101
|
Scharnhorst V, Dekker P, van der Eb AJ, Jochemsen AG. Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions. J Biol Chem 2000; 275:10202-11. [PMID: 10744705 DOI: 10.1074/jbc.275.14.10202] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The WT1 gene, which is heterozygously mutated or deleted in congenital anomaly syndromes and homozygously mutated in about 15% of all Wilms tumors, encodes tissue-specific developmental regulators. Through alternative mRNA splicing, four main WT1 protein isoforms are synthesized. All isoforms can bind to DNA via their zinc fingers, albeit with different affinities and specificities, and thereby modulate the transcriptional activity of their target genes. Several proteins bind to and alter the transcription regulatory properties of the WT1 proteins, including the product of the tumor suppressor gene p53. Interaction between WT1 and p53 was shown to modulate their ability to regulate the transcription of their respective target genes. Here, we report that all four isoforms of WT1 bind to p73, a recently cloned homologue of p53. p73 binds to the zinc finger region of WT1 and thereby inhibits DNA binding and transcription activation by WT1. Similarly, WT1 inhibits p73-induced transcription activation in reporter assays and counteracts p73-induced expression of endogenous Mdm2. This, taken together with our finding that WT1 also interacts with p63/KET, another p53 homologue, suggests that association between WT1 and the members of the p53 family of proteins may be an important determinant of their functions in cell growth and differentiation.
Collapse
Affiliation(s)
- V Scharnhorst
- Laboratory of Molecular Carcinogenesis and Centre for Biomedical Genetics, Leiden University Medical Center, P. O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
102
|
Schorge JO, Miller YB, Qi LJ, Muto MG, Welch WR, Berkowitz RS, Mok SC. Genetic alterations of the WT1 gene in papillary serous carcinoma of the peritoneum. Gynecol Oncol 2000; 76:369-72. [PMID: 10684712 DOI: 10.1006/gyno.1999.5711] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The Wilms' tumor (WT1) gene product is consistently detectable in both normal ovarian germinal epithelium and human mesothelium. Ovarian carcinomas frequently exhibit alterations in WT1 function. Papillary serous carcinoma of the peritoneum (PSCP) is believed to develop de novo from the peritoneal lining (mesothelium) of the pelvis and abdomen. The purpose of this study was to determine if genetic alterations of the WT1 gene are associated with the development of PSCP. METHODS Normal and tumor tissue specimens were retrieved from patients with stage III and IV PSCP (n = 38) and serous epithelial ovarian carcinoma (n = 38). Immunohistochemistry was performed using the anti-WT1 (C-19) antibody. Loss of heterozygosity (LOH) was performed at the WT1 locus. Clinical data were obtained and correlated with molecular findings. RESULTS Loss of normal WT1 expression was detected in 18 (51%) of 35 PSCP specimens and 18 (53%) of 34 ovarian carcinoma specimens. Six (27%) of 22 PSCP specimens and 3 (13%) of 24 ovarian carcinoma specimens had LOH at the WT1 locus (P = 0.27). Normal WT1 gene expression was maintained in 86% of tumors exhibiting LOH. Genetic alterations of the WT1 gene were not predictive of survival, nor were they associated with other clinical or molecular factors. CONCLUSIONS Genetic alterations of the WT1 gene are associated with the development of PSCP. The loss of normal WT1 gene expression is a common event in both PSCP and advanced ovarian carcinoma, likely resulting from down-regulation by other regulatory factors-not from inactivating gene mutation and subsequent allelic loss.
Collapse
Affiliation(s)
- J O Schorge
- Laboratory of Gynecologic Oncology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Gicquel C, Bertherat J, Le Bouc Y, Bertagna X. Pathogenesis of adrenocortical incidentalomas and genetic syndromes associated with adrenocortical neoplasms. Endocrinol Metab Clin North Am 2000; 29:1-13, vii. [PMID: 10732260 DOI: 10.1016/s0889-8529(05)70112-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The study of genetic syndromes associated with adrenocortical tumors (Beckwith-Wiedemann, Li-Fraumeni, McCune-Albright, Carney, and multiple endocrine neoplasia type 1) has shed light on the molecular basis of tumorigenesis. Abnormalities at the 11p15 locus appear as crucial and frequent events found specifically in malignant, sporadic tumors, leading to overexpression of a growth-promoting factor and loss of expression of tumor suppressor genes. In benign tumors, the cAMP pathway can be exacerbated in an ACTH-independent manner when various membrane receptors of the seven transmembrane superfamily are "illegitimately" expressed.
Collapse
Affiliation(s)
- C Gicquel
- Laboratoire d'Explorations Fonctionnelles Endocriniennes, Hôpital Trousseau, Paris, France
| | | | | | | |
Collapse
|
104
|
Scharnhorst V, Menke AL, Attema J, Haneveld JK, Riteco N, van Steenbrugge GJ, van der Eb AJ, Jochemsen AG. EGR-1 enhances tumor growth and modulates the effect of the Wilms' tumor 1 gene products on tumorigenicity. Oncogene 2000; 19:791-800. [PMID: 10698497 DOI: 10.1038/sj.onc.1203390] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Wilms' tumor 1 gene (WT1) encodes a transcription factor of the zinc-finger family and is homozygously mutated or deleted in a subset of Wilms' tumors. Through alternative mRNA splicing, the gene is expressed as four main polypeptides that differ by a stretch of 17 amino acids just N-terminal of the four zinc-fingers and three amino acids between zinc fingers 3 and 4. We have previously shown that expression of the WT1(-/-) isoform, lacking both inserts, increases the tumor growth rate of the adenovirus-transformed baby rat kidney (AdBRK) cell line 7C3H2, whereas expression of the WT1(-/+) isoform, lacking the 17aa insert, strongly suppresses the tumorigenic phenotype. In the present study we show that expression of these splice variants does not affect the tumorigenic potential of the similar AdBRK cell line, 7C1T1. In contrast to the 7C3H2 cell line, this AdBRK cell line expresses high endogenous levels of EGR-1 (early growth response-1) protein, a transcription factor structurally related to WT1. Ectopic expression of EGR-1 in the 7C3H2 AdBRK cells significantly increases their in vivo growth rate and nullifies the tumor suppressor activity of the WT1(-/+) protein. Furthermore, we find that EGR-1 levels are elevated in some Wilms' tumors. These data are the first to show that EGR-1 overexpression causes enhanced tumor growth and that WT1 and EGR-1 exert antagonizing effects on growth regulation in baby rat kidney cells, which might reflect the situation in some Wilms' tumors.
Collapse
Affiliation(s)
- V Scharnhorst
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Buschmann T, Minamoto T, Wagle N, Fuchs SY, Adler V, Mai M, Ronai Z. Analysis of JNK, Mdm2 and p14(ARF) contribution to the regulation of mutant p53 stability. J Mol Biol 2000; 295:1009-21. [PMID: 10656807 DOI: 10.1006/jmbi.1999.3387] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Identification of Mdm2 and JNK as proteins that target degradation of wt p53 prompted us to examine their effect on mutant p53, which exhibits a prolonged half-life. Of five mutant p53 forms studied for association with the targeting molecules, two no longer bound to Mdm2 and JNK. Three mutant forms, which exhibit high expression levels, showed lower affinity for association with Mdm2 and JNK in concordance with greater affinity to p14(ARF), which is among the stabilizing p53 molecules. Monitoring mutant p53 stability in vitro confirmed that, while certain forms of mutant p53 are no longer affected by either JNK or Mdm2, others are targeted for degradation by JNK/Mdm2, albeit at lower efficiency when compared with wt p53. Expression of wt p53 in tumor cells revealed a short half-life, suggesting that the targeting molecules are functional. Forced expression of mutant p53 in p53 null cells confirmed pattern of association with JNK/Mdm2 and prolonged half-life, as found in the tumor cells. Over-expression of Mdm2 in either tumor (which do express endogenous functional Mdm2) or in p53 null cells decreased the stability of mutant p53 suggesting that, despite its expression, Mdm2/JNK are insufficient (amount/affinity) for targeting mutant p53 degradation. Based on both in vitro and in vivo analyses, we conclude that the prolonged half-life of mutant p53 depends on the nature of the mutation, which either alters association with targeting molecules, ratio between p53 and targeting/stabilizing molecules or targeting efficiency.
Collapse
Affiliation(s)
- T Buschmann
- Ruttenberg Cancer Center, New York, NY, 10029, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Kim JM, Hong Y, Semba K, Kim S. Physical and functional interaction between the HCMV IE2 protein and the Wilms' tumor suppressor WT1. Biochem Biophys Res Commun 2000; 267:59-63. [PMID: 10623574 DOI: 10.1006/bbrc.1999.1928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human cytomegalovirus (HCMV) is a major renal pathogen in congenitally infected infants and renal allograft recipients. It has been shown that human kidney cells of glomerular, tubular, and vascular origin were all infected by HCMV in vitro. It has previously been demonstrated that the IE2 protein of HCMV directly associates with the zinc finger domain of Egr-1. The zinc finger region of WT1 is a sequence-specific DNA-binding domain which also recognizes the consensus DNA binding site (5'-CGCCCCCGC-3') of Egr-1, thus suggesting a possible interaction between WT1 and IE2. Here we demonstrate that HCMV IE2 binds to the C-terminal region of WT1 containing zinc finger domain in vivo as well as in vitro and that WT1 can inhibit IE2-driven transactivation of the responsive promoter. Our results suggest that WT1 may be able to regulate the functional activity of HCMV IE2. Furthermore, these data may provide new insights into the possible involvement of HCMV in WT1-related pathogeneses.
