101
|
Razavi F, Farhad A, Razavi S, Saatchi M, Manshaei M. Histological assessment of the local effect of different concentrations of aminoguanidine hydrochloride on bone healing in rats. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.324022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
102
|
Mehling R, Schwenck J, Lemberg C, Trautwein C, Zizmare L, Kramer D, Müller A, Fehrenbacher B, Gonzalez-Menendez I, Quintanilla-Martinez L, Schröder K, Brandes RP, Schaller M, Ruf W, Eichner M, Ghoreschi K, Röcken M, Pichler BJ, Kneilling M. Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics 2021; 11:470-490. [PMID: 33391487 PMCID: PMC7738859 DOI: 10.7150/thno.51462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important regulators of inflammation. The exact impact of ROS/RNS on cutaneous delayed-type hypersensitivity reaction (DTHR) is controversial. The aim of our study was to identify the dominant sources of ROS/RNS during acute and chronic trinitrochlorobenzene (TNCB)-induced cutaneous DTHR in mice with differently impaired ROS/RNS production. Methods: TNCB-sensitized wild-type, NADPH oxidase 2 (NOX2)- deficient (gp91phox-/-), myeloperoxidase-deficient (MPO-/-), and inducible nitric oxide synthase-deficient (iNOS-/-) mice were challenged with TNCB on the right ear once to elicit acute DTHR and repetitively up to five times to induce chronic DTHR. We measured ear swelling responses and noninvasively assessed ROS/RNS production in vivo by employing the chemiluminescence optical imaging (OI) probe L-012. Additionally, we conducted extensive ex vivo analyses of inflamed ears focusing on ROS/RNS production and the biochemical and morphological consequences. Results: The in vivo L-012 OI of acute and chronic DTHR revealed completely abrogated ROS/RNS production in the ears of gp91phox-/- mice, up to 90 % decreased ROS/RNS production in the ears of MPO-/- mice and unaffected ROS/RNS production in the ears of iNOS-/- mice. The DHR flow cytometry analysis of leukocytes derived from the ears with acute DTHR confirmed our in vivo L-012 OI results. Nevertheless, we observed no significant differences in the ear swelling responses among all the experimental groups. The histopathological analysis of the ears of gp91phox-/- mice with acute DTHRs revealed slightly enhanced inflammation. In contrast, we observed a moderately reduced inflammatory immune response in the ears of gp91phox-/- mice with chronic DTHR, while the inflamed ears of MPO-/- mice exhibited the strongest inflammation. Analyses of lipid peroxidation, 8-hydroxy-2'deoxyguanosine levels, redox related metabolites and genomic expression of antioxidant proteins revealed similar oxidative stress in all experimental groups. Furthermore, inflamed ears of wild-type and gp91phox-/- mice displayed neutrophil extracellular trap (NET) formation exclusively in acute but not chronic DTHR. Conclusions: MPO and NOX2 are the dominant sources of ROS/RNS in acute and chronic DTHR. Nevertheless, depletion of one primary source of ROS/RNS exhibited only marginal but conflicting impact on acute and chronic cutaneous DTHR. Thus, ROS/RNS are not a single entity, and each species has different properties at certain stages of the disease, resulting in different outcomes.
Collapse
|
103
|
Abstract
Nitric oxide is a strong vasodilatory and anti-inflammatory signaling molecule that plays diverse roles in maintaining vascular homeostasis. Nitric oxide produced by endothelial cells is a critical regulator of this balance, such that endothelial dysfunction is defined as a reduced capacity for nitric oxide production and decreased nitric oxide sensitivity. This ultimately results in an imbalance in vascular homeostasis leading to a prothrombotic, proinflammatory, and less compliant blood vessel wall. Endothelial dysfunction is central in numerous pathophysiologic processes. This article reviews mechanisms governing nitric oxide production and downstream effects, highlighting the role of nitric oxide signaling in organ system pathologies.
Collapse
Affiliation(s)
- Anthony R Cyr
- Department of Surgery, University of Pittsburgh Medical Center, F679 Presbyterian University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA. https://twitter.com/TonyCyr
| | - Lauren V Huckaby
- Department of Surgery, University of Pittsburgh Medical Center, F679 Presbyterian University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Sruti S Shiva
- Vascular Medicine Institute, University of Pittsburgh, E1240 BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh Medical Center, F1281 Presbyterian University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
104
|
Orlando N, Babini G, Chiusolo P, Valentini CG, De Stefano V, Teofili L. Pre-Exposure to Defibrotide Prevents Endothelial Cell Activation by Lipopolysaccharide: An Ingenuity Pathway Analysis. Front Immunol 2020; 11:585519. [PMID: 33343567 PMCID: PMC7744778 DOI: 10.3389/fimmu.2020.585519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023] Open
Abstract
Defibrotide (DFB) effects on different endothelial cell pathways have been investigated focusing on a limited number of genes or molecules. This study explored the modulation of the gene expression profile of steady-state or lipopolysaccharide (LPS)-activated endothelial cells, following the DFB exposure. Starting from differentially regulated gene expression datasets, we utilized the Ingenuity Pathway Analysis (IPA) to infer novel information about the activity of this drug. We found that effects elicited by LPS deeply differ depending on cells were exposed to DFB and LPS at the same time, or if the DFB priming occurs before the LPS exposure. Only in the second case, we observed a significant down-regulation of various pathways activated by LPS. In IPA, the pathways most affected by DFB were leukocyte migration and activation, vasculogenesis, and inflammatory response. Furthermore, the activity of DFB seemed to be associated with the modulation of six key genes, including matrix-metalloproteinases 2 and 9, thrombin receptor, sphingosine-kinase1, alpha subunit of collagen XVIII, and endothelial-protein C receptor. Overall, our findings support a role for DFB in a wide range of diseases associated with an exaggerated inflammatory response of endothelial cells.
Collapse
Affiliation(s)
- Nicoletta Orlando
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrizia Chiusolo
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Caterina Giovanna Valentini
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valerio De Stefano
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luciana Teofili
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
105
|
Castiglione M, Jiang Y, Mazzeo C, Lee S, Chen J, Kaushansky K, Yin W, Lin RZ, Zheng H, Zhan H. Endothelial JAK2V617F mutation leads to thrombosis, vasculopathy, and cardiomyopathy in a murine model of myeloproliferative neoplasm. J Thromb Haemost 2020; 18:3359-3370. [PMID: 32920974 PMCID: PMC7756295 DOI: 10.1111/jth.15095] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cardiovascular complications are the leading cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). The acquired kinase mutation JAK2V617F plays a central role in these disorders. Mechanisms responsible for cardiovascular dysfunction in MPNs are not fully understood, limiting the effectiveness of current treatment. Vascular endothelial cells (ECs) carrying the JAK2V617F mutation can be detected in patients with MPNs. The goal of this study was to test the hypothesis that the JAK2V617F mutation alters endothelial function to promote cardiovascular complications in patients with MPNs. APPROACH AND RESULTS We employed murine models of MPN in which the JAK2V617F mutation is expressed in specific cell lineages. When JAK2V617F is expressed in both blood cells and vascular ECs, the mice developed MPN and spontaneous, age-related dilated cardiomyopathy with an increased risk of sudden death as well as a prothrombotic and vasculopathy phenotype on histology evaluation. In contrast, despite having significantly higher leukocyte and platelet counts than controls, mice with JAK2V617F-mutant blood cells alone did not demonstrate any cardiac dysfunction, suggesting that JAK2V617F-mutant ECs are required for this cardiovascular disease phenotype. Furthermore, we demonstrated that the JAK2V617F mutation promotes a pro-adhesive, pro-inflammatory, and vasculopathy EC phenotype, and mutant ECs respond to flow shear differently than wild-type ECs. CONCLUSIONS These findings suggest that the JAK2V617F mutation can alter vascular endothelial function to promote cardiovascular complications in MPNs. Therefore, targeting the MPN vasculature represents a promising new therapeutic strategy for patients with MPNs.
Collapse
Affiliation(s)
| | - Ya‐Ping Jiang
- Department of Physiology and BiophysicsInstitute of Molecular CardiologyStony Brook UniversityStony BrookNYUSA
| | | | - Sandy Lee
- Department of Molecular and Cellular PharmacologyStony Brook UniversityStony BrookNYUSA
| | - Juei‐Suei Chen
- Department of MedicineStony Brook School of MedicineStony BrookNYUSA
| | - Kenneth Kaushansky
- Office of the Sr. Vice PresidentHealth SciencesStony Brook MedicineStony BrookNYUSA
| | - Wei Yin
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNYUSA
| | - Richard Z. Lin
- Department of Physiology and BiophysicsInstitute of Molecular CardiologyStony Brook UniversityStony BrookNYUSA
- Medical ServiceNorthport VA Medical CenterNorthportNYUSA
| | - Haoyi Zheng
- Cardiac ImagingThe Heart CenterSaint Francis HospitalRoslynNYUSA
| | - Huichun Zhan
- Department of MedicineStony Brook School of MedicineStony BrookNYUSA
- Medical ServiceNorthport VA Medical CenterNorthportNYUSA
| |
Collapse
|
106
|
Reis VP, Rego CMA, Setúbal SS, Tavares MNM, Boeno CN, Ferreira E Ferreira AA, Paloschi MV, Soares AM, Zamuner SR, Zuliani JP. Effect of light emitting diode photobiomodulation on murine macrophage function after Bothrops envenomation. Chem Biol Interact 2020; 333:109347. [PMID: 33259806 DOI: 10.1016/j.cbi.2020.109347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Several reports have suggested that photobiomodulation, owing to its analgesic, anti-inflammatory, and healing effects, may be an effective therapeutic option for local effects of snakebites when the availability and accessibility of conventional serum therapy are inefficient and far from medical care centers. Although there have been studies that demonstrate the application of photobiomodulation in the treatment of local adverse events due to snakebites from snakes of the genus Bothrops, its role in the activation of leukocytes, particularly macrophages, has not been evaluated. Here, we assessed the effect of light-emitting diode (LED) treatment on macrophage activation induced by B. jararacussu venom (BjV). LED treatment caused an increase in the viability of macrophages incubated with BjV. This treatment reduced reactive oxygen species (ROS) and nitric oxide (NO) production by macrophages after incubation with BjV. However, LED treatment did not interfere with IL-1β and IL-10 production by macrophages after incubation with BjV. In conclusion, this study showed that LED treatment has the potential to be used in combination with conventional serum therapy to prevent or minimize the progression of local to severe symptoms after Bothrops envenomation.
