101
|
Brachner A, Sasgary S, Pirker C, Rodgarkia C, Mikula M, Mikulits W, Bergmeister H, Setinek U, Wieser M, Chin SF, Caldas C, Micksche M, Cerni C, Berger W. Telomerase- and Alternative Telomere Lengthening–Independent Telomere Stabilization in a Metastasis-Derived Human Non–Small Cell Lung Cancer Cell Line: Effect of Ectopic hTERT. Cancer Res 2006; 66:3584-92. [PMID: 16585183 DOI: 10.1158/0008-5472.can-05-2839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the majority of human malignancies, maintenance of telomeres is achieved by reactivation of telomerase, whereas a smaller fraction uses an alternative telomere lengthening (ALT) mechanism. Here, we used 16 non-small cell lung cancer (NSCLC) cell lines to investigate telomere stabilization mechanisms and their effect on tumor aggressiveness. Three of 16 NSCLC cell lines (VL-9, SK-LU-1, and VL-7) lacked telomerase activity, correlating with significantly reduced tumorigenicity in vitro and in vivo. Of the three telomerase-negative cell lines, only SK-LU-1 displayed characteristics of an ALT mechanism (i.e., highly heterogeneous telomeres and ALT-associated promyelocytic leukemia bodies). VL-9 cells gained telomerase during in vitro propagation, indicating incomplete immortalization in vivo. In contrast, NSCLC metastasis-derived VL-7 cells remained telomerase and ALT negative up to high passage numbers and following transplantation in severe combined immunodeficient mice. Telomeres of VL-7 cells were homogeneously short, and chromosomal instability (CIN) was comparable with most telomerase-positive cell lines. This indicates the presence of an efficient telomere stabilization mechanism different from telomerase and ALT in VL-7 cells. To test the effect of ectopic telomerase reverse transcriptase (hTERT) in these unique ALT- and telomerase-negative tumor backgrounds, hTERT was transfected into VL-7 cells. The activation of telomerase led to an excessively rapid gain of telomeric sequences resulting in very long ( approximately 14 kb), uniform telomeres. Additionally, hTERT expression induced a more aggressive growth behavior in vitro and in vivo without altering the level of CIN. These data provide further evidence for a direct oncogenic activity of hTERT not based on the inhibition of CIN.
Collapse
Affiliation(s)
- Andreas Brachner
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Ogawa D, Nomiyama T, Nakamachi T, Heywood EB, Stone JF, Berger JP, Law RE, Bruemmer D. Activation of peroxisome proliferator-activated receptor gamma suppresses telomerase activity in vascular smooth muscle cells. Circ Res 2006; 98:e50-9. [PMID: 16556873 DOI: 10.1161/01.res.0000218271.93076.c3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation of the peroxisome proliferator-activated receptor (PPAR) gamma, the molecular target for insulin sensitizing thiazolidinediones used in patients with type 2 diabetes, inhibits vascular smooth muscle cell (VSMC) proliferation and prevents atherosclerosis and neointima formation. Emerging evidence indicates that telomerase controls key cellular functions including replicative lifespan, differentiation, and cell proliferation. In the present study, we demonstrate that ligand-induced and constitutive PPARgamma activation inhibits telomerase activity in VSMCs. Telomerase reverse transcriptase (TERT) confers the catalytic activity of telomerase, and PPARgamma ligands inhibit TERT expression through a receptor-dependent suppression of the TERT promoter. 5'-deletion analysis, site-directed mutagenesis, and transactivation studies using overexpression of Ets-1 revealed that suppression of TERT transcription by PPARgamma is mediated through negative cross-talk with Ets-1-dependent transactivation of the TERT promoter. Chromatin immunoprecipitation assays further demonstrated that PPARgamma ligands inhibit Ets-1 binding to the TERT promoter, which is mediated at least in part through an inhibition of Ets-1 expression by PPARgamma ligands. In VSMCs overexpressing TERT, the efficacy of PPARgamma ligands to inhibit cell proliferation is lost, indicating that TERT constitutes an important molecular target for the antiproliferative effects of PPARgamma ligands. Finally, we demonstrate that telomerase activation during the proliferative response after vascular injury is effectively inhibited by PPARgamma ligands. These findings provide a previously unrecognized mechanism for the antiproliferative effects of PPARgamma ligands and support the concept that PPARgamma ligands may constitute a novel therapeutic approach for the treatment of proliferative cardiovascular diseases.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Olaussen KA, Dubrana K, Domont J, Spano JP, Sabatier L, Soria JC. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol Hematol 2006; 57:191-214. [PMID: 16469501 DOI: 10.1016/j.critrevonc.2005.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 12/15/2022] Open
Abstract
In most human cancers, the telomere erosion problem has been bypassed through the activation of a telomere maintenance system (usually activation of telomerase). Therefore, telomere and telomerase are attractive targets for anti-cancer therapeutic interventions. Here, we review a large panel of strategies that have been explored to date, from small inhibitors of the catalytic sub-unit of telomerase to anti-telomerase immunotherapy and gene therapy. The many positive results that are reported from anti-telomere/telomerase assays suggest a prudent optimism for a possible clinical application in a close future. However, we discuss some of the main limits for these approaches of antitumour drug development and why significant work remains before a clinically useful drug can be proposed to patients.
Collapse
Affiliation(s)
- Ken André Olaussen
- Laboratory of Radiobiology and Oncology, DSV/DRR/LRO, CEA, Fontenay aux Roses, France
| | | | | | | | | | | |
Collapse
|
104
|
Ungrin MD, Harrington L. Strict control of telomerase activation using Cre-mediated inversion. BMC Biotechnol 2006; 6:10. [PMID: 16504006 PMCID: PMC1403769 DOI: 10.1186/1472-6750-6-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/20/2006] [Indexed: 01/25/2023] Open
Abstract
Background Human cells appear exquisitely sensitive to the levels of hTERT expression, the telomerase reverse transcriptase. In primary cells that do not express hTERT, telomeres erode with each successive cell division, leading to the eventual loss of telomere DNA, an induction of a telomere DNA damage response, and the onset of cellular senescence or crisis. In some instances, an average of less than one appropriately spliced hTERT transcript per cell appears sufficient to restore telomerase activity and telomere maintenance, and overcome finite replicative capacity. Results To underscore this sensitivity, we showed that a widely used system of transcriptional induction involving ecdysone (muristerone) led to sufficient expression of hTERT to immortalize human fibroblasts, even in the absence of induction. To permit tightly regulated expression of hTERT, or any other gene of interest, we developed a method of transcriptional control using an invertible expression cassette flanked by antiparallel loxP recombination sites. When introduced into human fibroblasts with the hTERT cDNA positioned in the opposite orientation relative to a constitutively active promoter, no telomerase activity was detected, and the cell population retained a mortal phenotype. Upon inversion of the hTERT cDNA to a transcriptionally competent orientation via the action of Cre recombinase, cells acquired telomerase activity, telomere DNA was replenished, and the population was immortalized. Further, using expression of a fluorescent protein marker, we demonstrated the ability to repeatedly invert specific transcripts between an active and inactive state in an otherwise isogenic cell background. Conclusion This binary expression system thus provides a useful genetic means to strictly regulate the expression of a given gene, or to control the expression of at least two different genes in a mutually exclusive manner.
Collapse
Affiliation(s)
- Mark D Ungrin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, M5S 3E1, USA
| | - Lea Harrington
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, and Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON M5G 2C1, USA
| |
Collapse
|
105
|
Miki A, Narushima M, Okitsu T, Takeno Y, Soto-Gutierrez A, Rivas-Carrillo JD, Navarro-Alvarez N, Chen Y, Tanaka K, Noguchi H, Matsumoto S, Kohara M, Lakey JRT, Kobayashi E, Tanaka N, Kobayashi N. Maintenance of mouse, rat, and pig pancreatic islet functions by coculture with human islet-derived fibroblasts. Cell Transplant 2006; 15:325-334. [PMID: 16898226 DOI: 10.3727/000000006783981882] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Development of an efficient preculture system of islets is ideal. Toward that goal, we constructed a human pancreatic islet-derived fibroblast cell line MNNK-1 for a source as a coculture system for freshly isolated islets to maintain islet functions. Human pancreatic islet cells were nucleofected with a plasmid vector pYK-1 expressing simian virus 40 large T antigen gene (SV40T) and hygromycin resistance gene (HygroR). One of the transduced cell lines, MNNK-1, was established and served as a feeder cell in the coculture for freshly isolated mouse, rat, and pig islets. Morphology, viability, and glucose-responding insulin secretion were analyzed in the coculture system. MNNK-1 cells were morphologically spindle shaped and were negative for pancreatic endocrine markers. MNNK-1 cells were positive for alpha-smooth muscle actin and collagen type I and produced fibroblast growth factor. Coculture of the mouse, rat, and pig islets with MNNK-1 cells maintained their viability and insulin secretion with glucose responsiveness. A human pancreatic islet-derived fibroblast cell line MNNK-1 was established. MNNK-1 cells were a useful means for maintaining morphology and insulin secretion of islets in the coculture system.