Collapse
Affiliation(s)
- J M Kim
- Institute for Molecular Biology, Seoul National University, Seoul, 151-742, Korea
| | | | | | | |
Collapse
|
107
|
Menssen HD, Schmidt A, Bartelt S, Arjomand A, Thomsen H, Leben R, Kath R, Thiel E. Analysis of Wilms tumor gene (WT1) expression in acute leukemia patients with special reference to the differential diagnosis between eosinophilic leukemia and idiopathic hypereosinophilic syndromes. Leuk Lymphoma 2000; 36:285-94. [PMID: 10674900 DOI: 10.3109/10428190009148849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Continuous Wilms' tumor gene (WT1) expression is a typical feature of leukemic blasts in AML, ALL, and blast crisis CML patients. It is easily detectable by a variety of RT-PCR protocols, which differ mainly in their sensitivity. The nuclear WT1 protein can be found in blasts of approximately 50-60% of acute leukemia patients at diagnosis. Conversely, WT1 is only transiently expressed in normal hemopoiesis. Early CD34+ hemopoietic progenitors express WT1, whereas no WT1 mRNA transcripts can be found in mature blood cells and differentiation-induced committed CD34- progenitors. As a powerful complementary diagnostic tool, testing for WT1 expression can be helpful to discriminate between eosinophilic leukemia (EoL) patients and patients with idiopathic hypereosinophilic syndromes. Conflicting data about the usefulness of testing for WT1 expression to monitor minimal residual disease (MRD) in treated leukemia patients will be discussed. Finally, research strategies to circumvent shortcomings in detecting leukemia-associated WT1 expression will be outlined.
Collapse
Affiliation(s)
- H D Menssen
- Medizinische Klinik III, Hämatologie, Onkologie und Transfusionsmedizin, Universitätsklinikum Benjamin Franklin der Freien Universität Berlin, Germany, EU.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Sengupta PK, Ehrlich M, Smith BD. A methylation-responsive MDBP/RFX site is in the first exon of the collagen alpha2(I) promoter. J Biol Chem 1999; 274:36649-55. [PMID: 10593968 DOI: 10.1074/jbc.274.51.36649] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA methylation inhibits transcription driven by the collagen alpha2(I) promoter and the 5' end of the gene in transient transfection and in vitro transcription assays. DNA-binding proteins in a unique family of ubiquitously expressed proteins, methylated DNA-binding protein (MDBP)/regulatory factor for X box (RFX), form specific complexes with a sequence overlapping the transcription start site of the collagen alpha2(I) gene. Complex formation increased when the CpG site at +7 base pairs from the transcription start site was methylated. The identity of the protein was demonstrated by co-migration and cross-competition for a characteristic slowly migrating doublet complex formed on MDBP/RFX recognition sequences and the collagen sequences by band shift assays. A RFX1-specific antibody supershifted the collagen DNA-protein complexes. Furthermore, in vitro translated RFX1 protein formed a specific complex with the collagen sequence that was also supershifted with the RFX1 antibody. MDBP/RFX displayed a higher affinity binding to the collagen sequence if the CpG at +7 was mutated in a manner similar to TpG. This same mutation within reporter constructs inhibited transcription in transfection and in vitro transcription assay. These results support the hypothesis that DNA methylation-induced inactivation of collagen alpha2(I) gene transcription is mediated, in part, by increased binding of MDBP/RFX to the first exon in response to methylation in this region.
Collapse
Affiliation(s)
- P K Sengupta
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
109
|
Kim J, Pelletier J. Molecular genetics of chromosome translocations involving EWS and related family members. Physiol Genomics 1999; 1:127-38. [PMID: 11015571 DOI: 10.1152/physiolgenomics.1999.1.3.127] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many types of sarcomas are characterized by specific chromosomal translocations that appear to result in the production of novel, tumor-specific chimeric transcription factors. Many of these show striking similarities: the emerging picture is that the amino-terminal domain of the fusion product is donated by the Ewing's sarcoma gene (EWS) or a related member from the same gene family, whereas the carboxy-terminal domain often consists of a DNA-binding domain derived from one of a number of transcription factors. Given the observation that the different translocation partners of the EWS protooncogene are associated with distinct types of sarcomas, the functional consequence of fusing EWS (or a related family member) to a different DNA-binding domain can only be understood in the context of functional studies that define the specificity of action of the different fusion products. An understanding of the molecular structure and function of these translocations provides new methods for diagnosis and novel targets for therapeutics.
Collapse
Affiliation(s)
- J Kim
- Department of Biochemistry, Department of Oncology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
110
|
Horster MF, Braun GS, Huber SM. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 1999; 79:1157-91. [PMID: 10508232 DOI: 10.1152/physrev.1999.79.4.1157] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Embryonic metanephroi, differentiating into the adult kidney, have come to be a generally accepted model system for organogenesis. Nephrogenesis implies a highly controlled series of morphogenetic and differentiation events that starts with reciprocal inductive interactions between two different primordial tissues and leads, in one of two mainstream processes, to the formation of mesenchymal condensations and aggregates. These go through the intricate process of mesenchyme-to-epithelium transition by which epithelial cell polarization is initiated, and they continue to differentiate into the highly specialized epithelial cell populations of the nephron. Each step along the developmental metanephrogenic pathway is initiated and organized by signaling molecules that are locally secreted polypeptides encoded by different gene families and regulated by transcription factors. Nephrogenesis proceeds from the deep to the outer cortex, and it is directed by a second, entirely different developmental process, the ductal branching of the ureteric bud-derived collecting tubule. Both systems, the nephrogenic (mesenchymal) and the ductogenic (ureteric), undergo a repeat series of inductive signaling that serves to organize the architecture and differentiated cell functions in a cascade of developmental gene programs. The aim of this review is to present a coherent picture of principles and mechanisms in embryonic renal epithelia.
Collapse
Affiliation(s)
- M F Horster
- Physiologisches Institut, Universität München, München, Germany.
| | | | | |
Collapse
|
111
|
Moorwood K, Salpekar A, Ivins SM, Hall J, Powlesland RM, Brown KW, Malik K. Transactivation of the WT1 antisense promoter is unique to the WT1[+/-] isoform. FEBS Lett 1999; 456:131-6. [PMID: 10452544 DOI: 10.1016/s0014-5793(99)00944-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Wilms' tumour suppressor gene, WT1, encodes a zinc finger transcription factor that has been shown to repress a variety of cellular promoters via binding to cognate DNA elements. Our earlier work identified an antisense WT1 promoter that contains WT1 consensus sites, but is transcriptionally activated by WT1. In this study, we demonstrate that, unlike previous reports of transcriptional regulation by WT1, transactivation of the antisense promoter is unique to a single isoform of WT1. Of the four alternatively spliced isoforms in which exon 5 (at splice I) or amino acid residues KTS (at splice II) are inserted or omitted, only the WT1 isoform containing splice I and omitting splice II (WT1[+/-]) displays transactivation. We demonstrate that transregulation variations observed with WT1 isoforms are not solely attributable to differential DNA binding by [+KTS] or [-KTS] isoforms. Thus, the transactivation of the antisense promoter displays an absolute requirement for exon 5, suggesting that interaction between WT1 and other cellular factors is necessary for this regulatory function.
Collapse
Affiliation(s)
- K Moorwood
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, UK.
| | | | | | | | | | | | | |
Collapse
|
112
|
Khachigian LM, Santiago FS, Rafty LA, Chan OL, Delbridge GJ, Bobik A, Collins T, Johnson AC. GC factor 2 represses platelet-derived growth factor A-chain gene transcription and is itself induced by arterial injury. Circ Res 1999; 84:1258-67. [PMID: 10364563 DOI: 10.1161/01.res.84.11.1258] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for a wide variety of cell types. The genes encoding PDGF A chain (PDGF-A) and PDGF B chain (PDGF-B) reside on separate chromosomes and are independently regulated at the level of transcription. Regulatory events underlying inducible PDGF-A expression have been the focus of much investigation. However, mechanisms that inhibit transcription of this gene are not well understood. In this study, we report the capacity of a newly cloned DNA binding factor, GC factor 2 (GCF2), to repress expression driven by the human PDGF-A promoter. 5' Deletion and transient cotransfection analysis in vascular endothelial cells revealed that GCF2 repression is mediated by a nucleotide region located in the proximal region of the PDGF-A promoter. Electrophoretic mobility shift assays demonstrate that GCF2 binds to this region in a specific and dose-dependent manner. Interestingly, the site bound by GCF2 overlaps those for specificity protein-1 (Sp1) and early growth response factor-1 (Egr-1), zinc finger transcription factors that direct basal and inducible expression of the PDGF-A gene. Gel shift experiments revealed that GCF2 competes with these factors for interaction with the PDGF-A promoter. Overexpression of GCF2 suppressed endogenous PDGF-A expression in vascular endothelial cells and smooth muscle cells. GCF2 was induced on mechanical injury of cells in culture as well as after balloon injury of the rat carotid artery wall. Time course studies revealed the sustained induction of GCF2 after injury while PDGF-A levels sharply returned to baseline. Smooth muscle cell proliferation was inhibited by GCF2, an effect reversed by the addition of exogenous PDGF-AA. These findings demonstrate negative regulation of PDGF-A expression by GCF2. This is the first report of the induction of an endogenous transcriptional repressor in the rat vessel wall.
