101
|
Kim JE, Choi HC, Song HK, Kang TC. Blockade of AMPA Receptor Regulates Mitochondrial Dynamics by Modulating ERK1/2 and PP1/PP2A-Mediated DRP1-S616 Phosphorylations in the Normal Rat Hippocampus. Front Cell Neurosci 2019; 13:179. [PMID: 31118889 PMCID: PMC6504797 DOI: 10.3389/fncel.2019.00179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
N-Methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activations induce fast and transient mitochondrial fragmentation under pathophysiological conditions. However, it is still unknown whether NMDAR or AMPAR activity contributes to mitochondrial dynamics under physiological conditions. In the present study, MK801 (a non-competitive NMDAR antagonist) did not affect mitochondrial length in hippocampal neurons as well as phosphorylation levels of dynamin-related protein 1 (DRP1)-serine (S) 616, extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and AMPAR. In contrast, perampanel (a non-competitive AMPAR antagonist) elongated mitochondrial length in neurons concomitant with diminishing phosphorylations of DRP1-S616, ERK1/2, and JNK, but not p38 MAPK. Perampanel also reduced protein phosphatase (PP) 1, PP2A and PP2B phosphorylations, indicating activations of these PPs which were unaffected by MK801. U0126 (an ERK1/2 inhibitor) elongated mitochondrial length, accompanied by the reduced DRP1-S616 phosphorylation. SP600125 (a JNK inhibitor) did not influence mitochondrial length and DRP1 phosphorylations. Okadaic acid (a PP1/PP2A inhibitor) reduced mitochondrial length with the up-regulated DRP1-S616 phosphorylation, while CsA (a PP2B inhibitor) increased it with the elevated DRP1-S637 phosphorylation. Co-treatment of okadaic acid or CsA with perampanel attenuated the reductions in DRP1-S616 and -S637 phosphorylation without changing DRP1 expression level, respectively. GYKI 52466 (another non-competitive AMPAR antagonist) showed the similar effects of perampanel on phosphorylations of DRP1, ERK1/2, JNK, PPs, and GluR1 AMPAR subunits. Taken together, our findings suggest that a blockade of AMPAR may regulate the cooperation of ERK1/2- and PP1/PP2A for the modulation of DRP1 phosphorylations, which facilitate mitochondrial fusion.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hui-Chul Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hong-Ki Song
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
102
|
Wang LA, Nguyen DH, Mifflin SW. CRHR2 (Corticotropin-Releasing Hormone Receptor 2) in the Nucleus of the Solitary Tract Contributes to Intermittent Hypoxia-Induced Hypertension. Hypertension 2019; 72:994-1001. [PMID: 30354709 DOI: 10.1161/hypertensionaha.118.11497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study tested the hypothesis that CRHRs (corticotropin-releasing hormone receptors) in the nucleus of the solitary tract (NTS) contribute to the hypertension induced by intermittent hypoxia (IH) exposure in rats. Initial studies using in situ hybridization revealed low mRNA level of CRHR1 (CRH type 1 receptor) but high mRNA level of CRHR2 (CRH type 2 receptor) in the NTS. Calcium imaging studies on NTS slice preparations using Fura-2-acetoxymethyl ester demonstrated that CRH induced a transient increase of intracellular calcium level. The CRH-induced calcium response was reproduced in the presence of TTX (tetrodotoxin) but was abolished by depletion of extracellular calcium or by the L-type calcium channel blocker Nifedipine. The CRH-induced calcium influx was attenuated by the CRHR2 antagonist K41498 but not by the CRHR1 antagonist NBI-35 965. Calcium influx can be induced by the CRHR2 agonist Urocortin II but not by the CRHR1 agonist Stressin 1. IH exposure did not affect CRHR1 mRNA level but significantly decreased CRHR2 mRNA level and the CRH-induced calcium influx in the NTS. Further in vivo studies showed that intra-fourth ventricle infusion of K41498 did not affect the basal blood pressure but significantly attenuated the IH-induced hypertension; intra-fourth ventricle infusion of Urocortin II significantly increased basal blood pressure and exacerbated the IH-induced hypertension. Collectively, these results suggest that CRHR2 in the NTS contributes to the IH-induced hypertension; downregulation of CRHR2 and CRHR2-mediated calcium influx in the NTS may serve as an adaptive response to protect against the IH-induced hypertension.
Collapse
Affiliation(s)
- Lei A Wang
- From the Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| | - Dianna H Nguyen
- From the Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| | - Steve W Mifflin
- From the Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| |
Collapse
|
103
|
Glovaci I, Chapman CA. Dopamine induces release of calcium from internal stores in layer II lateral entorhinal cortex fan cells. Cell Calcium 2019; 80:103-111. [PMID: 30999216 DOI: 10.1016/j.ceca.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
Abstract
The entorhinal cortex plays an important role in temporal lobe processes including learning and memory, object recognition, and contextual information processing. The alteration of the strength of synaptic inputs to the lateral entorhinal cortex may therefore contribute substantially to sensory and mnemonic functions. The neuromodulatory transmitter dopamine exerts powerful effects on excitatory glutamatergic synaptic transmission in the entorhinal cortex. Interestingly, inputs from midbrain dopamine neurons appear to specifically target clusters of excitatory cells located in the superficial layers of the entorhinal cortex. We have previously demonstrated that dopamine facilitates synaptic transmission through the activation of D1-like receptors. This facilitation of synaptic transmission is dependent on both activation of classical D1-like-receptors, and upon activation of dopamine receptors linked to increases in phospholipase C, inositol triphosphate (IP3), and intracellular calcium. In the present study we combined electrophysiological recordings of evoked excitatory postsynaptic currents with imaging of intracellular calcium using the fluorescent indicator fluo-4 to monitor calcium transients evoked by dopamine in electrophysiologically identified putative fan and pyramidal cells of the lateral entorhinal cortex. Bath application of dopamine (1 μM), or the phosphatidylinositol (PI)-linked D1-like-receptor agonist SKF83959 (5 μM), induced reliable and reversible increases in fluo-4 fluorescence and excitatory postsynaptic currents in fan cells, but not in pyramidal cells. In contrast, application of the classical D1-like-receptor agonist SKF38393 (10 μM) did not result in significant increases in fluorescence. Blocking release of calcium from internal stores by loading cells with the IP3 receptor blocker heparin (1 mM) or the ryanodine receptor blocker dantrolene (20 μM) abolished both the calcium transients and the facilitation of evoked synaptic currents induced by dopamine. Dopamine also induced calcium transients in fan cells when calcium was excluded from the extracellular medium, further indicating that the calcium transients are linked to release from internal stores. These results indicate that following D1-like-receptor binding, dopamine selectively induces transient elevations in intracellular calcium via activation of IP3 and ryanodine receptors, and that these elevations are linked to the facilitation of synaptic responses in putative layer II entorhinal cortex fan cells.
Collapse
Affiliation(s)
- Iulia Glovaci
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
104
|
Abstract
Deficiency of AMPAR-Palmitoylation Aggravates Seizure Susceptibility Itoh M, Yamashita M, Kaneko M, Okuno H, Abe M, Yamazaki M, Natsume R, Yamada D, Kaizuka T, Suwa R, Sakimura K, Sekiguchi M, Wada K, Hoshino M, Mishina M, Hayashi T. J Neurosci. 2018;38(47):10220-10235. doi:10.1523/JNEUROSCI.1590-18.2018. Epub 2018 Oct 24. PMID: 30355633. Synaptic AMPAR expression controls the strength of excitatory synaptic transmission and plasticity. An excess of synaptic AMPARs leads to epilepsy in response to seizure-inducible stimulation. The appropriate regulation of AMPARs plays a crucial role in the maintenance of the excitatory/inhibitory synaptic balance; however, the detailed mechanisms underlying epilepsy remain unclear. Our previous studies have revealed that a key modification of AMPAR trafficking to and from postsynaptic membranes is the reversible, post-translational S-palmitoylation at the C-termini of receptors. To clarify the role of palmitoylation-dependent regulation of AMPARs in vivo, we generated GluA1 palmitoylation-deficient (Cys811 to Ser substitution) knock-in mice. These mutant male mice showed elevated seizure susceptibility and seizure-induced neuronal activity without impairments in synaptic transmission, gross brain structure, or behavior at the basal level. Disruption of the palmitoylation site was accompanied by upregulated GluA1 phosphorylation at Ser831, but not at Ser845, in the hippocampus and increased GluA1 protein expression in the cortex. Furthermore, GluA1 palmitoylation suppressed excessive spine enlargement above a certain size after long-term potentiation. Our findings indicate that an abnormality in GluA1 palmitoylation can lead to hyperexcitability in the cerebrum, which negatively affects the maintenance of network stability, resulting in epileptic seizures. Significance Statement: AMPARs predominantly mediate excitatory synaptic transmission. AMPARs are regulated in a post-translational, palmitoylation-dependent manner in excitatory synapses of the mammalian brain. Reversible palmitoylation dynamically controls synaptic expression and intracellular trafficking of the receptors. Here, we generated GluA1 palmitoylation-deficient knock-in mice to clarify the role of AMPAR palmitoylation in vivo. We showed that an abnormality in GluA1 palmitoylation led to hyperexcitability, resulting in epileptic seizure. This is the first identification of a specific palmitoylated protein critical for the seizure-suppressing process. Our data also provide insight into how predicted receptors such as AMPARs can effectively preserve network stability in the brain. Furthermore, these findings help to define novel key targets for developing antiepileptic drugs.
