101
|
Kondo C, Onuki R, Kusuhara H, Suzuki H, Suzuki M, Okudaira N, Kojima M, Ishiwata K, Jonker JW, Sugiyama Y. Lack of Improvement of Oral Absorption of ME3277 by Prodrug Formation Is Ascribed to the Intestinal Efflux Mediated by Breast Cancer Resistant Protein (BCRP/ABCG2). Pharm Res 2005; 22:613-8. [PMID: 15846469 DOI: 10.1007/s11095-005-2487-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE ME3229, an ester-type prodrug of a hydrophilic glycoprotein IIb/IIIa antagonist (ME3277), failed to show improved oral absorption. Okudaira et al. (J. Pharmacol. Exp. Ther. 294. 580-587, 2000) provided a piece of evidence that this is ascribed to an efflux system, distinct from P-gp and MRP2, that extrudes ME3277 formed from ME3229 in the intestinal epithelial cells. The aim of the present study is to examine the involvement of breast cancer resistant protein (BCRP/ABCG2) as a cause of low oral absorption of ME3229. METHODS The transport activity of ME3277 in the presence and absence of ATP was determined using a rapid filtration method with the membrane vesicles prepared from LLC-PK1 cells expressing BCRP. The plasma concentrations of ME3229 and its metabolites were compared between Bcrp1(-/-) mice and wild-type mice after a single-pass perfusion of small intestine with ME3229. RESULTS The ATP-dependent uptake of ME3277 was greater in BCRP-expressing membrane vesicles than that in the control vesicles. Furthermore, it was found that after intestinal perfusion with ME3229 for 60 min, the plasma concentrations of ME3277 and PM-5, a metabolite of ME3229, increased 2-fold and 3-fold, respectively, in Bcrp1 knockout mice. It is possible that BCRP acts synergistically with intestinal carboxylesterases. CONCLUSION These results suggest that Bcrp1 plays an important role in the intestinal efflux of ME3277 and, probably, PM-10 and PM-11, metabolites of ME3229, and limits its BA after oral administration of ME3229.
Collapse
Affiliation(s)
- Chihiro Kondo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Kondo C, Suzuki H, Itoda M, Ozawa S, Sawada JI, Kobayashi D, Ieiri I, Mine K, Ohtsubo K, Sugiyama Y. Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 2005; 21:1895-903. [PMID: 15553238 DOI: 10.1023/b:pham.0000045245.21637.d4] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The aim of the current study was to identify the effect of single nucleotide polymorphisms (SNPs) in breast cancer resistance protein (BCRP/ABCG2) on its localization, expression level, and transport activity. METHODS The cellular localization was identified using the wild type and seven different SNP variants of BCRP (V12M, Q141K, A149P, R163K, Q166E, P269S, and S441N BCRP) after transfection of their cDNAs in plasmid vector to LLC-PK1 cells. Their expression levels and transport activities were determined using the membrane vesicles from HEK293 cells infected with the recombinant adenoviruses containing these kinds of BCRP cDNAs. RESULTS Wild type and six different SNP variants of BCRP other than S441N BCRP were expressed on the apical membrane, whereas S441N BCRP showed intracellular localization. The expression levels of Q141K and S441N BCRP proteins were significantly lower compared with the wild type and the other five variants. Furthermore, the transport activity of E1S, DHEAS, MTX, and PAH normalized by the expression level of BCRP protein was almost the same for the wild type, V12M, Q141K, A149P, R163K, Q166E, and P269S BCRP. CONCLUSIONS These results suggest that Q141K SNPs may associate with a lower expression level, and S441N SNPs may affect both the expression level and cellular localization. It is possible that subjects with these polymorphisms may have lower expression level of BCRP protein and, consequently, a reduced ability to export these substrates.
Collapse
Affiliation(s)
- Chihiro Kondo
- School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Guillén J, Pérez-Berná AJ, Moreno MR, Villalaín J. Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer peptide scan: implications for the viral fusion mechanism. J Virol 2005; 79:1743-52. [PMID: 15650199 PMCID: PMC544113 DOI: 10.1128/jvi.79.3.1743-1752.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 09/16/2004] [Indexed: 02/07/2023] Open
Abstract
We have identified the membrane-active regions of the severe acute respiratory syndrome coronavirus (SARS CoV) spike glycoprotein by determining the effect on model membrane integrity of a 16/18-mer SARS CoV spike glycoprotein peptide library. By monitoring the effect of this peptide library on membrane leakage in model membranes, we have identified three regions on the SARS CoV spike glycoprotein with membrane-interacting capabilities: region 1, located immediately upstream of heptad repeat 1 (HR1) and suggested to be the fusion peptide; region 2, located between HR1 and HR2, which would be analogous to the loop domain of human immunodeficiency virus type 1; and region 3, which would correspond to the pretransmembrane region. The identification of these membrane-active regions, which are capable of modifying the biophysical properties of phospholipid membranes, supports their direct role in SARS CoV-mediated membrane fusion, as well as facilitating the future development of SARS CoV entry inhibitors.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | | | |
Collapse
|
104
|
Ueda T, Brenner S, Malech HL, Langemeijer SM, Perl S, Kirby M, Phang OA, Krouse AE, Donahue RE, Kang EM, Tisdale JF. Cloning and Functional Analysis of the Rhesus Macaque ABCG2 Gene. J Biol Chem 2005; 280:991-8. [PMID: 15516692 DOI: 10.1074/jbc.m409796200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic cells can be highly enriched for repopulating ability based upon the efflux of the fluorescent Hoechst 33342 dye by sorting for SP (side population) cells, a phenotype attributed to expression of ABCG2, a member of the ABC transporter superfamily. Intriguingly, murine studies suggest that forced ABCG2 expression prevents hematopoietic differentiation. We cloned the full-length rhesus ABCG2 and introduced it into a retroviral vector. ABCG2-transduced human peripheral blood progenitor cells (PBPCs) acquired the SP phenotype but showed significantly reduced growth compared with control. Two rhesus macaques received autologous PBPCs split for transduction with the ABCG2 or control vectors. Marking levels were similar between fractions with no discrepancy between bone marrow and peripheral blood marking. Analysis for the SP phenotype among bone marrow and mature blood populations confirmed ABCG2 expression at levels predicted by vector copy number long term, demonstrating no block to differentiation in the large animal. In vitro studies showed selective protection against mitoxantrone among ABCG2-transduced rhesus PBPCs. Our results confirm the existence of rhesus ABCG2, establish its importance in conferring the SP phenotype, suggest no detrimental effect of its overexpression upon differentiation in vivo, and imply a potential role for its overexpression as an in vivo selection strategy for gene therapy applications.
Collapse
Affiliation(s)
- Takahiro Ueda
- Molecular and Clinical Hematology Branch, NIDDK, National Instiutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Souslova T, Averill-Bates DA. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide. Int J Radiat Oncol Biol Phys 2004; 60:1538-51. [PMID: 15590186 DOI: 10.1016/j.ijrobp.2004.07.686] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 07/19/2004] [Indexed: 01/23/2023]
Abstract
PURPOSE Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. METHODS AND MATERIALS Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. RESULTS The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 degrees C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. CONCLUSIONS Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1.
Collapse
Affiliation(s)
- Tatiana Souslova
- Département de Chimie et de Biochimie, Université du Québec à Montréal, Succursale Centre Ville, Montréal, Québec, Canada
| | | |
Collapse
|
106
|
Salerno M, Loechariyakul P, Saengkhae C, Garnier-Suillerot A. Relation between the ability of some compounds to modulate the MRP1-mediated efflux of glutathione and to inhibit the MRPl-mediated efflux of daunorubicin. Biochem Pharmacol 2004; 68:2159-65. [PMID: 15498506 DOI: 10.1016/j.bcp.2004.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 08/02/2004] [Indexed: 11/18/2022]
Abstract
Much effort has been recently directed to identify the transport-modulating agents in order to overcome the P-gp- and MRP1-mediated drug resistance. Contrary to what is observed for P-gp, very few compounds have been shown to reverse multi-drug resistance (MDR) mediated by MRP1. On the other hand, despite of critical role of GSH in transporting the MRP1 substrates, not much is known about GSH interactions with MRP1. In this work, three compounds that were shown to inhibit the MRP1-mediated efflux of daunorubicin (DNR) have been studied. Depending on their nature the selected compounds have different effects, e.g. at 40 microM, verapamil inhibits 50% of DNR efflux whereas GSH efflux is increased about two-fold. PAK-104P has shown the same effect, i.e. the inhibition of the MRP1-mediated efflux of DNR is accompanied by a stimulation of GSH efflux. However, the PAK-104P concentration required to obtain the same effect is about 40 times smaller that in the case of verapamil. MK571 has been shown to inhibit the efflux of both DNR and GSH. Based on these observations and those reported earlier, a working model is proposed.
Collapse
Affiliation(s)
- M Salerno
- Lab. Physicochimie Biomoléculaire et Cellulaire (UMR 7033), Univeristé Paris 13, 74 rue Marcel Cachin, Bobigny 93017, France
| | | | | | | |
Collapse
|
107
|
Ninomiya M, Ito K, Horie T. FUNCTIONAL ANALYSIS OF DOG MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN 2 (MRP2) IN COMPARISON WITH RAT MRP2. Drug Metab Dispos 2004; 33:225-32. [PMID: 15507541 DOI: 10.1124/dmd.104.002196] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether the species difference in the biliary excretion activity of some Mrp2 substrates was attributable to the intrinsic transport potential or the expression level of Mrp2, especially in rat and dog. Dog Mrp2 cDNA was isolated from beagle dog liver, and a vesicle transport study was performed using recombinant rat and dog Mrp2 expressed in insect Sf9 cells. The ATP-dependent transport of 17beta-estradiol 17-(beta-D-glucuronide) ([3H]E(2)17betaG) and leukotriene C4 ([3H]LTC4), normalized by the absolute protein expression level, was similar in both Mrp2s. The Mrp2 protein expression in dog liver was only 10% of that in rat liver and was comparable with the reported difference in the biliary excretion clearance of temocaprilat as Mrp2 substrate. In contrast to LTC4, unique transport kinetics for E(2)17betaG were evident in dog Mrp2. In addition to the high-affinity site with a K(m) value of 3.25 +/- 0.10 microM, which is similar to that in rat Mrp2 (4.81 +/- 1.21 microM), dog Mrp2 has an additional low-affinity site (>>75 microM), which makes a major contribution to the transport of E(2)17betaG (65% of the total transport capacity at tracer concentration). In summary, the difference in the biliary excretion activity of Mrp2 substrates between rat and dog depends on the Mrp2 protein expression level rather than the intrinsic transport activity of the transporter molecules. The unique transport properties of glucuronide conjugates by dog Mrp2 may lead to the species difference involving the drug-drug interaction or drug-induced hyperbilirubinemia on the bile canalicular membrane.