Collapse
Affiliation(s)
- Atsushi Miki
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Betts DH, Perrault SD, Petrik J, Lin L, Favetta LA, Keefer CL, King WA. Telomere length analysis in goat clones and their offspring. Mol Reprod Dev 2005; 72:461-70. [PMID: 16142795 DOI: 10.1002/mrd.20371] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Incomplete epigenetic reprogramming of the donor genome is believed to be the cause behind the high rate of developmental mortality and post-natal anomalies observed in animal clones. It appears that overt phenotypic abnormalities are not transmitted to their progeny suggesting that epigenetic errors are corrected in the germline of clones. Here, we show variation in telomere lengths among Nigerian dwarf goat clones derived from different somatic cell types and that the offspring of two male clones have significantly shorter telomere lengths than age-matched noncloned animals. Telomere lengths were significantly shorter in skin biopsies of goat clones derived from adult granulosa cells compared to those measured for controls. Telomere lengths were highly variable in male goat clones reconstructed from fetal fibroblasts but their mean terminal repeat fragment (TRF) length was within normal range of normal goats. However, in the progeny of two male clones, mean TRF lengths were considerably shorter than age-matched controls for both skin and leukocyte samples. Evidence for possible inheritance of shortened telomeres was obtained by measuring telomere lengths in testicular biopsies obtained from the clones, which when compared with those from noncloned animals of a similar age were significantly shorter. The offspring exhibited telomere lengths intermediate to the TRF values obtained for their cloned fathers' and age-matched control testes. These results demonstrate that telomere length reprogramming in clones is dependent on the type of donor cell used and that the progeny of clones may inherit telomere length alterations acquired through the cloning procedure.
Collapse
Affiliation(s)
- Dean H Betts
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
107
|
Simpson DA, Livanos E, Heffernan TP, Kaufmann WK. Telomerase expression is sufficient for chromosomal integrity in cells lacking p53 dependent G1 checkpoint function. J Carcinog 2005; 4:18. [PMID: 16209708 PMCID: PMC1262734 DOI: 10.1186/1477-3163-4-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 10/06/2005] [Indexed: 11/23/2022] Open
Abstract
Background Secondary cultures of human fibroblasts display a finite lifespan ending at senescence. Loss of p53 function by mutation or viral oncogene expression bypasses senescence, allowing cell division to continue for an additional 10 – 20 doublings. During this time chromosomal aberrations seen in mitotic cells increase while DNA damage and decatenation checkpoint functions in G2 cells decrease. Methods To explore this complex interplay between chromosomal instability and checkpoint dysfunction, human fibroblast lines were derived that expressed HPV16E6 oncoprotein or dominant-negative alleles of p53 (A143V and H179Q) with or without the catalytic subunit of telomerase. Results Cells with normal p53 function displayed 86 – 93% G1 arrest after exposure to 1.5 Gy ionizing radiation (IR). Expression of HPV16E6 or p53-H179Q severely attenuated G1 checkpoint function (3 – 20% arrest) while p53-A143V expression induced intermediate attenuation (55 – 57% arrest) irrespective of telomerase expression. All cell lines, regardless of telomerase expression or p53 status, exhibited a normal DNA damage G2 checkpoint response following exposure to 1.5 Gy IR prior to the senescence checkpoint. As telomerase-negative cells bypassed senescence, the frequencies of chromosomal aberrations increased generally congruent with attenuation of G2 checkpoint function. Telomerase expression allowed cells with defective p53 function to grow >175 doublings without chromosomal aberrations or attenuation of G2 checkpoint function. Conclusion Thus, chromosomal instability in cells with defective p53 function appears to depend upon telomere erosion not loss of the DNA damage induced G1 checkpoint.
Collapse
Affiliation(s)
- Dennis A Simpson
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA
| | - Elizabeth Livanos
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA
| | - Timothy P Heffernan
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA
| | - William K Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA
| |
Collapse
|
108
|
Lue NF, Bosoy D, Moriarty TJ, Autexier C, Altman B, Leng S. Telomerase can act as a template- and RNA-independent terminal transferase. Proc Natl Acad Sci U S A 2005; 102:9778-83. [PMID: 15994230 PMCID: PMC1174988 DOI: 10.1073/pnas.0502252102] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Telomerase is a special reverse transcriptase that extends one strand of the telomere repeat by using a template embedded in an RNA subunit. Like other polymerases, telomerase is believed to use a pair of divalent metal ions (coordinated by a triad of aspartic acid residues) for catalyzing nucleotide addition. Here we show that, in the presence of manganese, both yeast and human telomerase can switch to a template- and RNA-independent mode of DNA synthesis, acting in effect as a terminal transferase. Even as a terminal transferase, yeast telomerase retains a species-dependent preference for GT-rich, telomere-like DNA on the 5' end of the substrate. The terminal transferase activity of telomerase may account for some of the hitherto unexplained effects of telomerase overexpression on cell physiology.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
109
|
White MK, Gordon J, Reiss K, Del Valle L, Croul S, Giordano A, Darbinyan A, Khalili K. Human polyomaviruses and brain tumors. ACTA ACUST UNITED AC 2005; 50:69-85. [PMID: 15982744 DOI: 10.1016/j.brainresrev.2005.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/12/2005] [Accepted: 04/21/2005] [Indexed: 12/25/2022]
Abstract
Polyomaviruses are DNA tumor viruses with small circular genomes. Three polyomaviruses have captured attention with regard to their potential role in the development of human brain tumors: JC virus (JCV), BK virus (BKV), and simian vacuolating virus 40 (SV40). JCV is a neurotropic polyomavirus that is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system occurring mainly in AIDS patients. BKV is the causative agent of polyomavirus-associated nephropathy (PVN) which occurs after renal transplantation when BKV reactivates from a latent state during immunosuppressive therapy to cause allograft failure. SV40, originating in rhesus monkeys, gained notoriety when it entered the human population via contaminated polio vaccines. All three viruses are highly oncogenic when injected into the brain of experimental animals. Reports indicate that these viruses, especially JCV, are associated with brain tumors and other cancers in humans as evidenced from the analysis of clinical samples for the presence of viral DNA sequences and expression of viral proteins. Human polyomaviruses encode three non-capsid regulatory proteins: large T-antigen, small t-antigen, and agnoprotein. These proteins interact with a number of cellular target proteins to exert effects that dysregulate pathways involved in the control of various host cell functions including the cell cycle, DNA repair, and others. In this review, we describe the three polyomaviruses, their abilities to cause brain and other tumors in experimental animals, the evidence for an association with human brain tumors, and the latest findings on the molecular mechanisms of their actions.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Kang SK, Putnam L, Dufour J, Ylostalo J, Jung JS, Bunnell BA. Expression of telomerase extends the lifespan and enhances osteogenic differentiation of adipose tissue-derived stromal cells. Stem Cells 2005; 22:1356-72. [PMID: 15579653 DOI: 10.1634/stemcells.2004-0023] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Expression of TERT, the catalytic protein subunit of the telomerase complex, can be used to generate cell lines that expand indefinitely and retain multilineage potential. We have created immortal adipose stromal cell lines (ATSCs) by stably transducing nonhuman primate-derived ATSCs with a retroviral vector expressing TERT. Transduced cells (ATSC-TERT) had an increased level of telomerase activity and increased mean telomere length in the absence of malignant cellular transformation. Long-term culture of the ATSC-TERT cells demonstrated that the cells retain the ability to undergo differentiation along multiple lineages such as adipogenic, chondrogenic, and neurogenic. Untransduced cells demonstrated markedly reduced multilineage and self-renewal potentials after 12 passages in vitro. To determine the functional role of telomerase during osteogenesis, we examined osteogenic differentiation potential of ATSC-TERT cells in vitro. Compared with naive ATSCs, which typically begin to accumulate calcium after 3-4 weeks of induction by osteogenic differentiation medium, ATSC-TERT cells were found to accumulate significant amounts of calcium after only 1 week of culture in osteogenic induction medium. The cells have increased production of osteoblastic markers, such as AP2, osteoblast-specific factor 2, chondroitin sulfate proteoglycan 4, and the tumor necrosis factor receptor superfamily, compared with control ATSCs, indicating that telomerase expression may aid in maintaining the osteogenic stem cell pool during in vitro expansion. These results show that ectopic expression of the telomerase gene in nonhuman primate ATSCs prevents senescence-associated impairment of osteoblast functions and that telomerase therapy may be a useful strategy for bone regeneration and repair.