Collapse
MESH Headings
- Animals
- Aorta/injuries
- Aorta/pathology
- Cattle
- Cells, Cultured
- DNA-Binding Proteins/genetics
- Endothelium, Vascular/injuries
- Endothelium, Vascular/pathology
- G-Box Binding Factors
- Humans
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Platelet-Derived Growth Factor/genetics
- Promoter Regions, Genetic
- Protein Binding
- Rats
- Rats, Sprague-Dawley
- Repressor Proteins/genetics
- Stress, Mechanical
- Transcription Factors/genetics
- Transcription, Genetic
- Zinc Fingers
Collapse
Affiliation(s)
- L M Khachigian
- Centre for Thrombosis and Vascular Research, The University of New South Wales, Department of Haematology, Prince of Wales Hospital, Sydney, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Kawashita Y, Ohtsuru A, Kaneda Y, Nagayama Y, Kawazoe Y, Eguchi S, Kuroda H, Fujioka H, Ito M, Kanematsu T, Yamashita S. Regression of hepatocellular carcinoma in vitro and in vivo by radiosensitizing suicide gene therapy under the inducible and spatial control of radiation. Hum Gene Ther 1999; 10:1509-19. [PMID: 10395376 DOI: 10.1089/10430349950017842] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To improve the efficacy and selectivity of gene therapy for hepatocellular carcinoma (HCC), we designed a strategy for suicide gene therapy in conjunction with radiation therapy using an HVJ-liposome vector system. The radio-inducible suicide gene was constructed by insertion of the early growth response gene 1 (Egr-1) promoter upstream of the HSV-tk gene (EGF-tk). First, to test the tumor specificity of Egr-1, RT-PCR and immunohistochemistry were performed. The Egr-1 gene was highly expressed in HCC compared with normal liver, where expression was barely detectable. Next, radiation-inducible activity of the Egr-1 promoter was examined in primary cultured normal hepatocytes and human hepatoma cell lines Huh7, HepG2, and PLC/PRF/5 by luciferase assay as a reporter gene system. Egr-1 promoter activity was markedly increased in hepatoma cell lines in a radiation dose-dependent manner, with maximum activation (15- to 28-fold) 12 hr after irradiation. In contrast, only a twofold increase in activation was noted in normal hepatocytes. An in vitro gene therapy experiment showed that EGR-tk-transduced hepatoma cells became highly sensitive to ganciclovir (GCV) after irradiation, but not without irradiation. GCV with or without irradiation did not show any cytotoxic effects against control gene-transfected cells. In addition, a "radiosensitization effect" was also demonstrated by combination therapy with the HSV-tk/GCV system and irradiation. To examine the efficacy of this EGR-tk/GCV gene therapy in vivo, xenografted liver tumors in nude mice were targeted using the HVJ-liposome vector system. EGR-tk-transfected tumors regressed significantly after a combination therapy of irradiation and GCV in all mice (n = 8), and almost disappeared in 3 weeks without any side effects. In comparison, tumors continued to grow in all mice (n = 8 in each group) treated by transfer of EGR-tk followed by either irradiation without GCV or GCV without irradiation. Our data indicate that HSV-tk gene therapy under the control of a radioinducible promoter is effective, and might be selective for hepatoma cells because of its inducible and radiosensitive capacity after radiation exposure as well as its tumor-specific activation.
Collapse
Affiliation(s)
- Y Kawashita
- Department of Surgery II, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Taniura H, Matsumoto K, Yoshikawa K. Physical and functional interactions of neuronal growth suppressor necdin with p53. J Biol Chem 1999; 274:16242-8. [PMID: 10347180 DOI: 10.1074/jbc.274.23.16242] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Necdin is expressed in virtually all postmitotic neurons, and ectopic expression of this protein suppresses cell proliferation. Necdin, like the retinoblastoma protein, interacts with cell cycle promoting proteins such as simian virus 40 large T antigen, adenovirus E1A, and the transcription factor E2F1. Here we demonstrate that necdin interacts with the tumor suppressor protein p53 as well. The yeast two-hybrid and in vitro binding analyses revealed that necdin bound to a narrow region (amino acids 35-62) located between the MDM2-binding site and the proline-rich region in the amino-terminal domain of p53. The electrophoretic mobility shift assay showed that necdin supershifted a complex between p53 and its binding DNA, implying that the p53-necdin complex is competent for DNA binding. In p53-deficient osteosarcoma SAOS-2 cells, necdin markedly suppressed p53-dependent activation of the p21/WAF promoter. Necdin and p53 inhibited cell growth in an additive manner as assessed by the colony formation of SAOS-2 cells, suggesting that necdin does not affect p53-mediated growth suppression. On the other hand, necdin inhibited p53-induced apoptosis of osteosarcoma U2OS cells. Thus, necdin can be a growth suppressor that targets p53 and modulates its biological functions in postmitotic neurons.
Collapse
Affiliation(s)
- H Taniura
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
115
|
Abstract
Abnormalities of the p53 tumour suppressor gene are among the most frequent molecular events in human and animal neoplasia. Moreover, p53 is one of the most studied proteins in the whole of contemporary biology, with more than 12,500 papers so far written! In this review the choice has been deliberately made not to be fully comprehensive in the coverage of the huge p53 literature. Rather attention is focused on a small number of recent developments which are reviewed in the context of modern models of p53 function. Progress in the analysis of signalling to p53 including phosphorylation cascades, and interactions with proteins such as mdm2 and ARF are highlighted. The plethora of protein-protein interactions is discussed, as are the strategies for defining downstream targets of p53. Finally, the emerging biology of p53 homologues is considered. The need for bridging the gap between reductionist, biochemical and biophysical studies and biological and genetic analysis is emphasized. Only this will provide the needed framework for utilizing the information in clinical care.
Collapse
Affiliation(s)
- C Prives
- Department of Biological Sciences, Columbia University, New York 10027, USA
| | | |
Collapse
|
116
|
Dejong V, Degeorges A, Filleur S, Ait-Si-Ali S, Mettouchi A, Bornstein P, Binétruy B, Cabon F. The Wilms' tumor gene product represses the transcription of thrombospondin 1 in response to overexpression of c-Jun. Oncogene 1999; 18:3143-3151. [PMID: 10340386 DOI: 10.1038/sj.onc.1202654] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1998] [Revised: 11/30/1998] [Accepted: 01/05/1999] [Indexed: 11/09/2022]
Abstract
Thrombospondin 1 (TSP1) is known for its significant anti-angiogenic properties. In a previous study, we have shown that transient or stable overexpression of the transcription factor c-Jun, in rat fibroblasts, leads to repression of TSP1. We now demonstrate that the c-Jun-induced repression of TSP1 does not occur directly and does not require binding of c-Jun to the TSP1 promoter. Instead, repression involves a factor secreted by c-Jun-overexpressing cells. This secreted factor triggers a signal transduction pathway from the membrane to the nucleus, and these signals lead to the binding of the product of the Wilms' tumor suppressor gene, WT1, to the -210 region of the TSP1 promoter. This region binds WT1 and SP1, but not EGR1, although its sequence fits the consensus binding site for this transcription factor. WT1 overexpression in transfected cells inhibits endogenous TSP1 gene expression and TSP1 transcription in experiments using TSP1 promoter-reporter constructs. The WT1 - KTS isoform is more active in repressing TSP1 transcription than WT1 + KTS, while EGR1 is inactive. Enhancement of WT1 binding to DNA in response to c-Jun does not require de novo protein synthesis. The above mechanism for TSP1 repression could apply to other genes, thus coordinating their regulation in the vicinity of a c-Jun-overexpressing cell. We conclude that WT1, which was discovered as a result of its tumor suppressor properties, may also possess oncogenic characteristics in the c-Jun transformation process, and thus repress the anti-angiogenic protein, TSP1.