Collapse
|
105
|
Burgraff NJ, Neumueller SE, Buchholz KJ, Hodges MR, Pan L, Forster HV. Glutamate receptor plasticity in brainstem respiratory nuclei following chronic hypercapnia in goats. Physiol Rep 2019; 7:e14035. [PMID: 30993898 PMCID: PMC6467842 DOI: 10.14814/phy2.14035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Patients that retain CO2 in respiratory diseases such as chronic obstructive pulmonary disease (COPD) have worse prognoses and higher mortality rates than those with equal impairment of lung function without hypercapnia. We recently characterized the time-dependent physiologic effects of chronic hypercapnia in goats, which suggested potential neuroplastic shifts in ventilatory control mechanisms. However, little is known about how chronic hypercapnia affects brainstem respiratory nuclei (BRN) that control multiple physiologic functions including breathing. Since many CNS neuroplastic mechanisms include changes in glutamate (AMPA (GluR) and NMDA (GluN)) receptor expression and/or phosphorylation state to modulate synaptic strength and network excitability, herein we tested the hypothesis that changes occur in glutamatergic signaling within BRN during chronically elevated inspired CO2 (InCO2 )-hypercapnia. Healthy goats were euthanized after either 24 h or 30 days of chronic exposure to 6% InCO2 or room air, and brainstems were rapidly extracted for western blot analyses to assess GluR and GluN receptor expression within BRN. Following 24-hr exposure to 6% InCO2 , GluR or GluN receptor expression were changed from control (P < 0.05) in the solitary complex (NTS & DMV),ventrolateral medulla (VLM), medullary raphe (MR), ventral respiratory column (VRC), hypoglossal motor nucleus (HMN), and retrotrapezoid nucleus (RTN). These neuroplastic changes were not found following 30 days of chronic hypercapnia. However, at 30 days of chronic hypercapnia, there was overall increased (P < 0.05) expression of glutamate receptors in the VRC and RTN. We conclude that time- and site-specific glutamate receptor neuroplasticity may contribute to the concomitant physiologic changes that occur during chronic hypercapnia.
Collapse
Affiliation(s)
| | | | | | - Matthew R. Hodges
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsin
| | - Lawrence Pan
- Department of Physical TherapyMarquette UniversityMilwaukeeWisconsin
| | - Hubert V. Forster
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsin
- Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsin
| |
Collapse
|
106
|
Kim JE, Choi HC, Song HK, Kang TC. Perampanel Affects Up-Stream Regulatory Signaling Pathways of GluA1 Phosphorylation in Normal and Epileptic Rats. Front Cell Neurosci 2019; 13:80. [PMID: 30881292 PMCID: PMC6405474 DOI: 10.3389/fncel.2019.00080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/18/2019] [Indexed: 01/30/2023] Open
Abstract
To elucidate the pharmacological properties of perampanel [2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile, a novel non-competitive antagonist of AMPA receptor], we investigated its effects on the up-stream regulatory pathways of GluA1 phosphorylation including protein kinase C (PKC), Ca2+-calmodulin-dependent protein kinase II (CAMKII), protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), protein phosphatase (PP) 1, PP2A, and PP2B in normal and pilocarpine-induced epileptic rat model using Western blot analysis. In normal animals, perampanel affected GluA1 expression/phosphorylation, PKC, CAMKII, PKA, ERK1/2, JNK, and PPs activities. In epileptic rats, perampanel effectively inhibited spontaneous seizure activities. Perampanel enhanced phospho (p)-GluA1-S831 and -S845 ratios (phosphoprotein/total protein), while it reduced GluA1 expression. Perampanel also increased pCAMKII and pPKA ratios, which phosphorylate GluA1-S831 and -S845 site, respectively. Perampanel elevated pJNK and pPP2B ratios, which phosphorylates and dephosphorylates both GluA1-S831 and -S845 sits. Perampanel also increased pERK1/2 ratio in epileptic animals, while U0126 (an ERK1/2 inhibitor) did not affect pGluA1 ratios. Perampanel did not influence PKC, PP1, and PP2A expression levels and their phosphorylation ratios. In addition, perampanel did not have a detrimental impact on cognitive abilities of epileptic and normal rats in Morris water maze test. These findings suggest that perampanel may regulate AMPA receptor functionality via not only blockade of AMPA receptor but also the regulations of multiple molecules (CAMKII, PKA, JNK, and pPP2B)-mediated GluA1 phosphorylations without negative effects on cognition, although the effects of perampanel on PKC, PP1, and PP2A activities were different between normal and epileptic rats.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,College of Medicine, Institute of Epilepsy Research, Hallym University, Chuncheon, South Korea
| | - Hui-Chul Choi
- College of Medicine, Institute of Epilepsy Research, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hong-Ki Song
- College of Medicine, Institute of Epilepsy Research, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,College of Medicine, Institute of Epilepsy Research, Hallym University, Chuncheon, South Korea
| |
Collapse
|
107
|
Summers KC, Bogard AS, Tavalin SJ. Preferential generation of Ca 2+-permeable AMPA receptors by AKAP79-anchored protein kinase C proceeds via GluA1 subunit phosphorylation at Ser-831. J Biol Chem 2019; 294:5521-5535. [PMID: 30737285 DOI: 10.1074/jbc.ra118.004340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/06/2019] [Indexed: 01/01/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission in the mammalian central nervous system. Preferential AMPAR subunit assembly favors heteromeric GluA1/GluA2 complexes. The presence of the GluA2 subunit generates Ca2+-impermeable (CI) AMPARs that have linear current-voltage (I-V) relationships. However, diverse forms of synaptic plasticity and pathophysiological conditions are associated with shifts from CI to inwardly rectifying, GluA2-lacking, Ca2+-permeable (CP) AMPARs on time scales ranging from minutes to days. These shifts have been linked to GluA1 phosphorylation at Ser-845, a protein kinase A (PKA)-targeted site within its intracellular C-terminal tail, often in conjunction with protein kinase A anchoring protein 79 (AKAP79; AKAP150 in rodents), which targets PKA to GluA1. However, AKAP79 may impact GluA1 phosphorylation at other sites by interacting with other signaling enzymes. Here, we evaluated the ability of AKAP79, its signaling components, and GluA1 phosphorylation sites to induce CP-AMPARs under conditions in which CI-AMPARs normally predominate. We found that GluA1 phosphorylation at Ser-831 is sufficient for the appearance of CP-AMPARs and that AKAP79-anchored protein kinase C (PKC) primarily drives the appearance of these receptors via this site. In contrast, other AKAP79-signaling components and C-terminal tail GluA1 phosphorylation sites exhibited a permissive role, limiting the extent to which AKAP79 promotes CP-AMPARs. This may reflect the need for these sites to undergo active phosphorylation/dephosphorylation cycles that control their residency within distinct subcellular compartments. These findings suggest that AKAP79, by orchestrating phosphorylation, represents a key to a GluA1 phosphorylation passcode, which allows the GluA1 subunit to escape GluA2 dominance and promote the appearance of CP-AMPARs.
Collapse
Affiliation(s)
- Kyle C Summers
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Amy S Bogard
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Steven J Tavalin
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| |
Collapse
|
108
|
Ross A, Barnett N, Faulkner A, Hannapel R, Parent MB. Sucrose ingestion induces glutamate AMPA receptor phosphorylation in dorsal hippocampal neurons: Increased sucrose experience prevents this effect. Behav Brain Res 2019; 359:792-798. [PMID: 30076854 PMCID: PMC6594687 DOI: 10.1016/j.bbr.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Evidence suggests that meal-related memory influences later eating behavior. Memory can serve as a powerful mechanism for controlling eating behavior because it provides a record of recent intake that likely outlasts most physiological signals generated by ingestion. Dorsal (dHC) and ventral hippocampal (vHC) neurons are critical for memory, and we demonstrated previously that they limit energy intake during the postprandial period. If dHC or vHC neurons control intake through a process that requires memory, then ingestion should increase events necessary for synaptic plasticity in dHC and vHC during the postprandial period. To test this, we determined whether ingesting a sucrose solution induced posttranslational events critical for hippocampal synaptic plasticity: phosphorylation of AMPAR GluA1 subunits at 1) serine 831 (pSer831) and 2) serine 845 (pSer845). We also examined whether increasing the amount of previous experience with the sucrose solution, which would be expected to decrease the mnemonic demand involved in an ingestion bout, would also attenuate sucrose-induced phosphorylation. Quantitative immunoblotting of dHC and vHC membrane fractions demonstrated that sucrose ingestion increased postprandial pSer831 in dHC but not vHC. Increased previous sucrose experience prevented sucrose-induced dHC pSer831. Sucrose ingestion did not affect pSer845 in either dHC or vHC. Thus, the present findings show that ingestion activates a postranslational event necessary for synaptic plasticity in an experience-dependent manner, which is consistent with the hypothesis that dHC neurons form a memory of a meal during the postprandial period.