Collapse
Affiliation(s)
- Mizuki Ninomiya
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-Ku, Chiba, 260-8675, Japan
| | | | | |
Collapse
|
108
|
Akan I, Akan S, Akca H, Savas B, Ozben T. N-acetylcysteine enhances multidrug resistance-associated protein 1 mediated doxorubicin resistance. Eur J Clin Invest 2004; 34:683-9. [PMID: 15473893 DOI: 10.1111/j.1365-2362.2004.01411.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Resistance of cancer cells against anticancer agents is caused partly by multidrug resistance-associated protein 1 (MRP1). The exact mechanism of MRP1-involved multidrug resistance has not yet been clarified, although glutathione (GSH) is likely to have a role for the resistance to occur. N-acetylcysteine (NAC) is a pro-glutathione drug. DL-buthionine (S,R)-sulfoximine (BSO) inhibits GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated doxorubicin resistance in human embryonic kidney (HEK293) and its MRP1-transfected 293MRP cells. MATERIALS AND METHODS Human embryonic kidney cells were transfected with a plasmid encoding the whole MRP1 gene. Both cells were incubated with doxorubicin in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. Glutathione, glutathione S-transferase (GST) and glutathione peroxidase (GPx) levels were measured in the cell extracts obtained from both cells incubated with different drugs. RESULTS N-acetylcysteine increased the resistance of both cells against doxorubicin. DL-buthionine (S,R)-sulfoximine decreased NAC-enhanced MRP1-mediated doxorubicin resistance, indicating that induction of MRP1-mediated doxorubicin resistance depends on GSH synthesis. Doxorubicin decreased the cellular GSH concentration and increased GPx activity. Glutathione S-transferase activity was decreased by NAC. CONCLUSION Our results demonstrate that NAC enhances MRP1-mediated doxorubicin resistance and this effect depends on GSH synthesis. DL-buthionine (S,R)-sulfoximine seems a promising chemotherapy improving agent in MRP1 overexpressing tumour cells.
Collapse
Affiliation(s)
- I Akan
- Akdeniz University, Antalya, Turkey
| | | | | | | | | |
Collapse
|
109
|
Annereau JP, Szakács G, Tucker CJ, Arciello A, Cardarelli C, Collins J, Grissom S, Zeeberg BR, Reinhold W, Weinstein JN, Pommier Y, Paules RS, Gottesman MM. Analysis of ATP-Binding Cassette Transporter Expression in Drug-Selected Cell Lines by a Microarray Dedicated to Multidrug Resistance. Mol Pharmacol 2004; 66:1397-405. [PMID: 15342794 DOI: 10.1124/mol.104.005009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Discovery of the multidrug resistance protein 1 (MDR1), an ATP-binding cassette (ABC) transporter able to transport many anticancer drugs, was a clinically relevant breakthrough in multidrug resistance research. Although the overexpression of ABC transporters such as P-glycoprotein/ABCB1, MRP1/ABCC1, and MXR/ABCG2 seems to be a major cause of failure in the treatment of cancer, acquired resistance to multiple anticancer drugs may also be multifactorial, involving alteration of detoxification processes, apoptosis, DNA repair, drug uptake, and overexpression of other ABC transporters. As a tool for the study of such phenomena, we designed and created a microarray platform, the ABC-ToxChip, to evaluate relative levels of transcriptional activation among genes involved in the various mechanisms of resistance. In the ABC-ToxChip, a comprehensive set of genes important in toxicological responses (represented by 2200 cDNA probes) is complemented with probes specifically matching ABC transporters as well as oligonucleotides representing 18,000 unique human genes. By comparing the transcriptional profiles of KB-3-1 and DU-145 parental cells with resistant derivatives selected in colchicine (KB-8-5), and 9-nitro-camptothecin (RCO.1), respectively, we demonstrate that ABC transporters (ABCB1/MDR1 and ABCC2/MRP2, respectively) show dramatic overexpression, whereas the glutathione S-transferase gene GST-Pi shows the strongest decrease in expression among the 20,000 genes studied. The results were confirmed by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. The custom-designed ABC-Tox microarray presented here will be helpful to elucidate mechanisms leading to anticancer drug resistance.
Collapse
Affiliation(s)
- Jean-Philippe Annereau
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Bai J, Lai L, Yeo HC, Goh BC, Tan TMC. Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bimane-glutathione. Int J Biochem Cell Biol 2004; 36:247-57. [PMID: 14643890 DOI: 10.1016/s1357-2725(03)00236-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multidrug resistance proteins (MRPs) are ATP-dependent export pumps that mediate the export of organic anions. ABCC1 (MRP1), ABCC2 (MRP2) and ABCC3 (MRP3) are all able to facilitate the efflux of anionic conjugates including glutathione (GSH), glucuronide and sulfate conjugates of xenobiotics and endogenous molecules. Earlier studies showed that ABCC4 functions as an ATP-driven export pump for cyclic AMP and cyclic GMP, as well as estradiol-17-beta-D-glucuronide. However, it was unclear if other conjugated metabolites can be transported by ABCC4. Hence in this study, a fluorescent substrate, bimane-glutathione (bimane-GS) was used to further examine the transport activity of ABCC4. Using cells stably overexpressing ABCC4, this study shows that ABCC4 can facilitate the efflux of the glutathione conjugate, bimane-glutathione. Bimane-glutathione efflux increased with time and >85% of the conjugate was exported after 15min. This transport was abolished in the presence of 2.5microM carbonylcyanide m-chlorophenylhydrasone (CCCP), an uncoupler of oxidative phosphorylation. Inhibition was also observed with known inhibitors of MRP transporters including benzbromarone, verapamil and indomethacin. In addition, 100microM methotrexate, an ABCC4 substrate or 100microM 6-thioguanine (6-TG), a compound whose monophosphate metabolite is an ABCC4 substrate, reduced efflux by >40%. A concentration-dependent inhibition of bimane-glutathione efflux was observed with 1-chloro-2,4-dinitrobenzene (CDNB) which is metabolized intracellularly to the glutathione conjugate, 2,4-dinitrophenyl-glutathione (DNP-GS). The determination that ABCC4 can mediate the transport of glucuronide and glutathione conjugates indicates that ABCC4 may play a role in the cellular extrusion of Phase II detoxification metabolites.
Collapse
Affiliation(s)
- Jing Bai
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, MD7, 8 Medical Drive, S117597, Singapore, Singapore
| | | | | | | | | |
Collapse
|
111
|
Özben T, Akan I. Rapid Production of Chicken Egg Yolk Antibodies Against Multidrug Resistance-Associated Protein 1 (MRP-1). Crit Rev Anal Chem 2004. [DOI: 10.1080/10408340490902178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
112
|
Sorensen JS, Turnbull CA, Dearing MD. A specialist herbivore (Neotoma stephensi) absorbs fewer plant toxins than does a generalist (Neotoma albigula). Physiol Biochem Zool 2004; 77:139-48. [PMID: 15057724 DOI: 10.1086/378923] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2003] [Indexed: 11/03/2022]
Abstract
Detoxification capacity of enzymes in the liver is thought to be the primary factor governing dietary toxin intake by mammalian herbivores. Recently, toxin absorption in the gut was proposed as an alternative process that also influences toxin intake. We examined the role of the gut in regulating toxin absorption by quantifying excretion of a plant secondary compound in the feces. We hypothesized that specialists have a greater capacity to reduce intestinal absorption of toxins than do generalists. To test this hypothesis, we compared fecal excretion of alpha-pinene in specialist (Neotoma stephensi) and generalist (Neotoma albigula) woodrats. Alpha-pinene is the most abundant monoterpene in Juniperus monosperma, which occurs in the natural diet of both woodrat species. Woodrats were fed alpha-pinene in diets containing juniper foliage for 3 wk and, in a separate experiment, were given a single oral dose of alpha-pinene. Feces were collected from animals at the end of each experiment and analyzed for alpha-pinene concentration using gas chromatography. Both woodrat species excreted unchanged alpha-pinene in the feces. However, specialist woodrats excreted 40% more alpha-pinene per unit ingested from a juniper diet and excreted nearly four times a greater percentage of an oral dose of alpha-pinene compared with generalists.
Collapse
Affiliation(s)
- J S Sorensen
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
113
|
Bachmeier CJ, Trickler WJ, Miller DW. Drug Efflux Transport Properties of 2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein Acetoxymethyl Ester (BCECF-AM) and Its Fluorescent Free Acid, BCECF. J Pharm Sci 2004; 93:932-42. [PMID: 14999730 DOI: 10.1002/jps.20018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2',7'-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) is a fluorescent probe used to examine multidrug resistance-associated protein (MRP) transporter activity in cells. BCECF is introduced into the cell as the nonfluorescent membrane permeable acetoxymethyl ester, BCECF-AM, where it is hydrolyzed to the membrane impermeable BCECF. The lipophilic nature of BCECF-AM suggests it may be a substrate for other drug efflux transporters such as P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP). To assess the drug efflux transporter interactions of BCECF-AM and BCECF, accumulation studies were examined in various drug efflux-expressing cells. Inhibition of P-gp, BCRP, and/or MRP produced distinct changes in the time-dependent accumulation of BCECF in the cells. Treatment with GF120918 produced an immediate and sustained effect throughout the entire time course examined. Fumitremorgin C only affected BCECF accumulation at the early time points, whereas the impact of indomethacin on BCECF accumulation was observed only at the latter time points. Permeability studies in bovine brain microvessel endothelial cells indicated an increased basolateral-to-apical transport of BCECF, which could be reduced in the presence of either indomethacin or GF120918. These results indicate that the intracellular accumulation and transcellular permeability of BCECF are sensitive to a variety of drug efflux interactions. These results likely reflect an interaction of the ester form with P-gp and BCRP during the initial accumulation process, and an interaction of the free acid form with MRP after hydrolysis in the cell.
Collapse
Affiliation(s)
- Corbin J Bachmeier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | |
Collapse
|
114
|
Huang Z, Chang X, Riordan JR, Huang Y. Fluorescent modified phosphatidylcholine floppase activity of reconstituted multidrug resistance-associated protein MRP1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:155-63. [PMID: 14757231 DOI: 10.1016/j.bbamem.2003.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Multidrug resistance-associated protein (MRP1) may function as a floppase in human red blood cells to translocate phosphatidylserine and/or phosphatidylcholine from inner membrane leaflet to outer leaflet. Here we report that the purified and reconstituted MRP1 protein into asolectin proteoliposomes is mainly in an inside-out configuration and possesses the ability to flop a fluorescent labeled phosphatidylcholine (NBD-PC) from outer leaflet (protoplasmic) to inner leaflet (extracytoplasmic). The reconstituted MRP1 protein retains endogenous ATPase activity. ATP hydrolysis is required for the flopping since removal of ATP and/or Mg2+ inhibits the translocation of NBD-PC. Further evidence to support this conclusion is that the translocation of NBD-PC is inhibited by vanadate, which traps ATP hydrolysis product ADP in the nucleotide binding domains. In addition, the translocation of NBD-PC by proteoliposomes containing MRP1 protein is in a glutathione-dependent manner, similar to the process of translocating anticancer drugs such as daunorubicin. verapamil, vincristine, vinblastine, doxorubicin and oxidized glutathione partially inhibited the translocation of NBD-PC, whereas MK 571, an inhibitor of MRP1 protein, inhibited the translocation almost completely. Taken together, the purified and reconstituted MRP1 protein possesses the ability to flop NBD-PC from outer to inner leaflet of the proteoliposomes.