Collapse
Affiliation(s)
- Soo Kyung Kang
- Division of Gene Therapy, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA 70433, USA
| | | | | | | | | | | |
Collapse
|
111
|
Gilley D, Tanaka H, Herbert BS. Telomere dysfunction in aging and cancer. Int J Biochem Cell Biol 2005; 37:1000-13. [PMID: 15743674 DOI: 10.1016/j.biocel.2004.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/20/2004] [Accepted: 09/02/2004] [Indexed: 11/26/2022]
Abstract
Telomeres are unique DNA-protein structures that contain noncoding TTAGGG repeats and telomere-associated proteins. These specialized structures are essential for maintaining genomic integrity. Alterations that lead to the disruption of telomere maintenance result in chromosome end-to-end fusions and/or ends being recognized as double-strand breaks. A large body of evidence suggests that the cell responds to dysfunctional telomeres by undergoing senescence, apoptosis, or genomic instability. In conjunction with other predisposing mechanisms, the genomic instability encountered in preimmortal cells due to dysfunctional or uncapped telomeres might lead to cancer. Furthermore, telomere dysfunction has been proposed to play critical roles in aging as well as cancer progression. Conversely, recent evidence has shown that targeting telomere maintenance mechanisms and inducing telomere dysfunction in cancer cells by inhibiting telomerase can lead to catastrophic events including rapid cell death and increased sensitivity to other cancer therapeutics. Thus, given the major role telomeres play during development, it is important to continue our understanding telomere structure, function and maintenance. Herein, we provide an overview of the emerging knowledge of telomere dysfunction and how it relates to possible links between aging and cancer.
Collapse
Affiliation(s)
- David Gilley
- Department of Medical and Molecular Genetics, The Indiana University Cancer Center, Indiana University School of Medicine, 975 West Walnut St, IB 242, Indianapolis, IN 46202-5251, USA
| | | | | |
Collapse
|
112
|
Blackburn EH. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 2005; 579:859-62. [PMID: 15680963 DOI: 10.1016/j.febslet.2004.11.036] [Citation(s) in RCA: 609] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 12/29/2022]
Abstract
The molecular features of telomeres and telomerase are conserved among most eukaryotes. How telomerase and telomeres function and how they interact to promote the chromosome-stabilizing properties of telomeres are discussed here.
Collapse
Affiliation(s)
- Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2200, USA.
| |
Collapse
|
113
|
Röth A, Baerlocher GM, Schertzer M, Chavez E, Dührsen U, Lansdorp PM. Telomere loss, senescence, and genetic instability in CD4+ T lymphocytes overexpressing hTERT. Blood 2005; 106:43-50. [PMID: 15741219 PMCID: PMC1895130 DOI: 10.1182/blood-2004-10-4144] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Little is known about the long-term consequences of overexpression of the human telomerase reverse transcriptase (hTERT) gene in T lymphocytes. To address this issue, we transduced polyclonal as well as clonally derived populations of naive and memory CD44 T cells from 2 healthy donors (aged 24 and 34 years) with retroviral vectors encoding green fluorescence protein (GFP) and hTERT (GFP-hTERT) or GFP alone. After transduction, cells were sorted on the basis of GFP expression and cultured in vitro until senescence. T cells transduced with hTERT exhibited high stable telomerase activity throughout the culture period. Relative to GFP controls, minor changes in overall gene expression were observed yet the proliferative lifespan of the hTERT-transduced populations was significantly increased and the rate of telomere loss was lower. Nevertheless, hTERT-transduced cells showed progressive telomere loss and had shorter telomeres at senescence than controls (2.3 +/- 0.3 kilobase [kb] versus 3.4 +/- 0.1 kb). Furthermore, a population of cells with 4N DNA consisting of binucleated cells with connected nuclei emerged in the hTERT-transduced cells prior to senescence. We conclude that overexpression of hTERT in CD4+ T cells provides a proliferative advantage independent of the average telomere length but does not prevent eventual genetic instability and replicative senescence.
Collapse
Affiliation(s)
- Alexander Röth
- Terry Fox Laboratory, British Columbia Cancer Agency, 12th floor, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | | | | | | | | | | |
Collapse
|
114
|
Delgado JP, Parouchev A, Allain JE, Pennarun G, Gauthier LR, Dutrillaux AM, Dutrillaux B, Di Santo J, Capron F, Boussin FD, Weber A. Long-term controlled immortalization of a primate hepatic progenitor cell line after Simian virus 40 T-Antigen gene transfer. Oncogene 2005; 24:541-51. [PMID: 15608689 DOI: 10.1038/sj.onc.1208089] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatoblasts are bipotent progenitors of both hepatocytes and cholangiocytes. The lack of stable in vitro culture systems for such cells makes it necessary to generate liver progenitor cell lines by means of immortalization. In this study, we describe the long-term behaviour of a clone of simian foetal hepatic progenitor cells immortalized by Simian virus 40 (SV40) large T-antigen (T-Ag) flanked by loxP sites. Immortalization was associated with the re-expression of telomerase activity, which decreased at late passages (population doubling 120) after more than a year in culture. This decrease was concomitant to telomere shortening and karyotypic instability. However, the chromosomes carrying the p53 gene remained intact and long-term immortalized progenitor cells maintained contact inhibition and proliferative properties. They also displayed the features of a normal bipotent phenotype. We constructed a retroviral vector expressing an inducible Cre recombinase and transferred it into the immortalized progenitors. Activation of the Cre recombinase by 4-hydroxy-tamoxifen induced SV40 T-Ag excision, leading to the death of cells expressing Cre recombinase. Immortalized progenitors at late passages stopped growing and eventually disappeared after transplantation into the livers of immunocompromised mice. These cells provide a novel model to study hepatic differentiation and carcinogenesis.
Collapse
Affiliation(s)
- Jean-Paul Delgado
- INSERM EMI 00-20; University Paris XI, Hôpital Kremlin-Bicêtre, 80 avenue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Greenberg RA, Rudolph KL. Telomere structural dynamics in genome integrity control and carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:311-341. [PMID: 18727506 DOI: 10.1007/1-4020-3764-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Roger A Greenberg
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massasuchsetts 02115, USA
| | | |
Collapse
|
116
|
Wang RC, Smogorzewska A, de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 2004; 119:355-68. [PMID: 15507207 DOI: 10.1016/j.cell.2004.10.011] [Citation(s) in RCA: 400] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/16/2004] [Accepted: 09/28/2004] [Indexed: 11/25/2022]
Abstract
The t-loop structure of mammalian telomeres is thought to repress nonhomologous end joining (NHEJ) at natural chromosome ends. Telomere NHEJ occurs upon loss of TRF2, a telomeric protein implicated in t-loop formation. Here we describe a mutant allele of TRF2, TRF2DeltaB, that suppressed NHEJ but induced catastrophic deletions of telomeric DNA. The deletion events were stochastic and occurred rapidly, generating dramatically shortened telomeres that were accompanied by a DNA damage response and induction of senescence. TRF2DeltaB-induced deletions depended on XRCC3, a protein implicated in Holliday junction resolution, and created t-loop-sized telomeric circles. These telomeric circles were also detected in unperturbed cells and suggested that t-loop deletion by homologous recombination (HR) might contribute to telomere attrition. Human ALT cells had abundant telomeric circles, pointing to frequent t-loop HR events that could promote rolling circle replication of telomeres in the absence of telomerase. These findings show that t-loop deletion by HR influences the integrity and dynamics of mammalian telomeres.
Collapse
Affiliation(s)
- Richard C Wang
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
117
|
Argyle DJ, McKevitt T, Gault E, Nasir L. Evaluation of telomerase-targeted therapies in canine cancer cell lines. Vet Comp Oncol 2004; 2:214-21. [DOI: 10.1111/j.1476-5810.2004.00054.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
118
|
Beyne-Rauzy O, Recher C, Dastugue N, Demur C, Pottier G, Laurent G, Sabatier L, Mansat-De Mas V. Tumor necrosis factor alpha induces senescence and chromosomal instability in human leukemic cells. Oncogene 2004; 23:7507-16. [PMID: 15326480 DOI: 10.1038/sj.onc.1208024] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have documented that Tumor necrosis factor alpha (TNFalpha) is a potent negative regulator of normal hematopoiesis. However, the mechanism by which TNFalpha acts at the cellular level is not totally understood. Although apoptotic cell killing appears to be the most common cellular effect of TNFalpha, other studies suggest that this cytokine may elicit other cellular responses such as prolonged growth inhibition. In this context, we have investigated whether TNFalpha may induce senescence in hematopoietic cells, which display intrinsic defect in the apoptotic machinery. The present study described that, in the leukemic KG1 cells, TNFalpha induced no apoptosis but a senescence state characterized by prolonged growth arrest, increased beta-galactosidase activity, p21WAF-1 induction, decreased telomerase activity, telomeric disturbances (shortening, losses, fusions), and additional chromosomal aberrations. Telomerase inhibition correlated with reduced levels of hTERT transcripts. GM-CSF prevented TNFalpha effects and allowed leukemic cells to recover growth capacity. Finally, our study shows for the first time that, at least in some hematopoietic cells, TNFalpha may induce senescence with important functional consequences, including sustained growth inhibition and genetic instability, and that this cellular response is efficiently regulated by hematopoietic growth factors.