Collapse
Affiliation(s)
- Valdison P Reis
- Lab. Imunologia Celular Aplicada à Saúde, FIOCRUZ-Rondônia, Porto Velho, RO, Brazil
| | - Cristina M A Rego
- Lab. Imunologia Celular Aplicada à Saúde, FIOCRUZ-Rondônia, Porto Velho, RO, Brazil
| | - Sulamita S Setúbal
- Lab. Imunologia Celular Aplicada à Saúde, FIOCRUZ-Rondônia, Porto Velho, RO, Brazil
| | | | - Charles N Boeno
- Lab. Imunologia Celular Aplicada à Saúde, FIOCRUZ-Rondônia, Porto Velho, RO, Brazil
| | | | - Mauro V Paloschi
- Lab. Imunologia Celular Aplicada à Saúde, FIOCRUZ-Rondônia, Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Dep. Medicina, Universidade Federal de Rondônia (UNIR) e FIOCRUZ-Rondônia, Porto Velho, RO, Brazil; Centro Universitário São Lucas (UNISL), Porto Velho, RO, Brazil
| | | | - Juliana P Zuliani
- Lab. Imunologia Celular Aplicada à Saúde, FIOCRUZ-Rondônia, Porto Velho, RO, Brazil; Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Dep. Medicina, Universidade Federal de Rondônia (UNIR) e FIOCRUZ-Rondônia, Porto Velho, RO, Brazil.
| |
Collapse
|
107
|
Ertelt A, Stumpff F, Merle R, Kuban S, Bollinger L, Liertz S, Gehlen H. Asymmetric dimethylarginine-A potential cardiac biomarker in horses. J Vet Cardiol 2020; 33:43-51. [PMID: 33360109 DOI: 10.1016/j.jvc.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION/OBJECTIVES Asymmetric dimethylarginine (ADMA) is a cardiac biomarker in humans, symmetric dimethylarginine (SDMA) a renal biomarker in humans, cats, and dogs. The purpose of this prospective study was to investigate if measuring serum ADMA and SDMA concentrations via ELISA allows detection of cardiac disease in horses in a routine laboratory setting. In this context, reference values in horses were established. ANIMALS, MATERIALS, AND METHODS Seventy-eight horses with no known medical history were compared to 23 horses with confirmed structural cardiac disease with/or without arrhythmias. Horses underwent physical examination, electrocardiography, echocardiography and venous blood sampling and were staged based on the severity of cardiac disease from 0 to II. Asymmetric dimethylarginine and SDMA were measured via ELISA and crosschecked using liquid chromatograph triple quadrupole mass spectrometry. Reference intervals with 90th percent confidence intervals were evaluated and standard software was used to test for significant differences in ADMA, SDMA, and the l-arginine/ADMA ratio between groups. RESULTS The reference ranges were 1.7-3.8 μmol/L and 0.3-0.8 μmol/L for ADMA and SDMA, respectively. Serum ADMA was higher in horses with heart disease compared to healthy horses (p < 0.01) and highest in horses with stage II heart disease (p = 0.02). The l-Arginine/ADMA ratio was significantly higher in healthy animals than those with cardiac disease (p = 0.001). CONCLUSIONS Reference values for serum ADMA and SDMA using ELISA methods are presented in horses. This study confirms the association between heart disease and increased serum ADMA concentration as well as a decreased l-Arginine/ADMA ratio in horses.
Collapse
Affiliation(s)
- A Ertelt
- Equine Clinic, Internal Medicine, Freie Universitaet Berlin, Oertzenweg 19b, 14193, Berlin, Germany.
| | - F Stumpff
- Institute of Veterinary Physiology, Freie Universitaet Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - R Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universitaet Berlin, Koenigsweg 67, 14163, Berlin, Germany
| | - S Kuban
- Equine Clinic, Internal Medicine, Freie Universitaet Berlin, Oertzenweg 19b, 14193, Berlin, Germany
| | - L Bollinger
- Equine Clinic, Internal Medicine, Freie Universitaet Berlin, Oertzenweg 19b, 14193, Berlin, Germany
| | - S Liertz
- Equine Clinic, Internal Medicine, Freie Universitaet Berlin, Oertzenweg 19b, 14193, Berlin, Germany
| | - H Gehlen
- Equine Clinic, Internal Medicine, Freie Universitaet Berlin, Oertzenweg 19b, 14193, Berlin, Germany
| |
Collapse
|
108
|
Aguilar G, Koning T, Ehrenfeld P, Sánchez FA. Role of NO and S-nitrosylation in the Expression of Endothelial Adhesion Proteins That Regulate Leukocyte and Tumor Cell Adhesion. Front Physiol 2020; 11:595526. [PMID: 33281627 PMCID: PMC7691576 DOI: 10.3389/fphys.2020.595526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Leukocyte recruitment is one of the most important cellular responses to tissue damage. Leukocyte extravasation is exquisitely regulated by mechanisms of selective leukocyte-endothelium recognition through adhesion proteins in the endothelial cell surface that recognize specific integrins in the activated leukocytes. A similar mechanism is used by tumor cells during metastasis to extravasate and form a secondary tumor. Nitric oxide (NO) has been classically described as an anti-inflammatory molecule that inhibits leukocyte adhesion. However, the evidence available shows also a positive role of NO in leukocyte adhesion. These apparent discrepancies might be explained by the different NO concentrations reached during the inflammatory response, which are highly modulated by the expression of different nitric oxide synthases, along the inflammatory response and by changes in their subcellular locations.
Collapse
Affiliation(s)
- Gaynor Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
109
|
Baier J, Gänsbauer M, Giessler C, Arnold H, Muske M, Schleicher U, Lukassen S, Ekici A, Rauh M, Daniel C, Hartmann A, Schmid B, Tripal P, Dettmer K, Oefner PJ, Atreya R, Wirtz S, Bogdan C, Mattner J. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J Clin Invest 2020; 130:5703-5720. [PMID: 32721946 PMCID: PMC7598089 DOI: 10.1172/jci126923] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Arginase 1 (Arg1), which converts l-arginine into ornithine and urea, exerts pleiotropic immunoregulatory effects. However, the function of Arg1 in inflammatory bowel disease (IBD) remains poorly characterized. Here, we found that Arg1 expression correlated with the degree of inflammation in intestinal tissues from IBD patients. In mice, Arg1 was upregulated in an IL-4/IL-13- and intestinal microbiota-dependent manner. Tie2-Cre Arg1fl/fl mice lacking Arg1 in hematopoietic and endothelial cells recovered faster from colitis than Arg1-expressing (Arg1fl/fl) littermates. This correlated with decreased vessel density, compositional changes in intestinal microbiota, diminished infiltration by myeloid cells, and an accumulation of intraluminal polyamines that promote epithelial healing. The proresolving effect of Arg1 deletion was reduced by an l-arginine-free diet, but rescued by simultaneous deletion of other l-arginine-metabolizing enzymes, such as Arg2 or Nos2, demonstrating that protection from colitis requires l-arginine. Fecal microbiota transfers from Tie2-Cre Arg1fl/fl mice into WT recipients ameliorated intestinal inflammation, while transfers from WT littermates into Arg1-deficient mice prevented an advanced recovery from colitis. Thus, an increased availability of l-arginine as well as altered intestinal microbiota and metabolic products accounts for the accelerated resolution from colitis in the absence of Arg1. Consequently, l-arginine metabolism may serve as a target for clinical intervention in IBD patients.
Collapse
Affiliation(s)
- Julia Baier
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | - Claudia Giessler
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Harald Arnold
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Mercedes Muske
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Ulrike Schleicher
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | | | | | | | - Arndt Hartmann
- Pathologisches Institut, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Dettmer
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Raja Atreya
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
110
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
111
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
112
|
Oliver AA, Guillory RJ, Flom KL, Morath LM, Kolesar TM, Mostaed E, Sikora-Jasinska M, Drelich JW, Goldman J. Analysis of vascular inflammation against bioresorbable Zn-Ag based alloys. ACS APPLIED BIO MATERIALS 2020; 3:6779-6789. [PMID: 33644704 PMCID: PMC7905847 DOI: 10.1021/acsabm.0c00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc (Zn) has emerged as a promising bioresorbable stent material due to its satisfactory corrosion behavior and excellent biocompatibility. However, for load bearing implant applications, alloying is required to boost its mechanical properties as pure Zn exhibits poor strength. Unfortunately, an increase in inflammation relative to pure Zn is a commonly observed side-effect of Zn alloys. Consequently, the development of a Zn-based alloy that can simultaneously feature improved mechanical properties and suppress inflammatory responses is a big challenge. Here, a bioresorbable, biocompatible Zn-Ag-based quinary alloy was comprehensively evaluated in vivo, in comparison to reference materials. The inflammatory and smooth muscle cellular response was characterized and correlated to metrics of neointimal growth. We found that implantation of the quinary alloy was associated with significantly improved inflammatory activities relative to the reference materials. Additionally, we found that inflammation, but not smooth muscle cell hyperplasia, significantly correlates to neointimal growth for Zn alloys. The results suggest that inflammation is the main driver of neointimal growth for Zn-based alloys and that the quinary Zn-Ag-Mn-Zr-Cu alloy may impart inflammation-resistance properties to arterial implants.
Collapse
Affiliation(s)
- Alexander A. Oliver
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Roger J. Guillory
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Katie L. Flom
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Lea M. Morath
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Timothy M. Kolesar
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Ehsan Mostaed
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | | | - Jaroslaw W. Drelich
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, USA
| |
Collapse
|
113
|
A new paradigm for gaseous ligand selectivity of hemoproteins highlighted by soluble guanylate cyclase. J Inorg Biochem 2020; 214:111267. [PMID: 33099233 DOI: 10.1016/j.jinorgbio.2020.111267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and oxygen (O2) are important physiological messengers whose concentrations vary in a remarkable range, [NO] typically from nM to several μM while [O2] reaching to hundreds of μM. One of the machineries evolved in living organisms for gas sensing is sensor hemoproteins whose conformational change upon gas binding triggers downstream response cascades. The recently proposed "sliding scale rule" hypothesis provides a general interpretation for gaseous ligand selectivity of hemoproteins, identifying five factors that govern gaseous ligand selectivity. Hemoproteins have intrinsic selectivity for the three gases due to a neutral proximal histidine ligand while proximal strain of heme and distal steric hindrance indiscriminately adjust the affinity of these three gases for heme. On the other hand, multiple-step NO binding and distal hydrogen bond donor(s) specifically enhance affinity for NO and O2, respectively. The "sliding scale rule" hypothesis provides clear interpretation for dramatic selectivity for NO over O2 in soluble guanylate cyclase (sGC) which is an important example of sensor hemoproteins and plays vital roles in a wide range of physiological functions. The "sliding scale rule" hypothesis has so far been validated by all experimental data and it may guide future designs for heme-based gas sensors.