Collapse
Affiliation(s)
- Zhenhua Huang
- National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
115
|
Koike K, Conseil G, Leslie EM, Deeley RG, Cole SPC. Identification of proline residues in the core cytoplasmic and transmembrane regions of multidrug resistance protein 1 (MRP1/ABCC1) important for transport function, substrate specificity, and nucleotide interactions. J Biol Chem 2004; 279:12325-36. [PMID: 14722114 DOI: 10.1074/jbc.m311435200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette transporter that confers resistance to drugs and mediates the transport of organic anions. MRP1 has a core structure of two membrane spanning domains (MSDs) each followed by a nucleotide binding domain. This core structure is preceded by a third MSD with five transmembrane (TM) helices, whereas MSD2 and MSD3 each contain six TM helices. We investigated the consequences of Ala substitution of 18 Pro residues in both the non-membrane and TM regions of MSD2 and MSD3 on MRP1 expression and organic anion transport function. All MRP1-Pro mutants except P1113A were expressed in human embryonic kidney cells at levels comparable with wild-type MRP1. In addition, five mutants containing substitutions of Pro residues in or proximal to the TM helices of MSD2 (TM6-Pro(343), TM8-Pro(448), TM10-Pro(557), and TM11-Pro(595)) and MSD3 (TM14-Pro(1088)) exhibited significantly reduced transport of five organic anion substrates. In contrast, mutation of Pro(1150) in the cytoplasmic loop (CL7) linking TM15 to TM16 caused a substantial increase in 17beta-estradiol-17-beta-(D-glucuronide) and methotrexate transport, whereas transport of other organic anions was reduced or unchanged. Significant substrate-specific changes in the ATP dependence of transport and binding by the P1150A mutant were also observed. Our findings demonstrate the importance of TM6, TM8, TM10, TM11, and TM14 in MRP1 transport function and suggest that CL7 may play a differential role in coupling the activity of the nucleotide binding domains to the translocation of different substrates across the membrane.
Collapse
Affiliation(s)
- Koji Koike
- Cancer Research Laboratories, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
116
|
Shoda J, Miura T, Utsunomiya H, Oda K, Yamamoto M, Kano M, Ikegami T, Tanaka N, Akita H, Ito K, Suzuki H, Sugiyama Y. Genipin enhances Mrp2 (Abcc2)-mediated bile formation and organic anion transport in rat liver. Hepatology 2004; 39:167-78. [PMID: 14752835 DOI: 10.1002/hep.20003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inchin-ko-to (ICKT), an herbal medicine, and its ingredients exert potent choleretic effects by a "bile acid-independent" mechanism. The current study was designed to determine whether ICKT or its ingredients potentiate multidrug resistance-associated protein 2 (Mrp2; Abcc2)-mediated choleresis in vivo. Biliary secretion of Mrp2 substrates and the protein mass, subcellular localization, and messenger RNA (mRNA) level of Mrp2 were assessed in rat liver after infusion of genipin, an intestinal bacterial metabolite of geniposide, a major ingredient of ICKT. The function of Mrp2 was also assessed by the adenosine triphosphate (ATP)-dependent uptake of Mrp2-specific substrates using canalicular membrane vesicles (CMVs) from the liver. Infusion of genipin increased bile flow by 230%. It also increased biliary secretion of bilirubin conjugates and reduced glutathione (GSH) by 513% and 336%, respectively, but did not increase bile acid secretion. The ATP-dependent uptake of estradiol 17-beta-D-glucuronide (E(2)17 beta G; by 265%), leukotriene C4 (LTC(4); by 161%), taurolithocholate-3-sulfate (TLC-3S; by 266%), and methotrexate (MTX; by 234%) was significantly stimulated in the CMVs from the liver. These effects were not observed in Mrp2-deficient rats. Under these conditions, genipin treatment increased the protein mass of Mrp2 in the CMVs but not the mRNA level. In immunoelectron microscopic studies, a marked increase in Mrp2 density in the canalicular membrane (CM) and microvilli was observed in the genipin-treated liver tissue sections when compared with the vehicle-treated liver tissue sections. In conclusion, genipin may enhance the bile acid-independent secretory capacity of hepatocytes, mainly by stimulation of exocytosis and insertion of Mrp2 in the bile canaliculi. ICKT may be a potent therapeutic agent for a number of cholestatic liver diseases.
Collapse
Affiliation(s)
- Junichi Shoda
- Department of Gastroenterology, Institute of Clinical Medicine, The University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Yang HH, Ma MH, Vescio RA, Berenson JR. Overcoming drug resistance in multiple myeloma: the emergence of therapeutic approaches to induce apoptosis. J Clin Oncol 2003; 21:4239-47. [PMID: 14615454 DOI: 10.1200/jco.2003.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug resistance remains a major clinical challenge for cancer treatment. Early studies suggested that overexpression of P-glycoprotein was a major contributor to the chemotherapy resistance of myeloma cells and other tumor cells. Attempts in several clinical studies to reverse multidrug resistance protein (MDR) by using MDR modulators have not yet generated promising results. Recently, the emerging knowledge about the importance of overcoming antiapoptosis and drug resistance in treating a variety of malignancies, including multiple myeloma (MM), raises new hope of improving the treatment outcome for patients with cancer. The therapeutic value of targeting therapies that aim to reverse the antiapoptotic process in MM cells has been explored in a number of experimental systems, and the results have been promising. The proteasome inhibitor PS-341 is a new specifically targeted proapoptotic therapy that has been tested in clinical studies. The results indicate that PS-341 alone is an effective therapy for patients with MM who experience disease relapse. Recent in vitro data also demonstrate that PS-341 can markedly sensitize chemotherapy-resistant MM cells to various chemotherapeutic agents. On the basis of these encouraging results, clinical studies are underway to test the efficacy of PS-341 and chemotherapeutic agents as combination therapy in treating patients with refractory and relapsed MM.
Collapse
Affiliation(s)
- Hank H Yang
- Institute for Myeloma and Bone Cancer Research, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
118
|
Abstract
Drug resistance, intrinsic or acquired, is a problem for all chemotherapeutic agents. In this review, we examine numerous strategies that have been tested or proposed to reverse drug resistance. Included among these strategies are approaches targeting the apoptosis pathway. Although the process of apoptosis is complex, it provides several potential sites for therapeutic intervention. A variety of targets and approaches are being pursued, including the suppression of proteins inhibiting apoptosis using antisense oligonucleotides (ASOs), and small molecules targeted at proteins that modulate apoptosis. An alternate strategy is based on numerous studies that have documented methylation of critical regions in the genome in human cancers. Consequently, efforts have been directed at re-expressing genes, including genes that affect drug sensitivity, using 5-azacytidine and 2'-deoxy-5-azacytidine (DAC, decitabine) as demethylating agents. While this strategy may be effective as a single modality, success will most likely be achieved if it is used to modulate gene expression in combination with other modalities such as chemotherapy. At a more basic level, attempts have been made to modulate glutathione (GSH) levels. Owing to its reactivity and high intracellular concentrations, GSH has been implicated in resistance to several chemotherapeutic agents. Several approaches designed to deplete intracellular GSH levels have been pursued including the use of buthionine-(S,R)-sulfoxime (BSO), a potent and specific inhibitor of gamma-glutamyl cysteine synthetase (gamma-GCS), the rate-limiting step in the synthesis of GSH, a hammerhead ribozyme against gamma-GCS mRNA to downregulate specifically its levels and targeting cJun expression to reduce GSH levels. Alternate strategies have targeted p53. The frequent occurrence of p53 mutations in human cancer has led to the development of numerous approaches to restore wild-type (wt) p53. The goals of these interventions are to either revert the malignant phenotype or enhance drug sensitivity. The approach most extensively investigated has utilized one of several viral vectors. An alternate approach, the use of small molecules to restore wt function to mutant p53, remains an option. Finally, the conceptually simplest mechanism of resistance is one that reduces intracellular drug accumulation. Such reduction can be effected by a variety of drug efflux pumps, of which the most widely studied is P-glycoprotein (Pgp). The first strategy utilized to inhibit Pgp function relied on the identification of non-chemotherapeutic agents as competitors. Other approaches have included the use of hammerhead ribozymes against the MDR-1 gene and MDR-1-targeted ASOs. Although modulation of drug resistance has not yet been proven to be an effective clinical tool, we have learned an enormous amount about drug resistance. Should we succeed, these pioneering basic and clinical studies will have paved the road for future developments.
Collapse
Affiliation(s)
- Tito Fojo
- Center for Cancer Research, National Cancer Institute, Building 10, Room 12-C-103, 9000 Rockville Pike, Bethesda, MA 20892, USA.
| | | |
Collapse
|
119
|
Abstract
Resistance to chemically different natural product anti-cancer drugs (multidrug resistance, or MDR) results from decreased drug accumulation, resulting from expression of one or more ATP-dependent efflux pumps. The first of these to be identified was P-glycoprotein (P-gp), the product of the human MDR1 gene, localized to chromosome 7q21. P-gp is a member of the large ATP-binding cassette (ABC) family of proteins. Although its crystallographic 3-D structure is yet to be determined, sequence analysis and comparison to other ABC family members suggest a structure consisting of two transmembrane (TM) domains, each with six TM segments, and two nucleotide-binding domains. In the epithelial cells of the gastrointestinal tract, liver, and kidney, and capillaries of the brain, testes, and ovaries, P-gp acts as a barrier to the uptake of xenobiotics, and promotes their excretion in the bile and urine. Polymorphisms in the MDR1 gene may affect the pharmacokinetics of many commonly used drugs, including anticancer drugs. Substrate recognition of many different drugs occurs within the TM domains in multiple-overlapping binding sites. We have proposed a model for how ATP energizes transfer of substrates from these binding sites on P-gp to the outside of the cell, which accounts for the apparent stoichiometry of two ATPs hydrolysed per molecule of drug transported. Understanding of the biology, genetics, and biochemistry of P-gp promises to improve the treatment of cancer and explain the pharmacokinetics of many commonly used drugs.