Collapse
Affiliation(s)
- Amy Ross
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Nicolette Barnett
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Alexa Faulkner
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Reilly Hannapel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States; Department of Psychology, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States.
| |
Collapse
|
109
|
Taylor BK, Sinha GP, Donahue RR, Grachen CM, Morón JA, Doolen S. Opioid receptors inhibit the spinal AMPA receptor Ca 2+ permeability that mediates latent pain sensitization. Exp Neurol 2019; 314:58-66. [PMID: 30660616 DOI: 10.1016/j.expneurol.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/24/2018] [Accepted: 01/05/2019] [Indexed: 01/02/2023]
Abstract
Acute inflammation induces sensitization of nociceptive neurons and triggers the accumulation of calcium permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the dorsal horn of the spinal cord. This coincides with behavioral signs of acute inflammatory pain, but whether CP-AMPARs contribute to chronic pain remains unclear. To evaluate this question, we first constructed current-voltage (IV) curves of C-fiber stimulus-evoked, AMPAR-mediated EPSCs in lamina II to test for inward rectification, a key characteristic of CP-AMPARs. We found that the intraplantar injection of complete Freund's adjuvant (CFA) induced an inward rectification at 3 d that persisted to 21 d after injury. Furthermore, the CP- AMPAR antagonist IEM-1460 (50 μM) inhibited AMPAR-evoked Ca2+ transients 21d after injury but had no effect in uninflamed mice. We then used a model of long-lasting vulnerability for chronic pain that is determined by the balance between latent central sensitization (LCS) and mu opioid receptor constitutive activity (MORCA). When administered 21 d after the intraplantar injection of CFA, intrathecal administration of the MORCA inverse agonist naltrexone (NTX, 1 μg, i.t.) reinstated mechanical hypersensitivity, and superfusion of spinal cord slices with NTX (10 μM) increased the peak amplitude of AMPAR-evoked Ca2+ transients in lamina II neurons. The CP-AMPAR antagonist naspm (0-10 nmol, i.t.) inhibited these NTX-induced increases in mechanical hypersensitivity. NTX had no effect in uninflamed mice. Subsequent western blot analysis of the postsynaptic density membrane fraction from lumbar dorsal horn revealed that CFA increased GluA1 expression at 2 d and GluA4 expression at both 2 and 21 d post-injury, indicating that not just the GluA1 subunit, but also the GluA4 subunit, contributes to the expression of CP-AMPARs and synaptic strength during hyperalgesia. GluA2 expression increased at 21 d, an unexpected result that requires further study. We conclude that after tissue injury, dorsal horn AMPARs retain a Ca2+ permeability that underlies LCS. Because of their effectiveness in reducing naltrexone-induced reinstatement of hyperalgesia and potentiation of AMPAR-evoked Ca2+ signals, CP-AMPAR inhibitors are a promising class of agents for the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| | - Ghanshyam P Sinha
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| | - Renee R Donahue
- Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| | - Carolyn M Grachen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, 600 South Euclid, St Louis, MO 63110, USA.
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| |
Collapse
|
110
|
From membrane receptors to protein synthesis and actin cytoskeleton: Mechanisms underlying long lasting forms of synaptic plasticity. Semin Cell Dev Biol 2019; 95:120-129. [PMID: 30634048 DOI: 10.1016/j.semcdb.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Synaptic plasticity, the activity dependent change in synaptic strength, forms the molecular foundation of learning and memory. Synaptic plasticity includes structural changes, with spines changing their size to accomodate insertion and removal of postynaptic receptors, which are correlated with functional changes. Of particular relevance for memory storage are the long lasting forms of synaptic plasticity which are protein synthesis dependent. Due to the importance of spine structural plasticity and protein synthesis, this review focuses on the signaling pathways that connect synaptic stimulation with regulation of protein synthesis and remodeling of the actin cytoskeleton. We also review computational models that implement novel aspects of molecular signaling in synaptic plasticity, such as the role of neuromodulators and spatial microdomains, as well as highlight the need for computational models that connect activation of memory kinases with spine actin dynamics.
Collapse
|
111
|
Chatterjee S, Ade C, Nurik CE, Carrejo NC, Dutta C, Jayaraman V, Landes CF. Phosphorylation Induces Conformational Rigidity at the C-Terminal Domain of AMPA Receptors. J Phys Chem B 2019; 123:130-137. [PMID: 30537817 DOI: 10.1021/acs.jpcb.8b10749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intracellular C-terminal domain (CTD) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor undergoes phosphorylation at specific locations during long-term potentiation. This modification enhances conductance through the AMPA receptor ion channel and thus potentially plays a crucial role in modulating receptor trafficking and signaling. However, because the CTD structure is largely unresolved, it is difficult to establish if phosphorylation induces conformational changes that might play a role in enhancing channel conductance. Herein, we utilize single-molecule Förster resonance energy transfer (smFRET) spectroscopy to probe the conformational changes of a section of the AMPA receptor CTD, under the conditions of point-mutated phosphomimicry. Multiple analysis algorithms fail to identify stable conformational states within the smFRET distributions, consistent with a lack of well-defined secondary structure. Instead, our results show that phosphomimicry induces conformational rigidity to the CTD, and such rigidity is electrostatically tunable.
Collapse
Affiliation(s)
- Sudeshna Chatterjee
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Carina Ade
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Caitlin E Nurik
- Department of Biochemistry and Molecular Biology , University of Texas Health Medical School , Houston , Texas 77005 , United States
| | - Nicole C Carrejo
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Chayan Dutta
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology , University of Texas Health Medical School , Houston , Texas 77005 , United States
| | - Christy F Landes
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States.,Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
112
|
Mechanisms of fear learning and extinction: synaptic plasticity-fear memory connection. Psychopharmacology (Berl) 2019; 236:163-182. [PMID: 30415278 PMCID: PMC6374177 DOI: 10.1007/s00213-018-5104-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE The ability to memorize threat-associated cues and subsequently react to them, exhibiting escape or avoidance responses, is an essential, often life-saving behavioral mechanism that can be experimentally studied using the fear (threat) conditioning training paradigm. Presently, there is substantial evidence supporting the Synaptic Plasticity-Memory (SPM) hypothesis in relation to the mechanisms underlying the acquisition, retention, and extinction of conditioned fear memory. OBJECTIVES The purpose of this review article is to summarize findings supporting the SPM hypothesis in the context of conditioned fear control, applying the set of criteria and tests which were proposed as necessary to causally link lasting changes in synaptic transmission in corresponding neural circuits to fear memory acquisition and extinction with an emphasis on their pharmacological diversity. RESULTS The mechanisms of synaptic plasticity in fear circuits exhibit complex pharmacological profiles and satisfy all four SPM criteria-detectability, anterograde alteration, retrograde alteration, and mimicry. CONCLUSION The reviewed findings, accumulated over the last two decades, provide support for both necessity and sufficiency of synaptic plasticity in fear circuits for fear memory acquisition and retention, and, in part, for fear extinction, with the latter requiring additional experimental work.
Collapse
|
113
|
Bettio L, Thacker JS, Hutton C, Christie BR. Modulation of synaptic plasticity by exercise. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:295-322. [DOI: 10.1016/bs.irn.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
114
|
Hiester BG, Becker MI, Bowen AB, Schwartz SL, Kennedy MJ. Mechanisms and Role of Dendritic Membrane Trafficking for Long-Term Potentiation. Front Cell Neurosci 2018; 12:391. [PMID: 30425622 PMCID: PMC6218485 DOI: 10.3389/fncel.2018.00391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synapses is a major form of plasticity for learning and memory in the central nervous system. While the molecular mechanisms of LTP have been debated for decades, there is consensus that LTP induction activates membrane trafficking pathways within dendrites that are essential for synapse growth and strengthening. Current models suggest that key molecules for synaptic potentiation are sequestered within intracellular organelles, which are mobilized by synaptic activity to fuse with the plasma membrane following LTP induction. While the identity of the factors mobilized to the plasma membrane during LTP remain obscure, the field has narrowly focused on AMPA-type glutamate receptors. Here, we review recent literature and present new experimental data from our lab investigating whether AMPA receptors trafficked from intracellular organelles directly contribute to synaptic strengthening during LTP. We propose a modified model where membrane trafficking delivers distinct factors that are required to maintain synapse growth and AMPA receptor incorporation following LTP. Finally, we pose several fundamental questions that may guide further inquiry into the role of membrane trafficking for synaptic plasticity.
Collapse
Affiliation(s)
- Brian G Hiester
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew I Becker
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron B Bowen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Samantha L Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
115
|
MacLean DM, Durham RJ, Jayaraman V. Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET. Trends Neurosci 2018; 42:128-139. [PMID: 30385052 DOI: 10.1016/j.tins.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The ionotropic glutamate receptors mediate excitatory neurotransmission in the mammalian central nervous system. These receptors provide a range of temporally diverse signals which stem from subunit composition and also from the inherent ability of each member to occupy multiple functional states, the distribution of which can be altered by small molecule modulators and binding partners. Hence it becomes essential to characterize the conformational landscape of the receptors under this variety of different conditions. This has recently become possible due to single molecule fluorescence resonance energy transfer measurements, along with the rich foundation of existing structures allowing for direct correlations between conformational and functional diversity.
Collapse
Affiliation(s)
- David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
116
|
Phosphorylation of the AMPAR-TARP Complex in Synaptic Plasticity. Proteomes 2018; 6:proteomes6040040. [PMID: 30297624 PMCID: PMC6313930 DOI: 10.3390/proteomes6040040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 11/17/2022] Open
Abstract
Synaptic plasticity has been considered a key mechanism underlying many brain functions including learning, memory, and drug addiction. An increase or decrease in synaptic activity of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complex mediates the phenomena as shown in the cellular models of synaptic plasticity, long-term potentiation (LTP), and depression (LTD). In particular, protein phosphorylation shares the spotlight in expressing the synaptic plasticity. This review summarizes the studies on phosphorylation of the AMPAR pore-forming subunits and auxiliary proteins including transmembrane AMPA receptor regulatory proteins (TARPs) and discusses its role in synaptic plasticity.