Collapse
|
114
|
Abstract
The COVID-19 pandemic now totaling 13,000,000 cases and over 571,000 deaths has continued to teach the medical, scientific and lay communities about viral infectious disease in the modern era. Among the many lessons learned for the medical community is the potential for transmissibility and host infectivity of the SARS–CoV-2 virus. Moreover, it has become clear that the virus can affect any organ including the circulatory system, directly via either tissue tropism or indirectly stemming from inflammatory responses in the form of innate immunity, leukocyte debris such as cell-free DNA and histones and RNA viral particles. The following review considers COVID-19-associated vasculitis and vasculopathy as a defining feature of a virus-induced systemic disease with acute, subacute and potential chronic health implications.
Collapse
|
115
|
Shrestha AK, Menon RT, El-Saie A, Barrios R, Reynolds C, Shivanna B. Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs. Am J Physiol Lung Cell Mol Physiol 2020; 319:L981-L996. [PMID: 32901520 DOI: 10.1152/ajplung.00013.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a chronic infantile lung disease that lacks curative therapies. Infants with BPD-associated PH are often exposed to hyperoxia and additional insults such as sepsis that contribute to disease pathogenesis. Animal models that simulate these scenarios are necessary to develop effective therapies; therefore, we investigated whether lipopolysaccharide (LPS) and hyperoxia exposure during saccular lung development cooperatively induce experimental BPD-PH in mice. C57BL/6J mice were exposed to normoxia or 70% O2 (hyperoxia) during postnatal days (PNDs) 1-5 and intraperitoneally injected with varying LPS doses or a vehicle on PNDs 3-5. On PND 14, we performed morphometry, echocardiography, and gene and protein expression studies to determine the effects of hyperoxia and LPS on lung development, vascular remodeling and function, inflammation, oxidative stress, cell proliferation, and apoptosis. LPS and hyperoxia independently and cooperatively affected lung development, inflammation, and apoptosis. Growth rate and antioxidant enzyme expression were predominantly affected by LPS and hyperoxia, respectively, while cell proliferation and vascular remodeling and function were mainly affected by combined exposure to LPS and hyperoxia. Mice treated with lower LPS doses developed adaptive responses and hyperoxia exposure did not worsen their BPD phenotype, whereas those mice treated with higher LPS doses displayed the most severe BPD phenotype when exposed to hyperoxia and were the only group that developed PH. Collectively, our data suggest that an additional insult such as LPS may be necessary for models utilizing short-term exposure to moderate hyperoxia to recapitulate human BPD-PH.
Collapse
Affiliation(s)
- Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Ahmed El-Saie
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Corey Reynolds
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
116
|
Fan JL, O’Donnell T, Lanford J, Croft K, Watson E, Smyth D, Koch H, Wong LK, Tzeng YC. Dietary nitrate reduces blood pressure and cerebral artery velocity fluctuations and improves cerebral autoregulation in transient ischemic attack patients. J Appl Physiol (1985) 2020; 129:547-557. [DOI: 10.1152/japplphysiol.00160.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We found dietary nitrate supplementation reduced blood pressure and brain blood flow fluctuations and improved the relationship between blood pressure and brain blood flow in transient ischemic attack patients. Meanwhile, dietary nitrate had no effects on the brain blood vessels’ response to CO2. We attribute the improved brain blood flow stability to the improved myogenic control of blood pressure with dietary nitrate. Our findings indicate that dietary nitrate could be an effective strategy for stabilizing blood pressure and brain blood flow following transient ischemic attack.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Terrence O’Donnell
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Jeremy Lanford
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Kevin Croft
- School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Eloise Watson
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Duncan Smyth
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Henrietta Koch
- School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Lai-Kin Wong
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
117
|
El-Sisi AE, Sokar SS, Abu-Risha SE, Khira DY. The potential beneficial effects of sildenafil and diosmin in experimentally-induced gastric ulcer in rats. Heliyon 2020; 6:e04761. [PMID: 32885082 PMCID: PMC7452579 DOI: 10.1016/j.heliyon.2020.e04761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/27/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives research in the treatment of gastric ulcer has involved the investigation of protective drugs. These drugs may be used as adjacent therapy with the traditional pharmacologic treatment of peptic ulcer. The present study is designed to investigate the gastro protective effects of diosmin (DIO), sildenafil (SILD) and their combinations with ranitidine (RANT) against indomethacin (INDO)-induced gastric ulcer in rats. Additionally, the potential mechanisms of their effect are addressed. Methods DIO (100 mg/kg) and SILD (10 mg/kg) were administered by oral route for seven days prior to ulcer induction. Moreover, other rats were treated with RANT (50 mg/kg) not only to compare efficiency of the medications but also, to help clarify potential mechanisms of their effect. Following, after 24 h of fasting, INDO (100 mg/kg) was administered for induction of gastric ulcer. Furthermore, rats in each group were sacrificed 4 h later. Biochemical analysis of DIO, SILD, RANT and their combinations pre-treated host tissues demonstrated reduction in tumor necrosis factor (TNF)-α and malondialdehyde (MDA) contents and concomitant increase in gastric pH, nitric oxide (NO) and reduced glutathione (GSH) contents. Result It is observed, that SILD and DIO pre-treatment showed non-significant effect on gastric juice PH. However, their combinations with RANT is superior to using RANT alone. In addition, the results revealed, that combinations of (RANT and SILD) and (RANT and DIO) showed the highest increase in gastric tissue NO levels. But, these two combinations achieved the lowest MDA levels relative to the control (INDO) group. Despite, all groups displayed non-significant effect on reduced GSH content, (RANT and SILD) group increased GSH concentration by 39.75% relative to INDO group. In addition, DIO, RANT and (RANT and DIO) pre-treatment have anti-apoptotic activity on gastric mucosa. On the other hand, SILD did not affect caspase-3 immunostaining. These results are confirmed by histopathological findings. Conclusion The work outcomes provide a new gastro protective agents in clinical gastropathy. So, this study not only provides an efficient way for peptic ulcer protection, but also it may be considered for future studies in ulcer healing and gastric cancer.
Collapse
Affiliation(s)
- Alaa E El-Sisi
- Pharmacology & Toxicology Dept., Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Samia S Sokar
- Pharmacology & Toxicology Dept., Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sally E Abu-Risha
- Pharmacology & Toxicology Dept., Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Doaa Y Khira
- Pharmacology & Toxicology Dept., Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
118
|
Peng G, Montenegro MF, Ntola CNM, Vranic S, Kostarelos K, Vogt C, Toprak MS, Duan T, Leifer K, Bräutigam L, Lundberg JO, Fadeel B. Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract. NANOSCALE 2020; 12:16730-16737. [PMID: 32785315 DOI: 10.1039/d0nr03675g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the biological fate of graphene-based materials such as graphene oxide (GO) is crucial to assess adverse effects following intentional or inadvertent exposure. Here we provide first evidence of biodegradation of GO in the gastrointestinal tract using zebrafish as a model. Raman mapping was deployed to assess biodegradation. The degradation was blocked upon knockdown of nos2a encoding the inducible nitric oxide synthase (iNOS) or by pharmacological inhibition of NOS using l-NAME, demonstrating that the process was nitric oxide (NO)-dependent. NO-dependent degradation of GO was further confirmed in vitro by combining a superoxide-generating system, xanthine/xanthine oxidase (X/XO), with an NO donor (PAPA NONOate), or by simultaneously producing superoxide and NO by decomposition of SIN-1. Finally, by using the transgenic strain Tg(mpx:eGFP) to visualize the movement of neutrophils, we could show that inhibition of the degradation of GO resulted in increased neutrophil infiltration into the gastrointestinal tract, indicative of inflammation.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Chifundo N M Ntola
- National Graphene Institute, and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sandra Vranic
- National Graphene Institute, and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kostas Kostarelos
- National Graphene Institute, and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK and Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain
| | - Carmen Vogt
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Muhammet S Toprak
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tianbo Duan
- Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Klaus Leifer
- Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Bräutigam
- Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
119
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
120
|
Portörő I, Mukli P, Kocsis L, Hermán P, Caccia D, Perrella M, Mozzarelli A, Ronda L, Mathe D, Eke A. Model-based evaluation of the microhemodynamic effects of PEGylated HBOC molecules in the rat brain cortex: a laser speckle imaging study. BIOMEDICAL OPTICS EXPRESS 2020; 11:4150-4175. [PMID: 32923034 PMCID: PMC7449705 DOI: 10.1364/boe.388089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Hemoglobin-based oxygen carriers (HBOCs) were developed with the aim of substituting transfusions in emergency events. However, they exhibit adverse events, such as nitric oxide (NO) scavenging, vasoactivity, enhanced platelet aggregation, presently hampering their clinical application. The impact of two prototypical PEGylated HBOCs, Euro-PEG-Hb and PEG-HbO2, endowed by different oxygen affinities and hydrodynamic volumes, was assessed on the cerebrocortical parenchymal microhemodynamics, and extravasation through the blood-brain-barrier (BBB) by laser speckle contrast imaging (LSCI) method and near-infrared (NIR) imaging, respectively. By evaluating voxel-wise cerebrocortical red blood cell velocity, non-invasively for its mean kernel-wise value ( v ¯ RBC ), and model-derived kernel-wise predictions for microregional tissue hematocrit, THt, and fractional change in hematocrit-corrected vascular resistance, R', as measures of potential adverse effects (enhanced platelet aggregation and vasoactivity, respectively) we found i) no significant difference between tested HBOCs in the systemic and microregional parameters, and in the relative spatial dispersion of THt, and R' as additional measures of HBOC-related adverse effects, and ii) no extravasation through BBB by Euro-PEG-Hb. We conclude that Euro-PEG-Hb does not exhibit adverse effects in the brain microcirculation that could be directly attributed to NO scavenging.