Collapse
Affiliation(s)
- V Dejong
- CNRS UPR9079, Oncogénèse, Différenciation et Transduction du Signal, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Tsuboi A, Oka Y, Ogawa H, Elisseeva OA, Tamaki H, Oji Y, Kim EH, Soma T, Tatekawa T, Kawakami M, Kishimoto T, Sugiyama H. Constitutive expression of the Wilms' tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte-colony stimulating factor (G-CSF). Leuk Res 1999; 23:499-505. [PMID: 10374864 DOI: 10.1016/s0145-2126(99)00037-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone marrow (BM) cells that were concentrated for hematopoietic progenitor cells by in vivo treatment with 5-FU were infected with a recombinant retrovirus containing a human full-sized, non-spliced type WT1 (Wilms' tumor gene 1) cDNA and then colony-assayed in the presence of granulocyte-colony stimulating factor (G-CSF). Significantly more colony-forming units granulocyte-monocyte (CFU-GM), colony-forming units granulocyte (CFU-G), and colony-forming units monocyte (CFU-M) colonies were formed in response to G-CSF from the BM cells infected with the WT1-containing retrovirus than from the control BM cells infected with an empty vector. Furthermore, FACS analysis of cell surface differentiation markers showed the inhibition of differentiation by constitutive WT1 expression resulting from the infection with the WT1-containing retrovirus. These results thus showed that the constitutive WT1 expression promoted the proliferation of myeloid progenitor cells but inhibited their differentiation in response to G-CSF, suggesting the alteration of G-CSF signaling pathway. The results also supported our hypothesis that the WT1 gene performs an oncogenic rather than a tumor suppressor gene function in hematopoietic progenitor cells, although the WT1 gene potentially performs both functions. This finding implies an important role of the WT1 gene in leukemogenesis.
Collapse
Affiliation(s)
- A Tsuboi
- Department of Medicine III, Osaka University Medical School, Suita City, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
The past 2 years have provided exciting progress in elucidating the molecular basis of renal cancer. Work on the von Hippel-Lindau tumor suppressor, pVHL, in clear-cell renal cancer is already suggesting new potential therapies, and should have important implications in the pathogenesis of renal cystic disease and tumor angiogenesis. In addition, study of the Wilms' tumor suppressor, WT1, is revealing much about the pathogenesis of Wilms' tumor, urogenital development, and glomerular podocyte biology. c-met, the gene encoding the hepatocyte growth factor receptor, has recently been identified as a causative gene for hereditary papillary renal cancer. This review will highlight these and other new molecular advances in the renal cancer field.
Collapse
Affiliation(s)
- H T Cohen
- Department of Medicine, Boston University Medical Center, MA 02118, USA.
| |
Collapse
|
119
|
Abstract
The Wilms' tumor susceptibility gene, WT1, is altered in a subset of Wilms' tumors and encodes a transcription factor with four zinc fingers. Here we describe the isolation of native WT1 protein from frozen normal human kidney and Wilms' tumor samples. Through size exclusion chromatography and Western blot analysis we determined the elution pattern of WT1. The majority of WT1 from adult kidney and Wilms' tumor specimens was found to elute at a size of approximately 120 kDa, consistent with a WT1 homodimer and some WT1 protein was also found in a higher molecular weight complex. In 14 week fetal kidney the majority of the WT1 protein eluted at a size of 80 kDa, suggesting that at this developmental stage the WT1 protein is not present as a homodimer. The identity of complexing partners can now be studied using this approach.
Collapse
Affiliation(s)
- S Iben
- Institute of Human Genetics and Anthropology, University of Heidelberg, Germany
| | | |
Collapse
|
120
|
Abstract
A broad spectrum of renal tumors occurs in infants and children ranging from the benign cystic nephroma to the extremely aggressive malignant rhabdoid tumor of the kidney. A thorough understanding of these tumors is crucial to the optimal diagnosis and management of children with renal masses. The common renal tumors in infants and children are discussed and an orderly method for their evaluation is presented. Recent developments in the molecular biology of Wilms' tumor are outlined to provide insight into the origin of this tumor.
Collapse
Affiliation(s)
- R C Shamberger
- Children's Hospital and the Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
121
|
Abstract
When positionally cloned in late 1989, it was anticipated that mutations within the Wilms' tumour suppressor gene (WT1) would prove responsible for this common solid kidney cancer of childhood. Characterisation of the WT1 expression pattern and of the structure of the encoded protein isoforms and their mode of action has now spanned almost a decade. WT1 proteins act as nucleic acid-binding zinc finger-containing transcription factors involved in both transactivation and repression. These activities are facilitated and constrained by interactions with other proteins. Expression analyses and knockout mice indicate that WT1 protein plays a critical role in normal kidney and gonad development. Specific constitutional WT1 mutations results in several urogenital anomaly syndromes. While only 10% of sporadic Wilms' tumours do display WT1 mutation, WT1 is mutated in other cancers, including acute myeloid leukaemia. Much is still to be determined in WT1 biology. The next decade will see at least three streams of attention. The first two, elucidation of the role of WT1 in RNA metabolism and the characterisation of further protein partners, may together explain the distinct tissue-specific functions of WT1. Finally, further research into the role of WT1 in haematopoiesis will improve our understanding of WT1 in leukaemia.
Collapse
Affiliation(s)
- M Little
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia.
| | | | | |
Collapse
|
122
|
Li RS, Law GL, Seifert RA, Romaniuk PJ, Morris DR. Ornithine decarboxylase is a transcriptional target of tumor suppressor WT1. Exp Cell Res 1999; 247:257-66. [PMID: 10047468 DOI: 10.1006/excr.1998.4361] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The product of the Wilm's tumor suppressor gene, WT1, is a zinc-finger DNA-binding protein, which is thought to be a transcription factor. Two genes, those encoding epidermal growth factor receptor and syndecan-1, are known to be endogenous targets of WT1. Previous studies had identified binding sites for WT1 in the promoter of the ornithine decarboxylase (ODC) gene. In this paper, we tested whether the endogenous ODC gene might be a target of WT1 by establishing lines of baby hamster kidney (BHK) cells that expressed WT1 isoform A under control of a tetracycline-regulated expression system. When expression of WT1 was activated in BHK cells, the cellular level of ODC mRNA declined, with kinetics that correlated with the increase in WT1 level, demonstrating that the endogenous ODC gene was indeed responsive to cellular level of WT1. WT1 isoforms A and B inhibited the activity of the ODC promoter by approximately fivefold in transiently transfected BHK cells, while isoforms C and D, which have altered DNA binding domains, had no significant effect. The sequence CTCCCCCGC, located at nucleotides -106 to -98 relative to the site of transcriptional initiation in the ODC gene, interacted with the zinc-finger domain of isoforms A and B of WT1 with high affinity and specificity. A mutation in the binding site that disrupted this interaction partially removed the inhibition of ODC promoter activity by WT1, as did mutation of the two E-box sequences in intron I of the ODC gene. Simultaneous mutation of the WT1-binding motif and the two E-boxes completely abolished inhibition by WT1 of ODC promoter activity. These results, taken together, implicate the ODC gene as a downstream target of the tumor suppressor WT1.
Collapse
Affiliation(s)
- R S Li
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA
| | | | | | | | | |
Collapse
|
123
|
Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim EH, Soma T, Tatekawa T, Kawakami M, Asada M, Kishimoto T, Sugiyama H. Expression of the Wilms' tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 1999; 90:194-204. [PMID: 10189890 PMCID: PMC5926055 DOI: 10.1111/j.1349-7006.1999.tb00733.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To determine the role of the Wilms' tumor gene WT1 in tumorigenesis of solid tumors, expression of the WT1 gene was examined in 34 solid tumor cell lines (four gastric cancer cell lines, five colon cancer cell lines, 15 lung cancer cell lines, four breast cancer cell lines, one germ cell tumor cell line, two ovarian cancer cell lines, one uterine cancer cell line, one thyroid cancer cell line, and one hepatocellular carcinoma cell line) by means of quantitative reverse transcriptase-polymerase chain reaction. WT1 gene expression was detected in three of the four gastric cancer cell lines, all of the five colon cancer cell lines, 12 of the 15 lung cancer cell lines, two of the four breast cancer cell lines, the germ cell tumor cell line, the two ovarian cancer cell lines, the uterine cancer cell line, the thyroid cancer cell line, and the hepatocellular carcinoma cell line. Therefore, of the 34 solid tumor cell lines examined, 28 (82%) expressed WT1. Three cell lines expressing WT1 (gastric cancer cell line AZ-521, lung cancer cell line OS3, and ovarian cancer cell line TYK-nu) were further analyzed for mutations and/or deletions in the WT1 gene by means of single-strand conformation polymorphism analysis. However, no mutations or deletions were detected in the region of the WT1 gene ranging from the 3' end of exon 1 to exon 10 (the WT1 gene consists of 10 exons) in these three cell lines. Furthermore, when AZ-521, OS3, and TYK-nu cells were treated with WT1 antisense oligomers, the growth of these cells was significantly inhibited in association with a reduction in WT1 protein levels. Furthermore, constitute expression of the transfected WT1 gene in cancer cells inhibited the antisense effect of WT1 antisense oligomer on cell growth. These results indicated that the WT1 gene plays an essential role in the growth of solid tumors and performs an oncogenic rather than a tumor-suppressor gene function.