Collapse
Affiliation(s)
- Odile Beyne-Rauzy
- Institut National de la Santé et de la Recherche Médicale U563, Centre de Physiopathologie de Toulouse Purpan, Place du Docteur Baylac, 31059, France
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Wang S, Zhu J. The hTERT gene is embedded in a nuclease-resistant chromatin domain. J Biol Chem 2004; 279:55401-10. [PMID: 15516693 DOI: 10.1074/jbc.m411352200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Normal human cells rarely undergo spontaneous immortalization. Given that ectopic expression of the human telomerase catalytic subunit hTERT leads to cellular immortalization, the endogenous hTERT gene is likely constitutively repressed. Hence, we have examined the chromatin structure of the native hTERT locus and the neighboring loci, CRR9 and Xtrp2, in normal human fibroblasts and a set of immortal lines. Using generalized DNase I sensitivity assays, we revealed that the entire hTERT gene was embedded in a chromatin domain that was as resistant to the nuclease as the well studied beta-globin loci in both telomerase-positive and -negative cells. This condensed domain was at least 100 kb in size and contained the intergenic region 5' to the hTERT gene and the downstream Xtrp2 locus. A transition from the nuclease-sensitive CRR9 locus to the condensed region appeared near the 3'-end of the CRR9 gene. hTERT transcription was associated with the appearance of a major DNase I-hypersensitive site positioned around the hTERT transcription start site and several minor hypersensitive sites. In telomerase-negative cells, the inhibition of histone deacetylases by trichostatin A led to the opening of this chromatin domain, accompanied by transcription from the hTERT gene but not the Xtrp2 gene. In contrast, the inhibition of protein synthesis by cycloheximide induced transcription from both the hTERT and Xtrp2 genes, indicating that histone deacetylases and labile factors coordinate to silence this chromosomal region. Taken together, our data suggest a novel mechanism of hTERT regulation at the chromatin level and have important implications for studying telomerase expression.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
120
|
Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev 2004; 125:827-48. [PMID: 15541776 DOI: 10.1016/j.mad.2004.07.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cells in culture have a limited proliferative capacity. After a period of vigorous proliferation, the rate of cell division declines and a number of changes occur in the cells including increases in size, in secondary lysosomes and residual bodies, nuclear changes and a number of changes in gene expression which provide biomarkers for senescence. Although human cells in culture have been used for over 40 years as models for understanding the cellular basis of aging, the relationship of replicative senescence to aging of the organism is still not clear. In this review, we discuss replicative senescence in the light of current information on signal transduction and mitogenesis, cell stress, apoptosis, telomere changes and finally we discuss replicative senescence as a model of aging in vivo.
Collapse
Affiliation(s)
- Vincent J Cristofalo
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA.
| | | | | | | | | |
Collapse
|
121
|
Taylor LM, James A, Schuller CE, Brce J, Lock RB, Mackenzie KL. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization. J Biol Chem 2004; 279:43634-45. [PMID: 15308640 DOI: 10.1074/jbc.m402388200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.
Collapse
Affiliation(s)
- Lisa M Taylor
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales 2031
| | | | | | | | | | | |
Collapse
|
122
|
Abstract
Previously, we showed that human osteoblasts expressing the human telomerase reverse transcriptase (hTERT) gene exhibited specific survival advantages--the result of breaching the replicative senescence barrier and maintaining the phenotypic and functional properties of primary osteoblasts in vitro over the total replicative capacity of primary osteoblasts. We postulated that rejuvenated osteoblasts may have a potential to correct bone loss or osteopenia in age-related osteoporotic diseases. In the present study, we studied whether telomerized presenescent osteoblasts prevent bone mass loss in vivo. After obtaining the informed consent from a patient with osteoarthritis who underwent the arthroplastic knee surgery, osteoblastic cells were isolated from donor bone sample. We transfected the gene encoding hTERT into human osteoblastic cells. Human bone fragments from a donor were incubated with human hTERT-transfected presenescent (in vitro aged) osteoblasts or mock-transfected presenescent osteoblasts in culture medium containing Matrigel. We subcutaneously implanted human bone fragments with telomerized presenescent osteoblasts or primary presenescent osteoblasts as three-dimensional Matrigel xenografts in severe combined immunodeficiency (SCID) mice (each group: six mice) and analyzed the grafts at 6 weeks after implantation. We also determined whether telomerized osteoblasts affect the bone-forming capacity in vivo, using a well-established mouse transplantation model in which ceramic hydroxyapatite/tricalcium phosphate particles are used as carrier vehicle. Telomerized presenescent osteoblasts were rejuvenated, and maintained the functional properties of young osteoblasts in vitro. Bone mineral content (BMC) and bone mineral density (BMD) were measured by ash weight and dual-energy X-ray absorptiometry, respectively. Whereas BMC and BMD of human bone fragments, which were inoculated with aged osteoblasts in SCID mice, decreased with time, telomerized presenescent osteoblasts maintained the BMC and BMD of human bone fragments, indicating that telomerized and rejuvenated osteoblasts may be functional to prevent bone mass loss in vivo. In xenogenic transplants, telomerized osteoblasts generated more bone tissue with lamellar bone structure and cellular components, than did control osteoblasts. These findings suggest that telomerized/rejuvenated presenescent osteoblasts may be used in the development of tissue engineering or cell-based therapy for bone regeneration and repair.
Collapse
Affiliation(s)
- K Yudoh
- Department of Bioregulation, Institute of Medical Science, St. Marianna University, Miyamae-ku, Kawasaki City, Japan
| | | |
Collapse
|
123
|
Brookes S, Rowe J, Gutierrez Del Arroyo A, Bond J, Peters G. Contribution of p16INK4a to replicative senescence of human fibroblasts. Exp Cell Res 2004; 298:549-59. [PMID: 15265701 DOI: 10.1016/j.yexcr.2004.04.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 04/23/2004] [Indexed: 11/29/2022]
Abstract
In standard conditions of tissue culture, human fibroblasts undergo a limited number of population doublings before entering a state of irreversible growth arrest termed replicative senescence or M1. The arrest is triggered by a combination of telomere dysfunction and the stresses inflicted by culture conditions and is implemented, at least in part, by the cyclin-dependent kinase inhibitors p21(CIP1) and p16(INK4a). To investigate the role of p16(INK4a), we have studied fibroblasts from members of melanoma prone kindreds with mutations in one or both copies of the CDKN2A locus. The mutations affect the function of p16(INK4a) but not of the alternative product, p14(ARF). The p16(INK4a)-defective fibroblasts have an above average life span, compared to the heterozygous and normal age-matched controls, but they arrest with characteristics typical of senescence. Using agents that are known to bypass M1, such as DNA tumor virus oncoproteins or the Bmi1 transcriptional repressor, we provide evidence that p16(INK4a) defective cells arrest at a stage that is operationally between M1 and M2 (crisis). As well as indicating that p16(INK4a) contributes to but is not essential for replicative senescence of human fibroblasts, our data reveal considerable heterogeneity in the levels and accumulation of p16(INK4a) in different strains.
Collapse
Affiliation(s)
- Sharon Brookes
- Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
124
|
White MK, Khalili K. Polyomaviruses and human cancer: molecular mechanisms underlying patterns of tumorigenesis. Virology 2004; 324:1-16. [PMID: 15183048 DOI: 10.1016/j.virol.2004.03.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 12/18/2022]
Abstract
Polyomaviruses are DNA tumor viruses with small circular genomes encoding only six proteins including three structural capsid proteins. Despite this simplicity, our understanding of the mechanisms of polyomavirus-mediated tumorigenesis is far from complete. The archetypal primate polyomavirus, SV40, was isolated more than 40 years ago and has been used extensively as a model system for the study of basic eukaryotic cellular processes such as DNA replication and transcription. Two human polyomaviruses have been isolated from clinical samples: JC virus (JCV) and BK virus (BKV). In this review, SV40, JCV, and BKV will be compared based on what is known about their molecular biology from experiments performed in vitro, in cell culture and in laboratory animals. The association of these viruses with clinical tumors is discussed along with the possible roles of these polyomaviruses in the etiology of human malignant disease.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | | |
Collapse
|
125
|
Lledó SM, Garcia-Granero E, Dasí F, Ripoli R, García SA, Cervantes A, Aliño SF. Real time quantification in plasma of human telomerase reverse transcriptase (hTERT) mRNA in patients with colorectal cancer. Colorectal Dis 2004; 6:236-42. [PMID: 15206965 DOI: 10.1111/j.1463-1318.2004.00627.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Increased telomerase activity can be found in almost 90% of colorectal tumours. We aim to describe the preliminary results for quantification in plasma of hTERT mRNA in colorectal cancer patients. MATERIALS AND METHODS Fifty patients undergoing surgery for colorectal cancer and a control group of 50 healthy volunteers were prospectively studied. Pre-operative venous blood samples were taken from all cancer patients and volunteers. Plasma hTERT expression was determined from peripheral blood based on real-time quantitative RT-PCR (qRT-PCR) method normalized to the amount of RNA input using 18S rRNA gene expression. Plasma pre-operative CEA levels were also determined. RESULTS Median values for normalized hTERT (hTERT(N)) gene expression were higher in colorectal cancer patients (11.62, range 0.23-47.67) than healthy volunteers (0.29, range 0.00-4.63) (P < 0.001). Individual data showed that 82% of colorectal cancer patients had hTERT(N) expression values superior to the maximum value observed in the control group. Sensitivity and specificity of the assay for colorectal cancer detection were 98% and 64%, respectively. No significant differences in hTERT(N) expression between gender or with age (P > 0.05). No significant correlation was found between hTERT(N) expression and CEA values (Spearman's rank test = 0.136, P = 0.348). CONCLUSIONS These results show that detection of mRNA based on the qRT-PCR of the telomerase hTERT(N) gene in plasma clearly differentiates between healthy and colorectal cancer patients and that hTERT(N) can be detected and quantified in plasma. This opens up a new field as a noninvasive blood test for colorectal cancer diagnosis.