Collapse
Affiliation(s)
- István Portörő
- Institute of Translational Medicine, Semmelweis University, Hungary
- These authors contributed equally to this work
| | - Péter Mukli
- Institute of Translational Medicine, Semmelweis University, Hungary
- Department of Physiology, Semmelweis University, Hungary
- These authors contributed equally to this work
| | - László Kocsis
- Institute of Translational Medicine, Semmelweis University, Hungary
| | - Péter Hermán
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Dario Caccia
- Department of Biomedical Science and Technology, University of Milan, Italy
- Department of Food and Drug, University of Parma, Italy
| | - Michele Perrella
- Department of Biomedical Science and Technology, University of Milan, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Italy
- Institute of Biophysics, National Research Council, Pisa, Italy
- Biopharmanet-TEC, University of Parma, Italy
| | - Luca Ronda
- Institute of Biophysics, National Research Council, Pisa, Italy
- Biopharmanet-TEC, University of Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Domokos Mathe
- CROmed Research and Service Centers Ltd., Budapest, Hungary
| | - Andras Eke
- Institute of Translational Medicine, Semmelweis University, Hungary
- Department of Physiology, Semmelweis University, Hungary
| |
Collapse
|
121
|
Coimbra DF, Cintra CH, Lourenço LCL, Parreira RLT, Orenha RP, Caramori GF. Are DFT Methods Able to Predict Reduction Potentials of Ruthenium Nitrosyl Complexes Accurately? J Phys Chem A 2020; 124:6186-6192. [DOI: 10.1021/acs.jpca.0c03718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel F. Coimbra
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040−900, Brazil
| | - Claudia H. Cintra
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Luiz C. L. Lourenço
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Renato P. Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Giovanni F. Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040−900, Brazil
| |
Collapse
|
122
|
Iwata M, Inoue T, Asai Y, Hori K, Fujiwara M, Matsuo S, Tsuchida W, Suzuki S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem Biophys Rep 2020; 23:100790. [PMID: 32760814 PMCID: PMC7390790 DOI: 10.1016/j.bbrep.2020.100790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important part of the host defense mechanism; however, it displays both pro- and anti-inflammatory properties depending on its location and concentration. Importantly, excessive or inappropriate NO production can cause tissue damage. Systemic and local administration of NO synthase (NOS) inhibitors ameliorates and may exacerbate the inflammatory response, respectively. Here, we used a carrageenan-induced pleurisy model of acute inflammation in rats to confirm the location-dependent effects of NO and investigate the underlying mechanisms. As expected, localized suppression of NO production exacerbated inflammation, as evidenced by increased pleural exudate volumes and leukocyte counts and enhanced activity of enzymes related to oxidative stress. In contrast, local NO supplementation reduced leukocyte infiltration, vascular permeability, and the activity of oxidative stress-related enzymes. Interestingly, inhibition of heme oxygenase-1 (HO-1) reversed the anti-inflammatory effects of localized NO production, while the addition of hemin (HO-1 substrate) or carbon monoxide (CO; HO-1 metabolite) decreased leukocyte migration and exudation. Together, these findings confirm a protective role for NO at the inflammatory site, which appears to be mediated via NOS induction of the HO-1/CO pathway. Thus, NO supplementation may be a potential new treatment for oxidative stress-associated inflammatory diseases. Systemic NOS inhibition ameliorated inflammation in a rat Cg-induced pleurisy model. Conversely, localized NOS inhibition increased all examined markers of inflammation. HO-1, hemin, and CO enhanced the localized anti-inflammatory effects of NO. NOC-18, l-arginine, hemin, and CORM-3 decreased levels of inflammatory cytokines. The localized anti-inflammatory effect of NO may be mediated via the HO-1/CO pathway.
Collapse
Affiliation(s)
- Masahiro Iwata
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan.,Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Takayuki Inoue
- Department of Rehabilitation, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Yuji Asai
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan
| | - Kiyomi Hori
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Mitsuhiro Fujiwara
- Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan.,Kamiiida Rehabilitation Hospital, 3-57 Kamiiida Kita-machi, Kita-ku, Nagoya, 462-0802, Japan
| | - Shingo Matsuo
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan
| | - Wakako Tsuchida
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Shigeyuki Suzuki
- Department of Health and Sports Sciences, School of Health Sciences, Asahi University, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
123
|
Sun X, Lv H, Zhao P, He J, Cui Q, Wei M, Feng S, Zhu Y. Commutative regulation between endothelial NO synthase and insulin receptor substrate 2 by microRNAs. J Mol Cell Biol 2020; 11:509-520. [PMID: 30295821 DOI: 10.1093/jmcb/mjy055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/01/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Endothelial NO synthase (eNOS) expression is regulated by a number of transcriptional and post-transcriptional mechanisms, but the effects of competing endogenous RNAs (ceRNAs) on eNOS mRNA and the underlying mechanisms are still unknown. Our bioinformatic analysis revealed three highly expressed eNOS-targeting miRNAs (miR-15b, miR-16, and miR-30b) in human endothelial cells (ECs). Among the 1103 mRNA targets of these three miRNAs, 15 mRNAs share a common disease association with eNOS. Gene expression and correlation analysis in patients with cardiovascular diseases identified insulin receptor substrate 2 (IRS2) as the most correlated eNOS-ceRNA. The expression levels of eNOS and IRS2 were coincidentally increased by application of laminar shear but reduced with eNOS or IRS2 siRNA transfection in human ECs, which was impeded by Dicer siRNA treatment. Moreover, luciferase reporter assay showed that these three miRNAs directly target the 3'UTR of eNOS and IRS2. Overexpression of these three miRNAs decreased, whereas inhibition of them increased, both mRNA and protein levels of eNOS and IRS2. Functionally, silencing eNOS suppressed the Akt signal pathway, while IRS2 knockdown reduced NO production in ECs. Thus, we identified eNOS and IRS2 as ceRNAs and revealed a novel mechanism explaining the coincidence of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Huizhen Lv
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University; Tianjin Key Laboratory of Metabolic Diseases, Tianjin, China
| | - Peng Zhao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jinlong He
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University; Tianjin Key Laboratory of Metabolic Diseases, Tianjin, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Minxin Wei
- Department of Cardiac Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Zhu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University; Tianjin Key Laboratory of Metabolic Diseases, Tianjin, China
| |
Collapse
|
124
|
Malekmohammad K, Sewell RD, Rafieian-Kopaei M. Mechanisms of Medicinal Plant Activity on Nitric Oxide (NO) Bioavailability as Prospective Treatments for Atherosclerosis. Curr Pharm Des 2020; 26:2591-2601. [DOI: 10.2174/1381612826666200318152049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Background and objective:
Atherosclerosis is one of the leading causes of human morbidity globally
and reduced bioavailability of vascular nitric oxide (NO) has a critical role in the progression and development of
the atherosclerotic disease. Loss of NO bioavailability, for example via a deficiency of the substrate (L-arginine)
or cofactors for endothelial nitric oxide synthase (eNOS), invariably leads to detrimental vascular effects such as
impaired endothelial function and increased smooth muscle cell proliferation, deficiency of the substrate (Larginine)
or cofactors for eNOS. Various medicinal plants and their bioactive compounds or secondary metabolites
with fewer side effects are potentially implicated in preventing cardiovascular disease by increasing NO
bioavailability, thereby ameliorating endothelial dysfunction. In this review, we describe the most notable medicinal
plants and their bioactive compounds that may be appropriate for enhancing NO bioavailability, and
treatment of atherosclerosis.
Methods:
The material in this article was obtained from noteworthy scientific databases, including Web of Science,
PubMed, Science Direct, Scopus and Google Scholar.
Results:
Medicinal plants and their bioactive compounds influence NO production through diverse mechanisms
including the activation of the nuclear factor kappa B (NF-κB) signaling pathway, activating protein kinase C
(PKC)-α, stimulating protein tyrosine kinase (PTK), reducing the conversion of nitrite to NO via nitrate-nitrite
reduction pathways, induction of eNOS, activating the phosphatidylinositol 3-kinase (PI3K)/serine threonine
protein kinase B (AKT) (PI3K/AKT/eNOS/NO) pathway and decreasing oxidative stress.
Conclusion:
Medicinal plants and/or their constituent bioactive compounds may be considered as safe therapeutic
options for enhancing NO bioavailability and prospective preventative therapy for atherosclerosis.
Collapse
Affiliation(s)
| | - Robert D.E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
125
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [PMID: 32576603 DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In contrast to nitric oxide, which has well established and important roles in the regulation of blood flow and thrombosis, neurotransmission, the normal functioning of the genitourinary system, and the inflammation response and host defense, its oxidized metabolites nitrite and nitrate have, until recently, been considered to be relatively inactive. However, this view has been radically revised over the past decade and more. Much evidence has now accumulated demonstrating that nitrite serves as a storage form of nitric oxide, releasing nitric oxide preferentially under acidic and/or hypoxic conditions but also occurring under physiologic conditions: a phenomenon that is catalyzed by a number of distinct mammalian nitrite reductases. Importantly, preclinical studies demonstrate that reduction of nitrite to nitric oxide results in a number of beneficial effects, including vasodilatation of blood vessels and lowering of blood pressure, as well as cytoprotective effects that limit the extent of damage caused by an ischemia/reperfusion insult, with this latter issue having been translated more recently to the clinical setting. In addition, research has demonstrated that the other main metabolite of the oxidation of nitric oxide (i.e., nitrate) can also be sequentially reduced through processing in vivo to nitrite and then nitrite to nitric oxide to exert a range of beneficial effects-most notably lowering of blood pressure, a phenomenon that has also been confirmed recently to be an effective method for blood pressure lowering in patients with hypertension. This review will provide a detailed description of the pathways involved in the bioactivation of both nitrate and nitrite in vivo, their functional effects in preclinical models, and their mechanisms of action, as well as a discussion of translational exploration of this pathway in diverse disease states characterized by deficiencies in bioavailable nitric oxide. SIGNIFICANCE STATEMENT: The past 15 years has seen a major revision in our understanding of the pathways for nitric oxide synthesis in the body with the discovery of the noncanonical pathway for nitric oxide generation known as the nitrate-nitrite-nitric oxide pathway. This review describes the molecular components of this pathway, its role in physiology, potential therapeutics of targeting this pathway, and their impact in experimental models, as well as the clinical translation (past and future) and potential side effects.