Collapse
|
117
|
Jia M, Travaglia A, Pollonini G, Fedele G, Alberini CM. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat medial prefrontal cortex. ACTA ACUST UNITED AC 2018; 25:533-543. [PMID: 30224556 PMCID: PMC6149953 DOI: 10.1101/lm.047753.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in complex brain functions including decision-making, integration of emotional, and cognitive aspects in memory processing and memory consolidation. Because relatively little is known about the molecular mechanisms underlying its development, we quantified rat mPFC basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins at different developmental ages. Specifically, we compared the mPFC of rats at postnatal day 17 (PN17), when they are still unable to express long-term contextual and spatial memories, to rat mPFC at PN24, when they have acquired the ability of long-term memory expression and finally to the mPFC of adult rats. We found that, with increased age, there are remarkable and significant decreases in markers of cell activation and significant increases in proteins that mark synaptogenesis and synapse maturation. Furthermore, we found significant changes in structural markers over the ages, suggesting that structural connectivity of the mPFC increases over time. Finally, the substantial biological difference in mPFC at different ages suggest caution in extrapolating conclusions from brain plasticity studies conducted at different developmental stages.
Collapse
Affiliation(s)
- Margaret Jia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Gabriella Pollonini
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Giuseppe Fedele
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
118
|
Inagaki R, Moriguchi S, Fukunaga K. Aberrant Amygdala-dependent Fear Memory in Corticosterone-treated Mice. Neuroscience 2018; 388:448-459. [PMID: 30118751 DOI: 10.1016/j.neuroscience.2018.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/02/2023]
Abstract
Anxiety disorder is a major psychiatric disorder characterized by fear, worry, and excessive rumination. However, the molecular mechanisms underlying neural plasticity and anxiety remain unclear. Here, we utilized a mouse model of anxiety-like behaviors induced by the chronic administration of corticosterone (CORT) to determine the exact mechanism of each region of the fear circuits in the anxiety disorders. Chronic CORT-treated mice showed a significant increase in anxiety-related behaviors as assessed by the elevated plus maze, light-dark, open-field, and marble-burying tasks. In addition, chronic CORT-treated mice exhibited abnormal amygdala-dependent tone-induced fear memory but normal hippocampus-dependent contextual memory. Consistent with amygdala hyperactivation, chronic CORT-treated mice showed significantly increased numbers of c-Fos-positive cells in the basolateral amygdala (BLA) after tone stimulation. Long-term potentiation (LTP) was markedly enhanced in the BLA of chronic CORT-treated mice compared to that of vehicle-treated mice. Immunoblot analyses revealed that autophosphorylation of Ca2+/calmodulin-dependent protein kinase (CaMK) IIα at threonine 286 and phosphorylation of cyclic-adenosine-monophosphate response-element-binding protein (CREB) at serine 133 were markedly increased in the BLA of chronic CORT-treated mice after tone stimulation. The protein and mRNA levels of brain-derived neurotrophic factor (BDNF) also significantly increased. Our findings suggest that increased CaMKII activity and synaptic plasticity in the BLA likely account for the aberrant amygdala-dependent fear memory in chronic CORT-treated mice.
Collapse
Affiliation(s)
- Ryo Inagaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan.
| | - Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan.
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan.
| |
Collapse
|
119
|
Yang JH, Seo SY, Oh JH, Ryu IS, Kim J, Lee DK, Ryu Y, Choe ES. Activation of Protein Kinase G After Repeated Cocaine Administration Is Necessary for the Phosphorylation of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor GluA1 at Serine 831 in the Rat Nucleus Accumbens. Front Mol Neurosci 2018; 11:263. [PMID: 30104957 PMCID: PMC6077228 DOI: 10.3389/fnmol.2018.00263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the striatum plays a crucial role in regulating the receptor-coupled signaling cascades leading to behavioral changes associated with psychostimulant exposure. The present study determined if activation of protein kinase G (PKG) contributes to the phosphorylation of AMPA receptor GluA1 subunit at the position of serine 831 (GluA1-S831) in the rat nucleus accumbens (NAc) after repeated cocaine administration. The results demonstrated that repeated intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once a day for seven consecutive days significantly increased the level of phosphorylated (p)GluA1-S831. This increase was decreased by the intra-NAc infusion of either the cyclic guanosine monophosphate (cGMP) analog, Rp-8-Br-PET-cGMPS (5 nmol/1 μL), or the PKG inhibitor, KT5823 (2 nmol/1 μL). Repeated cocaine administration increased PKG binding activity to GluA1. This increase in GluA1-S831 phosphorylation after repeated cocaine administration was decreased by the intra-NAc infusion of the synthetic peptide (Tat-tagged interfering peptide (Tat-GluA1-i)), that interferes with the binding of PKG to GluA1. Intra-NAc infusion of the interfering peptide also reduced the repeated cocaine-induced increase in locomotor activity. These findings suggest that activated PKG, after repeated exposure to cocaine, binds to AMPA receptor GluA1 and is required for the phosphorylation of S831, contributing to behavioral changes.
Collapse
Affiliation(s)
- Ju Hwan Yang
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Su Yeon Seo
- Department of Biological Sciences, Pusan National University, Busan, South Korea.,Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jeong Hwan Oh
- Department of Biological Sciences, Pusan National University, Busan, South Korea.,Institute of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - In Soo Ryu
- Department of Biological Sciences, Pusan National University, Busan, South Korea.,Substance Abuse Pharmacology Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jieun Kim
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Dong Kun Lee
- Department of Physiology, School of Medicine and Institution of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Yeonhee Ryu
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
120
|
Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast 2018; 2018:1892570. [PMID: 30008741 PMCID: PMC6020552 DOI: 10.1155/2018/1892570] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022] Open
Abstract
Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
Collapse
|
121
|
Kim J, Lee S, Kang S, Jeon TI, Kang MJ, Lee TH, Kim YS, Kim KS, Im HI, Moon C. Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain. Mol Cells 2018; 41:454-464. [PMID: 29754475 PMCID: PMC5974622 DOI: 10.14348/molcells.2018.0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/27/2022] Open
Abstract
Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knockdown of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186,
Korea
| | - Sueun Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| | - Sohi Kang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Man-Jong Kang
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186,
Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186,
Korea
| | - Yong Sik Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 08826,
Korea
| | - Key-Sun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792,
Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
122
|
Cardiac Arrest Induces Ischemic Long-Term Potentiation of Hippocampal CA1 Neurons That Occludes Physiological Long-Term Potentiation. Neural Plast 2018; 2018:9275239. [PMID: 29853851 PMCID: PMC5944194 DOI: 10.1155/2018/9275239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 01/31/2023] Open
Abstract
Ischemic long-term potentiation (iLTP) is a form of synaptic plasticity that occurs in acute brain slices following oxygen-glucose deprivation. In vitro, iLTP can occlude physiological LTP (pLTP) through saturation of plasticity mechanisms. We used our murine cardiac arrest and cardiopulmonary resuscitation (CA/CPR) model to produce global brain ischemia and assess whether iLTP is induced in vivo, contributing to the functionally relevant impairment of pLTP. Adult male mice were subjected to CA/CPR, and slice electrophysiology was performed in the hippocampal CA1 region 7 or 30 days later. We observed increased miniature excitatory postsynaptic current amplitudes, suggesting a potentiation of postsynaptic AMPA receptor function after CA/CPR. We also observed increased phosphorylated GluR1 in the postsynaptic density of hippocampi after CA/CPR. These data support the in vivo induction of ischemia-induced plasticity. Application of a low-frequency stimulus (LFS) to CA1 inputs reduced excitatory postsynaptic potentials in slices from mice subjected to CA/CPR, while having no effects in sham controls. These results are consistent with a reversal, or depotentiation, of iLTP. Further, depotentiation with LFS partially restored induction of pLTP with theta burst stimulation. These data provide evidence for iLTP following in vivo ischemia, which occludes pLTP and likely contributes to network disruptions that underlie memory impairments.
Collapse
|
123
|
Goodell DJ, Zaegel V, Coultrap SJ, Hell JW, Bayer KU. DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific. Cell Rep 2018; 19:2231-2243. [PMID: 28614711 DOI: 10.1016/j.celrep.2017.05.068] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
The death-associated protein kinase 1 (DAPK1) is a potent mediator of neuronal cell death. Here, we find that DAPK1 also functions in synaptic plasticity by regulating the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). CaMKII and T286 autophosphorylation are required for both long-term potentiation (LTP) and depression (LTD), two opposing forms of synaptic plasticity underlying learning, memory, and cognition. T286-autophosphorylation induces CaMKII binding to the NMDA receptor (NMDAR) subunit GluN2B, which mediates CaMKII synaptic accumulation during LTP. We find that the LTP specificity of CaMKII synaptic accumulation is due to its LTD-specific suppression by calcineurin (CaN)-dependent DAPK1 activation, which in turn blocks CaMKII binding to GluN2B. This suppression is enabled by competitive DAPK1 versus CaMKII binding to GluN2B. Negative regulation of DAPK1/GluN2B binding by Ca2+/CaM results in synaptic DAPK1 removal during LTP but retention during LTD. A pharmacogenetic approach showed that suppression of CaMKII/GluN2B binding is a DAPK1 function required for LTD.