Collapse
Affiliation(s)
- S M Lledó
- Department of General Surgery, Hospital Clinico Universitario, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
126
|
Matsumura T, Takesue M, Westerman KA, Okitsu T, Sakaguchi M, Fukazawa T, Totsugawa T, Noguchi H, Yamamoto S, Stolz DB, Tanaka N, Leboulch P, Kobayashi N. Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 2004; 77:1357-65. [PMID: 15167590 DOI: 10.1097/01.tp.0000124286.82961.7e] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Liver endothelial cells (LECs) perform an essential role in important pathophysiologic functions in the liver. Establishment of a human LEC line facilitates advances in LEC research. Here, we present immortalization of human LECs using retroviral gene transfer of simian virus 40 large T antigen (SV40T) and human telomerase reverse transcriptase (hTERT). We also demonstrate excision of SV40T and hTERT with TAT-mediated Cre/loxP recombination and subsequent cell sorting. METHODS First, human LECs were transduced with a retroviral vector somatostatin receptor (SSR)#69 expressing SV40T and hygromycin-resistance genes flanked by a pair of loxA recombination targets. Then, cells were retrovirally superinfected with SSR#197 encoding hTERT and green fluorescent protein (GFP) cDNAs that were intervened by two loxBs. One SV40T-and hTERT-immortalized LEC clone, TMNK-1, was established and analyzed for its biologic characteristics. RESULTS The cells were hygromycin-resistant and uniformly positive for GFP expression. TMNK-1 expressed EC markers, including factor VIII, vascular endothelial growth factor receptors (flt-1, KDR/Flk-1), and CD34, showed uptake of Di-I-acetylated-low-density lipoprotein and angiogenic potential in Matrigel assays. After lipopolysaccharide treatment, TMNK-1 produced tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 and exhibited increased expression of intra-cellular adhesive molecule-1, vascular cellular adhesive molecule-1, and VE-cadherin. After treatment with TAT-Cre recombinase fusion protein, approximately 60% of TMNK-1 was negative for GFP expression, and subsequent cell sorting of this population for GFP allowed for collection of the reverted form of TMNK-1. CONCLUSIONS This study demonstrates the utility and efficiency of the reversible immortalization procedure to expand primary human LECs for basic studies.
Collapse
Affiliation(s)
- Toshihisa Matsumura
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Pirzio LM, Freulet-Marrière MA, Bai Y, Fouladi B, Murnane JP, Sabatier L, Desmaze C. Human fibroblasts expressing hTERT show remarkable karyotype stability even after exposure to ionizing radiation. Cytogenet Genome Res 2004; 104:87-94. [PMID: 15162019 DOI: 10.1159/000077470] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 11/26/2003] [Indexed: 11/19/2022] Open
Abstract
Ectopic expression of telomerase results in an immortal phenotype in various types of normal cells, including primary human fibroblasts. In addition to its role in telomere lengthening, telomerase has now been found to have various functions, including the control of DNA repair, chromatin modification, and the control of expression of genes involved in cell cycle regulation. The investigations on the long-term effects of telomerase expression in normal human fibroblast highlighted that these cells show low frequencies of chromosomal aberrations. In this paper, we describe the karyotypic stability of human fibroblasts immortalized by expression of hTERT. The ectopic overexpression of telomerase is associated with unusual spontaneous as well as radiation-induced chromosome stability. In addition, we found that irradiation did not enhance plasmid integration in cells expressing hTERT, as has been reported for other cell types. Long-term studies illustrated that human fibroblasts immortalized by telomerase show an unusual stability for chromosomes and for plasmid integration sites, both with and without exposure to ionizing radiation. These results confirm a role for telomerase in genome stabilisation by a telomere-independent mechanism and point to the possibility for utilizing hTERT-immortalized normal human cells for the study of gene targeting.
Collapse
Affiliation(s)
- L M Pirzio
- CEA-DSV/DRR/LRO, 92265 Fontenay aux roses, France
| | | | | | | | | | | | | |
Collapse
|
128
|
Rolland M, Chauvineau C, Valas S, Mamoun RZ, Perrin G. Establishment and characterization of a goat synovial membrane cell line susceptible to small ruminant lentivirus infection. J Virol Methods 2004; 118:123-30. [PMID: 15081607 DOI: 10.1016/j.jviromet.2004.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 02/03/2004] [Accepted: 02/09/2004] [Indexed: 11/22/2022]
Abstract
Primary goat synovial membrane (GSM) cells are widely used to study small ruminant lentiviruses (SRLV), i.e. maedi visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV), but their limited life-span of 15-20 passages in vitro is problematic. Here, we report that ectopic expression of the catalytic subunit of human telomerase (hTERT) was sufficient to immortalize primary GSM cells. Cultures of hTERT-transfected GSM cells have been passaged for 2 years without showing any phenotypic difference from the original primary GSM cells. The hTERT-transfected cells continued to grow beyond a population doubling number of 250, while no net telomere lengthening was observed for these cells. Moreover, the immortalized GSM cells were susceptible to infection by both CAEV and MVV and were able to propagate theses viruses. Such cell line provides a useful source of standard and robust cells for both research and veterinary purposes.
Collapse
Affiliation(s)
- Morgane Rolland
- AFSSA-Niort, Laboratoire d'Etudes et de Recherches Caprines, 79012 Niort, France
| | | | | | | | | |
Collapse
|
129
|
Gire V, Roux P, Wynford-Thomas D, Brondello JM, Dulic V. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 2004; 23:2554-63. [PMID: 15192702 PMCID: PMC449769 DOI: 10.1038/sj.emboj.7600259] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 05/04/2004] [Indexed: 11/09/2022] Open
Abstract
Telomere shortening in normal human cells causes replicative senescence, a p53-dependent growth arrest state, which is thought to represent an innate defence against tumour progression. However, although it has been postulated that critical telomere loss generates a 'DNA damage' signal, the signalling pathway(s) that alerts cells to short dysfunctional telomeres remains only partially defined. We show that senescence in human fibroblasts is associated with focal accumulation of gamma-H2AX and phosphorylation of Chk2, known mediators of the ataxia-telangiectasia mutated regulated signalling pathway activated by DNA double-strand breaks. Both these responses increased in cells grown beyond senescence through inactivation of p53 and pRb, indicating that they are driven by continued cell division and not a consequence of senescence. gamma-H2AX (though not Chk2) was shown to associate directly with telomeric DNA. Furthermore, inactivation of Chk2 in human fibroblasts led to a fall in p21(waf1) expression and an extension of proliferative lifespan, consistent with failure to activate p53. Thus, Chk2 forms an essential component of a common pathway signalling cell cycle arrest in response to both telomere erosion and DNA damage.
Collapse
Affiliation(s)
- Véronique Gire
- Centre de Recherches de Biochimie Macromoléculaire, Montpellier, France.
| | | | | | | | | |
Collapse
|
130
|
Polychronopoulou S, Koutroumba P. Telomere length and telomerase activity: variations with advancing age and potential role in childhood malignancies. J Pediatr Hematol Oncol 2004; 26:342-50. [PMID: 15167346 DOI: 10.1097/00043426-200406000-00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Telomeres, representing the chromosome nucleoprotein tails, shorten during each cell division due to the inability of conventional DNA polymerases to completely replicate the chromosome termini. When telomeres become critically short, cells are directed to exit from the cell division cycle (replicative senescence). Telomerase is a reverse transcriptase that synthesizes telomeric sequences, thereby prolonging the lifespan of cells. Telomere length and telomerase activity expression vary significantly in different normal somatic tissues and age groups. In many childhood malignancies (ie, acute leukemias and solid tumors), telomere length and telomerase activity of the malignant cell population may be correlated with the disease outcome and thus may be promising tools in evaluating prognosis and monitoring treatment progress. Finally, telomerase inhibition by using several strategies (ie, antisense oligonucleotides) represents a potentially valuable target for antitumor therapy in the near future.