Collapse
Affiliation(s)
- V Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - R S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - D A Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - K Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - C Primus
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - G Massimo
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - J M Fukuto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - A Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| |
Collapse
|
126
|
Inosine, an endogenous purine nucleoside, avoids early stages of atherosclerosis development associated to eNOS activation and p38 MAPK/NF-kB inhibition in rats. Eur J Pharmacol 2020; 882:173289. [PMID: 32565337 DOI: 10.1016/j.ejphar.2020.173289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a multifactorial chronic disease, initiated by an endothelial dysfunction. Adenosine and its analogs can change a variety of inflammatory diseases and has shown important effects at different disease models. Inosine is a stable analogous of adenosine, but its effects in inflammatory diseases, like atherosclerosis, have not yet been studied. The aim of this study was to evaluate the pharmacological properties of inosine, administered sub chronically in a hypercholesterolemic model. Male Wistar rats were divided into four groups: control group (C) and control + inosine (C + INO) received standard chow, hypercholesterolemic diet group (HCD) and HCD + inosine (HCD + INO) were fed a hypercholesterolemic diet. At 31st experimentation day, the treatment with inosine was performed for C + INO and HCD + INO groups once daily in the last 15 days. We observed that the hypercholesterolemic diet promoted an increase in lipid levels and inflammatory cytokines production, while inosine treatment strongly decreased these effects. Additionally, HCD group presented a decrease in maximum relaxation acetylcholine induced and an increase in contractile response phenylephrine induced when compared to the control group, as well as it has presented an enhancement in collagen and ADP-induced platelet aggregation. On the other hand, inosine treatment promoted a decrease in contractile response to phenylephrine, evoked an improvement in endothelium-dependent vasorelaxant response and presented antiplatelet properties. Moreover, inosine activated eNOS and reduced p38 MAPK/NF-κB pathway in aortic tissues. Taken together, the present results indicate inosine as a potential drug for the treatment of cardiovascular disorders such as atherosclerosis.
Collapse
|
127
|
Guan GY, Wei N, Song T, Zhao C, Sun Y, Pan RX, Zhang LL, Xu YY, Dai YM, Han H. miR-448-3p alleviates diabetic vascular dysfunction by inhibiting endothelial-mesenchymal transition through DPP-4 dysregulation. J Cell Physiol 2020; 235:10024-10036. [PMID: 32542696 DOI: 10.1002/jcp.29817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) often causes vascular endothelial damage and alters vascular microRNA (miR) expression. miR-448-3p has been reported to be involved in the development of DM, but whether miR-448-3p regulates diabetic vascular endothelial dysfunction remains unclear. To investigate the molecular mechanism of diabetic vascular endothelial dysfunction and the role of miR-448-3p therein, Sprague-Dawley rats were injected with streptozotocin (STZ) to establish diabetic animal model and the rat aortic endothelial cells were treated with high glucose to establish diabetic cell model. For the treatment group, after the induction of diabetes, the miR-448-3p levels in vivo and in vitro were upregulated by adeno-associated virus serotype 2 (AAV2)-miR-448-3p injection and miR-448-3p mimic transfection, respectively. Our results showed that AAV2-miR-448-3p injection alleviated the body weight loss and blood glucose level elevation induced by STZ injection. The miR-448-3p level was significantly decreased and the dipeptidyl peptidase-4 (DPP-4) messenger RNA level was increased in diabetic animal and cell models, which was reversed by miR-448-3p treatment. Moreover, the diabetic rats exhibited endothelial damage and endothelial-mesenchymal transition (EndMT), while AAV2-miR-448-3p injection relieved those situations. In vitro experiments demonstrated that miR-448-3p overexpression in endothelial cells alleviated endothelial damage by inhibiting EndMT through blocking the transforming growth factor-β/Smad pathway. We further proved that miR-448-3p negatively regulated DPP-4 by binding to its 3'-untranslated region, and DPP-4 overexpression reversed the effect of miR-448-3p overexpression on EndMT. Overall, we conclude that miR-448-3p overexpression inhibits EndMT via targeting DPP-4 and further ameliorates diabetic vascular endothelial dysfunction, indicating that miR-448-3p may serve as a promising therapeutic target for diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Guo-Ying Guan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wei
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Zhao
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Sun
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ru-Xin Pan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu-Lu Zhang
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying-Ying Xu
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ya-Mei Dai
- Physical Examination Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Han
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
128
|
Logsdon AF, Schindler AG, Meabon JS, Yagi M, Herbert MJ, Banks WA, Raskind MA, Marshall DA, Keene CD, Perl DP, Peskind ER, Cook DG. Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Sci Rep 2020; 10:9420. [PMID: 32523011 PMCID: PMC7287110 DOI: 10.1038/s41598-020-66113-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 02/02/2023] Open
Abstract
We investigated the role of nitric oxide synthase (NOS) in mediating blood-brain barrier (BBB) disruption and peripheral immune cell infiltration in the cerebellum following blast exposure. Repetitive, but not single blast exposure, induced delayed-onset BBB disruption (72 hours post-blast) in cerebellum. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) administered after blast blocked BBB disruption and prevented CD4+ T-cell infiltration into cerebellum. L-NAME also blocked blast-induced increases in intercellular adhesion molecule-1 (ICAM-1), a molecule that plays a critical role in regulating blood-to-brain immune cell trafficking. Blocking NOS-mediated BBB dysfunction during this acute/subacute post-blast interval (24-71 hours after the last blast) also prevented sensorimotor impairment on a rotarod task 30 days later, long after L-NAME cleared the body. In postmortem brains from Veterans/military Servicemembers with blast-related TBI, we found marked Purkinje cell dendritic arbor structural abnormalities, which were comparable to neuropathologic findings in the blast-exposed mice. Taken collectively, these results indicate that blast provokes delayed-onset of NOS-dependent pathogenic cascades that can later emerge as behavioral dysfunction. These results also further implicate the cerebellum as a brain region vulnerable to blast-induced mTBI.
Collapse
Affiliation(s)
- Aric F. Logsdon
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Abigail G. Schindler
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - James S. Meabon
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Mayumi Yagi
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - Melanie J. Herbert
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - William A. Banks
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Murray A. Raskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Desiree A. Marshall
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - C. Dirk Keene
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Daniel P. Perl
- 0000 0001 0421 5525grid.265436.0Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Elaine R. Peskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - David G. Cook
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
129
|
Zhao XB, Ji FY, Li HR, Zhu HH, Zhao ZZ, Ling J, Di QQ, Ma XY, Chen WL. P22077 inhibits LPS-induced inflammatory response by promoting K48-linked ubiquitination and degradation of TRAF6. Aging (Albany NY) 2020; 12:10969-10982. [PMID: 32516131 PMCID: PMC7346011 DOI: 10.18632/aging.103309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Inflammation is a biological process associated with multiple human disorders such as autoimmune diseases and metabolic diseases. Therefore, alleviation of inflammation is important for disease prevention or treatment. Recently, deubiquitinating enzymes (DUBs), especially ubiquitin specific protease-7 (USP7) attracts increasing attention as a potential drug target for inflammation. As an inhibitor of USP7, P22077 has been used to study the roles of USP7 in inflammatory response and neuroblastoma growth. However, the role and precise mechanism of P22077 in anti-inflammatory is still indistinct. In this study, we demonstrated that P22077 could attenuate the release of pro-inflammatory factors including TNF-α, IL-1β, IL-6 and NO, suppress mRNA expression of COX-2 and iNOS, and inhibit activation of NF-κB and MAPKs signaling pathways in Raw264.7 cells and mouse peritoneal macrophages after LPS stimulation. In vivo study showed that P22077 could relieve inflammatory response and reduce the lung injury in C57BL/6 mice with LPS-induced endotoxemia. Mechanically, P22077 might play an anti-inflammatory role by promoting tumor necrosis factor receptor-associated factor 6 (TRAF6) degradation via K48-linked polyubiquitination. These findings provide a rationale for the role of the P22077 in anti-inflammatory pathway and the promising clinical application of P22077 to treat inflammatory diseases.
Collapse
Affiliation(s)
- Xi-Bao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Fei-Yang Ji
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hong-Rui Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hui-Hui Zhu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zi-Zhao Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jing Ling
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qian-Qian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Xing-Yu Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Wei-Lin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| |
Collapse
|
130
|
He P, Talukder MAH, Gao F. Oxidative Stress and Microvessel Barrier Dysfunction. Front Physiol 2020; 11:472. [PMID: 32536875 PMCID: PMC7268512 DOI: 10.3389/fphys.2020.00472] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical and experimental evidence indicate that increased vascular permeability contributes to many disease-associated vascular complications. Oxidative stress with increased production of reactive oxygen species (ROS) has been implicated in a wide variety of pathological conditions, including inflammation and many cardiovascular diseases. It is thus important to identify the role of ROS and their mechanistic significance in microvessel barrier dysfunction under pathological conditions. The role of specific ROS and their cross talk in pathological processes is complex. The mechanisms of ROS-induced increases in vascular permeability remain poorly understood. The sources of ROS in diseases have been extensively reviewed at enzyme levels. This review will instead focus on the underlying mechanisms of ROS release by leukocytes, the differentiate effects and signaling mechanisms of individual ROS on endothelial cells, pericytes and microvessel barrier function, as well as the interplay of reactive oxygen species, nitric oxide, and nitrogen species in ROS-mediated vascular barrier dysfunction. As a counter balance of excessive ROS, nuclear factor erythroid 2 related factor 2 (Nrf2), a redox-sensitive cell-protective transcription factor, will be highlighted as a potential therapeutic target for antioxidant defenses. The advantages and limitations of different experimental approaches used for the study of ROS-induced endothelial barrier function are also discussed. This article will outline the advances emerged mainly from in vivo and ex vivo studies and attempt to consolidate some of the opposing views in the field, and hence provide a better understanding of ROS-mediated microvessel barrier dysfunction and benefit the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pingnian He
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - M A Hassan Talukder
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Feng Gao
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
131
|
Nguyen TH, Nachtergael A, Nguyen TM, Cornet V, Duez P, Muller M, Ly Huong DT, Kestemont P. Anti-inflammatory properties of the ethanol extract from Clerodendrum cyrtophyllum Turcz based on in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112739. [PMID: 32142867 DOI: 10.1016/j.jep.2020.112739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clerodendrum cyrtophyllum Turcz, a plant belonging to the Verbenaceae family, has been used in traditional medicine for the treatment of various inflammatory diseases in many Asian countries. AIM OF THE STUDY The study aimed to evaluate anti-inflammatory properties of the ethanol extract from Clerodendrum cyrthophyllum Turcz leaves (EE-CC) through in vitro and in vivo models. MATERIAL AND METHODS Total phenolic and flavonoid contents in the extract were determined using colorimetric methods and HPTLC. In red blood cell membrane stabilization model, rat erythrocyte suspension was treated with crude ethanol extract at different concentrations, the hemoglobin content of the supernatant solution released by red blood hemolysis was estimated. We also evaluated the effects of the ethanol extract from this plant on the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α) in stimulated RAW 264.7 cells. In order to elucidate its anti-inflammatory molecular mechanisms, we further evaluated the effects of the EE-CC on the expression of the inflammatory genes in inflammation-induced zebrafish model by tail-cutting using qPCR analysis. RESULTS Colorimetric methods and HPTLC revealed high phenolic and flavonoid contents in the extract. In the red blood cell membrane stabilization model, the amount of hemoglobin released by red blood hemolysis significantly decreased in the presence of EE-CC, demonstrating a strong membrane stabilizing activity. EE-CC did not cause any toxic effect on cell viability but strongly inhibited NO and TNF-ɑ release due to LPS induction. The association with EE-CC significantly reduced the expression of cox-2, pla2, c3a, il-1(il1fma), il-8 (cxcl8b.1), tnf-α, and nf-ƙb, while increased the expression of the anti-inflammatory cytokine il-10 gene in cut-tail induced inflammation of zebrafish model. CONCLUSIONS Taken together, the results suggest that the raw ethanol extract from C. cyrtophyllum Turcz leaves presents potent anti-inflammatory activities and may be useful for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Pharmacology Department, Hanoi University of Pharmacy, Viet Nam
| | | | - Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Faculty of Fisheries and Aquaculture, Vietnam National University of Agriculture (VNUA), Hanoi, Viet Nam
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, Belgium
| | - Marc Muller
- Dept. Life Sciences, GIGA-R, Lab. for Organogenesis and Regeneration, University of Liege, Belgium
| | - Duong Thi Ly Huong
- Department of Pharmacology and Clinical Pharmacy, School of Medicine and Pharmacy, Vietnam National University, Viet Nam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium.