Collapse
Affiliation(s)
- Y Oji
- Department of Clinical Laboratory Science, Osaka University Medical School
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Thorner P, Squire J, Plavsic N, Jong R, Greenberg M, Zielenska M. Expression of WT1 in pediatric small cell tumors: report of two cases with a possible mesothelial origin. Pediatr Dev Pathol 1999; 2:33-41. [PMID: 9841704 DOI: 10.1007/s100249900087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The WT1 gene is normally expressed in fetal kidney and mesothelium, and its expression has been suggested as a marker for Wilms tumor and mesothelioma. We examined WT1 expression levels by reverse-transcriptase polymerase chain reaction (RT-PCR) in 38 childhood small-cell tumors including Wilms tumor, embryonal and alveolar rhabdomyosarcoma, Ewing sarcoma, lymphoma, desmoplastic small round-cell tumor (DSRCT), synovial sarcoma, extrarenal rhabdoid tumor, and two tumors that were atypical for this group of tumors. WT1 expression was only detected in Wilms tumor, rhabdoid tumor, and in these two cases of uncertain histogenesis. Both arose in the peritoneal cavity and by immunohistochemistry were diffusely positive for vimentin, keratin, and desmin. Tonofilaments were identified by electron microscopy in one of the cases. RT-PCR failed to detect the t(11;22) translocation associated with DSRCT in either case. Our results suggest that WT1 expression is an unusual feature of childhood non-Wilms tumors and, in the right setting, it may indicate a mesothelial origin. The expression of WT1 may play a role in mesodermal cells acquiring epithelial characteristics, a concept supported by the mixed epithelial and mesenchymal phenotype of these two cases.
Collapse
MESH Headings
- Biomarkers, Tumor
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/metabolism
- Carcinoma, Small Cell/pathology
- Child, Preschool
- Chromosomes, Human, Pair 11
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Epithelium/pathology
- Humans
- Infant
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphoma/genetics
- Lymphoma/metabolism
- Lymphoma/pathology
- Male
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Polymerase Chain Reaction
- Rhabdomyosarcoma/genetics
- Rhabdomyosarcoma/metabolism
- Rhabdomyosarcoma/pathology
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Testicular Neoplasms/genetics
- Testicular Neoplasms/metabolism
- Testicular Neoplasms/pathology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- WT1 Proteins
- Wilms Tumor/genetics
- Wilms Tumor/metabolism
- Wilms Tumor/pathology
- Zinc Fingers
Collapse
Affiliation(s)
- P Thorner
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
Abnormalities of the p53 tumour suppressor gene are among the most frequent molecular events in human and animal neoplasia. Moreover, p53 is one of the most studied proteins in the whole of contemporary biology, with more than 12,500 papers so far written! In this review the choice has been deliberately made not to be fully comprehensive in the coverage of the huge p53 literature. Rather attention is focused on a small number of recent developments which are reviewed in the context of modern models of p53 function. Progress in the analysis of signalling to p53 including phosphorylation cascades, and interactions with proteins such as mdm2 and ARF are highlighted. The plethora of protein-protein interactions is discussed, as are the strategies for defining downstream targets of p53. Finally, the emerging biology of p53 homologues is considered. The need for bridging the gap between reductionist, biochemical and biophysical studies and biological and genetic analysis is emphasized. Only this will provide the needed framework for utilizing the information in clinical care.
Collapse
Affiliation(s)
- C Prives
- Department of Biological Sciences, Columbia University, New York 10027, USA
| | | |
Collapse
|
126
|
Campbell CE, Kuriyan NP, Rackley RR, Caulfield MJ, Tubbs R, Finke J, Williams BR. Constitutive expression of the Wilms tumor suppressor gene (WT1) in renal cell carcinoma. Int J Cancer 1998; 78:182-8. [PMID: 9754650 DOI: 10.1002/(sici)1097-0215(19981005)78:2<182::aid-ijc11>3.0.co;2-d] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of the Wilms tumor suppressor gene WT1 is largely restricted to elements of the developing urogenital system. In the fetal kidney, WT1 transcripts are present at low levels in the condensing mesenchyme and at much higher levels in differentiating glomerular epithelium and are not detected in other mesenchymal-derived epithelial structures such as the proximal and distal tubules. However, WT1 expression is observed in tubule-like elements found in some Wilms tumors. As renal cell carcinoma (RCC) of the clear cell type is one of the most prevalent adult tumors of the kidney, and is thought to originate from the epithelial cells of the proximal tubules, we studied WT1 expression in RCCs. Despite the absence of WT1 in normal primary epithelial cells derived from proximal tubules, RCC tumors and tumor-derived cell lines expressed WT1 RNA. Immunocytochemical analyses of tumor cryosections showed widespread expression throughout the poorly differentiated epithelial components of the tumor. Immunoblots of RCC samples detected a normal size WT I protein and reciprocal antibody immunoprecipitations of RCC cell extracts indicated that WT I interacts with p53 as has been demonstrated for normal human fetal kidney. The aberrant expression of functional WT1 in RCC may represent a reversion to a more de-differentiated phenotype and may contribute to the tumorigenic phenotype by inappropriately activating or repressing genes involved in growth regulation.
Collapse
Affiliation(s)
- C E Campbell
- Department of Cancer Biology, The Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
The field of molecular genetics continues to see an ever increasing number of applications to pediatric tumor analysis. Studies in pediatric tumors have identified novel genes and other genetic changes, a large number of which reflect one of the following mechanisms: (1) activation of proto-oncogenes; (2) loss of tumor suppressor genes; or (3) creation of novel fusion proteins. At least one of these mechanisms is operational in each of the following pediatric tumors: neuroblastoma, Ewing sarcoma and peripheral primitive neuroectodermal tumor (pPNET), intra-abdominal desmoplastic small-cell tumor, rhabdomyosarcoma, synovial sarcoma, and Wilms tumor. Out of this research has come not only an increased understanding of oncogenesis but also, for each of the tumors listed above, diagnostic and/or prognostic markers that can be used by the pathologist and oncologist to improve overall patient management.
Collapse
Affiliation(s)
- P S Thorner
- Department of Pediatric Laboratory Medicine, Division of Pathology, Hospital for Sick Children and the University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
128
|
Hirose M, Kuroda Y. p53 may mediate the mdr-1 expression via the WT1 gene in human vincristine-resistant leukemia/lymphoma cell lines. Cancer Lett 1998; 129:165-71. [PMID: 9719458 DOI: 10.1016/s0304-3835(98)00096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the regulatory mechanism of the expression of the multidrug resistance gene (mdr-1) and the multidrug resistance-associated protein gene (mrp), we investigated if p53, WT1, RB, C-myc, N-myc, cyclin D1, p16INK4 (p16) are involved in the acquirement of multidrug resistance phenotype (MDR) in human vincristine (VCR)-resistant cells of leukemia/lymphoma cell lines. By using RT-PCR, we observed that MDR in VCR-resistant cell lines was mediated by either mdr-1 or mrp genes. In cells that acquired the overexpression of mdr-1, downregulation of p53 and upregulation of WT-1 were observed. In contrast, no constant change of genes was observed in cells that overexpressed mrp. Although the change in the expression level of cyclin D1 and p-16 accompanied the development of VCR resistance, the mRNA of RB, C-myc and N-myc showed no correlation with the degree of VCR resistance or the level of mdr-1 expression. These results may provide a plausible diagnostic marker for determination of drug sensitivity in cancer patients and suggest that p53 may mediate directly or indirectly the expression of mdr-1 via WT1 in VCR-resistant hematologic cell lines.
Collapse
Affiliation(s)
- M Hirose
- Division of Transfusion Medicine, School of Medicine, The University of Tokushima, Tokushima City, Japan.
| | | |
Collapse
|
129
|
Chevalier G, Yeger H, Martinerie C, Laurent M, Alami J, Schofield PN, Perbal B. novH: differential expression in developing kidney and Wilm's tumors. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 152:1563-75. [PMID: 9626060 PMCID: PMC1858457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously established that the expression of the human nov gene (novH) was altered in Wilms' tumors and that levels of novH and WT1 mRNA were inversely correlated in individual Wilms' tumors. Insofar as novH has been shown to be a target for WT1 regulation, novH might play an important role during normal nephrogenesis and in the development of Wilms' tumors. We now show that during normal nephrogenesis novH protein is tightly associated with differentiation of glomerular podocytes. NovH expression is not restricted to renal differentiation but is also detected in endothelium and neural tissue of the kidney. Our results establish that alteration of novH expression in sporadic and heritable Wilms' tumors is associated with dysregulated expression of both novH mRNA and protein. In general, the highest novH expression was noted in the Wilms' tumor, genitourinary anomalies, aniridia, and mental retardation (WAGR)-associated Wilms' tumors. Expression in the Denys-Drash syndrome (DDS)-associated Wilms' tumors fell within the variable spectrum observed in sporadic Wilms' tumor cases. As in developing kidney podocytes, novH protein was also prominent in the abnormal hypoplastic podocytes from DDS cases and in kidney podocytes adjoining Wilms' tumors. In Wilms' tumors exhibiting heterotypic differentiation, novH protein was expressed at high levels in tumor-derived striated muscle and at lower levels in tumor-derived cartilage. These observations taken together indicate that novH may represent both a marker of podocytic differentiation in kidney and a marker of heterotypic mesenchymal differentiation in Wilms' tumors. In addition, absence or very low levels of WT1 are correlated with higher novH expression, and its variable expression in cases with mutant WT1 (sporadic and DDS) suggests that the potential activation and repression transcriptional functions possessed by WT1 are likely dependent on the specific mutation incurred.