Collapse
Affiliation(s)
- Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute/NIH, 37 Convent Drive, Building 37, Room 1A-09, Bethesda, MD 20892-4254, USA.
| | | | | | | |
Collapse
|
120
|
Zhang DW, Gu HM, Situ D, Haimeur A, Cole SPC, Deeley RG. Functional importance of polar and charged amino acid residues in transmembrane helix 14 of multidrug resistance protein 1 (MRP1/ABCC1): identification of an aspartate residue critical for conversion from a high to low affinity substrate binding state. J Biol Chem 2003; 278:46052-63. [PMID: 12954620 DOI: 10.1074/jbc.m308403200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) confers resistance to many chemotherapeutic agents and transports diverse conjugated organic anions. We previously demonstrated that Glu1089 in transmembrane (TM) 14 is critical for the protein to confer anthracycline resistance. We have now assessed the functional importance of all polar and charged amino acids in this TM helix. Asn1100, Ser1097, and Lys1092, which are all predicted to be on the same face of the helix as to Glu1089, are involved in determining the substrate specificity of the protein. Notably, elimination of the positively charged side chain of Lys1092, increased resistance to the cationic drugs vincristine and doxorubicin, but not the electroneutral drug etoposide (VP-16). In addition, mutations S1097A and N1100A selectively decreased transport of 17beta-estradiol 17-(beta-d-glucuronide) (E217betaG) but not cysteinyl leukotriene 4 (LTC4), demonstrating the importance of multiple residues in this helix in determining substrate specificity. In contrast, mutations of Asp1084 that eliminate the carboxylate side chain markedly decreased resistance to all drugs tested, as well as transport of both E217betaG and LTC4, despite the fact that LTC4 binding was unaffected. We show that these mutations prevent the ATP-dependent transition of the protein from a high to low affinity substrate binding state and drastically diminish ADP trapping at nucleotide binding domain 2. Based on results presented here and crystal structures of prokaryotic ATP binding cassette transporters, Asp1084 may be critical for interaction between the cytoplasmic loop connecting TM13 and TM14 and a region of nucleotide binding domain 2 between the conserved Walker A and ABC signature motifs.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
121
|
Takayanagi SI, Ishikawa T. Molecular identification and characterization of rat Abcc1 cDNA: existence of two splicing variants and species difference in drug-resistance profile. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2003; 3:136-46. [PMID: 14641820 DOI: 10.1046/j.1359-4117.2003.01089.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human ABCC1 gene, a member of the ATP-binding cassette transporter super-family, plays a critical role in conferring cancer cell resistance to chemotherapeutic drugs. In the present study, we have cloned the full-length cDNA of rat Abcc1 and evaluated its significance in drug resistance. Analysis using the currently available genome database revealed that the rat Abcc1 gene is located on rat chromosome 13 and consists of at least 30 exons. The rat Abcc1 cDNA cloned from the spleen was 4981-bp long, within which two additional splicing variants were discovered. The rat Abcc1 gene is expressed in a wide variety of organs, with the highest expression being observed in the spleen. Human embryonic kidney 293 cells were transfected with the rat Abcc1/pcDNA3.1 vector to stably express rat Abcc1. Overexpression of rat Abcc1 elicited high resistance to etoposide. In contrast to the hitherto known drug-resistance profile of human ABCC1, rat Abcc1 did not significantly confer cellular resistance to anthracyclins or Vinca alkaloids. Our results strongly suggest that there is a significant species difference between human ABCC1 and rat Abcc1 in their contribution to the drug-resistance profile.
Collapse
Affiliation(s)
- Shin-Ichiro Takayanagi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
122
|
Yang R, Cui L, Hou YX, Riordan JR, Chang XB. ATP binding to the first nucleotide binding domain of multidrug resistance-associated protein plays a regulatory role at low nucleotide concentration, whereas ATP hydrolysis at the second plays a dominant role in ATP-dependent leukotriene C4 transport. J Biol Chem 2003; 278:30764-71. [PMID: 12783859 DOI: 10.1074/jbc.m304118200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. The two NBDs possess different properties (Gao, M., Cui, H. R., Loe, D. W., Grant, C. E., Almquist, K. C., Cole, S. P., and Deeley, R. G. (2000) J. Biol. Chem. 275, 13098-13108; Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2000) J. Biol. Chem. 275, 20280-20287) and may play different roles during solute transport. We now report that NBD1 has moderately higher affinity for ATP than NBD2. The consequence of this difference is that the overall Kd value for wild-type MRP1 is mainly determined by ATP binding at NBD1. This conclusion is supported by the following: 1) mutation of the cysteine residue at 682 to alanine (C682A) in Walker A motif in NBD1 decreases the Kd value, indicating increased affinity for ATP; 2) mutation of the alanine residue at 1331 to cysteine (A1331C) in the Walker A motif of NBD2 does not have an effect on the Kd value; and 3) photolabeling of the protein with a cysteine residue in the Walker A motif of NBD1 is much more sensitive to N-ethylmaleimide modification than the protein with a cysteine residue in the Walker A motif of NBD2. In contrast, the Km for ATP in support of LTC4 transport is mainly determined by ATP hydrolysis at NBD2. This conclusion is supported by the following: 1) although mutation of A1331C does not have an effect on the Kd value, the Km values measured from LTC4 transport by proteins with this mutation in NBD2 are much higher than the proteins with wild-type NBD2, implying that the A1331C mutation affects ATP binding/hydrolysis at NBD2; and 2) ATP-dependent LTC4 transport by the protein with a cysteine residue in the Walker A motif of NBD2 is much more sensitive to N-ethylmaleimide modification than the protein with a cysteine residue in the Walker A motif of NBD1. Our previous results indicated that ATP binding at NBD1 at low concentration enhanced ATP binding/hydrolysis at NBD2. All of these results support the notion that ATP binding at NBD1 at low concentration plays a more important regulatory role than the binding at high ATP concentration and that ATP hydrolysis at NBD2 plays a dominant role in the ATP-dependent LTC4 transport.
Collapse
Affiliation(s)
- Runying Yang
- Mayo Foundation, S. C. Johnson Medical Research Center, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | | | |
Collapse
|
123
|
Lischka K, Starke D, Failing K, Herling A, Kramer W, Petzinger E. Hepatobiliary elimination of bile acid-modified oligodeoxynucleotides in Wistar and TR- rats: evidence for mrp2 as carrier for oligodeoxynucleotides. Biochem Pharmacol 2003; 66:565-77. [PMID: 12906921 DOI: 10.1016/s0006-2952(03)00339-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As therapeutic antisense tools, oligonucleotides (ODNs) must enter cells to bind to their target structures. ODNs distribute in nearly each tissue with relatively high concentrations in kidney and liver from where excretion into urine and bile occurs. To investigate mechanisms involved in hepatic ODN transport, normal mixed backbone phosphodiester/phosphorothioate ODNs (n-ODN) and two different bile acid-conjugated mixed backbone ODNs (1BA-ODN and 2BA-ODN) were applied to two different rat strains, normal Wistar rats and Wistar TR- rats. In normal Wistar rats, concentration-dependent hepatobiliary elimination of the ODNs was observed with a remarkable increase of excretion of the cholic acid BA-ODN conjugates. In contrast to normal Wistar rats, n-ODN excretion into bile by TR- rats, a mutant Wistar rat strain lacking a functional multidrug resistance-associated protein 2 (mrp2) at the canalicular membrane, was strongly diminished, whereas these rats excreted an ODN conjugated with two cholic acid molecules (2BA-ODN) into bile. Concomitant application of substrates transported by mrp2 such as bromosulfophthalein (BSP) or the synthetic chlorogenic acid derivative S 3025 significantly reduced the biliary appearance of normal ODN and 2BA-ODN in Wistar rats and also in TR- rats. To inhibit the expression of cRNA derived from the Na+ -dependent taurocholate cotransporting polypeptide (Ntcp), antisense ODNs were constructed which fully retained the antisense properties when coupled with two bile acid molecules. The results indicate that ODNs are secreted via the mrp2 into bile. In the absence of mrp2, further excretory transport systems with affinity for bile acids seem to be relevant for their excretion. The results further indicate that bile acid tagged ODNs are useful tools for liver specific antisense therapy.
Collapse
Affiliation(s)
- Kerstin Lischka
- Institute of Pharmacology and Toxicology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
124
|
Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, Wijnholds J, Borst P. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A 2003; 100:9244-9. [PMID: 12835412 PMCID: PMC170903 DOI: 10.1073/pnas.1033060100] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prostaglandins are involved in a wide variety of physiological and pathophysiological processes, but the mechanism of prostaglandin release from cells is not completely understood. Although poorly membrane permeable, prostaglandins are believed to exit cells by passive diffusion. We have investigated the interaction between prostaglandins and members of the ATP-binding cassette (ABC) transporter ABCC [multidrug resistance protein (MRP)] family of membrane export pumps. In inside-out membrane vesicles derived from insect cells or HEK293 cells, MRP4 catalyzed the time- and ATP-dependent uptake of prostaglandin E1 (PGE1) and PGE2. In contrast, MRP1, MRP2, MRP3, and MRP5 did not transport PGE1 or PGE2. The MRP4-mediated transport of PGE1 and PGE2 displayed saturation kinetics, with Km values of 2.1 and 3.4 microM, respectively. Further studies showed that PGF1alpha, PGF2alpha, PGA1, and thromboxane B2 were high-affinity inhibitors (and therefore presumably substrates) of MRP4. Furthermore, several nonsteroidal antiinflammatory drugs were potent inhibitors of MRP4 at concentrations that did not inhibit MRP1. In cells expressing the prostaglandin transporter PGT, the steady-state accumulation of PGE1 and PGE2 was reduced proportional to MRP4 expression. Inhibition of MRP4 by an MRP4-specific RNA interference construct or by indomethacin reversed this accumulation deficit. Together, these data suggest that MRP4 can release prostaglandins from cells, and that, in addition to inhibiting prostaglandin synthesis, some nonsteroidal antiinflammatory drugs might also act by inhibiting this release.