| |
Collapse
|
132
|
Grezzana Filho TDJM, Longo L, Santos JLD, Gabiatti G, Boffil C, Santos EBD, Cerski CTS, Chedid MF, Corso CO. Induction of selective liver hypothermia prevents significant ischemia/reperfusion injury in Wistar rats after 24 hours. Acta Cir Bras 2020; 35:e202000205. [PMID: 32428061 PMCID: PMC7217597 DOI: 10.1590/s0102-865020200020000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/14/2019] [Accepted: 01/19/2020] [Indexed: 02/08/2023] Open
Abstract
Purpose To investigate the effects of induction of selective liver hypothermia in a rodent model. Methods Seven male Wistar rats were subjected to 90 minutes of partial 70% liver ischemia and topic liver 26°C hypothermia (H group). Other seven male Wistar rats were subjected to 90 minutes of partial 70% normothermic liver ischemia (N group). Five additional rats underwent a midline incision and section of liver ligaments under normothermic conditions and without any liver ischemia (sham group). All animals were sacrificed 24-h after reperfusion, and livers were sampled for analyses. Pathology sections were scored for sinusoidal congestion, ballooning, hepatocelllular necrosis and the presence of neutrophilic infiltrates. Results At the end of the experiment, liver tissue expressions of TNF-ɑ, IL-1β, iNOS and TNF-ɑ/IL-10 ratio were significantly reduced in the H group compared to N group, whereas IL-10 and eNOS were significantly increased in H group. Histopathological injury scores revealed a significant decrease in ischemia/reperfusion (I/R) injuries in H group. Conclusion Selective liver hypothermia prevented I/R injury by inhibiting the release of inflammatory cytokines, preserves microcirculation, prevents hepatocellular necrosis and leukocyte infiltration, allowing maintenance of the liver architecture.
Collapse
Affiliation(s)
| | - Larisse Longo
- Liver Research Laboratory, HCPA, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Carlos Boffil
- Liver Research Laboratory, HCPA, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Marcio Fernandes Chedid
- Postgraduate Program in Surgical Sciences and Attending Liver Transplant Surgeon, HCPA, UFRGS, Porto Alegre, RS, Brazil
| | | |
Collapse
|
133
|
Zimmer DP, Shea CM, Tobin JV, Tchernychev B, Germano P, Sykes K, Banijamali AR, Jacobson S, Bernier SG, Sarno R, Carvalho A, Chien YT, Graul R, Buys ES, Jones JE, Wakefield JD, Price GM, Chickering JG, Milne GT, Currie MG, Masferrer JL. Olinciguat, an Oral sGC Stimulator, Exhibits Diverse Pharmacology Across Preclinical Models of Cardiovascular, Metabolic, Renal, and Inflammatory Disease. Front Pharmacol 2020; 11:419. [PMID: 32322204 PMCID: PMC7156612 DOI: 10.3389/fphar.2020.00419] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic 3',5' GMP (cGMP) signaling plays a central role in regulation of diverse processes including smooth muscle relaxation, inflammation, and fibrosis. sGC is activated by the short-lived physiologic mediator NO. sGC stimulators are small-molecule compounds that directly bind to sGC to enhance NO-mediated cGMP signaling. Olinciguat, (R)-3,3,3-trifluoro-2-(((5-fluoro-2-(1-(2-fluorobenzyl)-5-(isoxazol-3-yl)-1H-pyrazol-3-yl)pyrimidin-4-yl)amino)methyl)-2-hydroxypropanamide, is a new sGC stimulator currently in Phase 2 clinical development. To understand the potential clinical utility of olinciguat, we studied its pharmacokinetics, tissue distribution, and pharmacologic effects in preclinical models. Olinciguat relaxed human vascular smooth muscle and was a potent inhibitor of vascular smooth muscle proliferation in vitro. These antiproliferative effects were potentiated by the phosphodiesterase 5 inhibitor tadalafil, which did not inhibit vascular smooth muscle proliferation on its own. Olinciguat was orally bioavailable and predominantly cleared by the liver in rats. In a rat whole body autoradiography study, olinciguat-derived radioactivity in most tissues was comparable to plasma levels, indicating a balanced distribution between vascular and extravascular compartments. Olinciguat was explored in rodent models to study its effects on the vasculature, the heart, the kidneys, metabolism, and inflammation. Olinciguat reduced blood pressure in normotensive and hypertensive rats. Olinciguat was cardioprotective in the Dahl rat salt-sensitive hypertensive heart failure model. In the rat ZSF1 model of diabetic nephropathy and metabolic syndrome, olinciguat was renoprotective and associated with lower circulating glucose, cholesterol, and triglycerides. In a mouse TNFα-induced inflammation model, olinciguat treatment was associated with lower levels of endothelial and leukocyte-derived soluble adhesion molecules. The pharmacological features of olinciguat suggest that it may have broad therapeutic potential and that it may be suited for diseases that have both vascular and extravascular pathologies.
Collapse
Affiliation(s)
- Daniel P Zimmer
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Courtney M Shea
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Jenny V Tobin
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Boris Tchernychev
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Peter Germano
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Kristie Sykes
- Research and Development, Ironwood Pharmaceuticals, Boston, MA, United States
| | - Ali R Banijamali
- Research and Development, Ironwood Pharmaceuticals, Boston, MA, United States
| | - Sarah Jacobson
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Sylvie G Bernier
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Renee Sarno
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Andrew Carvalho
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Yueh-Tyng Chien
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Regina Graul
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Emmanuel S Buys
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Juli E Jones
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - James D Wakefield
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Gavrielle M Price
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | | | - G Todd Milne
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Mark G Currie
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Jaime L Masferrer
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| |
Collapse
|
134
|
Schirra C, Xia N, Schüffler A, Heck A, Hasselwander S, Förstermann U, Li H. Phosphorylation and activation of endothelial nitric oxide synthase by red fruit (Pandanus conoideus Lam) oil and its fractions. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112534. [PMID: 31893533 DOI: 10.1016/j.jep.2019.112534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/03/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Red fruit (Pandanus conoideus Lam) oil (RFO) is utilized by inhabitants of the Papua Island to treat diseases such as infections, cancer, and cardiovascular disease, but the mechanism of action is unknown. AIM OF THE STUDY We have recently shown that RFO stimulates nitric oxide (NO) production in endothelial cells. The present study was conducted to investigate the molecular mechanism of endothelial NO synthase (eNOS) activation by RFO. MATERIALS AND METHODS NO production by endothelial cells was determined with electron paramagnetic resonance. The vascular function of isolated mouse aorta was examined using a wire myograph system. Phosphorylation of eNOS was studied with Western blot analyses. RESULTS RFO induced concentration-dependent vasodilation in isolated mouse aorta. The vasodilator effect of RFO was lost in endothelium-denuded aorta and in aorta from mice deficient in eNOS. Treatment of human EA.hy 926 endothelial cells with RFO led to an enhancement of eNOS phosphorylation at serine 1177 and NO production. The RFO-induced eNOS phosphorylation and NO production were reduced by inhibitors of Akt or AMPK, but not by an inhibitor of CaMKII. The effects of RFO were decreased by pharmacological inhibition of PI3K, indicating an involvement of the PI3K-Akt pathway. Moreover, acetone-soluble fractions and oily fractions of RFO showed higher efficacies than the RFO polar fraction in activating eNOS. CONCLUSIONS RFO contains highly active compounds that enhance NO production through Akt- or AMPK-mediated eNOS phosphorylation. The increase in endothelial NO production is likely to represent one of the molecular mechanisms responsible for the therapeutic effects of RFO.
Collapse
Affiliation(s)
- Christian Schirra
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anja Schüffler
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Astrid Heck
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Solveig Hasselwander
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.
| |
Collapse
|
135
|
Gluvic ZM, Obradovic MM, Sudar-Milovanovic EM, Zafirovic SS, Radak DJ, Essack MM, Bajic VB, Takashi G, Isenovic ER. Regulation of nitric oxide production in hypothyroidism. Biomed Pharmacother 2020; 124:109881. [PMID: 31986413 DOI: 10.1016/j.biopha.2020.109881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/25/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypothyroidism is a common endocrine disorder that predominantly occurs in females. It is associated with an increased risk of cardiovascular diseases (CVD), but the molecular mechanism is not known. Disturbance in lipid metabolism, the regulation of oxidative stress, and inflammation characterize the progression of subclinical hypothyroidism. The initiation and progression of endothelial dysfunction also exhibit these changes, which is the initial step in developing CVD. Animal and human studies highlight the critical role of nitric oxide (NO) as a reliable biomarker for cardiovascular risk in subclinical and clinical hypothyroidism. In this review, we summarize the recent literature findings associated with NO production by the thyroid hormones in both physiological and pathophysiological conditions. We also discuss the levothyroxine treatment effect on serum NO levels in hypothyroid patients.
Collapse
Affiliation(s)
- Zoran M Gluvic
- Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan M Obradovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | - Emina M Sudar-Milovanovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | - Sonja S Zafirovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | | | - Magbubah M Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia.