Collapse
Affiliation(s)
- G Chevalier
- Laboratoire d'Oncologie Virale et Moléculaire, INSERM U142 Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Occurring with a frequency of 1 in 10,000 live births, Wilms' tumor is one of the most common solid tumors of children. The genetic basis of this tumor is highly complex and several loci have been shown to be associated with tumor formation. Thus far, however, WT1 is the only gene that has been isolated and proven to carry mutations within Wilms' tumors. During the last few years, a wealth of experiments has been carried out to address the function of WT1 as a tumor suppressor and developmental regulator. This review focuses on studies addressing WT1 function; new approaches to understand WT1 function in vivo and present transgenic data in which WT1 was driven ectopically using a CMV promoter are discussed. Our results suggest that ubiquitous expression of WT1 is not compatible with embryonic development.
Collapse
Affiliation(s)
- A Menke
- Medical Research Council, Human Genetics Unit, Edinburgh, Scotland, United Kingdom
| | | | | | | |
Collapse
|
131
|
Johnstone RW, Wang J, Tommerup N, Vissing H, Roberts T, Shi Y. Ciao 1 is a novel WD40 protein that interacts with the tumor suppressor protein WT1. J Biol Chem 1998; 273:10880-7. [PMID: 9556563 DOI: 10.1074/jbc.273.18.10880] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Wilms tumor suppressor protein, WT1, is a transcription factor capable of activating or repressing transcription of various cellular genes. The mechanisms involved in regulating the transcriptional activities of WT1 are beginning to be unraveled. It appears that physical interactions of other cellular proteins (p53 and par-4) with WT1 can modulate the function of WT1. Here, we report the identification and cloning of a novel WT1-interacting protein termed Ciao 1, a member of the WD40 family of proteins. Ciao 1 specifically interacts with WT1 both in vitro and in vivo. This interaction alters the mobility of a WT1.DNA complex in gel shift assays, and results in a decrease in transcriptional activation mediated by WT1. Ciao 1 does not inhibit binding of WT1 to its consensus nucleotide sequence and does not affect the repression activity of WT1. Thus, Ciao 1 appears to specifically modulate the transactivation activity of WT1 and may function to regulate the physiological functions of WT1 in cell growth and differentiation.
Collapse
Affiliation(s)
- R W Johnstone
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
132
|
Zhan Q, Chen IT, Antinore MJ, Fornace AJ. Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol Cell Biol 1998; 18:2768-78. [PMID: 9566896 PMCID: PMC110656 DOI: 10.1128/mcb.18.5.2768] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1997] [Accepted: 02/19/1998] [Indexed: 02/07/2023] Open
Abstract
The GADD45 gene is a growth arrest-associated gene that is induced by certain DNA-damaging agents and other stresses, such as starvation, in all mammalian cells. In addition to a strong p53-binding element in an intronic sequence, we have recently found that p53, while not required or sufficient alone, may contribute to the stress responsiveness of the promoter. Much of the responsiveness was localized to a GC-rich motif in the proximal promoter which contains multiple Egr1 sites and a larger WT1 site; this 20-bp WT1 motif is identical to the WT1-binding site in the PDGF-A gene. In extracts from a human breast carcinoma cell line expressing p53 and WT1, which is known to associate with p53 in vivo, evidence was obtained that these proteins are in a complex that binds this 20-bp element. A combination of p53 and WT1 expression vectors strongly induced a GADD45-reporter construct, while mutation of the WT1-Egr1 site in the promoter prevented this induction. Abrogation of p53 function by a dominant-negative vector or abrogation of WT1 function by an antisense vector markedly reduced the induction of this promoter. Since p53 does not bind directly to the promoter, these results indicate that p53 can contribute to the positive regulation of a promoter by protein-protein interactions.
Collapse
Affiliation(s)
- Q Zhan
- Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
133
|
Abstract
The WT1 gene is a tumor-suppressor gene that was isolated as a gene responsible for Wilms' tumor, a childhood kidney neoplasm. We have previously reported that the WT1 gene is strongly expressed in leukemia cells with an increase in its expression levels at relapse and an inverse correlation between its expression levels and prognosis, thus making it a novel tumor marker for leukemic blast cells. Furthermore, WT1 antisense oligomers have been found to inhibit the growth of leukemic cells. These results strongly suggested the involvement of the WT1 gene in human leukemogenesis. The present study was performed to prove our hypothesis that the WT1 gene plays a key role in leukemogenesis and performs an oncogenic function in hematopoietic progenitor cells, rather than a tumor-suppressor gene function. 32D cl3, an interleukin-3–dependent myeloid progenitor cell line, differentiates into mature neutrophils in response to granulocyte colony-stimulating factor (G-CSF). However, when transfected wild-type WT1 gene was constitutively expressed in 32D cl3, the cells stopped differentiating and continued to proliferate in response to G-CSF. As for signal transduction mediated by G-CSF receptor (G-CSFR), Stat3α was constitutively activated in wild-type WT1-infected 32D cl3 in response to G-CSF, whereas, in WT1-uninfected 32D cl3, activation of Stat3α was only transient. However, most interesting was the fact that G-CSF stimulation resulted in constitutive activation of Stat3β only in wild-type WT1-infected 32D cl3, but not in WT1-uninfected 32D cl3. Thus, WT1 expression constitutively activated both Stat3α and Stat3β. A transient activation of Stat1 was detected in both wild-type WT1-infected and uninfected 32D cl3 after G-CSF stimulation, but no difference in its activation was found. No activation of MAP kinase was detected in both wild-type WT1-infected and uninfected 32D cl3 after G-CSF stimulation. These results demonstrated that WT1 expression competed with the differentiation-inducing signal mediated by G-CSFR and constitutively activated Stat3, resulting in the blocking of differentiation and subsequent proliferation. Therefore, the data presented here support our hypothesis that the WT1 gene plays an essential role in leukemogenesis and performs an oncogenic function in hematopoietic progenitor cells and represent the first demonstration of an important role of the WT1 gene in signal transduction in hematopoietic progenitor cells.
Collapse
|
134
|
Maheswaran S, Englert C, Zheng G, Lee SB, Wong J, Harkin DP, Bean J, Ezzell R, Garvin AJ, McCluskey RT, DeCaprio JA, Haber DA. Inhibition of cellular proliferation by the Wilms tumor suppressor WT1 requires association with the inducible chaperone Hsp70. Genes Dev 1998; 12:1108-20. [PMID: 9553041 PMCID: PMC316709 DOI: 10.1101/gad.12.8.1108] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/1997] [Accepted: 02/27/1998] [Indexed: 02/07/2023]
Abstract
The Wilms tumor suppressor WT1 encodes a zinc finger transcription factor that is expressed in glomerular podocytes during a narrow window in kidney development. By immunoprecipitation and protein microsequencing analysis, we have identified a major cellular protein associated with endogenous WT1 to be the inducible chaperone Hsp70. WT1 and Hsp70 are physically associated in embryonic rat kidney cells, in primary Wilms tumor specimens and in cultured cells with inducible expression of WT1. Colocalization of WT1 and Hsp70 is evident within podocytes of the developing kidney, and Hsp70 is recruited to the characteristic subnuclear clusters that contain WT1. The amino-terminal transactivation domain of WT1 is required for binding to Hsp70, and expression of that domain itself is sufficient to induce expression of Hsp70 through the heat shock element (HSE). Substitution of a heterologous Hsp70-binding domain derived from human DNAJ is sufficient to restore the functional properties of a WT1 protein with an amino-terminal deletion, an effect that is abrogated by a point mutation in DNAJ that reduces binding to Hsp70. These observations indicate that Hsp70 is an important cofactor for the function of WT1, and suggest a potential role for this chaperone during kidney differentiation.
Collapse
Affiliation(s)
- S Maheswaran
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital (MGH) and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Menke AL, van der Eb AJ, Jochemsen AG. The Wilms' tumor 1 gene: oncogene or tumor suppressor gene? INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:151-212. [PMID: 9522457 DOI: 10.1016/s0074-7696(08)60418-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Wilms' tumor 1 (wt1) gene is one of at least three genes that are involved in the development of Wilms' tumor, a pediatric kidney cancer. The expression pattern of the gene indicates that wt1 not only plays a role during kidney development but is also involved in the development and homeostasis of several other tissues. The physiological function of the gene, however, remains to be elucidated. The gene products have been implicated in many processes like proliferation, differentiation, and programmed cell death (apoptosis). The WT1 proteins function as transcription factors but may additionally be involved in splicing. Disruption of these activities may lead to aberrant development. In this paper we will discuss the role of the wt1 gene during normal development and homeostasis of several tissues. In addition, we will address the involvement of the gene products in processes like apoptosis and tumorigenesis.