Collapse
Affiliation(s)
- Dayton J Goodell
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Zaegel
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Steven J Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
124
|
Chen T, Wang Y, Zhang T, Zhang B, Chen L, Zhao L, Chen L. Simvastatin Enhances Activity and Trafficking of α7 Nicotinic Acetylcholine Receptor in Hippocampal Neurons Through PKC and CaMKII Signaling Pathways. Front Pharmacol 2018; 9:362. [PMID: 29706890 PMCID: PMC5906710 DOI: 10.3389/fphar.2018.00362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Simvastatin (SV) enhances glutamate release and synaptic plasticity in hippocampal CA1 region upon activation of α7 nicotinic acetylcholine receptor (α7nAChR). In this study, we examined the effects of SV on the functional activity of α7nAChR on CA1 pyramidal cells using patch-clamp recording and explored the underlying mechanisms. We found that the treatment of hippocampal slices with SV for 2 h induced a dose-dependent increase in the amplitude of ACh-evoked inward currents (IACh) and the level of α7nAChR protein on the cell membrane without change in the level of α7nAChR phosphorylation. These SV-induced phenotypes were suppressed by addition of farnesol (FOH) that converts farnesyl pyrophosphate, but not geranylgeraniol. Similarly, the farnesyl transferase inhibitor FTI277 was able to increase the amplitude of IACh and enhance the trafficking of α7nAChR. The treatment with SV enhanced phosphorylation of CaMKII and PKC. The SV-enhanced phosphorylation of CaMKII rather than PKC was blocked by FOH, Src inhibitor PP2 or NMDA receptor antagonist MK801 and mimicked by FTI. The SV-enhanced phosphorylation of PKC was sensitive to the IP3R antagonist 2-APB. The SV-increased amplitude of IACh was suppressed by PKC inhibitor GF109203X and Go6983, or CaMKII inhibitor KN93. The SV- and FTI-enhanced trafficking of α7nAChR was sensitive to KN93, but not GF109203X or Go6983. The PKC activator PMA increased α7nAChR activity, but had no effect on trafficking of α7nAChR. Collectively, these results indicate that acute treatment with SV enhances the activity and trafficking of α7nAChR by increasing PKC phosphorylation and reducing farnesyl-pyrophosphate to trigger NMDA receptor-mediated CaMKII activation.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Baofeng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Liandong Zhao
- Department of Neurology, Huaian Second People's Hospital, Huaian, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
125
|
Rhynchophylline suppresses soluble Aβ 1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology 2018; 135:100-112. [PMID: 29510187 DOI: 10.1016/j.neuropharm.2018.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 01/06/2023]
Abstract
Rhynchophylline (RIN) is a significant active component isolated from the Chinese herbal medicine Uncaria rhynchophylla. The overproduction of soluble amyloid β protein (Aβ) oligomers in the hippocampus is closely involved in impairments in cognitive function at the early stage of Alzheimer's disease (AD). Growing evidences show that RIN possesses neuroprotective effects against Aβ-induced neurotoxicity. However, whether RIN can prevent soluble Aβ1-42-induced impairments in spatial cognitive function and synaptic plasticity is still unclear. Using the combined methods of behavioral tests, immunofluorescence and electrophysiological recordings, we characterized the key neuroprotective properties of RIN and its possible cellular and molecular mechanisms against soluble Aβ1-42-related impairments in rats. Our findings are as follows: (1) RIN efficiently rescued the soluble Aβ1-42-induced spatial learning and memory deficits in the Morris water maze test and prevented soluble Aβ1-42-induced suppression in long term potentiation (LTP) in the entorhinal cortex (EC)-dentate gyrus (DG) circuit. (2) Excessive activation of extrasynaptic GluN2B-NMDAR and subsequent Ca2+ overload contributed to the soluble Aβ1-42-induced impairments in spatial cognitive function and synaptic plasticity. (3) RIN prevented Aβ1-42-induced excessive activation of extrasynaptic NMDARs by reducing extrasynaptic NMDARs -mediated excitatory postsynaptic currents and down regulating GluN2B-NMDAR expression in the DG region, which inhibited Aβ1-42-induced Ca2+ overload mediated by extrasynanptic NMDARs. The results suggest that RIN could be an effective therapeutic candidate for cognitive impairment in AD.
Collapse
|
126
|
Tang Y, Liu S, Shu H, Xing Y, Tao F. AMPA receptor GluA1 Ser831 phosphorylation is critical for nitroglycerin-induced migraine-like pain. Neuropharmacology 2018; 133:462-469. [PMID: 29486167 DOI: 10.1016/j.neuropharm.2018.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022]
Abstract
Migraine is the third most common disease worldwide; however, the mechanisms underlying migraine headache are still not fully understood. Previous studies have demonstrated that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor phosphorylation plays an important role in central sensitization of pain transmission. In the present study, we observed that AMPA receptor GluA1 Ser831 phosphorylation was enhanced in the spinal trigeminal nucleus caudalis (Sp5C) after intraperitoneal injection of nitroglycerin (NTG). The NTG injection induced acute migraine-like pain including photophobia and mechanical hypersensitivity as reported previously. Interestingly, targeted mutation of GluA1 Ser831 site to prevent phosphorylation significantly inhibited NTG-induced migraine-like pain. Moreover, NTG incubation caused a robust Ca2+ influx in cultured brainstem neurons, which was dramatically inhibited by GluA1 S831A (serine at the 831 site of GluA1 is mutated to alanine) phospho-deficient mutation, and treatment with 1-naphthyl acetyl spermine (NASPM), a selective Ca2+-permeable AMPA receptor channel blocker, dose-dependently blocked the NTG-evoked increase of Ca2+ influx in the cultured neurons. We further found that intra-Sp5C injection of NASPM significantly inhibited NTG-produced mechanical hypersensitivity. These results suggest that AMPA receptor phosphorylation at the Ser831 site in the Sp5C is critical for NTG-induced migraine-like pain.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China; Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sufang Liu
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China; Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Shu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Ying Xing
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China.
| | - Feng Tao
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China; Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA; Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
127
|
Benke T, Traynelis SF. AMPA-Type Glutamate Receptor Conductance Changes and Plasticity: Still a Lot of Noise. Neurochem Res 2018; 44:539-548. [PMID: 29476449 DOI: 10.1007/s11064-018-2491-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Abstract
Twenty years ago, we reported from the Collingridge Lab that a single-channel conductance increase through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPARs) could mediate one form of plasticity associated with long-term potentiation (LTP) in the hippocampus (Benke et al., Nature 395:793-797, 1998). Revealed through peak-scaled non-stationary fluctuation analysis (PS-NSFA, also known as noise analysis), this component of LTP could be exclusively mediated by direct increases in channel conductance or by increases in the number of high conductance synaptic AMPARs. Re-evaluation of our original data in the light of the molecular details regarding AMPARs, conductance changes and plasticity suggests that insertion of high-conductance GluA1 homomers can account for our initial findings. Any potential cost associated with manufacture or trafficking of new receptors could be mitigated if pre-existing synaptic AMPARs also undergo a modest conductance change. The literature suggests that the presence of high conductance AMPARs and/or GluA1 homomers confers an unstable synaptic state, suggesting state transitions. An experimental paradigm is proposed to differentiate these possibilities. Validation of this state diagram could provide insight into development, disease pathogenesis and treatment.
Collapse
Affiliation(s)
- Tim Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
128
|
Jurado S. AMPA Receptor Trafficking in Natural and Pathological Aging. Front Mol Neurosci 2018; 10:446. [PMID: 29375307 PMCID: PMC5767248 DOI: 10.3389/fnmol.2017.00446] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) enable most excitatory transmission in the brain and are crucial for mediating basal synaptic strength and plasticity. Because of the importance of their function, AMPAR dynamics, activity and subunit composition undergo a tight regulation which begins as early as prenatal development and continues through adulthood. Accumulating evidence suggests that the precise regulatory mechanisms involved in orchestrating AMPAR trafficking are challenged in the aging brain. In turn dysregulation of AMPARs can be linked to most neurological and neurodegenerative disorders. Understanding the mechanisms that govern AMPAR signaling during natural and pathological cognitive decline will guide the efforts to develop most effective ways to tackle neurodegenerative diseases which are one of the primary burdens afflicting an increasingly aging population. In this review, I provide a brief overview of the molecular mechanisms involved in AMPAR trafficking highlighting what is currently known about how these processes change with age and disease. As a particularly well-studied example of AMPAR dysfunction in pathological aging I focus in Alzheimer’s disease (AD) with special emphasis in how the production of neurofibrillary tangles (NFTs) and amyloid-β plaques may contribute to disruption in AMPAR function.
Collapse
Affiliation(s)
- Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
129
|
Abstract
Ionotropic glutamate receptors (AMPA, NMDA, and kainate receptors) play a central role in excitatory glutamatergic signaling throughout the brain. As a result, functional changes, especially long-lasting forms of plasticity, have the potential to profoundly alter neuronal function and the expression of adaptive and pathological behaviors. Thus, alcohol-related adaptations in ionotropic glutamate receptors are of great interest, since they could promote excessive alcohol consumption, even after long-term abstinence. Alcohol- and drug-related adaptations in NMDARs have been recently reviewed, while less is known about kainate receptor adaptations. Thus, we focus here on functional changes in AMPARs, tetramers composed of GluA1-4 subunits. Long-lasting increases or decreases in AMPAR function, the so-called long-term potentiation or depression, have widely been considered to contribute to normal and pathological memory states. In addition, a great deal has been learned about the acute regulation of AMPARs by signaling pathways, scaffolding and auxiliary proteins, intracellular trafficking, and other mechanisms. One important common adaptation is a shift in AMPAR subunit composition from GluA2-containing, calcium-impermeable AMPARs (CIARs) to GluA2-lacking, calcium-permeable AMPARs (CPARs), which is observed under a broad range of conditions including intoxicant exposure or intake, stress, novelty, food deprivation, and ischemia. This shift has the potential to facilitate AMPAR currents, since CPARs have much greater single-channel currents than CIARs, as well as faster AMPAR activation kinetics (although with faster inactivation) and calcium-related activity. Many tools have been developed to interrogate particular aspects of AMPAR signaling, including compounds that selectively inhibit CPARs, raising exciting translational possibilities. In addition, recent studies have used transgenic animals and/or optogenetics to identify AMPAR adaptations in particular cell types and glutamatergic projections, which will provide critical information about the specific circuits that CPARs act within. Also, less is known about the specific nature of alcohol-related AMPAR adaptations, and thus we use other examples that illustrate more fully how particular AMPAR changes might influence intoxicant-related behavior. Thus, by identifying alcohol-related AMPAR adaptations, the specific molecular events that underlie them, and the cells and projections in which they occur, we hope to better inform the development of new therapeutic interventions for addiction.