Collapse
Affiliation(s)
- Glen Reid
- Division of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Nunoya K, Grant CE, Zhang D, Cole SPC, Deeley RG. Molecular cloning and pharmacological characterization of rat multidrug resistance protein 1 (mrp1). Drug Metab Dispos 2003; 31:1016-26. [PMID: 12867490 DOI: 10.1124/dmd.31.8.1016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) transports a wide range of structurally diverse conjugated and nonconjugated organic anions and some peptides, including oxidized and reduced glutathione (GSH). The protein confers resistance to certain heavy metal oxyanions and a variety of natural product-type chemotherapeutic agents. Elevated levels of MRP1 have been detected in many human tumors, and the protein is a candidate therapeutic target for drug resistance reversing agents. Previously, we have shown that human MRP1 (hMRP1) and murine MRP1 (mMRP1) differ in their substrate specificity despite a high degree of structural conservation. Since rat models are widely used in the drug discovery and development stage, we have cloned and functionally characterized rat MRP1 (rMRP1). Like mMRP1 and in contrast to hMRP1, rMRP1 confers no, or very low, resistance to anthracyclines and transports the two estrogen conjugates, 17beta-estradiol-17-(beta-d-glucuronide) (E217betaG) and estrone 3-sulfate, relatively poorly. Mutational studies combined with vesicle transport assays identified several amino acids conserved between rat and mouse, but not hMRP1, that make major contributions to these differences in substrate specificity. Despite the fact that the rodent proteins transport E217betaG poorly and the GSH-stimulated transport of estrone 3-sulfate is low compared with hMRP1, site-directed mutagenesis studies indicate that different nonconserved amino acids are involved in the low efficiency with which each of the two estrogen conjugates is transported. Our studies also suggest that although rMRP1 and mMRP1 are 95% identical in primary structure, their substrate specificities may be influenced by amino acids that are not conserved between the two rodent proteins.
Collapse
Affiliation(s)
- Kenichi Nunoya
- Department of Xenobiotic and Disposition, Minase Research Institute, Ono Pharmaceutical Co, Ltd, OSaka, Japan
| | | | | | | | | |
Collapse
|
126
|
Reungpatthanaphong P, Dechsupa S, Meesungnoen J, Loetchutinat C, Mankhetkorn S. Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and -resistant cells. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 57:1-16. [PMID: 12834959 DOI: 10.1016/s0165-022x(03)00032-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to get more insight into the energetic state of multidrug-resistance (MDR) cell compared with its corresponding sensitive cell, a noninvasive fluorescence method for determining and monitoring the mitochondrial membrane potential (DeltaPsi(m)), using rhodamine B and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was established. Rhodamine B distributes across biological membranes in response to the electrical transmembrane potential. P-glycoprotein- and MRP1-protein-mediated efflux do not create a concentration gradient, leading the cell-rhodamine B system to reach a steady state, where the ratio of cytosolic to extracellular rhodamine B was equal to 1. The mitochondrial matrix rhodamine B concentration was precisely determined as a decrease of rhodamine B fluorescence in the presence of formazan, a rhodamine B fluorescence quencher, which locally accumulates in the matrix of mitochondria. The kinetics of decrease in rhodamine B fluorescence (V(i)) can be used to estimate DeltaPsi(m) using the Nernst equation: DeltaPsi(m)=-61.54 log V(i)-258.46. The DeltaPsi(m) values determined were -160+/-4 mV for K562 cell, -146+/-6 mV for K562/adr cell, -161+/-10 mV for GLC4 cell and -168+/-2 mV for GLC4/adr cell. An increase or a decrease in DeltaPsi(m) consequently followed an increase or a decrease in the cellular ATP contents. An increase ATP content in the two MDR cell lines can protect cells from cytotoxicity induced by pirarubicin.
Collapse
Affiliation(s)
- Paiboon Reungpatthanaphong
- Laboratory of Physical Chemistry, Molecular and Cellular Biology, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131, Thailand
| | | | | | | | | |
Collapse
|
127
|
Beck K, Hayashi K, Nishiguchi B, Le Saux O, Hayashi M, Boyd CD. The distribution of Abcc6 in normal mouse tissues suggests multiple functions for this ABC transporter. J Histochem Cytochem 2003; 51:887-902. [PMID: 12810839 DOI: 10.1177/002215540305100704] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have studied the tissue distribution of Abcc6, a member of the ABC transmembrane transporter subfamily C, in normal C57BL/6 mice. RNase protection assays revealed that although almost all tissues studied contained detectable levels of the mRNA encoding Abcc6, the highest levels of Abcc6 mRNA were found in the liver. In situ hybridization (ISH) demonstrated abundant Abcc6 mRNA in epithelial cells from a variety of tissues, including hepatic parenchymal cells, bile duct epithelia, kidney proximal tubules, mucosa and gland cells of the stomach, intestine, and colon, squamous epithelium of the tongue, corneal epithelium of the eye, keratinocytes of the skin, and tracheal and bronchial epithelium. Furthermore, we detected Abcc6 mRNA in arterial endothelial cells, smooth muscle cells of the aorta and myocardium, in circulating leukocytes, lymphocytes in the thymus and lymph nodes, and in neurons of the brain, spinal cord, and the specialized neurons of the retina. Immunohistochemical analysis using a polyclonal Abcc6 rabbit antibody confirmed the tissue distribution of Abcc6 suggested by our ISH studies and revealed the cellular localization of Abcc6 in the basolateral plasma membrane in the epithelial cells of proximal convoluted tubules in the kidney. Although the function of Abcc6 is unknown, mutations in the human ABCC6 gene result in a heritable disorder of connective tissue called pseudoxanthoma elasticum (PXE). Our results demonstrating the presence of Abcc6 in epithelial and endothelial cells in a variety of tissues, including those tissues affected in PXE patients, suggest a possible role for Abcc6 in the normal assembly of extracellular matrix components. However, the presence of Abcc6 in neurons and leukocytes, two cell populations not associated with connective tissue, also suggests a more complex multifunctional role for Abcc6.
Collapse
Affiliation(s)
- Konstanze Beck
- Lab of Matrix Pathobiology, The Pacific Biomedical Research Center, University of Hawai'i, 1993 East-West Road, Honolulu, HI 96822, USA
| | | | | | | | | | | |
Collapse
|
128
|
Capella MAM, Capella LS. A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. J Biomed Sci 2003; 10:361-6. [PMID: 12824695 DOI: 10.1007/bf02256427] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 03/24/2003] [Indexed: 11/25/2022] Open
Abstract
The major drawback of cancer chemotherapy is the development of multidrug-resistant (MDR) tumor cells, which are cross-resistant to a broad range of structurally and functionally unrelated agents, making it difficult to treat these tumors. In the last decade, a number of authors have studied the effects of photodynamic therapy (PDT), a combination of visible light with photosensitizing agents, on MDR cells. The results, although still inconclusive, have raised the possibility of treating MDR tumors by PDT. This review examines the growing literature concerning the responses of MDR cells to PDT, while stressing the need for the development of new photosensitizers that possess the necessary characteristics for the photodynamic treatment of this class of tumor.
Collapse
Affiliation(s)
- Márcia Alves Marques Capella
- Instituto de Biofísica Carlos Chagas Filho, Departmento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
129
|
Konno T, Ebihara T, Hisaeda K, Uchiumi T, Nakamura T, Shirakusa T, Kuwano M, Wada M. Identification of domains participating in the substrate specificity and subcellular localization of the multidrug resistance proteins MRP1 and MRP2. J Biol Chem 2003; 278:22908-17. [PMID: 12682044 DOI: 10.1074/jbc.m302868200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 microm). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells. We examined the kinetic properties of each chimeric protein by measuring LTC4 and methotrexate transport in inside-out membrane vesicles, sensitivity to an anticancer agent, etoposide, and subcellular localization by indirect immunofluorescence methods. The following results were determined in these studies: (i) when the NH2-proximal 108 amino acids of MRP2, including transmembrane (TM) helices 1-3, were exchanged with the corresponding region of MRP1, Km(LTC4) values of the chimera decreased approximately 4-fold and Km(methotrexate) values increased approximately 5-fold relative to those of wild-type MRP2 and MRP1, respectively, whereas resistance to etoposide increased approximately 3-fold; (ii) when the NH2-proximal region up to TM9 of MRP2 was exchanged with the corresponding region of MRP1, a further increase in etoposide resistance was observed, and subcellular localization moved from the apical to the lateral membrane; (iii) when two-thirds of MRP2 at the NH2 terminus were exchanged with the corresponding MRP1 region, the chimeric protein transported LTC4 with an efficiency comparable with that achieved by the wild-type MRP1; and (iv) exchange of the COOH-terminal 51 amino acids between MRP1 and MRP2 did not affect the localization of either of the proteins. These results provide a strong framework for further studies aimed at determining the precise domains of MRP1 and MRP2 with affinity for LTC4 and anticancer agents.
Collapse
Affiliation(s)
- Toshikazu Konno
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Gueldry O, Lazard M, Delort F, Dauplais M, Grigoras I, Blanquet S, Plateau P. Ycf1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2486-96. [PMID: 12755704 DOI: 10.1046/j.1432-1033.2003.03620.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, disruption of the YCF1 gene increases the sensitivity of cell growth to mercury. Transformation of the resulting ycf1 null mutant with a plasmid harbouring YCF1 under the control of the GAL promoter largely restores the wild-type resistance to the metal ion. The protective effect of Ycf1p against the toxicity of mercury is especially pronounced when yeast cells are grown in rich medium or in minimal medium supplemented with glutathione. Secretory vesicles from S. cerevisiae cells overproducing Ycf1p are shown to exhibit ATP-dependent transport of bis(glutathionato)mercury. Moreover, using beta-galactosidase as a reporter protein, a relationship between mercury addition and the activity of the YCF1 promoter can be shown. Altogether, these observations indicate a defence mechanism involving an induction of the expression of Ycf1p and transport by this protein of mercury-glutathione adducts into the vacuole. Finally, possible coparticipation in mercury tolerance of other ABC proteins sharing close homology with Ycf1p was investigated. Gene disruption experiments enable us to conclude that neither Bpt1p, Yor1p, Ybt1p nor YHL035p plays a major role in the detoxification of mercury.