Collapse
Affiliation(s)
- A L Menke
- MRC Human Genetics Unit, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
136
|
Ben-Shushan E, Thompson JR, Gudas LJ, Bergman Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol Cell Biol 1998; 18:1866-78. [PMID: 9528758 PMCID: PMC121416 DOI: 10.1128/mcb.18.4.1866] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1997] [Accepted: 01/06/1998] [Indexed: 02/07/2023] Open
Abstract
The Rex-1 (Zfp-42) gene, which encodes an acidic zinc finger protein, is expressed at high levels in embryonic stem (ES) and F9 teratocarcinoma cells. Prior analysis identified an octamer motif in the Rex-1 promoter which is required for promoter activity in undifferentiated F9 cells and is involved in retinoic acid (RA)-associated reduction in expression. We show here that the Oct-3/4 transcription factor, but not Oct-1, can either activate or repress the Rex-1 promoter, depending on the cellular environment. Rex-1 repression is enhanced by E1A. The protein domain required for Oct-3/4 activation was mapped to amino acids 1 to 35, whereas the domain required for Oct-3/4 repression was mapped to amino acids 61 to 126, suggesting that the molecular mechanisms underlying transcriptional activation and repression differ. Like Oct-3/4, Oct-6 can also lower the expression of the Rex-1 promoter via the octamer site, and the amino-terminal portion of Oct-6 mediates this repression. In addition to the octamer motif, a novel positive regulatory element, located immediately 5' of the octamer motif, was identified in the Rex-1 promoter. Mutations in this element greatly reduce Rex-1 promoter activity in F9 cells. High levels of a binding protein(s), designated Rox-1, recognize this novel DNA element in F9 cells, and this binding activity is reduced following RA treatment. Taken together, these results indicate that the Rex-1 promoter is regulated by specific octamer family members in early embryonic cells and that a novel element also contributes to Rex-1 expression.
Collapse
Affiliation(s)
- E Ben-Shushan
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
137
|
Affiliation(s)
- P Grundy
- Molecular Oncology Program, Cross Cancer Institute, Edmonton Alberta, Canada
| |
Collapse
|
138
|
Affiliation(s)
- M A Brown
- Somatic Cell Genetics Laboratory, Imperial Cancer Research Fund, London, England
| |
Collapse
|
139
|
Abstract
This chapter describes the earlier stages of development of the vertebrate metanephric kidney. It focuses on the mouse and descriptive morphology is used for considering both molecular mechanisms, underpinning kidney morphogenesis and differentiation, and the ways in which these processes can go awry and lead to congenital kidney disorders—particularly in humans. The mature kidney is a fairly complex organ attached to an arterial input vessel and two output vessels, the vein and the ureter. Inside, the artery and vein are connected by a complex network of capillaries that invade a large number of glomeruli, the proximal entrance to nephrons, which are filtration units that link to an arborized collecting-duct system that drains into the ureter. The ability of the kidney and isolated metanephrogenic mesenchyme, to develop in culture means that the developing tissues can be subjected to a wide variety of experimental procedures designed to investigate their molecular and cellular properties and to test hypotheses about developmental mechanisms.
Collapse
Affiliation(s)
- J A Davies
- Centre for Developmental Biology, University of Edinburgh, United Kingdom
| | | |
Collapse
|
140
|
Govender D, Harilal P, Hadley GP, Chetty R. p53 protein expression in nephroblastomas: a predictor of poor prognosis. Br J Cancer 1998; 77:314-8. [PMID: 9461003 PMCID: PMC2151242 DOI: 10.1038/bjc.1998.48] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alteration of the tumour-suppressor gene p53 is the commonest genetic change encountered in human malignant tumours. A study was undertaken to ascertain the prognostic value of p53 immunoexpression in nephroblastomas. A series of 93 consecutive cases was analysed. Archival formalin-fixed, paraffin wax-embedded tissue sections were stained with monoclonal anti-p53 antibody (DO-7, Dako) using a peroxidase-labelled streptavidin biotin kit. Five of seven tumours (71.4%) with unfavourable histology, but only 3 of 86 favourable histology tumours, showed 'high' p53 immunoexpression (P < 0.001). p53 expression in unfavourable histology tumours was present in both anaplastic and non-anaplastic components. Moreover, there was uniform staining of blastema, epithelium and stroma in unfavourable histology tumours. No statistical difference in p53 expression was found between patients who had received and those who had not received preoperative chemotherapy (P = 0.678). Similarly, no statistical difference was found in the groups of patients who were disease free, who had residual/recurrent disease or who had died (P = 0.238). The mean survival period for patients with tumours that had 'low' and 'high' expressions was 24.8 months and 12.6 months respectively (P = 0.0003). In conclusion, p53 immunoexpression in nephroblastomas was found to be an important determinant of poor prognosis as it identifies those patients with a shorter survival period and also those with unfavourable histology tumours. It may also be of practical value to the practising pathologist by identifying those tumours that require careful assessment for the presence of anaplasia.
Collapse
Affiliation(s)
- D Govender
- Department of Anatomical Pathology, University of Natal Medical School and King Edward VIII Hospital, Durban, South Africa
| | | | | | | |
Collapse
|
141
|
Duarte A, Caricasole A, Graham CF, Ward A. Wilms' tumour-suppressor protein isoforms have opposite effects on Igf2 expression in primary embryonic cells, independently of p53 genotype. Br J Cancer 1998; 77:253-9. [PMID: 9460996 PMCID: PMC2151233 DOI: 10.1038/bjc.1998.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The p53 protein has been proposed as a modulator of the Wilms' tumour-suppressor protein (WT1) transcriptional regulation activity. To investigate this putative p53 role, the promoter P3 of the mouse insulin-like growth factor II gene (Igf2) was used as a target for WT1 regulation in primary cell cultures derived from p53 wild-type (p53+/+) and knock-out (p53-/-) mouse embryos. In these cells, the WT1 transcriptional activity was observed to be independent of p53 genotype. Furthermore, the two WT1 zinc finger (ZF) isoforms were for the first time found to have opposite effects on gene expression from a single promoter in the same cell type, WT1[-KTS] activating Igf2 P3, whereas WT1[+KTS] repressed its activity. In addition, we have mapped the WT1 binding sites and investigated the effect on WT1 binding activity of individual ZF deletions and Denys-Drash syndrome point mutations to this target.
Collapse
Affiliation(s)
- A Duarte
- Cancer Research Campaign Growth Factors, Zoology Department, University of Oxford, UK
| | | | | | | |
Collapse
|
142
|
Webster NJ, Kong Y, Sharma P, Haas M, Sukumar S, Seely BL. Differential effects of Wilms tumor WT1 splice variants on the insulin receptor promoter. BIOCHEMICAL AND MOLECULAR MEDICINE 1997; 62:139-50. [PMID: 9441865 DOI: 10.1006/bmme.1997.2648] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Wilms tumor gene WT1 has been implicated in the early development of the kidney. Mutations in WT1 are found in a small fraction of Wilms tumor, a pediatric nephroblastoma, and Denys-Drash syndrome, characterized by genitourinary abnormalities. The WT1 gene product functions as a transcriptional repressor of growth factor-related genes. The kidney is one of the major sites of insulin action in vivo and expresses high levels of insulin receptors (IR). IR expression has been detected during early embryogenesis, suggesting that it may play a role in development. We investigated whether two WT1 splice variants lacking or including a three-amino-acid (KTS) insertion between the third and fourth zinc finger in the DNA-binding domain could repress the IR promoter in vitro. We show that the +KTS variant effectively represses promoter activity under all conditions tested but the -KTS variant was only able to repress in the presence of cotransfected C/EBP beta or a dominant-negative p53 mutation. Deletional mapping indicated that distinct regions of the IR promoter mediated the effects of the two isoforms and DNaseI footprint analysis identified potential WT1 binding sites within these regions.
Collapse
Affiliation(s)
- N J Webster
- UCSD/Whittier Diabetes Program, University of California, San Diego, La Jolla 92093, USA.
| | | | | | | | | | | |
Collapse
|
143
|
Goodglick LA, Vaslet CA, Messier NJ, Kane AB. Growth factor responses and protooncogene expression of murine mesothelial cell lines derived from asbestos-induced mesotheliomas. Toxicol Pathol 1997; 25:565-73. [PMID: 9437800 DOI: 10.1177/019262339702500605] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Repeated intraperitoneal injections of crocidolite asbestos fibers induced diffuse malignant mesotheliomas in mice. A series of mesothelial cell lines was isolated from mice at different stages in the development of these tumors. The cell lines isolated from mice with mesotheliomas recapitulated their growth pattern in vivo and were tumorigenic when reinjected into syngeneic mice. Similar to human mesothelial cells, growth of the murine cell lines was stimulated by epidermal growth factor. Reactive mesothelial cells and mesotheliomas expressed the receptor for this growth factor. Crocidolite asbestos fibers have been reported to induce sustained expression of the c-fos and c-jun protooncogenes in rat pleural mesothelial cells in vitro (Heintz et al, Proc. Natl. Acad. Sci. USA 90: 3299-303, 1993). Human malignant mesotheliomas have been shown to express c-fos in situ (Ramael et al, Histol. Histopathol. 10: 639-643, 1995). Two of the cell lines derived from highly invasive murine mesotheliomas overexpressed c-fos and c-jun. This murine model recapitulates the histopathology, growth factor responses, and protooncogene expression of human malignant mesotheliomas.