Collapse
|
130
|
Item-Place Encoding Through Hippocampal Long-Term Depression. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
131
|
Xiong L, Liyue H, Fancai Z, Maoting L, Ya L, Ting H, Zhen Y, Shanshan Z, Wenwen G, Yan T. Effect of decabrominated diphenyl ether exposure on spatial learning and memory, the expression and phosphorylation of hippocampal glutamate receptor subunits in adult Sprague-Dawley rats. J Toxicol Sci 2018; 43:645-657. [DOI: 10.2131/jts.43.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Li Xiong
- School of Public Health, Southwest Medical University, China
| | - Hao Liyue
- School of Public Health, Southwest Medical University, China
| | - Zeng Fancai
- Department of Biochemistry and Molecular Biology, Southwest Medical University, China
| | - Li Maoting
- School of Public Health, Southwest Medical University, China
| | - Li Ya
- School of Public Health, Southwest Medical University, China
| | - He Ting
- School of Public Health, Southwest Medical University, China
| | - Yang Zhen
- School of Public Health, Southwest Medical University, China
| | - Zhu Shanshan
- School of Public Health, Southwest Medical University, China
| | - Gu Wenwen
- School of Public Health, Southwest Medical University, China
| | - Tang Yan
- School of Public Health, Southwest Medical University, China
| |
Collapse
|
132
|
Lisman J. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0260. [PMID: 28093558 DOI: 10.1098/rstb.2016.0260] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 01/03/2023] Open
Abstract
Synapses are complex because they perform multiple functions, including at least six mechanistically different forms of plasticity. Here, I comment on recent developments regarding these processes. (i) Short-term potentiation (STP), a Hebbian process that requires small amounts of synaptic input, appears to make strong contributions to some forms of working memory. (ii) The rules for long-term potentiation (LTP) induction in CA3 have been clarified: induction does not depend obligatorily on backpropagating sodium spikes but, rather, on dendritic branch-specific N-methyl-d-aspartate (NMDA) spikes. (iii) Late LTP, a process that requires a dopamine signal (and is therefore neoHebbian), is mediated by trans-synaptic growth of the synapse, a growth that occurs about an hour after LTP induction. (iv) LTD processes are complex and include both homosynaptic and heterosynaptic forms. (v) Synaptic scaling produced by changes in activity levels are not primarily cell-autonomous, but rather depend on network activity. (vi) The evidence for distance-dependent scaling along the primary dendrite is firm, and a plausible structural-based mechanism is suggested.Ideas about the mechanisms of synaptic function need to take into consideration newly emerging data about synaptic structure. Recent super-resolution studies indicate that glutamatergic synapses are modular (module size 70-80 nm), as predicted by theoretical work. Modules are trans-synaptic structures and have high concentrations of postsynaptic density-95 (PSD-95) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These modules function as quasi-independent loci of AMPA-mediated transmission and may be independently modifiable, suggesting a new understanding of quantal transmission.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity.'
Collapse
Affiliation(s)
- John Lisman
- Biology Department, Brandeis University, Waltham, MA, USA
| |
Collapse
|
133
|
Juárez-Muñoz Y, Ramos-Languren LE, Escobar ML. CaMKII Requirement for in Vivo Insular Cortex LTP Maintenance and CTA Memory Persistence. Front Pharmacol 2017; 8:822. [PMID: 29184500 PMCID: PMC5694558 DOI: 10.3389/fphar.2017.00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
Calcium-calmodulin/dependent protein kinase II (CaMKII) plays an essential role in LTP induction, but since it has the capacity to remain persistently activated even after the decay of external stimuli it has been proposed that it can also be necessary for LTP maintenance and therefore for memory persistence. It has been shown that basolateral amygdaloid nucleus (Bla) stimulation induces long-term potentiation (LTP) in the insular cortex (IC), a neocortical region implicated in the acquisition and retention of conditioned taste aversion (CTA). Our previous studies have demonstrated that induction of LTP in the Bla-IC pathway before CTA training increased the retention of this task. Although it is known that IC-LTP induction and CTA consolidation share similar molecular mechanisms, little is known about the molecular actors that underlie their maintenance. The purpose of the present study was to evaluate the role of CaMKII in the maintenance of in vivo Bla-IC LTP as well as in the persistence of CTA long-term memory (LTM). Our results show that acute microinfusion of myr-CaMKIINtide, a selective inhibitor of CaMKII, in the IC of adult rats during the late-phase of in vivo Bla-IC LTP blocked its maintenance. Moreover, the intracortical inhibition of CaMKII 24 h after CTA acquisition impairs CTA-LTM persistence. Together these results indicate that CaMKII is a central key component for the maintenance of neocortical synaptic plasticity as well as for persistence of CTA-LTM.
Collapse
Affiliation(s)
- Yectivani Juárez-Muñoz
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Laura E Ramos-Languren
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
134
|
Extinction of Contextual Cocaine Memories Requires Ca v1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca v1.2-Dependent Signaling Mechanisms. J Neurosci 2017; 37:11894-11911. [PMID: 29089442 DOI: 10.1523/jneurosci.2397-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories.SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine addiction, can be precipitated by contextual cues, yet the molecular mechanisms required for extinction of these context-specific memories remain poorly understood. Here, we have uncovered a novel and selective role of the Cav1.2 L-type Ca2+ channel and its downstream signaling pathway in the hippocampus that mediate extinction of cocaine conditioned place preference (CPP). We additionally provide evidence that supports a role of Cav1.2 within dopamine D1 receptor-expressing cells of the hippocampus for extinction of cocaine CPP. Therefore, these findings reveal a previously unknown role of Cav1.2 channels within the hippocampus and in D1 receptor-expressing cells in extinction of cocaine-associated memories, providing a framework for further exploration of mechanisms underlying extinction of cocaine-seeking behavior.
Collapse
|
135
|
Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus. Neuron 2017; 96:897-909.e5. [PMID: 29056294 DOI: 10.1016/j.neuron.2017.09.042] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 12/27/2022]
Abstract
Glucagon-like Peptide 1 (GLP-1)-expressing neurons in the hindbrain send robust projections to the paraventricular nucleus of the hypothalamus (PVN), which is involved in the regulation of food intake. Here, we describe that stimulation of GLP-1 afferent fibers within the PVN is sufficient to suppress food intake independent of glutamate release. We also show that GLP-1 receptor (GLP-1R) activation augments excitatory synaptic strength in PVN corticotropin-releasing hormone (CRH) neurons, with GLP-1R activation promoting a protein kinase A (PKA)-dependent signaling cascade leading to phosphorylation of serine S845 on GluA1 AMPA receptors and their trafficking to the plasma membrane. Finally, we show that postnatal depletion of GLP-1R in the PVN increases food intake and causes obesity. This study provides a comprehensive multi-level (circuit, synaptic, and molecular) explanation of how food intake behavior and body weight are regulated by endogenous central GLP-1. VIDEO ABSTRACT.
Collapse
|
136
|
Nygren PJ, Mehta S, Schweppe DK, Langeberg LK, Whiting JL, Weisbrod CR, Bruce JE, Zhang J, Veesler D, Scott JD. Intrinsic disorder within AKAP79 fine-tunes anchored phosphatase activity toward substrates and drug sensitivity. eLife 2017; 6:e30872. [PMID: 28967377 PMCID: PMC5653234 DOI: 10.7554/elife.30872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022] Open
Abstract
Scaffolding the calcium/calmodulin-dependent phosphatase 2B (PP2B, calcineurin) focuses and insulates termination of local second messenger responses. Conformational flexibility in regions of intrinsic disorder within A-kinase anchoring protein 79 (AKAP79) delineates PP2B access to phosphoproteins. Structural analysis by negative-stain electron microscopy (EM) reveals an ensemble of dormant AKAP79-PP2B configurations varying in particle length from 160 to 240 Å. A short-linear interaction motif between residues 337-343 of AKAP79 is the sole PP2B-anchoring determinant sustaining these diverse topologies. Activation with Ca2+/calmodulin engages additional interactive surfaces and condenses these conformational variants into a uniform population with mean length 178 ± 17 Å. This includes a Leu-Lys-Ile-Pro sequence (residues 125-128 of AKAP79) that occupies a binding pocket on PP2B utilized by the immunosuppressive drug cyclosporin. Live-cell imaging with fluorescent activity-sensors infers that this region fine-tunes calcium responsiveness and drug sensitivity of the anchored phosphatase.