Collapse
Affiliation(s)
- Olivier Gueldry
- Laboratoire de Biochimie, Unité Mixte de Recherche CNRS-Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | | | |
Collapse
|
131
|
Shimizu H, Taniguchi H, Hippo Y, Hayashizaki Y, Aburatani H, Ishikawa T. Characterization of the mouse Abcc12 gene and its transcript encoding an ATP-binding cassette transporter, an orthologue of human ABCC12. Gene 2003; 310:17-28. [PMID: 12801629 DOI: 10.1016/s0378-1119(03)00504-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have recently reported on two novel human ABC transporters, ABCC11 and ABCC12, the genes of which are tandemly located on human chromosome 16q12.1 [Biochem. Biophys. Res. Commun. 288 (2001) 933]. The present study addresses the cloning and characterization of Abcc12, a mouse orthologue of human ABCC12. The cloned Abcc12 cDNA was 4511 bp long, comprising a 4101 bp open reading frame. The deduced peptide consists of 1367 amino acids and exhibits high sequence identity (84.5%) with human ABCC12. The mouse Abcc12 gene consists of at least 29 exons and is located on the mouse chromosome 8D3 locus where conserved linkage homologies have hitherto been identified with human chromosome 16q12.1. The mouse Abcc12 gene was expressed at high levels exclusively in the seminiferous tubules in the testis. In addition to the Abcc12 transcript, two splicing variants encoding short peptides (775 and 687 amino acid residues) were detected. In spite of the genes coding for both ABCC11 and ABCC12 being tandemly located on human chromosome 16q12.1, no putative mouse orthologous gene corresponding to the human ABCC11 was detected at the mouse chromosome 8D3 locus.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Female
- Gene Expression
- Gene Expression Regulation, Developmental
- Humans
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Testis/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Hidetada Shimizu
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, 226-8501, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
132
|
Sato T, Odagiri H, Ikenaga SK, Maruyama M, Sasaki M. Chemosensitivity of human pancreatic carcinoma cells is enhanced by IkappaBalpha super-repressor. Cancer Sci 2003; 94:467-72. [PMID: 12824895 PMCID: PMC11160233 DOI: 10.1111/j.1349-7006.2003.tb01466.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Revised: 03/03/2003] [Accepted: 03/05/2003] [Indexed: 11/29/2022] Open
Abstract
Pancreatic cancer has an unfavorable prognosis; surgery and chemotherapy at present have only limited value. To improve the prognosis of pancreatic cancer, effective non-surgical therapy is necessary. NF-kappaB is reported to be related to resistance to apoptosis, but its role in chemosensitivity remains controversial. We examined the effects on chemosensitivity of inhibition by induction of the super-repressor IkappaBalpha in pancreatic cancer cell lines, BxPC-3, Capan-1 and Panc-1. IkappaBalpha protein was transduced by infection of adenovirus vector AxCAhIkBDeltaN. Sensitivity to VP-16 and doxorubicin was increased significantly by IkappaBalpha induction in all three pancreatic cell lines. To investigate molecular events during IkappaBalpha induction, we examined the changes in expression of drug-resistance-related genes by real-time RT-PCR and those in apoptosis-related genes by cDNA microarray. There was no common change of gene expression before and after IkappaBalpha induction among the three pancreatic cancer cell lines, except for mdm2. Further examination of other genes is necessary for a better understanding of the molecular mechanisms of enhancement of chemosensitivity through IkappaBalpha induction. However, we have confirmed that IkappaBalpha induction leads to an increase of chemosensitivity of pancreatic cancer. Many problems remain before clinical application of this adenoviral system will be feasible, but our results may ultimately lead to an improved therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Toshiyuki Sato
- Department of Surgery, Hirosaki University School of Medicine, Hirosaki, Aomori 036-8216, Japan.
| | | | | | | | | |
Collapse
|
133
|
Zhang K, Wong KP, Chow P. Conjugation of chlorambucil with GSH by GST purified from human colon adenocarcinoma cells and its inhibition by plant polyphenols. Life Sci 2003; 72:2629-40. [PMID: 12672508 DOI: 10.1016/s0024-3205(03)00173-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorambucil (CMB) combines with glutathione (GSH) spontaneously in vitro to form monochloromonoglutathionyl CMB (MG-CMB). This was identified and quantified by an HPLC-UV method. Glutathione S-transferase (GST) purified from human colon adenocarcinoma cells increased the formation of the conjugate significantly. The GST-mediated conjugation, represented by the difference between total and spontaneous conjugation showed Michaelis-Menten kinetics with apparent Km and Vmax values of 0.2 mM and 75.8 nmol/min/mg for CMB and 5.2 mM and 127.0 nmol/min/mg for GSH respectively. Unexpectedly, we found in our study that both the spontaneous and the enzymatic conjugation of chlorambucil with GSH were affected markedly by a change in pH from 6.0 to 8.0. The optimum for the enzymatic conjugation was about 7.0, above which the spontaneous conjugation increased rapidly, while the enzymatic conjugation became lower. The plant polyphenols namely tannic acid, butein, quercetin, morin, 2-hydroxychalcone and 2'-hydroxychalcone at 40 microM inhibited the GST-mediated conjugation of CMB with GSH by 38 to 62%. Their action in this respect may contribute to sensitisation of tumour cells to anticancer drugs.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Experimental Surgery, BLK 9, Level 2, Singapore General Hospital, Outram Road, Singapore 169608, Singapore.
| | | | | |
Collapse
|
134
|
Alqawi O, Georges E. The multidrug resistance protein ABCC1 drug-binding domains show selective sensitivity to mild detergents. Biochem Biophys Res Commun 2003; 303:1135-41. [PMID: 12684054 DOI: 10.1016/s0006-291x(03)00492-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The multidrug resistance protein (ABCC1 or MRP1) causes resistance to multiple drugs through reduced drug accumulation. We have previously demonstrated direct interaction between MRP1 and unmodified drugs using photoreactive drug analogues. In this study, we describe the use of [125I]iodoaryl azido-rhodamine123 (IAARh123)-a photoactive drug analogue of rhodamine 123, to study the effects of mild detergents and denaturing agents on MRP1-drug binding in membrane vesicles prepared from HeLa cells transfected with the MRP1 cDNA. Our results show that the zwitterionic detergent CHAPS and a nonionic detergent Brij35 inhibited the photolabeling of MRP1 with IAARh123. Sodium deoxycholate (SDC) and octyl-beta-glucoside (OG), structurally similar to CHAPS and Brij35 and disrupting the lipid bilayer, showed a modest increase of MRP1 photolabeling with IAARh123. Proteolytic digestion of IAARh123 photolabeled MRP1 labeled in the presence or absence of various detergents (CHAPS, SDC, or OG) revealed identical photolabeled peptides. Consistent with the drug-binding results, non-toxic concentrations of CHAPS and Brij35 reversed vincristine and etoposide (VP16) toxicity in MRP1 expressing cells. Taken together, the results of this study show that MRP1-drug interaction can occur outside the lipid bilayer environment. However, this interaction is inhibited with certain mild detergents.
Collapse
Affiliation(s)
- Omar Alqawi
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste Anne de Bellevue, Que., Canada H9X 3V9
| | | |
Collapse
|
135
|
Lo HW, Ali-Osman F. Cyclic AMP mediated GSTP1 gene activation in tumor cells involves the interaction of activated CREB-1 with the GSTP1 CRE: a novel mechanism of cellular GSTP1 gene regulation. J Cell Biochem 2003; 87:103-16. [PMID: 12210727 DOI: 10.1002/jcb.10275] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human GSTP1 gene is frequently over-expressed in many human cancers and the expression increases with tumor progression and is associated with a more aggressive biology, poor patient survival, and resistance to therapy. The molecular regulation of the human GSTP1 gene during malignancy is, however, still not well understood. Recently, we reported the presence of a cAMP response element (CRE) in the 5'-region of the human GSTP1 gene, raising the possibility that the cAMP signaling pathway, frequently aberrant in human cancers, may play an important role in the transcriptional activation of the GSTP1 gene in human tumors. In this study, we report that the GSTP1 gene is an early cAMP response gene. Treatment of cells of the human lung carcinoma cell line, Calu-6, with 25 microM forskolin to activate the cAMP pathway resulted in a rapid and significant (sevenfold after 30 min) increase in GSTP1 gene transcripts, which peaked at 12-fold after 4 h. The forskolin-activated GSTP1 transcription in Calu-6 cells was suppressed dose-dependently by a 2-h pre-treatment with 0.1, 1.0, and 10 microM of the adenylate cyclase inhibitor, 2', 5'-dideoxyadenosine. Western blot analysis showed a rapid, fivefold increase, in GSTP1 protein levels after treatment with 25 microM forskolin, with a peak at 2 h post-treatment. The levels of phosphorylated CRE (Ser133) binding protein-1 (CREB-1) increased rapidly, sevenfold at 30 min, and reached 10-fold at 4 h following forskolin treatment. Intracellular cAMP levels also increased rapidly reaching 12-fold at 30 min. Gel mobility shift and supershift assays and DNase/footprinting analyses demonstrated that CREB-1 bZIP and CREB-containing nuclear extracts recognized the GSTP1 CRE with high affinity and specificity. Binding of CREB-1 bZIP to the GSTP1 CRE was abolished when the GSTP1 CRE sequence 5'-CGTCA-3', was mutated at the core nucleotides. Finally, transfection studies using luciferase plasmid constructs showed the GSTP1 CRE to be required for the cAMP-activated gene expression. Together, these findings describe a novel cAMP- and CREB-1-mediated mechanism of transcriptional regulation of the GSTP1 gene and suggest that this may be an important mechanism underlying the increased GSTP1 expression observed in tumors with an aberrant cAMP signaling pathway and in normal cells under conditions of stress, associated with increased intracellular cAMP.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Section of Molecular Therapeutics, Department of Neurosurgery, Brain Tumor Center, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
136
|
Saengkhae C, Loetchutinat C, Garnier-Suillerot A. Kinetic analysis of fluorescein and dihydrofluorescein effluxes in tumour cells expressing the multidrug resistance protein, MRP1. Biochem Pharmacol 2003; 65:969-77. [PMID: 12623128 DOI: 10.1016/s0006-2952(02)01662-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) in tumour cells is often caused by the overexpression of two transporters the P-glycoprotein (P-gp) and the multidrug resistance-associated protein (MRP1) which actively pump out multiple chemically unrelated substrates across the plasma membrane. A clear distinction in the mechanism of translocation of substrates by MRP1 or P-gp is indicated by the finding that, in most of cases, the MRP1-mediated transport of substrates is inhibited by depletion of intracellular glutathione (GSH), which has no effect on their P-gp-mediated transport. The aim of the present study was to quantitatively characterise the transport of anionic compounds dihydrofluorescein and fluorescein (FLU). We took advantage of the intrinsic fluorescence of FLU and performed a flow cytometric analysis of dye accumulation in the wild-type drug sensitive GLC4 that do not express MRP1 and its MDR subline which display high level of MRP1. The measurements were made in real time using intact cells. The kinetics parameters, k(a)=V(M)/K(m), which is a measure of the efficiency of the transporter-mediated efflux of a substrate, was very similar for the two FLU analogues. They were highly comparable with values for k(a) of other negatively charged substrates, such as GSH and calcein. The active efflux of both FLU derivatives was inhibited by GSH depletion.