Collapse
Affiliation(s)
- L A Goodglick
- Department of Pathology, Brown University School of Medicine, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
144
|
Abstract
Mammalian nephrogenesis constitutes a series of complex developmental processes in which there is a differentiation and rapid proliferation of pluripotent cells leading to the formation of a defined sculpted tissue mass, and this is followed by a continuum of cell replication and terminal differentiation. Metanephrogenesis ensues with the intercalation of epithelial ureteric bud into loosely organized metanephric mesenchyme. Such an interaction is reciprocal, such that the intercalating ureteric bud induces the conversion of metanephric mesenchyme into an epithelial phenotype, while the mesenchyme stimulates the iterations of the ureteric bud. The induced mesenchyme then undergoes a series of developmental stages to form a mature glomerulus and tubular segments of the kidney. Coincidental with the formation of these nephric elements, the developing kidney is vascularized by the process of vasculogenesis and angiogenesis. Thus, the process of metanephric development is quite complex, and it involves a diverse group of molecules who's biological activities are inter-linked with one another and they regulate, in a concerted manner, the differentiation and maturation of the mammalian kidney. This diverse group of molecules include extracellular matrix (ECM) proteins and their receptors, ECM-degrading enzymes and their inhibitors, growth factors and their receptors, proto-oncogenes and transcription factors. A large body of literature data are available, which suggest a critical role of these molecules in metanephric development, and this review summarizes the recent developments that relate to metanephrogenesis.
Collapse
Affiliation(s)
- E I Wallner
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
145
|
Abstract
The tumor-suppressor gene product p53 is clearly a component in several biochemical pathways, including transcription, DNA repair, genomic stability, cell-cycle control and apoptosis, that are central to human carcinogenesis. The p53 is functionally inactivated by mutational, viral, and cellular mechanisms in the majority of human cancers. Analysis of the spectrum of p53 mutations provides clues to the etiology and molecular pathogenesis of cancer. Recent insight into the p53-mediated biochemical pathways of cell-cycle arrest and apoptosis has provided further understanding of the mechanisms related to p53-mediated tumor suppression. This insight in turn may provide the potential molecular targets for the development of rational multimodality cancer therapy, including chemo-, immuno-, and gene-therapeutic strategies. The convergence of previously parallel lines of basic, clinical, and epidemiologic investigation may provide an opportunity to transfer research findings rapidly from the laboratory to the clinic.
Collapse
Affiliation(s)
- X W Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
146
|
Wallingford JB, Seufert DW, Virta VC, Vize PD. p53 activity is essential for normal development in Xenopus. Curr Biol 1997; 7:747-57. [PMID: 9368757 DOI: 10.1016/s0960-9822(06)00333-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The tumor suppressor p53 plays a key role in regulating the cell cycle and apoptosis in differentiated cells. Mutant mice lacking functional p53 develop normally but die from multiple neoplasms shortly after birth. There have been hints that p53 is involved in morphogenesis, but given the relatively normal development of p53 null mice, the significance of these data has been difficult to evaluate. To examine the role of p53 in vertebrate development, we have determined the results of blocking its activity in embryos of the frog Xenopus laevis. RESULTS Two different methods have been used to block p53 protein activity in developing Xenopus embryos--ectopic expression of dominant-negative forms of human p53 and ectopic expression of the p53 negative regulator, Xenopus dm-2. In both instances, inhibition of p53 activity blocked the ability of Xenopus early blastomeres to undergo differentiation and resulted in the formation of large cellular masses reminiscent of tumors. The ability of mutant p53 to induce such developmental tumors was suppressed by co-injection with wild-type human or wild-type Xenopus p53. Cells expressing mutant p53 activated zygotic gene expression and underwent the mid-blastula transition normally. Such cells continued to divide at approximately normal rates but did not form normal embryonic tissues and never underwent terminal differentiation, remaining as large, yolk-filled cell masses that were often associated with the neural tube or epidermis. CONCLUSIONS In Xenopus, the maternal stockpile of p53 mRNA and protein seems to be essential for normal development. Inhibiting p53 function results in an early block to differentiation. Although it is possible that mutant human p53 proteins have a dominant gain-of-function or neomorphic activity in Xenopus, and that this is responsible for the development of tumors, most of the evidence indicates that this is not the case. Whatever the basis of the block to differentiation, these results indicate that Xenopus embryos are a sensitive system in which to explore the role of p53 in normal development and in developmental tumors.
Collapse
Affiliation(s)
- J B Wallingford
- Department of Zoology, University of Texas, Austin 78712, USA
| | | | | | | |
Collapse
|
147
|
Abstract
The WT1 gene is essential for kidney development and is mutated in some Wilms tumours. It is also expressed at a high level in many acute leukaemias and in some haematopoietic progenitor cells, and mutations have been found in leukaemias. The function of WT1, which is a zinc finger protein and has domains characteristic of transcription factors, is not well understood. The level of expression is highest in leukaemias with immature phenotypes. Expression of WT1 is downregulated during differentiation of leukaemic cell lines and high levels of WT1 expression can cause cell cycle arrest and/or apoptosis. This may reflect a role in the control of normal haematopoiesis, which can be abrogated by mutations in the gene and form part of the pathway towards leukaemogenesis.
Collapse
Affiliation(s)
- K Pritchard-Jones
- Section of Paediatrics, Institute of Cancer Research, Sutton, Surrey, UK
| | | |
Collapse
|
148
|
Katan Y, Agami R, Shaul Y. The transcriptional activation and repression domains of RFX1, a context-dependent regulator, can mutually neutralize their activities. Nucleic Acids Res 1997; 25:3621-8. [PMID: 9278482 PMCID: PMC146931 DOI: 10.1093/nar/25.18.3621] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
EP is a DNA element found in regulatory regions of viral and cellular genes. While being a key functional element in viral enhancers, EP has no intrinsic enhancer activity but can stimulate or silence transcription in a context-dependent manner. The EP element is bound by RFX1, which belongs to a novel, evolutionarily conserved protein family. In an attempt to decipher the mechanism by which EP regulates transcription, the intrinsic transcriptional activity of RFX1 was investigated. A functional dissection of RFX1, by analysis of deletion mutants and chimeric proteins, identified several regions with independent transcriptional activity. An activation domain containing a glutamine-rich region is found in the N-terminal half of RFX1, while a region with repressor activity overlaps the C-terminal dimerization domain. In RFX1 these activities were mutually neutralized, producing a nearly inactive transcription factor. This neutralization effect was reproduced by fusing RFX1 sequences to a heterologous DNA-binding domain. We propose that relief of self-neutralization may allow RFX1 to act as a dual-function regulator via its activation and repression domains, accounting for the context-dependent activity of EP.
Collapse
Affiliation(s)
- Y Katan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
149
|
Unfried K, Roller M, Pott F, Friemann J, Dehnen W. Fiber-specific molecular features of tumors induced in rat peritoneum. ENVIRONMENTAL HEALTH PERSPECTIVES 1997; 105 Suppl 5:1103-1108. [PMID: 9400707 PMCID: PMC1470147 DOI: 10.1289/ehp.97105s51103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Molecular markers such as mutational spectra or mRNA expression patterns may give some indication of the mechanisms of carcinogenesis induced by fibers and other carcinogens. In our study, tumors were induced by application of crocidolite asbestos or benzo[a]pyrene (B[a]P) to rat peritoneum. DNA and RNA of these tumors were subjected to analysis of point mutations and to investigation of mRNA expression patterns. With both assays we found typical features depending on the type of carcinogen applied. The analysis of point mutations in the tumor suppressor gene p53 revealed mutations in the B[a]P-induced tumors. However, in the tumors induced by crocidolite asbestos that were of the same tumor type as those induced by B[a]P, mutations in p53 were not detectable. Every mutation detected on the DNA level causes an amino acid substitution within one of the functional domains of the tumor suppressor protein. Therefore, these mutations seem to be of biological relevance for tumor progression and indicate a difference in the carcinogenesis regarding the type of the carcinogenic substance. An additional specificity of crocidolite-induced tumors was detectable by analyzing the mRNA expression of the tumor suppressor gene WT1, which is known to be expressed in human mesothelial and mesothelioma cells. A relatively high amount of WT1 mRNA was measured by quantitative competitive reverse transcription-polymerase using RNA extracted from crocidolite-induced tumors. However, WT1 seems to be expressed on a rather low level in tumors induced by B[a]P.
Collapse
MESH Headings
- Abdominal Neoplasms/chemically induced
- Abdominal Neoplasms/pathology
- Animals
- Asbestos, Crocidolite/chemistry
- Asbestos, Crocidolite/toxicity
- Benzo(a)pyrene/chemistry
- Benzo(a)pyrene/toxicity
- Carcinogens/administration & dosage
- Carcinogens/chemistry
- Carcinogens/toxicity
- Electrophoresis, Polyacrylamide Gel
- Genes, p53/drug effects
- Genes, p53/genetics
- Genetic Markers
- Injections, Intraperitoneal
- Mesothelioma/chemically induced
- Mesothelioma/pathology
- Mineral Fibers/analysis
- Mineral Fibers/toxicity
- Peritoneal Neoplasms/chemically induced
- Peritoneal Neoplasms/pathology
- Point Mutation/genetics
- Polymerase Chain Reaction
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/isolation & purification
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- K Unfried
- Department of Toxicology, Medical Institute of Environmental Hygiene, Heinrich Heine University Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
150
|
Kanwar YS, Carone FA, Kumar A, Wada J, Ota K, Wallner EI. Role of extracellular matrix, growth factors and proto-oncogenes in metanephric development. Kidney Int 1997; 52:589-606. [PMID: 9291177 DOI: 10.1038/ki.1997.372] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Y S Kanwar
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|