Collapse
Affiliation(s)
- Sophia Polychronopoulou
- Department of Pediatric Hematology/Oncology, "Aghia Sophia" Children's Hospital, Athens, Greece.
| | | |
Collapse
|
131
|
Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M, McEachern MJ. A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 2004; 101:8658-63. [PMID: 15161972 PMCID: PMC423251 DOI: 10.1073/pnas.0401263101] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Telomeres are nucleoprotein structures present at the ends of eukaryotic chromosomes that play a central role in guarding the integrity of the genome by protecting chromosome ends from degradation and fusion. Length regulation is central to telomere function. To broaden our knowledge about the mechanisms that control telomere length, we have carried out a systematic examination of approximately 4,800 haploid deletion mutants of Saccharomyces cerevisiae for telomere-length alterations. By using this screen, we have identified >150 candidate genes not previously known to affect telomere length. In two-thirds of the identified mutants, short telomeres were observed; whereas in one-third, telomeres were lengthened. The genes identified are very diverse in their functions, but certain categories, including DNA and RNA metabolism, chromatin modification, and vacuolar traffic, are overrepresented. Our results greatly enlarge the number of known genes that affect telomere metabolism and will provide insights into how telomere function is linked to many other cellular processes.
Collapse
Affiliation(s)
- Syed H Askree
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Schaetzlein S, Lucas-Hahn A, Lemme E, Kues WA, Dorsch M, Manns MP, Niemann H, Rudolph KL. Telomere length is reset during early mammalian embryogenesis. Proc Natl Acad Sci U S A 2004; 101:8034-8. [PMID: 15148368 PMCID: PMC419552 DOI: 10.1073/pnas.0402400101] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme telomerase is active in germ cells and early embryonic development and is crucial for the maintenance of telomere length. Whereas the different length of telomeres in germ cells and somatic cells is well documented, information on telomere length regulation during embryogenesis is lacking. In this study, we demonstrate a telomere elongation program at the transition from morula to blastocyst in mice and cattle that establishes a specific telomere length set point during embryogenesis. We show that this process restores telomeres in cloned embryos derived from fibroblasts, regardless of the telomere length of donor nuclei, and that telomere elongation at this stage of embryogenesis is telomerase-dependent because it is abrogated in telomerase-deficient mice. These data demonstrate that early mammalian embryos have a telomerase-dependent genetic program that elongates telomeres to a defined length, possibly required to ensure sufficient telomere reserves for species integrity.
Collapse
Affiliation(s)
- Sonja Schaetzlein
- Department of Gastroenterology, Hepatology, and Endocrinology, and Institute for Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Kirkpatrick KL, Newbold RF, Mokbel K. There is no correlation between c-Myc mRNA expression and telomerase activity in human breast cancer. INTERNATIONAL SEMINARS IN SURGICAL ONCOLOGY : ISSO 2004; 1:2. [PMID: 15285810 PMCID: PMC483032 DOI: 10.1186/1477-7800-1-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Accepted: 05/06/2004] [Indexed: 11/17/2022]
Abstract
BACKGROUND: Telomerase is a ribonucleoprotein enzyme that synthesises telomeres after cell division and maintains chromosomal length and stability thus leading to cellular immortalisation. The hTERT (human telomerase reverse transcriptase) subunit seems to be the rate-limiting determinant of telomerase and knowledge of factors controlling hTERT transcription may be useful in therapeutic strategies. The hTERT promoter contains binding sites for c-Myc and there is experimental and in vitro evidence that c-Myc may increase hTERT expression. MATERIALS AND METHODS: RNA was extracted from 18 breast carcinomas and c-Myc mRNA expression was estimated by quantitative reverse transcriptase-PCR (RT-PCR) with Taqman methodology. These tumours had already been analysed for ER and PgR status using ligand-binding assays and had had their DNA ploidy and S-phase fractions measured by flow cytometry. Telomerase activity had already been determined by using a modified telomeric repeat and amplification protocol (TRAP) assay. RESULTS: Telomerase activity ranged from 0 to 246 units of Total Protein Generated (TPG), where one unit of TPG was equal to 600 molecules of telomerase substrate primers extended by at least three telomeric repeats. Median levels of TPG were 60 and mean levels 81. There was no significant correlation between levels of c-Myc mRNA expression, telomerase activity, S phase fraction or PgR. There was a significant negative correlation with ER status. CONCLUSION: Although the hTERT promoter contains potential binding sites for c-Myc oncoprotein, we have found no correlation between c-Myc mRNA levels and telomerase activity.
Collapse
Affiliation(s)
- Katharine L Kirkpatrick
- Brunel Institute of Cancer Genetics, Brunel University, St George's Hospital and Medical School, London, UK
| | - Robert F Newbold
- Brunel Institute of Cancer Genetics, Brunel University, St George's Hospital and Medical School, London, UK
| | - Kefah Mokbel
- Brunel Institute of Cancer Genetics, Brunel University, St George's Hospital and Medical School, London, UK
| |
Collapse
|
134
|
Abstract
Telomeres are the protective DNA-protein complexes found at the ends of eukaryotic chromosomes. Telomeric DNA consists of tandem repeats of a simple, often G-rich, sequence specified by the action of telomerase, and complete replication of telomeric DNA requires telomerase. Telomerase is a specialized cellular ribonucleoprotein reverse transcriptase. By copying a short template sequence within its intrinsic RNA moiety, telomerase synthesizes the telomeric DNA strand running 5' to 3' towards the distal end of the chromosome, thus extending it. Fusion of a telomere, either with another telomere or with a broken DNA end, generally constitutes a catastrophic event for genomic stability. Telomerase acts to prevent such fusions. The molecular consequences of telomere failure, and the molecular contributors to telomere function, with an emphasis on telomerase, are discussed here.
Collapse
Affiliation(s)
- Simon R W L Chan
- University of California, San Francisco, Biochemistry and Biophysics, Box 2200, San Francisco, CA 94143-2200, USA
| | | |
Collapse
|
135
|
Yang H, Ou CC, Feldman RI, Nicosia SV, Kruk PA, Cheng JQ. Aurora-A kinase regulates telomerase activity through c-Myc in human ovarian and breast epithelial cells. Cancer Res 2004; 64:463-7. [PMID: 14744757 DOI: 10.1158/0008-5472.can-03-2907] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora-A kinase is frequently overexpressed/activated in human ovarian and breast cancers. A rat mammary tumor model study indicates that alterations of Aurora-A are early events during mammary tumor development (T. M. Goepfert et al., Cancer Res., 62: 4115-4122, 2002), suggesting that Aurora-A plays a pivotal role in transformation. However, the molecular mechanism by which Aurora-A induces ovarian and breast cell transformation remains elusive. Here we show that ectopic expression of Aurora-A induces telomerase activity in human ovarian and breast epithelial cell lines HIOSE118 and MCF-10A. The mRNA and promoter activities of human telomerase reverse transcriptase (hTERT) are stimulated by Aurora-A. Furthermore, we have demonstrated that the c-Myc binding sites of hTERT promoter are required for Aurora-A-induced hTERT promoter activity. Ectopic expression of Aurora-A up-regulates c-Myc. Knockdown of c-Myc by RNA interference attenuates Aurora-A-stimulated hTERT expression and telomerase activity. To our knowledge, these findings demonstrate, for the first time, that Aurora-A induces telomerase activity and hTERT by up-regulation of c-Myc and provides an additional mechanism for the role of Aurora-A in malignant transformation in addition to its cell cycle control.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pathology and Molecular Oncology Program, University of South Florida College of Medicine and H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | | | | | | | | |
Collapse
|
136
|
Yamada O, Akiyama M, Kawauchi K, Adachi T, Yamada H, Kanda N, Aikawa E. Overexpression of telomerase confers a survival advantage through suppression of TRF1 gene expression while maintaining differentiation characteristics in K562 cells. Cell Transplant 2004; 12:365-77. [PMID: 12911124 DOI: 10.3727/000000003108746911] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Leukemic stem cells that expressed endogenous telomerase activity were induced to show overexpression of exogenous hTERT and were analyzed for biological changes in order to assess the possible influence of telomerase gene therapy on the transplantation of normal hematopoietic stem cells. Introduction of hTERT into K562, a telomerase-positive immortal cell line, resulted in a 2.5-fold elevation of telomerase activity and the lengthening of telomeres by 6 kb to 23 kb. Real-time fluorescent PCR, which could perform quantitative analysis of transcripts, revealed a 175-fold increase in hTERT expression, suggesting the posttranscriptional regulation of telomerase. Ectopic expression of hTERT in K562 cells showed a survival advantage during culture in the absence of serum. Expression of mRNA for the telomeric-repeat binding factor 1 (TRF1) and caspase-3 activity were both decreased in hTERT-transfected K562 cells. Transduced cells retained their usual phenotypic characteristics, differentiation ability, and signal transduction response to TPA. These data suggest that ectopic expression of hTERT by normal hematopoietic stem cells may confer a survival advantage without changing their innate biological characteristics.