Collapse
Affiliation(s)
- Chantarawan Saengkhae
- Laboratoire de Physicochimie Biomoléculaire et Cellulaire (LPBC-CSSB) UMR CNRS 7033, Université Paris Nord, 74 rue Marcel Cachin, 93017 Bobigny, France
| | | | | |
Collapse
|
137
|
Hou YX, Riordan JR, Chang XB. ATP binding, not hydrolysis, at the first nucleotide-binding domain of multidrug resistance-associated protein MRP1 enhances ADP.Vi trapping at the second domain. J Biol Chem 2003; 278:3599-605. [PMID: 12458196 DOI: 10.1074/jbc.m210480200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP-dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. We found that ATP binding to the first NBD of MRP1 increases binding and trapping of ADP at the second domain (Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2002) J. Biol. Chem. 277, 5110-5119). These results were interpreted as indicating that the binding of ATP at NBD1 causes a conformational change in the molecule and increases the affinity for ATP at NBD2. However, we did not distinguish between the possibilities that the enhancement of ADP trapping might be caused by either ATP binding alone or hydrolysis. We now report the following. 1) ATP has a much lesser effect at 0 degrees C than at 37 degrees C. 2) After hexokinase treatment, the nonhydrolyzable ATP analogue, adenyl 5'-(yl iminodiphosphate), does not enhance ADP trapping. 3) Another nonhydrolyzable ATP analogue, adenosine 5'-(beta,gamma-methylene)triphosphate, whether hexokinase-treated or not, causes a slight enhancement. 4) In contrast, the hexokinase-treated poorly hydrolyzable ATP analogue, adenosine 5'-O-(thiotriphosphate) (ATPgammaS), enhances ADP trapping to a similar extent as ATP under conditions in which ATPgammaS should not be hydrolyzed. We conclude that: 1) ATP hydrolysis is not required to enhance ADP trapping by MRP1 protein; 2) with nucleotides having appropriate structure such as ATP or ATPgammaS, binding alone can enhance ADP trapping by MRP1; 3) the stimulatory effect on ADP trapping is greatly diminished when the MRP1 protein is in a "frozen state" (0 degrees C); and 4) the steric structure of the nucleotide gamma-phosphate is crucial in determining whether binding of the nucleotide to NBD1 of MRP1 protein can induce the conformational change that influences nucleotide trapping at NBD2.
Collapse
Affiliation(s)
- Yue-xian Hou
- S. C. Johnson Medical Research Center, Mayo Foundation, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | |
Collapse
|
138
|
Nguyen H, Zhang S, Morris ME. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J Pharm Sci 2003; 92:250-7. [PMID: 12532374 DOI: 10.1002/jps.10283] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to identify the effects of dietary flavonoids, which are present in fruits, vegetables, and plant-derived beverages, on the transport of daunomycin (DNM) and vinblastine (VBL) in Panc-1 cells. Panc-1 is a human pancreatic adenocarcinoma cell line, which expresses Multidrug Resistance-Associated Protein1 (MRP1). The 2-h accumulation of (3)H-DNM and (3)H-VBL was determined in the presence and absence of 22 flavonoids. Biochanin-A, genistein, quercetin, chalcone, silymarin, phloretin, morin, and kaempferol, at 100 microM concentrations, all significantly increased the accumulation of both DNM and VBL in Panc-1 cells, with morin increasing DNM and VBL accumulation by 546 +/- 50% (mean +/- SE, n = 9) and 553 +/- 37% (n = 9), respectively. Fisetin treatment significantly decreased the accumulation of both DNM and VBL. Concentration-dependent studies demonstrated significant effects on VBL accumulation at 50 microM, but not at 10 microM concentrations, except for chalcone that was effective at a 10 microM concentration. Following a 24-h incubation, there were no changes in MRP1 membrane expression or glutathione-S-transferase activity in cells. Cellular glutathione (GSH) concentrations were significantly decreased following a 2-h incubation with biochanin A, chalcone, genistein, phloretin, quercetin, and silymarin, and following a 24-h incubation with biochanin A, chalcone, genistein, and phloretin. These results therefore indicate that the flavonoids morin, chalcone, silymarin, phloretin, genistein, quercetin, biochanin A, and kaempferol can inhibit MRP1-mediated drug transport, effects that may involve binding interactions with MRP1, as well as modulation of GSH concentrations.
Collapse
Affiliation(s)
- Hang Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 517 Hochstetter Hall, Amherst, New York 14260-1200, USA
| | | | | |
Collapse
|
139
|
Manciu L, Chang XB, Buyse F, Hou YX, Gustot A, Riordan JR, Ruysschaert JM. Intermediate structural states involved in MRP1-mediated drug transport. Role of glutathione. J Biol Chem 2003; 278:3347-56. [PMID: 12424247 DOI: 10.1074/jbc.m207963200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette transporter family and transports chemotherapeutic drugs as well as diverse organic anions such as leukotriene LTC(4). The transport of chemotherapeutic drugs requires the presence of reduced GSH. By using hydrogen/deuterium exchange kinetics and limited trypsin digestion, the structural changes associated with each step of the drug transport process are analyzed. Purified MRP1 is reconstituted into lipid vesicles with an inside-out orientation, exposing its cytoplasmic region to the external medium. The resulting proteoliposomes have been shown previously to exhibit both ATP-dependent drug transport and drug-stimulated ATPase activity. Our results show that during GSH-dependent drug transport, MRP1 does not undergo secondary structure changes but only modifications in its accessibility toward the external environment. Drug binding induces a restructuring of MRP1 membrane-embedded domains that does not affect the cytosolic domains, including the nucleotide binding domains, responsible for ATP hydrolysis. This demonstrates that drug binding to MRP1 is not sufficient to propagate an allosteric signal between the membrane and the cytosolic domains. On the other hand, GSH binding induces a conformational change that affects the structural organization of the cytosolic domains and enhances ATP binding and/or hydrolysis suggesting that GSH-mediated conformational changes are required for the coupling between drug transport and ATP hydrolysis. Following ATP binding, the protein adopts a conformation characterized by a decreased stability and/or an increased accessibility toward the aqueous medium. No additional change in the accessibility toward the solvent and/or the stability of this specific conformational state and no change of the transmembrane helices orientation are observed upon ATP hydrolysis. Binding of a non-transported drug affects the dynamic changes occurring during ATP binding and hydrolysis and restricts the movement of the drug and its release.
Collapse
Affiliation(s)
- Liliana Manciu
- Structure and Function of Biological Membranes-Center of Structural Biology and Bioinformatics, Free University of Brussels, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
140
|
Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003; 55:3-29. [PMID: 12535572 DOI: 10.1016/s0169-409x(02)00169-2] [Citation(s) in RCA: 1037] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Active drug efflux transporters of the ATP binding cassette (ABC)-containing family of proteins have a major impact on the pharmacological behavior of most of the drugs in use today. Pharmacological properties affected by ABC transporters include the oral bioavailability, hepatobiliary, direct intestinal, and urinary excretion of drugs and drug-metabolites and -conjugates. Moreover, the penetration of drugs into a range of important pharmacological sanctuaries, such as brain, testis, and fetus, and the penetration into specific cell- and tissue compartments can be extensively limited by ABC transporters. These interactions with ABC transporters determine to a large extent the clinical usefulness, side effects and toxicity risks of drugs. Many other xenotoxins, (pre-)carcinogens and endogenous compounds are also influenced by the ABC transporters, with corresponding consequences for the well-being of the individual. We aim to provide an overview of properties of the mammalian ABC transporters known to mediate significant transport of clinically relevant drugs.
Collapse
Affiliation(s)
- Alfred H Schinkel
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
141
|
Abstract
Together with drug metabolising enzymes, transmembrane transporters are important determinants of drug metabolism and drug clearance by the liver. Hepatic uptake of organic anions, cations, prostaglandins and bile salts is supported by dedicated transporter proteins in the basolateral (sinusoidal) membrane of hepatocytes: OATPs, OATs, OCTs, PGTs and NTCP, respectively. ATP-binding cassette (ABC) transporter proteins in the canalicular membrane of hepatocytes mediate the hepatic efflux of drugs, bile salts and metabolites against a steep concentration gradient from liver to bile. This transport is driven by ATP hydrolysis. Drugs, endogenous metabolites, bile salts and cytokines affect the expression levels of these transporters. They act through a family of ligand-activated transcription factors, the nuclear hormone receptors. Consequently, the levels of the various transporter proteins are subject to genetic polymorphism in the encoding genes as well as in these transcription factors. Adverse drug reactions may be caused by genetic or disease-induced variations of transporter expression or drug-drug interactions at the level of these transporters.
Collapse
Affiliation(s)
- Klaas Nico Faber
- Department of Gastroenterology and Hepatology, State University Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | |
Collapse
|
142
|
Kao HH, Chang MS, Cheng JF, Huang JD. Genomic structure, gene expression, and promoter analysis of human multidrug resistance-associated protein 7. J Biomed Sci 2003; 10:98-110. [PMID: 12566991 DOI: 10.1007/bf02256002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2002] [Accepted: 07/08/2002] [Indexed: 10/25/2022] Open
Abstract
The multidrug resistance-associated protein (MRP) subfamily transporters associated with anticancer drug efflux are attributed to the multidrug-resistance of cancer cells. The genomic organization of human multidrug resistance-associated protein 7 (MRP7) was identified. The human MRP7 gene, consisting of 22 exons and 21 introns, greatly differs from other members of the human MRP subfamily. A splicing variant of human MRP7, MRP7A, expressed in most human tissues, was also characterized. The 1.93-kb promoter region of MRP7 was isolated and shown to support luciferase activity at a level 4- to 5-fold greater than that of the SV40 promoter. Basal MRP7 gene expression was regulated by 2 regions in the 5'-flanking region at -1,780-1,287 bp, and at -611 to -208 bp. In Madin-Darby canine kidney (MDCK) cells, MRP7 promoter activity was increased by 226% by genotoxic 2-acetylaminofluorene and 347% by the histone deacetylase inhibitor, trichostatin A. The protein was expressed in the membrane fraction of transfected MDCK cells.
Collapse
Affiliation(s)
- Hsin-hsin Kao
- Department of Food Nutrition, Chung-Hwa College of Medical Technology, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
143
|
Homolya L, Váradi A, Sarkadi B. Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 2003; 17:103-14. [PMID: 12897433 DOI: 10.1002/biof.5520170111] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many endogenous or xenobiotic lipophilic substances are eliminated from the cells by the sequence of oxidation, conjugation to an anionic group (glutathione, glucuronate or sulfate) and transport across the plasma membrane into the extracellular space. The latter step is mediated by integral membrane glycoproteins belonging to the superfamily of ATP-Binding Cassette (ABC) transporters. A subfamily, referred as ABCC, includes the famous/infamous cystic fibrosis transmembrane regulator (CFTR), the sulfonylurea receptors (SUR 1 and 2), and the multidrug resistance-associated proteins (MRPs). The name of the MRPs refers to their potential role in clinical multidrug resistance, a phenomenon that hinders the effective chemotherapy of tumors. The MRPs that have been functionally characterized so far share the property of ATP-dependent export pumps for conjugates with glutathione (GSH), glucuronate or sulfate. MRP1 and MRP2 are also mediating the cotransport of unconjugated amphiphilic compounds together with free GSH. MRP3 preferentially transports glucuronides but not glutathione S-conjugates or free GSH. MRP1 and MRP2 also contribute to the control of the intracellular glutathione disulfide (GSSG) level. Although these proteins are low affinity GSSG transporters, they can play essential role in response to oxidative stress when the activity of GSSG reductase becomes rate limiting. The human MRP4, MRP5 and MRP6 have only partially been characterized. However, it has been revealed that MRP4 can function as an efflux pump for cyclic nucleotides and nucleoside analogues, used as anti-HIV drugs. MRP5 also transports GSH conjugates, nucleoside analogues, and possibly heavy metal complexes. Transport of glutathione S-conjugates mediated by MRP6, the mutation of which causes pseudoxantoma elasticum, has recently been shown. In summary, numerous members of the multidrug resistance-associated protein family serve as export pumps that prevent the accumulation of anionic conjugates and GSSG in the cytoplasm, and play, therefore, an essential role in detoxification and defense against oxidative stress.