Collapse
Affiliation(s)
- Patrick J Nygren
- Department of PharmacologyHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Sohum Mehta
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
| | - Devin K Schweppe
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Lorene K Langeberg
- Department of PharmacologyHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Jennifer L Whiting
- Department of PharmacologyHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Chad R Weisbrod
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUnited States
| | - James E Bruce
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Jin Zhang
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
| | - David Veesler
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - John D Scott
- Department of PharmacologyHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
137
|
Caffino L, Piva A, Mottarlini F, Di Chio M, Giannotti G, Chiamulera C, Fumagalli F. Ketamine Self-Administration Elevates αCaMKII Autophosphorylation in Mood and Reward-Related Brain Regions in Rats. Mol Neurobiol 2017; 55:5453-5461. [PMID: 28948570 DOI: 10.1007/s12035-017-0772-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
Modulation of αCaMKII expression and phosphorylation is a feature shared by drugs of abuse with different mechanisms of action. Accordingly, we investigated whether αCaMKII expression and activation could be altered by self-administration of ketamine, a non-competitive antagonist of the NMDA glutamate receptor, with antidepressant and psychotomimetic as well as reinforcing properties. Rats self-administered ketamine at a sub-anesthetic dose for 43 days and were sacrificed 24 h after the last drug exposure; reward-related brain regions, such as medial prefrontal cortex (PFC), ventral striatum (vS), and hippocampus (Hip), were used for the measurement of αCaMKII-mediated signaling. αCaMKII phosphorylation was increased in these brain regions suggesting that ketamine, similarly to other reinforcers, activates this kinase. We next measured the two main targets of αCaMKII, i.e., GluN2B (S1303) and GluA1 (S831), and found increased activation of GluN2B (S1303) together with reduced phosphorylation of GluA1 (S831). Since GluN2B, via inhibition of ERK, regulates the membrane expression of GluA1, we measured ERK2 phosphorylation in the crude synaptosomal fraction of these brain regions, which was significantly reduced suggesting that ketamine-induced phosphorylation of αCaMKII promotes GluN2B (S1303) phosphorylation that, in turn, inhibits ERK 2 signaling, an effect that results in reduced membrane expression and phosphorylation of GluA1. Taken together, our findings point to αCaMKII autophosphorylation as a critical signature of ketamine self-administration providing an intracellular mechanism to explain the different effects caused by αCaMKII autophosphorylation on the post-synaptic GluN2B- and GluA1-mediated functions. These data add ketamine to the list of drugs of abuse converging on αCaMKII to sustain their addictive properties.
Collapse
Affiliation(s)
- Lucia Caffino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Alessandro Piva
- Neuropsychopharmacology Laboratory, Section Pharmacology, Department of Diagnostic and Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marzia Di Chio
- Neuropsychopharmacology Laboratory, Section Pharmacology, Department of Diagnostic and Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Laboratory, Section Pharmacology, Department of Diagnostic and Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
138
|
Wang Q, Yin P, Yu B, Zhao Z, Richter-Levin G, Yu L, Cao X. Down-regulation of dorsal striatal αCaMKII causes striatum-related cognitive and synaptic disorders. Exp Neurol 2017; 298:112-121. [PMID: 28890075 DOI: 10.1016/j.expneurol.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/25/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Alpha calcium/calmodulin dependent protein kinase II (αCaMKII) is a serine/threonine protein kinase which is expressed abundantly in dorsal striatum and is highly involved in the corticostriatal synaptic plasticity. Nevertheless, it currently remains unclear whether and how αCaMKII plays a in the striatum-related neural disorders. To address the above issue, lentivirus-mediated short hairpin RNA (shRNA) was used to silence the expression of αCaMKII gene in the dorsal striatum of mice. As a consequence of down-regulation of dorsal striatal αCaMKII expression, we observed defective motor skill learning in accelerating rotarod and response learning in water cross maze. Furthermore, impaired corticostriatal basal transmission and long-term potentiation (LTP), which correlated with the deficits in dorsal striatum-related cognition, were also detected in the αCaMKII-shRNA mice. Consistent with the above results, αCaMKII-shRNA mice exhibited a remarkable decline in GluA1-Ser831 and GluA1-Ser845 phosphorylation levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and a decline in the expression levels of N-methyl-d-aspartic acid receptor (NMDAR) subunits NR1, NR2A and NR2B. Taken together, αCaMKII down-regulation caused dorsal striatum-related cognitive disorders by inhibiting corticostriatal synaptic plasticity, which resulted from dysfunction of AMPARs and NMDARs. Our findings demonstrate for the first time an important role of αCaMKII in striatum-related neural disorders and provide further evidence for the proposition that corticostriatal LTP underlies aspects of dorsal striatum-related cognition.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China
| | - Pengcheng Yin
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China
| | - Bin Yu
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China
| | - Gal Richter-Levin
- "Sagol" Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | - Lu Yu
- Department of Chinese Internal Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
139
|
Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex. J Neurosci 2017; 37:8534-8548. [PMID: 28765333 DOI: 10.1523/jneurosci.0925-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 02/02/2023] Open
Abstract
Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC.SIGNIFICANCE STATEMENT Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC.
Collapse
|
140
|
Gutierrez-Castellanos N, Da Silva-Matos CM, Zhou K, Canto CB, Renner MC, Koene LMC, Ozyildirim O, Sprengel R, Kessels HW, De Zeeuw CI. Motor Learning Requires Purkinje Cell Synaptic Potentiation through Activation of AMPA-Receptor Subunit GluA3. Neuron 2017; 93:409-424. [PMID: 28103481 PMCID: PMC5263704 DOI: 10.1016/j.neuron.2016.11.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that cerebellar long-term potentiation (LTP) is necessary for procedural learning. However, little is known about its underlying molecular mechanisms. Whereas AMPA receptor (AMPAR) subunit rules for synaptic plasticity have been extensively studied in relation to declarative learning, it is unclear whether these rules apply to cerebellum-dependent motor learning. Here we show that LTP at the parallel-fiber-to-Purkinje-cell synapse and adaptation of the vestibulo-ocular reflex depend not on GluA1- but on GluA3-containing AMPARs. In contrast to the classic form of LTP implicated in declarative memory formation, this form of LTP does not require GluA1-AMPAR trafficking but rather requires changes in open-channel probability of GluA3-AMPARs mediated by cAMP signaling and activation of the protein directly activated by cAMP (Epac). We conclude that vestibulo-cerebellar motor learning is the first form of memory acquisition shown to depend on GluA3-dependent synaptic potentiation by increasing single-channel conductance. Cerebellar learning depends on expression of GluA3, but not GluA1, in Purkinje cells GluA3 is required to induce LTP, but not LTD, at PF-PC synapses GluA3-dependent potentiation involves a cAMP-driven change in channel conductance GluA3-mediated LTP and learning are induced via cAMP-mediated Epac activation
Collapse
Affiliation(s)
- Nicolas Gutierrez-Castellanos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| | - Carla M Da Silva-Matos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| | - Cathrin B Canto
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Maria C Renner
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Linda M C Koene
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Ozgecan Ozyildirim
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Helmut W Kessels
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands.
| | - Chris I De Zeeuw
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
141
|
Matsuzawa T, Zalányi L, Kiss T, Érdi P. Multi-scale modeling of altered synaptic plasticity related to Amyloid β effects. Neural Netw 2017; 93:230-239. [PMID: 28672189 DOI: 10.1016/j.neunet.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/16/2017] [Accepted: 06/04/2017] [Indexed: 11/25/2022]
Abstract
As suggested by Palop and Mucke (2010) pathologically elevated β-amyloid (Aβ) impairs long term potentiation (LTP) and enhances long term depression (LTD) possible underlying mechanisms in Alzheimer's Disease (AD). In the present paper we adopt and further elaborate a phenomenological computational model of bidirectional plasticity based on the calcium control hypothesis of Shouval et al. (2002). First, to account for Aβ effects the activation function Ω was modified assuming competition between LTP and LTD, and parameter sets were identified that well describe both normal and pathological synaptic plasticity processes. Second, a biophysically plausible kinetic model of bidirectional synaptic plasticity by D'Alcantara et al. (2003) was used to support findings of the phenomenological model and to further explain underlying kinetic processes. Model fitting pointed out molecular contributors, particularly calcineurin and type 1 protein phosphatase that might contribute to observed physiological disturbances in AD.
Collapse
Affiliation(s)
- Takumi Matsuzawa
- Center for Complex Systems Studies, Kalamazoo College, 1200 Academy Street, MI 49006, Kalamazoo, USA.
| | - László Zalányi
- Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.
| | - Tamás Kiss
- Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.
| | - Péter Érdi
- Center for Complex Systems Studies, Kalamazoo College, 1200 Academy Street, MI 49006, Kalamazoo, USA; Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.
| |
Collapse
|
142
|
Gökçek-Saraç Ç, Er H, Kencebay Manas C, Kantar Gok D, Özen Ş, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int J Radiat Biol 2017; 93:980-989. [DOI: 10.1080/09553002.2017.1337279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Faculty of Engineering, Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey
| | - Hakan Er
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ceren Kencebay Manas
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Şükrü Özen
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
143
|
Lameth J, Gervais A, Colin C, Lévêque P, Jay TM, Edeline JM, Mallat M. Acute Neuroinflammation Promotes Cell Responses to 1800 MHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotox Res 2017; 32:444-459. [PMID: 28578480 DOI: 10.1007/s12640-017-9756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023]
Abstract
Mobile phone communications are conveyed by radiofrequency (RF) electromagnetic fields, including pulse-modulated global system for mobile communications (GSM)-1800 MHz, whose effects on the CNS affected by pathological states remain to be specified. Here, we investigated whether a 2-h head-only exposure to GSM-1800 MHz could impact on a neuroinflammatory reaction triggered by lipopolysaccharide (LPS) in 2-week-old or adult rats. We focused on the cerebral cortex in which the specific absorption rate (SAR) of RF averaged 2.9 W/kg. In developing rats, 24 h after GSM exposure, the levels of cortical interleukin-1ß (IL1ß) or NOX2 NADPH oxidase transcripts were reduced by 50 to 60%, in comparison with sham-exposed animals (SAR = 0), as assessed by RT-qPCR. Adult rats exposed to GSM also showed a 50% reduction in the level of IL1ß mRNA, but they differed from developing rats by the lack of NOX2 gene suppression and by displaying a significant growth response of microglial cell processes imaged in anti-Iba1-stained cortical sections. As neuroinflammation is often associated with changes in excitatory neurotransmission, we evaluated changes in expression and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult cerebral cortex by Western blot analyses. We found that GSM exposure decreased phosphorylation at two residues on the GluA1 AMPAR subunit (serine 831 and 845). The GSM-induced changes in gene expressions, microglia, and GluA1 phosphorylation did not persist 72 h after RF exposure and were not observed in the absence of LPS pretreatment. Together, our data provide evidence that GSM-1800 MHz can modulate CNS cell responses triggered by an acute neuroinflammatory state.