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia.
| | - Gojobori Takashi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Esma R Isenovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| |
Collapse
|
136
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
137
|
Grosse GM, Schwedhelm E, Worthmann H, Choe CU. Arginine Derivatives in Cerebrovascular Diseases: Mechanisms and Clinical Implications. Int J Mol Sci 2020; 21:ijms21051798. [PMID: 32150996 PMCID: PMC7084464 DOI: 10.3390/ijms21051798] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
The amino acid L-arginine serves as substrate for the nitric oxide synthase which is crucial in vascular function and disease. Derivatives of arginine, such as asymmetric (ADMA) and symmetric dimethylarginine (SDMA), are regarded as markers of endothelial dysfunction and have been implicated in vascular disorders. While there is a variety of studies consolidating ADMA as biomarker of cerebrovascular risk, morbidity and mortality, SDMA is currently emerging as an interesting metabolite with distinct characteristics in ischemic stroke. In contrast to dimethylarginines, homoarginine is inversely associated with adverse events and mortality in cerebrovascular diseases and might constitute a modifiable protective risk factor. This review aims to provide an overview of the current evidence for the pathophysiological role of arginine derivatives in cerebrovascular ischemic diseases. We discuss the complex mechanisms of arginine metabolism in health and disease and its potential clinical implications in diverse aspects of ischemic stroke.
Collapse
Affiliation(s)
- Gerrit M. Grosse
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
- Correspondence:
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20249 Hamburg, Germany;
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), partner site Hamburg/Kiel/Lübeck, 20249 Hamburg, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Chi-un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20249 Hamburg, Germany;
| |
Collapse
|
138
|
A Review of Adropin as the Medium of Dialogue between Energy Regulation and Immune Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3947806. [PMID: 32190172 PMCID: PMC7073478 DOI: 10.1155/2020/3947806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 11/18/2022]
Abstract
Adropin is a secretory protein encoded by the energy balance gene and is closely associated with regulation of energy metabolism and insulin resistance. The clinical findings demonstrated its decreased expression in various inflammatory diseases, its negative correlation with the expression levels of inflammatory cytokines, and its potential anti-inflammatory effects. We speculate that adropin plays a pivotal regulatory role in immune cells and inflammatory factors. In this study, we reviewed the advances in researches concentrated on immunological effects of adropin.
Collapse
|
139
|
Wu H, Lu L, Chen J, Zhang C, Liu W, Zhuang S. Inhibited Nitric Oxide Production of Human Endothelial Nitric Oxide Synthase by Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2922-2930. [PMID: 32022550 DOI: 10.1021/acs.est.9b07163] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) from the direct atmospheric emission or the degradation of parent PAHs are increasingly recognized because of their potential health risks. Herein, we investigated the effects of four NPAHs/OPAHs (1-NNAP, 9-NANT, 9,10-AQ, and 9-FLU) and their parent PAHs (NAP, ANT, and FLU) on endothelium function with regard to endothelial nitric oxide synthase (eNOS) and endothelium-derived nitric oxide (NO) production in human umbilical vein endothelial cells. The eNOS enzymatic activity and NO production were promoted by NAP, ANT, and FLU; however, eNOS activity was dropped by 52.8, 52.1, 52.5, and 44.5%, and NO production was decreased by 31.1, 50.3, 65.0, and 35.0% after 24 h exposure to 0.01 μM 1-NNAP, 9-NANT, 9,10-AQ, and 9-FLU, respectively. The mRNA expression of eNOS and protein expression of phosphorylated eNOS (Ser1177) were increased by three PAHs but decreased by four NPAHs/OPAHs. The 100 ns molecular dynamics simulations reveal the conformational alteration in the key propionate of heme upon the binding of NPAHs/OPAHs. Our findings provide the first in silico and in vitro evidence for the potential endothelial dysfunction of nitrated and oxygenated PAHs. The health risk implications of NPAHs/OPAHs and corresponding parent PAHs warrant further research.
Collapse
Affiliation(s)
- Hao Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayan Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston 77058, Texas, United States
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
140
|
Aboonabi A, Meyer RR, Gaiz A, Singh I. Anthocyanins in berries exhibited anti-atherogenicity and antiplatelet activities in a metabolic syndrome population. Nutr Res 2020; 76:82-93. [PMID: 32217379 DOI: 10.1016/j.nutres.2020.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is a global challenge for atherosclerosis. It was hypothesized that a four-week consumption of anthocyanin supplements by MetS patients who had three or more risk factors linked with metabolic syndrome would have a greater improvement in cardiometabolic biomarkers and would also reduce the risk of thrombosis. A total of 55 participants in two groups of Normal healthy and MetS (age 25-75y) were given 320 mg anthocyanin supplements twice daily for 4 weeks. Platelet coagulant activities, lipid profiles, fasting blood glucose, and inflammatory and oxidative stress biomarkers were measured before and after supplementation to evaluate the atheroprotective effects of anthocyanins in the study subjects. Four weeks of anthocyanin supplementation significantly decreased cardiometabolic risk factors including the average serum fasting blood glucose (FBG) (by 13.3%, P < .05) and lipid profiles by significant reduction in triglyceride (by 24.9%, P < .05) and LDL-C (by 33.1%, P < .05) in the MetS group. Anthocyanin supplementation also decreased high sensitivity C-reactive protein (hs-CRP) level (by 28%, P < .05) in females. However, no significant differences in serum UA (uric acid) and HDL-C were observed between anthocyanin pre- and post-treatment in both groups. Moreover, Anthocyanin supplements decreased ADP-induced platelet activation configuration expressed as P-selectin by 40% (P < .05). There was a positive correlation between decreased hs-CRP values and the levels of LDL-C and FBG in the MetS group (P < .05). These results support the hypothesis that anthocyanin supplementation exerts anti-atherogenicity effects by improving cardiometabolic risk factors and reducing thrombogenicity in the MetS population.
Collapse
Affiliation(s)
- Anahita Aboonabi
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Roselyn Rose Meyer
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Almottesembellah Gaiz
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| | - Indu Singh
- School of Medical Science, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| |
Collapse
|
141
|
Arriero MM, Celdran A, Jimenez P, García–Mendez A, De La Pinta JC, Manzarbeitia F, Muñoz–Alameda L, Reyero A, Escribano M, Casado S, López–Farré A. Aspirin Protected the Nitric Oxide/Cyclic Gmp Generating System in Human Peritoneum. Perit Dial Int 2020. [DOI: 10.1177/089686080102103s08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
♦ Objective Changes in the expression of endothelial nitric oxide synthase (eNOS) in the peritoneum could be involved in the peritoneal dysfunction associated with peritoneal inflammation. The aim of the present study was to analyze the effect of Escherichia coli lipopolysaccharide (LPS) on eNOS expression in samples of human peritoneum. The effect of aspirin, a drug with anti-inflammatory properties, was also determined. ♦ Results The eNOS protein expressed in human peritoneal tissue was reduced by LPS (10 μg/mL) in a time-dependent manner. The eNOS was expressed mainly in capillary endothelial cells and mesothelial cells. Anti-inflammatory doses of aspirin (1 – 10 mmol/L) restored eNOS expression in LPS-stimulated human peritoneal tissue samples. The main intracellular receptor of NO, soluble guanylate cyclase (sGC), was also downregulated by LPS. This effect was prevented by aspirin (5 mmol/L). ♦ Conclusion Protein expression of the eNOS–sGC system in the peritoneal tissue was downregulated by LPS. High doses of aspirin protected both eNOS protein expression and sGC in human peritoneum. These findings suggest a new mechanism of action of aspirin that could be involved in the prevention of peritoneal dysfunction during inflammation.
Collapse
Affiliation(s)
- Maria M. Arriero
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Angel Celdran
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Petra Jimenez
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Antonio García–Mendez
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Juan C. De La Pinta
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Felix Manzarbeitia
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Luis Muñoz–Alameda
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Ana Reyero
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Escribano
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Santos Casado
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | - Antonio López–Farré
- Cardiovascular Research and Hyper tension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
142
|
Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD. The Gastrointestinal Exertional Heat Stroke Paradigm: Pathophysiology, Assessment, Severity, Aetiology and Nutritional Countermeasures. Nutrients 2020; 12:E537. [PMID: 32093001 PMCID: PMC7071449 DOI: 10.3390/nu12020537] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.
Collapse
Affiliation(s)
- Henry B. Ogden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Robert B. Child
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2QU, UK;
| | | | - Simon K. Delves
- Institute of Naval Medicine, Alverstoke PO12 2DW, UK; (J.L.F.); (S.K.D.)
| | - Caroline S. Westwood
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Joseph D. Layden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| |
Collapse
|
143
|
Shah D, Lynd T, Ho D, Chen J, Vines J, Jung HD, Kim JH, Zhang P, Wu H, Jun HW, Cheon K. Pulp-Dentin Tissue Healing Response: A Discussion of Current Biomedical Approaches. J Clin Med 2020; 9:jcm9020434. [PMID: 32033375 PMCID: PMC7074340 DOI: 10.3390/jcm9020434] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Dental pulp tissue exposed to mechanical trauma or cariogenic process results in root canal and/or periapical infections, and conventionally treated with root canal procedures. The more recent regenerative endodontic procedure intends to achieve effective root canal disinfection and adequate pulp–dentin tissue regeneration; however, numerous limitations are reported. Because tooth is composed of vital soft pulp enclosed by the mineralized hard tissue in a highly organized structure, complete pulp–dentin tissue regeneration has been challenging to achieve. In consideration of the limitations and unique dental anatomy, it is important to understand the healing and repair processes through inflammatory-proliferative-remodeling phase transformations of pulp–dentin tissue. Upon cause by infectious and mechanical stimuli, the innate defense mechanism is initiated by resident pulp cells including immune cells through chemical signaling. After the expansion of infection and damage to resident pulp–dentin cells, consequent chemical signaling induces pluripotent mesenchymal stem cells (MSCs) to migrate to the injury site to perform the tissue regeneration process. Additionally, innovative biomaterials are necessary to facilitate the immune response and pulp–dentin tissue regeneration roles of MSCs. This review highlights current approaches of pulp–dentin tissue healing process and suggests potential biomedical perspective of the pulp–dentin tissue regeneration.