Collapse
Affiliation(s)
- László Homolya
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
144
|
Koike K, Oleschuk CJ, Haimeur A, Olsen SL, Deeley RG, Cole SPC. Multiple membrane-associated tryptophan residues contribute to the transport activity and substrate specificity of the human multidrug resistance protein, MRP1. J Biol Chem 2002; 277:49495-503. [PMID: 12388549 DOI: 10.1074/jbc.m206896200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein, MRP1, is a clinically important ATP-binding cassette transporter in which the three membrane-spanning domains (MSDs), which contain up to 17 transmembrane (TM) helices, and two nucleotide binding domains (NBDs) are configured MSD1-MSD2-NBD1-MSD3-NBD2. In tumor cells, MRP1 confers resistance to a broad spectrum of drugs, but in normal cells, it functions as a primary active transporter of organic anions such as leukotriene C(4) and 17beta-estradiol 17beta-(D-glucuronide). We have previously shown that mutation of TM17-Trp(1246) eliminates 17beta-estradiol 17beta-(D-glucuronide) transport and drug resistance conferred by MRP1 while leaving leukotriene C(4) transport intact. By mutating the 11 remaining Trp residues that are in predicted TM segments of MRP1, we have now determined that five of them are also major determinants of MRP1 function. Ala substitution of three of these residues, Trp(445) (TM8), Trp(553) (TM10), and Trp(1198) (TM16), eliminated or substantially reduced transport levels of five organic anion substrates of MRP1. In contrast, Ala substitutions of Trp(361) (TM7) and Trp(459) (TM9) caused a more moderate and substrate-selective reduction in MRP1 function. More conservative substitutions (Tyr and Phe) of the Trp(445), Trp(553), and Trp(1198) mutants resulted in substrate selective retention of transport in some cases (Trp(445) and Trp(1198)) but not others (Trp(553)). Our findings suggest that the bulky polar aromatic indole side chain of each of these five Trp residues contributes significantly to the transport activity and substrate specificity of MRP1.
Collapse
Affiliation(s)
- Koji Koike
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
145
|
Yabuuchi H, Takayanagi SI, Yoshinaga K, Taniguchi N, Aburatani H, Ishikawa T. ABCC13, an unusual truncated ABC transporter, is highly expressed in fetal human liver. Biochem Biophys Res Commun 2002; 299:410-7. [PMID: 12445816 DOI: 10.1016/s0006-291x(02)02658-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we have cloned the cDNA of ABCC13, a novel ABC transporter, from the cDNA library of adult human placenta. The ABCC13 gene spans approximately 70kb on human chromosome 21q11.2 and consists of 14 exons. The open reading frame of the ABCC13 cDNA encodes a peptide consisting of 325 amino acid residues. The amino acid sequence corresponding to putative membrane-spanning domains was remarkably similar to ABCC1, ABCC2, ABCC3, and ABCC6. The ABCC13 gene was expressed in the fetal liver at the highest level among the organs studied. While ABCC13 was expressed in the bone marrow, its expression in peripheral blood leukocytes of adult humans was much lower and no detectable levels were observed in differentiated hematopoietic cells. The expression of ABCC13 in K562 cells decreased during cell differentiation induced by TPA. These results suggest that the expression of human ABCC13 is related with hematopoiesis.
Collapse
Affiliation(s)
- Hikaru Yabuuchi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
146
|
Reungpatthanaphong P, Mankhetkorn S. Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol Pharm Bull 2002; 25:1555-61. [PMID: 12499639 DOI: 10.1248/bpb.25.1555] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overcoming MDR (multidrug resistance) phenomena is a crucial aspect of cancer chemotherapy research. Artemisinin and its derivatives have been found to inhibit the proliferation of cancer cells in the microM range. They poorly inhibited the function of P-glycoprotein and did not inhibit the function of MRP1-protein. The concentrations required to inhibit by 50% the function of P-glycoprotein are 110+/-5 microM. Artemisinin, artesunate and dihydroartemisinin efficiently decreased the mitochondrial membrane potential, leading to a decrease in intracellular ATP in all cell lines tested: by 30 to 50% at 5 microM. Artemisinin, artesunate and dihydroartemisinin increased cytotoxicity of pirarubicin and doxorubicin in P-glycoprotein-overexpressing K562/adr, and in MRP1-overexpressing GLC4/adr, with the delta(0.5) ranging from 200 to 860 nM, but not in their corresponding drug-sensitive cell lines. In this range of concentrations these compounds did not decrease the function of P-glycoprotein, suggesting a mechanism by which the drugs did not reverse MDR phenomenon at the P-glycoprotein level but at the mitochondrial level.
Collapse
Affiliation(s)
- Paiboon Reungpatthanaphong
- Laboratory of Physical Chemistry, Molecular and Cellular Biology, Faculty of Science, Burapha University, Bangsaen, Chonburi, Thailand
| | | |
Collapse
|
147
|
Suzuki H, Sugiyama Y. Single nucleotide polymorphisms in multidrug resistance associated protein 2 (MRP2/ABCC2): its impact on drug disposition. Adv Drug Deliv Rev 2002; 54:1311-31. [PMID: 12406647 DOI: 10.1016/s0169-409x(02)00075-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multidrug resistance associated protein 2 (MRP2/ABCC2), expressed on the bile canalicular membrane, plays an important role in the biliary excretion of various kinds of substrates. In addition, MRP2 is also expressed on the apical membrane of epithelial cells such as enterocytes. It is possible that the inter-individual difference in the function of MRP2 affects the drug disposition. In the present article, we will summarize the physiological and pharmacological role of MRP2, particularly focusing on the factors affecting its transport function such as single nucleotide polymorphisms and/or the induction/down regulation of this transporter. Mutations found in patients suffering from the Dubin-Johnson syndrome, along with the amino acid residues which are involved in supporting the transport activity of MRP2, are also summarized.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
148
|
Burg D, Wielinga P, Zelcer N, Saeki T, Mulder GJ, Borst P. Inhibition of the multidrug resistance protein 1 (MRP1) by peptidomimetic glutathione-conjugate analogs. Mol Pharmacol 2002; 62:1160-6. [PMID: 12391280 DOI: 10.1124/mol.62.5.1160] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition of multidrug resistance protein 1 (MRP1) mediated cytostatic drug efflux might be useful in the treatment of drug resistant tumors. Because the glutathione (GSH) conjugate of ethacrynic acid (EA), GS-EA, is a good substrate of MRP1, GS-EA derivatives are expected to be good inhibitors of MRP1. To study structure-activity relationships of MRP1 inhibition, a series of novel GS-EA analogs was synthesized in which peptide bonds of the GSH backbone were replaced by isosteric groups [Bioorg Med Chem 10:195-205, 2002]. Several of these compounds were effective inhibitors of MRP1-mediated [(3)H]GS-EA and [(3)H]E(2)17betaG transport, as studied in membrane vesicles prepared from MRP1-overproducing Sf9 cells. The modifications of the peptide backbone have distinct implications for recognition by MRP1: the gamma-glutamyl-cysteine peptide bond is important for binding, whereas the cysteinyl-glycine amide does not seem essential. When the gamma-glutamyl-cysteine peptide bond (C-CO-N) is replaced by a urethane isostere (O-CO-N), an effective competitive MRP1-inhibitor (K(i) = 11 microM) is obtained. After esterification of this compound to improve its cellular uptake, it inhibited MRP1-mediated efflux of calcein from 2008 ovarian carcinoma cells overexpressing MRP1. This compound also partially reversed the resistance of these cells to methotrexate. Because the urethane isostere is stable toward gamma-glutamyl transpeptidase-mediated breakdown, it is an interesting lead-compound for the development of in vivo active MRP1 inhibitors.
Collapse
Affiliation(s)
- Danny Burg
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
149
|
Burg D, Mulder GJ. Glutathione conjugates and their synthetic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metab Rev 2002; 34:821-63. [PMID: 12487151 DOI: 10.1081/dmr-120015695] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alterations in levels of glutathione (GSH) and glutathione-dependent enzymes have been implicated in cancer and multidrug resistance of tumor cells. The activity of a number of these, the multidrug resistance-associated protein 1, glutathione S-transferase, DNA-dependent protein kinase, glyoxalase I, and gamma-glutamyl transpeptidase, can be inhibited by GSH-conjugates and synthetic analogs thereof. In this review we focus on the function of these enzymes and carriers in cancer and anti-cancer drug resistance, in relation to their inhibition by GSH-conjugate analogs.
Collapse
Affiliation(s)
- Danny Burg
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55 2333CC, Leiden, The Netherlands.
| | | |
Collapse
|
150
|
Nakayama K, Kanzaki A, Ogawa K, Miyazaki K, Neamati N, Takebayashi Y. Copper-transporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP. Int J Cancer 2002; 101:488-95. [PMID: 12216079 DOI: 10.1002/ijc.10608] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intrinsic or acquired resistance to chemotherapy is the major obstacle to overcome in the treatment of patients with solid carcinoma. Cisplatin is one of the most effective chemotherapeutic agents for treating ovarian carcinoma. Recently, copper-transporting P-type adenosine triphosphatase (ATP7B) has been demonstrated as one of the genes responsible for cisplatin resistance in vitro. We hypothesized that the expression of ATP7B gene increases resistance to cisplatin in ovarian carcinoma and a priori knowledge of its expression is important for the choice of therapy. The aim of our study was to assess the role of ATP7B gene in ovarian carcinoma and compare its expression with those of multidrug resistance-related transporters such as MDR1, MRP1, MRP2, LRP and BCRP genes. The transporters' gene expression profiles from 82 patients treated with cisplatin-based chemotherapy after surgery were assessed by RT-PCR. We did not observe any significant correlation between ATP7B gene expression and those of MDR1, MRP1, MRP2, LRP or BCRP. The expression level of ATP7B gene was significantly increased (p < 0.05) in patients with moderately-/poorly-differentiated ovarian carcinomas treated with cisplatin-based chemotherapy, thus ATP7B may serve as an independent prognostic factor in these patients. In contrast, the expression level of MDR1, MRP1, MRP2, LRP and BCRP genes were not prognostic indicators of disease. These findings suggest that ATP7B gene may be considered as a novel chemoresistance marker and that inhibitor(s) of ATP7B might be useful, in patients with ovarian carcinoma treated with cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Kentaro Nakayama
- Department of Pathology Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|