Collapse
Affiliation(s)
- Osamu Yamada
- Medical Research Institute and Department of Hematology, Tokyo Women's Medical University, Japan.
| | | | | | | | | | | | | |
Collapse
|
137
|
Ben-Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J Clin Invest 2004; 113:8-13. [PMID: 14702100 PMCID: PMC300889 DOI: 10.1172/jci20663] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cells entering a state of senescence undergo a permanent cell cycle arrest, accompanied by a set of functional and morphological changes. Senescence of cells occurs following an extended period of proliferation in culture or in response to various physiologic stresses, yet little is known about the role this phenomenon plays in vivo. The study of senescence has focused largely on its hypothesized role as a barrier to extended cell division, governed by a division-counting mechanism in the form of telomere length. Here, we discuss the biological functions of cellular senescence and suggest that it should be viewed in terms of its role as a general cellular stress response program, rather than strictly as a barrier to unlimited cycles of cell growth and division. We also discuss the relative roles played by telomere shortening and telomere uncapping in the induction of senescence.
Collapse
Affiliation(s)
- Ittai Ben-Porath
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
138
|
Ben-Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J Clin Invest 2004. [PMID: 14702100 DOI: 10.1172/jci200420663] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cells entering a state of senescence undergo a permanent cell cycle arrest, accompanied by a set of functional and morphological changes. Senescence of cells occurs following an extended period of proliferation in culture or in response to various physiologic stresses, yet little is known about the role this phenomenon plays in vivo. The study of senescence has focused largely on its hypothesized role as a barrier to extended cell division, governed by a division-counting mechanism in the form of telomere length. Here, we discuss the biological functions of cellular senescence and suggest that it should be viewed in terms of its role as a general cellular stress response program, rather than strictly as a barrier to unlimited cycles of cell growth and division. We also discuss the relative roles played by telomere shortening and telomere uncapping in the induction of senescence.
Collapse
Affiliation(s)
- Ittai Ben-Porath
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
139
|
Maruyama M, Kobayashi N, Westerman KA, Sakaguchi M, Allain JE, Totsugawa T, Okitsu T, Fukazawa T, Weber A, Stolz DB, Leboulch P, Tanaka N. Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation 2004; 77:446-51. [PMID: 14966424 DOI: 10.1097/01.tp.0000110292.73873.25] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cholangiocytes perform an essential role in important pathophysiologic functions in the liver. Establishment of a human cholangiocyte line facilitates advances in cholangiocyte research and clinical applications for cell therapies. Here, we describe the immortalization of human cholangiocytes using serial transfection of simian virus 40 large T (SV40T) followed by human telomerase reverse transcriptase (hTERT). METHODS SV40T-transduced human liver OUMS-21 cells were superinfected with a retroviral vector SSR#197 encoding hTERT and green fluorescent protein (GFP) cDNAs. Resulting cell lines were evaluated for gene expression, functional cholangiogenic characteristics in vitro and in vivo, and response to lipopolysaccharide (LPS). RESULTS One of the SV40T- and hTERT-immortalized cholangiocyte clones, MMNK-1, was established. MMNK-1 expressed cholangiocyte markers, including cytokeratin (CK)-7 and -19 and exhibited cholangiogenic tubule formation in a Matrigel assay. When transplanted into the immunodeficient mice, MMNK-1 cells developed bile duct-like structures in the spleen. After LPS treatment, MMNK-1 cells produced interleukin-6 and failed to form well-developed tubular structures in Matrigel. CONCLUSION We have established an immortalized cholangiocyte cell line, MMNK-1, using SV40T and hTERT transduction.
Collapse
Affiliation(s)
- Masanobu Maruyama
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Kirkpatrick KL, Newbold RF, Mokbel K. The mRNA expression of hTERT in human breast carcinomas correlates with VEGF expression. J Carcinog 2004; 3:1. [PMID: 14738567 PMCID: PMC343298 DOI: 10.1186/1477-3163-3-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2003] [Accepted: 01/22/2004] [Indexed: 11/25/2022] Open
Abstract
Background Telomerase is a ribonucleoprotein enzyme that synthesises telomeres after cell division and maintains chromosomal stability leading to cellular immortalisation. hTERT (human telomerase reverse transcriptase) is the rate-limiting determinant of telomerase reactivation. Telomerase has been associated with negative prognostic indicators in some studies. The present study aims to detect any correlation between hTERT and the negative prognostic indicators VEGF and PCNA by quantitatively measuring the mRNA expression of these genes in human breast cancer and in adjacent non-cancerous tissue (ANCT). Materials and methods RNA was extracted from 38 breast carcinomas and 40 ANCT. hTERT and VEGF165, VEGF189 and PCNA mRNA expressions were estimated by reverse transcriptase-PCR (RT-PCR) and Taqman methodology. Results The level of expression of VEGF-165 and PCNA was significantly higher in carcinoma tissue than ANCT (p = 0.02). The ratio of VEGF165/189 expression was significantly higher in breast carcinoma than ANCT (p = 0.025). hTERT mRNA expression correlated with VEGF-189 mRNA (p = 0.008) and VEGF165 (p = 0.07). Conclusions hTERT mRNA expression is associated with the expression of the VEGF189 and 165 isoforms. This could explain the poorer prognosis reported in breast tumours expressing high levels of hTERT. The relative expression of the VEGF isoforms is significantly different in breast tumour to ANCT, and this may be important in breast carcinogenesis.
Collapse
Affiliation(s)
| | - Robert F Newbold
- Institute of Cancer Genetics and Pharmacogenomics, Faculty of Life Sciences, Brunel University, UK
| | - Kefah Mokbel
- Department of Breast Surgery, St George's Hospital, University of London, UK
- Institute of Cancer Genetics and Pharmacogenomics, Faculty of Life Sciences, Brunel University, UK
| |
Collapse
|
141
|
Gammaitoni L, Weisel KC, Gunetti M, Wu KD, Bruno S, Pinelli S, Bonati A, Aglietta M, Moore MAS, Piacibello W. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 2004; 103:4440-8. [PMID: 14726371 DOI: 10.1182/blood-2003-09-3079] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomerase activity, telomere length, stem/progenitor cell production, and function of CD34+ cells from cord blood (CB), bone marrow, and mobilized peripheral blood were evaluated in long-term cultures. CB cells were cultured either on OP-9 stromal cells transduced with an adenovector expressing thrombopoietin (TPO) or stimulated by a cytokine cocktail in the absence of stroma, with, in one method, CD34+ cells reisolated at monthly intervals for passage. Continuous expansion of stem cells as measured by in vitro cobblestone area and secondary colony-forming assays was noted for 18 to 20 weeks and by severe combined immunodeficiency (SCID)-repopulating cells (SRCs), capable of repopulating and serially passage in nonobese diabetic/SCID mice, for 16 weeks. Despite this extensive proliferation, telomere length initially increased and only at late stages of culture was evidence of telomere shortening noted. This telomere stabilization correlated with maintenance of high levels of telomerase activity in the CD34+ cell population for prolonged periods of culture. Cytokine-stimulated cultures of adult CD34+ cells showed CD34+ and SRC expansion (6-fold) for only 3 to 4 weeks with telomere shortening and low levels of telomerase. There is clearly a clinical value for a system that provides extensive stem cell expansion without concomitant telomere erosion.