Collapse
Affiliation(s)
- Julie Lameth
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Annie Gervais
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Catherine Colin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Philippe Lévêque
- Université de Limoges, CNRS, XLIM, UMR 7252, 123 avenue Albert Thomas, F-87000, Limoges, France
| | - Thérèse M Jay
- Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR_S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Jean-Marc Edeline
- Paris Saclay Institute of Neuroscience, Neuro-PSI, UMR 9197 CNRS, Université Paris-Sud, 91405, Orsay cedex, France
| | - Michel Mallat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France.
| |
Collapse
|
144
|
Greger IH, Watson JF, Cull-Candy SG. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 2017; 94:713-730. [DOI: 10.1016/j.neuron.2017.04.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
145
|
Queenan BN, Ryan TJ, Gazzaniga M, Gallistel CR. On the research of time past: the hunt for the substrate of memory. Ann N Y Acad Sci 2017; 1396:108-125. [PMID: 28548457 PMCID: PMC5448307 DOI: 10.1111/nyas.13348] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The search for memory is one of the oldest quests in written human history. For at least two millennia, we have tried to understand how we learn and remember. We have gradually converged on the brain and looked inside it to find the basis of knowledge, the trace of memory. The search for memory has been conducted on multiple levels, from the organ to the cell to the synapse, and has been distributed across disciplines with less chronological or intellectual overlap than one might hope. Frequently, the study of the mind and its memories has been severely restricted by technological or philosophical limitations. However, in the last few years, certain technologies have emerged, offering new routes of inquiry into the basis of memory. The 2016 Kavli Futures Symposium was devoted to the past and future of memory studies. At the workshop, participants evaluated the logic and data underlying the existing and emerging theories of memory. In this paper, written in the spirit of the workshop, we briefly review the history of the hunt for memory, summarizing some of the key debates at each level of spatial resolution. We then discuss the exciting new opportunities to unravel the mystery of memory.
Collapse
Affiliation(s)
- Bridget N. Queenan
- Neuroscience Research Institute, Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Tomás J. Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael Gazzaniga
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Charles R. Gallistel
- Rutgers Center for Cognitive Science, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
146
|
Seeger C, Talibov VO, Danielson UH. Biophysical analysis of the dynamics of calmodulin interactions with neurogranin and Ca 2+ /calmodulin-dependent kinase II. J Mol Recognit 2017; 30. [PMID: 28449373 PMCID: PMC5518211 DOI: 10.1002/jmr.2621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/26/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023]
Abstract
Calmodulin (CaM) functions depend on interactions with CaM‐binding proteins, regulated by
Ca2+. Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM‐binding region of
Ca2+/calmodulin‐dependent kinase II (CaMKII290−309) have been studied using biophysical methods. These proteins have opposite
Ca2+ dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that
Ca2+ and CaM interact very rapidly, and with moderate affinity (
KDSPR=3μM). Calmodulin‐CaMKII290−309 interactions were only detected in the presence of
Ca2+, exhibiting fast kinetics and nanomolar affinity (
KDSPR=7.1nM). The CaM–Ng interaction had higher affinity under
Ca2+‐depleted (
KDSPR=480nM,k1=3.4×105M−1s−1 and k−1 = 1.6 × 10−1s−1) than
Ca2+‐saturated conditions (
KDSPR=19μM). The IQ motif of Ng (Ng27−50) had similar affinity for CaM as Ng under
Ca2+‐saturated conditions (
KDSPR=14μM), but no interaction was seen under
Ca2+‐depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng (
KDMST=890nM) and CaMKII290−309(
KDMST=190nM) interactions. Although CaMKII290−309 showed expected interaction characteristics, they may be different for full‐length CaMKII. The data for full‐length Ng, but not Ng27−50, agree with the current model on Ng regulation of
Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Christian Seeger
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.,Beactica AB, Uppsala, Sweden
| | | | - U Helena Danielson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.,Beactica AB, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
147
|
Zhang Y, Gao B, Zheng F, Lu S, Li Y, Xiong Y, Yang Q, Yang Y, Fu P, Xiao F, Wang X. The Phosphodiesterase 10A Inhibitor PF-2545920 Enhances Hippocampal Excitability and Seizure Activity Involving the Upregulation of GluA1 and NR2A in Post-synaptic Densities. Front Mol Neurosci 2017; 10:100. [PMID: 28439226 PMCID: PMC5383654 DOI: 10.3389/fnmol.2017.00100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
Phosphodiesterase regulates the homeostasis of cAMP and cGMP, which increase the strength of excitatory neural circuits and/or decrease inhibitory synaptic plasticity. Abnormally, synchronized synaptic transmission in the brain leads to seizures. A phosphodiesterase 10A (PDE10A) inhibitor PF-2545920 has recently attracted attention as a potential therapy for neurological and psychiatric disorders. We hypothesized that PF-2545920 plays an important role in status epilepticus (SE) and investigated the underlying mechanisms. PDE10A was primarily located in neurons, and PDE10A expression increased significantly in patients with temporal lobe epilepsy. PF-2545920 enhanced the hyperexcitability of pyramidal neurons in rat CA1, as measured by the frequency of action potentials and miniature excitatory post-synaptic current. GluA1 and NR2A expression also increased significantly in post-synaptic densities, with or without SE in rats treated with PF-2545920. The ratio of p-GluA1/GluA1 increased in the presence of PF-2545920 in groups with SE. Our results suggest that PF-2545920 facilitates seizure activity via the intracellular redistribution of GluA1 and NR2A in the hippocampus. The upregulation of p-GluA1 may play an important role in trafficking GluA1 to post-synaptic densities. The data suggest it would be detrimental to use the drug in seizure patients and might cause neuronal hyperexcitability in non-epileptic individuals.
Collapse
Affiliation(s)
- Yanke Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Baobing Gao
- Department of Neurology, Chongqing General HospitalChongqing, China
| | - Fangshuo Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Shanshan Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yan Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Pengfei Fu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China.,Center of Epilepsy, Beijing Institute for Brain DisordersBeijing, China.,Chongqing Key Laboratory of NeurologyChongqing, China
| |
Collapse
|
148
|
Caioli S, Severini C, Ciotti T, Florenzano F, Pimpinella D, Petrocchi Passeri P, Balboni G, Polisca P, Lattanzi R, Nisticò R, Negri L, Zona C. Prokineticin system modulation as a new target to counteract the amyloid beta toxicity induced by glutamatergic alterations in an in vitro model of Alzheimer's disease. Neuropharmacology 2017; 116:82-97. [DOI: 10.1016/j.neuropharm.2016.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 12/28/2022]
|
149
|
Kugathasan P, Waller J, Westrich L, Abdourahman A, Tamm JA, Pehrson AL, Dale E, Gulinello M, Sanchez C, Li Y. In vivo and in vitro effects of vortioxetine on molecules associated with neuroplasticity. J Psychopharmacol 2017; 31:365-376. [PMID: 27678087 DOI: 10.1177/0269881116667710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Li
- 1 Lundbeck Research, Paramus, NJ, USA
| |
Collapse
|
150
|
Sensitizing exposure to amphetamine increases AMPA receptor phosphorylation without increasing cell surface expression in the rat nucleus accumbens. Neuropharmacology 2017; 117:328-337. [PMID: 28223211 DOI: 10.1016/j.neuropharm.2017.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/21/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022]
Abstract
Exposure to psychostimulants like cocaine or amphetamine leads to long-lasting sensitization of their behavioral and neurochemical effects. Here we characterized changes in AMPA receptor distribution and phosphorylation state in the rat nucleus accumbens (NAcc) weeks after amphetamine exposure to assess their potential contribution to sensitization by this drug. Using protein cross-linking, biochemical, subcellular fractionation, and slice electrophysiological approaches in the NAcc, we found that, unlike cocaine, previous exposure to amphetamine did not increase cell surface levels of either GluA1 or GluA2 AMPA receptor subunits, redistribution of these subunits to the synaptic or perisynaptic cellular membrane domains, protein-protein associations required to support the accumulation and retention of AMPA receptors in the PSD, or the peak amplitude of AMPA receptor mediated mEPSCs recorded in NAcc slices. On the other hand, exposure to amphetamine significantly slowed mEPSC decay times and increased levels in the PSD of PKA and CaMKII as well as phosphorylation by these kinases of the GluA1 S845 and S831 residues selectively in this cellular compartment. As the latter effects are known to respectively regulate channel open probability and duration as well as conductance, they provide a novel mechanism that could contribute to the long-lasting AMPA receptor dependent expression of sensitization by amphetamine. Rather than increase the number of surface and synaptic AMPA receptors as with cocaine, this mechanism could increase NAcc medium spiny neuron reactivity to glutamate afferents by increasing the phosphorylation state of critical regulatory sites in the AMPA receptor GluA1 subunit in the PSD.
Collapse
|