Collapse
Affiliation(s)
- Dishant Shah
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Tyler Lynd
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Donald Ho
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Jeremy Vines
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Hwi-Dong Jung
- Department of Oral & Maxillofacial Surgery College of Dentistry, Yonsei University, 50-1 Yonsei-Ro, Seodeamun-Gu, Seoul 03722, Korea;
| | - Ji-Hun Kim
- Department of Dentistry, Wonju College of Medicine, Yonsei University, 20 Il-San-ro, Wonju, Gangwon-Do 26426, Korea;
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 1919 7th Avenue S, Birmingham, AL 35294, USA; (P.Z.); (H.W.)
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 1919 7th Avenue S, Birmingham, AL 35294, USA; (P.Z.); (H.W.)
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA; (D.S.); (T.L.); (D.H.); (J.C.); (J.V.); (H.-W.J.)
| | - Kyounga Cheon
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 1919 7th Avenue S, Birmingham, AL 35294, USA; (P.Z.); (H.W.)
- Correspondence: ; Tel.: +1-205-975-4303
| |
Collapse
|
144
|
Azemi AK, Mokhtar SS, Rasool AHG. Clinacanthus nutans: Its potential against diabetic vascular diseases. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000118838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
145
|
Zafari P, Zarifian A, Alizadeh-Navaei R, Taghadosi M, Rafiei A, Samimi Z, Niksolat F. Asymmetric and symmetric dimethylarginine concentration as an indicator of cardiovascular diseases in rheumatoid arthritis patients: a systematic review and meta-analysis of case-control studies. Clin Rheumatol 2020; 39:127-134. [PMID: 31376089 DOI: 10.1007/s10067-019-04713-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is the most common type of inflammatory arthritis leading to joint damage and physical disability. Cardiovascular diseases (CVDs) are considered a common comorbidity in patients with RA. However, the mechanism underlying its pathogenesis is not definitively explained. Endothelial dysfunction caused by impaired nitric oxide synthesis is an early indicator of cardiovascular disease. Asymmetric and symmetric dimethylarginine (ADMA and SDMA, respectively) the inhibitors of endothelial nitric oxide synthase (NOS) have emerged as novel CVD risk factor determiners. Concerning the unmet need to identify a salutary biomarker for CVD prediction, the purpose of this meta-analysis was to assess the serum/plasma ADMA and SDMA levels in RA patients compared with the healthy controls. A thorough literature search was performed in PubMed, Scopus, Web of Science, and Google Scholar to identify all studies reporting ADMA and/or SDMA levels in RA patients compared with healthy controls. The quality of studies was evaluated using the Newcastle-Ottawa scale (NOS). Pooled standard mean difference (SMD) with 95% confidence interval (CI) was used as the effect size in this study. We also conducted stratified analysis based on assay methods and median age of the participants. Fourteen articles were included. The pooled serum/plasma levels of ADMA were higher in RA patients compared with those of healthy controls (SMD = 1.02, 95% CI = 0.49 to 1.55); However, no statistical differences between RA patients and healthy controls in serum/plasma SDMA levels was seen (SMD = 0.57, 95% CI = -0.21 to 1.36). Subgroup analyses suggested that participants aged > 50 years had higher levels of ADMA rather than controls and the measurement method was a source of heterogeneity for ADMA. According to the results of this meta-analysis, ADMA measurement but not SDMA, can be useful for assessment of endothelial dysfunction as a predictor of CVD risk in RA patients. Prospero registration number: CRD42019121126.
Collapse
Affiliation(s)
- Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadreza Zarifian
- Center for Excellence in Clinical Research, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Samimi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Niksolat
- Department of Internal Medicine, Orthopaedic Research Center, Faculty of Medicine, Sari, Iran.
| |
Collapse
|
146
|
Amadi PU, Agomuo EN, Adumekwe C. Vascular Effects of Avocado Seed Glycosides during Diabetes-induced Endothelial Damage. Cardiovasc Hematol Disord Drug Targets 2020; 20:202-213. [PMID: 32386502 PMCID: PMC8226154 DOI: 10.2174/1871529x20666200510012012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES The relationship between vascular damage and diabetes mellitus was exploited using avocado seed extracts. The purpose of the study was to understand the therapeutic relevance of glycosides compared to standard vascular and anti-diabetic drugs. Constituent Avocado Seed Glycosides (ASG) were analysed and administered to rats with Diabetes-Induced Vascular Damage (DIVD). METHODS The rats were first administered with streptozotocin and screened after seven days for alterations in blood glucose, insulin, vascular cell adhesion molecule (VCAM-1), Von Willebrand factor (VWF), Renin-Angiotensin-Aldosterone System (RAS), eNOx, and endothelin-1 (ET-1). Only rats that satisfied these criteria were recruited and treated with either glibenclamide, met.su + losart, or 200 mg/kg body weight ASG for 28 days. RESULTS There was an abundance of digitoxin (13.41 mg/100g), digoxin (17.98 mg/100g), avicularin (165.85 mg/100g), and hyperoside (282.51 mg/100g). ASG or met.su + losart exhibited slight modulatory properties on glucose homeostasis. Rats with DIVD showed elevated renin, angiotensin, VCAM-1 and Lp-PLA2 levels but slightly decreased with glibenclamide treatment and normalized with ASG or met.su + losart administration. All treatments normalized Hcy levels. DIVD caused the overproduction of CnT, LDH, Crt-K, LDL-c, TG, and TC and suppressed HDL-c but was completely normalized by the ASG. Water intake remained altered in treated rats. CONCLUSION The ASG had no relevant effect on glucose homeostasis during DIVD but showed significant vasoprotective properties.
Collapse
Affiliation(s)
- Peter U. Amadi
- Department of Biochemistry, Imo State University, Okigwe Rd, Ugwu Orji, Owerri, Nigeria
| | - Emmanuel N. Agomuo
- Department of Biochemistry, Imo State University, Okigwe Rd, Ugwu Orji, Owerri, Nigeria
| | - Chiamaka Adumekwe
- Department of Biochemistry, Imo State University, Okigwe Rd, Ugwu Orji, Owerri, Nigeria
| |
Collapse
|
147
|
Spotlight on ROS and β3-Adrenoreceptors Fighting in Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6346529. [PMID: 31934266 PMCID: PMC6942895 DOI: 10.1155/2019/6346529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
The role of ROS and RNS is a long-standing debate in cancer. Increasing the concentration of ROS reaching the toxic threshold can be an effective strategy for the reduction of tumor cell viability. On the other hand, cancer cells, by maintaining intracellular ROS concentration at an intermediate level called “mild oxidative stress,” promote the activation of signaling that favors tumor progression by increasing cell viability and dangerous tumor phenotype. Many chemotherapeutic treatments induce cell death by rising intracellular ROS concentration. The persistent drug stimulation leads tumor cells to simulate a process called hormesis by which cancer cells exhibit a biphasic response to exposure to drugs used. After a first strong response to a low dose of chemotherapeutic agent, cancer cells start to decrease the response even if high doses of drugs were used. In this framework, β3-adrenoreceptors (β3-ARs) fit with an emerging antioxidant role in cancer. β3-ARs are involved in tumor proliferation, angiogenesis, metastasis, and immune tolerance. Its inhibition, by the selective β3-ARs antagonist (SR59230A), leads cancer cells to increase ROS concentration thus inducing cell death and to decrease NO levels thus inhibiting angiogenesis. In this review, we report an overview on reactive oxygen biology in cancer cells focusing on β3-ARs as new players in the antioxidant pathway.
Collapse
|
148
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
149
|
Jin SW, Pham HT, Choi JH, Lee GH, Han EH, Cho YH, Chung YC, Kim YH, Jeong HG. Impressic Acid, a Lupane-Type Triterpenoid from Acanthopanax koreanum, Attenuates TNF-α-Induced Endothelial Dysfunction via Activation of eNOS/NO Pathway. Int J Mol Sci 2019; 20:ijms20225772. [PMID: 31744135 PMCID: PMC6888592 DOI: 10.3390/ijms20225772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is one of the most reported diseases worldwide, and extensive research and trials are focused on the discovery and utilizing for novel therapeutics. Nitric oxide (NO) is produced mainly by endothelial nitric oxide synthase (eNOS) and it plays a key role in regulating vascular function including systemic blood pressure and vascular inflammation in vascular endothelium. In this study hypothesized that Impressic acid (IPA), a component isolated from Acanthopanax koreanum, acts as an enhancer of eNOS activity and NO production. IPA treatment induced eNOS phosphorylation and NO production, which was correlated with eNOS phosphorylation via the activation of JNK1/2, p38 MAPK, AMPK, and CaMKII. In addition, the induction of eNOS phosphorylation by IPA was attenuated by pharmacological inhibitor of MAPKs, AMPK, and CaMKII. Finally, IPA treatment prevented the adhesion of TNF-α-induced monocytes to endothelial cells and suppressed the TNF-α-stimulated ICAM-1 expression via activation of NF-κB, while treatment with L-NAME, the NOS inhibitor, reversed the inhibitory effect of IPA on TNF-α-induced ICAM-1 expression via activation of NF-κB. Taken together, these findings show that IPA protects against TNF-α-induced vascular endothelium dysfunction through attenuation of the NF-κB pathway by activating eNOS/NO pathway in endothelial cells.
Collapse
Affiliation(s)
- Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Hoa Thi Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | - Young Ho Cho
- Department of Pharmaceutics & Biotechnology, College of Medical Engineering, Konyang University, Daejeon 35365, Korea;
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, 52833, Korea;
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
150
|
Ivy JL. Inorganic Nitrate Supplementation for Cardiovascular Health. Methodist Debakey Cardiovasc J 2019; 15:200-206. [PMID: 31687099 DOI: 10.14797/mdcj-15-3-200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is continually produced by the enzyme nitric oxide synthase (NOS) and is essential to the control and effectiveness of the cardiovascular system. However, there is a substantial reduction in NOS activity with aging that can lead to the development of hypertension and other cardiovascular complications. Fortunately, NO can also be produced by the sequential reduction of inorganic nitrate to nitrite and then to NO. Nitric oxide from inorganic nitrate supplementation has been found to have the same cardioprotective benefits of NO produced by NOS. Moreover, it can effectively compensate for declining NOS activity due to aging or NOS inhibition by oxidative stress, hypoxia, or other factors. This review covers some of the major cardiovascular regulatory actions of NO and presents evidence that NO from inorganic nitrate supplementation can provide (1) compensation when NOS activity is inadequate, and (2) cardioprotective benefits beyond that provided by a healthy NOS system. In addition, it discusses how to obtain a safe and efficacious range of inorganic nitrate.
Collapse
Affiliation(s)
- John L Ivy
- UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS
| |
Collapse
|