Collapse
Affiliation(s)
- Loretta Gammaitoni
- Department of Oncological Sciences, IRCC-Institute for Cancer Research and Treatment, Laboratory of Clinical Oncology, University of Turin Medical School, Prov 142, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Murnane JP, Sabatier L. Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 2004; 26:1164-74. [PMID: 15499579 DOI: 10.1002/bies.20125] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Telomeres play a vital role in protecting the ends of chromosomes and preventing chromosome fusion. The failure of cancer cells to properly maintain telomeres can be an important source of the chromosome instability involved in cancer cell progression. Telomere loss results in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large deletions. These B/F/B cycles end primarily when the unstable chromosome acquires a new telomere by translocation of the ends of other chromosomes. Many of these translocations are nonreciprocal, resulting in the loss of the telomere from the donor chromosome, providing a mechanism for transfer of instability from one chromosome to another until a chromosome acquires a telomere by a mechanism other than nonreciprocal translocation. B/F/B cycles can also result in other forms of chromosome rearrangements, including double-minute chromosomes and large duplications. Thus, the loss of a single telomere can result in instability in multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Radiation Oncology Research Laboratory, University of California, San Francisco, CA 94103, USA.
| | | |
Collapse
|
143
|
Affiliation(s)
- Evan Y Yu
- Dana-Farber Cancer Institute and Brigham and Women Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
144
|
Telomere Replication and Cellular Senescence. Toxicol Pathol 2004. [DOI: 10.1080/714592171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
145
|
Affiliation(s)
- Jenny O'Nions
- Faculty of Medicine, Department of Virology and Ludwig Institute for Cancer Research, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
146
|
Lue NF, Lin YC, Mian IS. A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Mol Cell Biol 2003; 23:8440-9. [PMID: 14612390 PMCID: PMC262686 DOI: 10.1128/mcb.23.23.8440-8449.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Telomerase is a ribonucleoprotein reverse transcriptase responsible for the maintenance of one strand of the telomere terminal repeats. The catalytic protein subunit of the telomerase complex, known as TERT, possesses a reverse transcriptase (RT) domain that mediates nucleotide addition. The RT domain of TERT is distinguishable from retroviral and retrotransposon RTs in having a sizable insertion between conserved motifs A and B', within the so-called fingers domain. Sequence analysis revealed the existence of conserved residues in this region, named IFD (insertion in fingers domain). Mutations of some of the conserved residues in Saccharomyces cerevisiae TERT (Est2p) abolished telomerase function in vivo, testifying to their importance. Significant effects of the mutations on telomerase activity in vitro were observed, with most of the mutants exhibiting a uniform reduction in activity regardless of primer sequence. Remarkably, one mutant manifested a primer-specific defect, being selectively impaired in extending primers that form short hybrids with telomerase RNA. This mutant also accumulated products that correspond to one complete round of repeat synthesis, implying an inability to effect the repositioning of the DNA product relative to the RNA template that is necessary for multiple repeat addition. Our results suggest that the ability to stabilize short RNA-DNA hybrids is crucial for telomerase function in vivo and that this ability is mediated in part by a more elaborate fingers domain structure.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | |
Collapse
|
147
|
Smolikov S, Krauskopf A. The Rap1p-telomere complex does not determine the replicative capacity of telomerase-deficient yeast. Mol Cell Biol 2003; 23:8729-39. [PMID: 14612413 PMCID: PMC262678 DOI: 10.1128/mcb.23.23.8729-8739.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of chromosomes and thereby protect their stability and integrity. In the presence of telomerase, the enzyme that synthesizes telomeric repeats, telomere length is controlled primarily by Rap1p, the budding yeast telomeric DNA binding protein which, through its C-terminal domain, nucleates a protein complex that limits telomere lengthening. In the absence of telomerase, telomeres shorten with every cell division, and eventually, cells enter replicative senescence. We have set out to identify the telomeric property that determines the replicative capacity of telomerase-deficient budding yeast. We show that in cells deficient for both telomerase and homologous recombination, replicative capacity is dependent on telomere length but not on the binding of Rap1p to the telomeric repeats. Strikingly, inhibition of Rap1p binding or truncation of the C-terminal tail of Rap1p in Kluyveromyces lactis and deletion of the Rap1p-recruited complex in Saccharomyces cerevisiae lead to a dramatic increase in replicative capacity. The study of the role of telomere binding proteins and telomere length on replicative capacity in yeast may have significant implications for our understanding of cellular senescence in higher organisms.
Collapse
Affiliation(s)
- Sarit Smolikov
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
148
|
Wootton M, Steeghs K, Watt D, Munro J, Gordon K, Ireland H, Morrison V, Behan W, Parkinson EK. Telomerase Alone Extends the Replicative Life Span of Human Skeletal Muscle Cells Without Compromising Genomic Stability. Hum Gene Ther 2003; 14:1473-87. [PMID: 14577927 DOI: 10.1089/104303403769211682] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Continuous cycles of muscle fiber necrosis and regeneration are characteristic of the muscular dystrophies, and in some cases this leads to premature replicative senescence of myoblasts in vitro. The molecular mechanism of senescence in human myoblasts is poorly understood but there is evidence to suggest that telomeric attrition may be one of the ways by which this is achieved. We report here, for the first time, the extension of normal human skeletal muscle cell replicative life span by the reconstitution of telomerase activity. The telomerase-expressing cells show no features of transformation in vitro and have stable genomes with diploid karyotypes, do not express exceptionally high levels of c-myc and have wild-type, unmethylated CDKN2A genes. In vivo, they regenerate to repair muscle injury in immunosuppressed RAG-1 mice. This work suggests that telomerase expression to repair short telomeres may aid the expansion of diploid human muscle cells and consequently attempts at gene therapy for muscle diseases.
Collapse
Affiliation(s)
- Martha Wootton
- The Department of Pathology, University of Glasgow, Glasgow G11 6NT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Gabellini C, Antonelli A, Petrinelli P, Biroccio A, Marcucci L, Nigro G, Russo G, Zupi G, Elli R. Telomerase activity, apoptosis and cell cycle progression in ataxia telangiectasia lymphocytes expressing TCL1. Br J Cancer 2003; 89:1091-5. [PMID: 12966431 PMCID: PMC2376941 DOI: 10.1038/sj.bjc.6601213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Individuals affected by ataxia telangiectasia (AT) have a marked susceptibility to cancer. Ataxia telangiectasia cells, in addition to defects in cell cycle checkpoints, show dysfunction of apoptosis and of telomeres, which are both thought to have a role in the progression of malignancy. In 1-5% of patients with AT, clonal expansion of T lymphocytes carrying t(14;14) chromosomal translocation, deregulating TCL1 gene(s), has been described. While it is known that these cells can progress with time to a frank leukaemia, the molecular pathway leading to tumorigenesis has not yet been fully investigated. In this study, we compared AT clonal cells, representing 88% of the entire T lymphocytes (AT94-1) and expressing TCL1 oncogene (ATM(-) TCL1(+)), cell cycle progression to T lymphocytes of AT patients without TCL1 expression (ATM(-) TCL1(-)) by analysing their spontaneous apoptosis rate, spontaneous telomerase activity and telomere instability. We show that in ATM(-) TCL1(+) lymphocytes, apoptosis rate and cell cycle progression are restored back to a rate comparable with that observed in normal lymphocytes while telomere dysfunction is maintained.
Collapse
Affiliation(s)
- C Gabellini
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | - A Antonelli
- Cellular Biotechnology and Hematology Department, University ‘La Sapienza’, Rome, Italy
| | - P Petrinelli
- Cellular Biotechnology and Hematology Department, University ‘La Sapienza’, Rome, Italy
| | - A Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | - L Marcucci
- Cellular Biotechnology and Hematology Department, University ‘La Sapienza’, Rome, Italy
| | - G Nigro
- Pediatric Institute, University ‘La Sapienza’, Rome, Italy
| | - G Russo
- Istituto Dermopatico dell' Immacolata, Rome, Italy
| | - G Zupi
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | - R Elli
- Cellular Biotechnology and Hematology Department, University ‘La Sapienza’, Rome, Italy
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Policlinico Umberto 1, Viale Regina Elena 324, 00161 Rome, Italy. E-mail:
| |
Collapse
|
150
|
Bai Y, Murnane JP. Telomere instability in a human tumor cell line expressing a dominant-negative WRN protein. Hum Genet 2003; 113:337-47. [PMID: 12827497 DOI: 10.1007/s00439-003-0972-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 05/12/2003] [Indexed: 11/25/2022]
Abstract
Werner Syndrome (WS) is an autosomal recessive disease characterized by premature aging and chromosome instability. The protein involved in WS, WRN, is a RecQ-type helicase that also has exonuclease activity. WRN has been demonstrated to bind to a variety of other proteins, including RPA, DNA-PKcs, and TRF2, suggesting that WRN is involved in DNA replication, repair, recombination, and telomere maintenance. In culture, WS cells show premature senescence, which can be overcome by transfection with an expression vector containing the gene for the catalytic subunit of telomerase. However, telomerase expression does not eliminate chromosome instability in WS cells, which led to the proposal that telomere loss is not the cause of the high rate of chromosome rearrangements in WS cells. In the present study, we have investigated how a WRN protein containing a dominant-negative mutation (K577M-WRN) influences the stability of telomeres in a human tumor cell line expressing telomerase. The results demonstrate an increased rate of telomere loss and chromosome fusion in cells expressing K577M-WRN. Expression of K577M-WRN results in reduced levels of telomerase activity, however, the absence of detectable changes in average telomere length demonstrates that WRN-associated telomere loss results from stochastic events involving complete telomere loss or loss of telomere capping function. Thus, telomere loss can contribute to chromosome instability in cells deficient in WRN regardless of the expression of telomerase activity.
Collapse
Affiliation(s)
- Yongli Bai
- Radiation Oncology Research Laboratory, University of California San Francisco, 1855 Folsom Street, MCB 200, San Francisco, CA 94103, USA
| | | |
Collapse
|