both TS and DESI. The prospect, remaining hurdles, and future work required for translating TS-MS into a method of intraoperative tissue diagnosis are discussed. Graphical abstract Touch spray-mass spectrometry used for lipid profiling of fresh human renal cell carcinoma. Left) Photograph of the touch spray probe pointed at the MS inlet. Right) Average mass spectra of healthy renal tissue (blue) and RCC (red).
Collapse
|
149
|
Piri-Moghadam H, Ahmadi F, Gómez-Ríos GA, Boyacı E, Reyes-Garcés N, Aghakhani A, Bojko B, Pawliszyn J. Fast Quantitation of Target Analytes in Small Volumes of Complex Samples by Matrix-Compatible Solid-Phase Microextraction Devices. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Fardin Ahmadi
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | | | - Ezel Boyacı
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Nathaly Reyes-Garcés
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Ali Aghakhani
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Barbara Bojko
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Janusz Pawliszyn
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| |
Collapse
|
150
|
Piri-Moghadam H, Ahmadi F, Gómez-Ríos GA, Boyacı E, Reyes-Garcés N, Aghakhani A, Bojko B, Pawliszyn J. Fast Quantitation of Target Analytes in Small Volumes of Complex Samples by Matrix-Compatible Solid-Phase Microextraction Devices. Angew Chem Int Ed Engl 2016; 55:7510-4. [DOI: 10.1002/anie.201601476] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/01/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Fardin Ahmadi
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | | | - Ezel Boyacı
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Nathaly Reyes-Garcés
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Ali Aghakhani
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Barbara Bojko
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| | - Janusz Pawliszyn
- Department of Chemistry; University of Waterloo; 200 University Avenue Waterloo N2L 3G1 Canada
| |
Collapse
|