101
|
Ellis SJ, Yasir M, Browning DF, Busby SJW, Schüller S. Oxygen and contact with human intestinal epithelium independently stimulate virulence gene expression in enteroaggregative Escherichia coli. Cell Microbiol 2019; 21:e13012. [PMID: 30673154 PMCID: PMC6563437 DOI: 10.1111/cmi.13012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) are important intestinal pathogens causing acute and persistent diarrhoeal illness worldwide. Although many putative EAEC virulence factors have been identified, their association with pathogenesis remains unclear. As environmental cues can modulate bacterial virulence, we investigated the effect of oxygen and human intestinal epithelium on EAEC virulence gene expression to determine the involvement of respective gene products in intestinal colonisation and pathogenesis. Using in vitro organ culture of human intestinal biopsies, we established the colonic epithelium as the major colonisation site of EAEC strains 042 and 17‐2. We subsequently optimised a vertical diffusion chamber system with polarised T84 colon carcinoma cells for EAEC infection and showed that oxygen induced expression of the global regulator AggR, aggregative adherence fimbriae, E. coli common pilus, EAST‐1 toxin, and dispersin in EAEC strain 042 but not in 17‐2. Furthermore, the presence of T84 epithelia stimulated additional expression of the mucinase Pic and the toxins HlyE and Pet. This induction was dependent on physical host cell contact and did not require AggR. Overall, these findings suggest that EAEC virulence in the human gut is modulated by environmental signals including oxygen and the intestinal epithelium.
Collapse
Affiliation(s)
- Samuel J Ellis
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
102
|
Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun 2019; 10:103. [PMID: 30626871 PMCID: PMC6327061 DOI: 10.1038/s41467-018-07946-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023] Open
Abstract
Metabolic exchange mediates interactions among microbes, helping explain diversity in microbial communities. As these interactions often involve a fitness cost, it is unclear how stable cooperation can emerge. Here we use genome-scale metabolic models to investigate whether the release of “costless” metabolites (i.e. those that cause no fitness cost to the producer), can be a prominent driver of intermicrobial interactions. By performing over 2 million pairwise growth simulations of 24 species in a combinatorial assortment of environments, we identify a large space of metabolites that can be secreted without cost, thus generating ample cross-feeding opportunities. In addition to providing an atlas of putative interactions, we show that anoxic conditions can promote mutualisms by providing more opportunities for exchange of costless metabolites, resulting in an overrepresentation of stable ecological network motifs. These results may help identify interaction patterns in natural communities and inform the design of synthetic microbial consortia. In considering cross-feeding among microbes within communities, it is typically assumed that metabolic secretions are costly to produce. However, Pacheco et al. use metabolic models to show that ‘costless’ secretions could be common in some environments and important for structuring interactions among microbes.
Collapse
|
103
|
Tan W, Jeong K, Pendru R, Puth S, Hong SH, Lee SE, Rhee JH. The cytochrome d oxidase complex regulated by fexA is an Achilles' heel in the in vivo survival of vibrio vulnificus. Emerg Microbes Infect 2019; 8:1406-1415. [PMID: 31544591 PMCID: PMC6764401 DOI: 10.1080/22221751.2019.1665972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/04/2019] [Indexed: 11/02/2022]
Abstract
Vibrio vulnificus is a halophilic estuarine bacterium causing severe opportunistic infections. To successfully establish an infection, V. vulnificus must adapt to redox fluctuations in vivo. In the present study, we show that deletion of V. vulnificus fexA gene caused hypersensitivity to acid and reactive oxygen species. The ΔfexA mutant exhibited severe in vivo survival defects. For deeper understanding the role of fexA gene on the successful V. vulnificus infection, we analyzed differentially expressed genes in ΔfexA mutant in comparison with wild type under aerobic, anaerobic or in vivo culture conditions by genome-scale DNA microarray analyses. Twenty-two genes were downregulated in the ΔfexA mutant under all three culture conditions. Among them, cydAB appeared to dominantly contribute to the defective phenotypes of the ΔfexA mutant. The fexA deletion induced compensatory point mutations in the cydAB promoter region over subcultures, suggesting essentiality. Those point mutations (PcydSMs) restored bacterial growth, motility, cytotoxicity ATP production and mouse lethality in the ΔfexA mutant. These results indicate that the cydAB operon, being regulated by FexA, plays a crucial role in V. vulnificus survival under redox-fluctuating in vivo conditions. The FexA-CydAB axis should serve an Achilles heel in the development of therapeutic regimens against V. vulnificus infection.
Collapse
Affiliation(s)
- Wenzhi Tan
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- College of Biology, Hunan University, Changsha, People's People’s Republic of China
| | - Kwangjoon Jeong
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun-gun, Republic of Korea
| | - Raghunath Pendru
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy Research Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy Research Center, Chonnam National University, Hwasun-gun, Republic of Korea
| |
Collapse
|
104
|
Friedman ES, Li Y, Shen TCD, Jiang J, Chau L, Adorini L, Babakhani F, Edwards J, Shapiro D, Zhao C, Carr RM, Bittinger K, Li H, Wu GD. FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology 2018; 155:1741-1752.e5. [PMID: 30144429 PMCID: PMC6279623 DOI: 10.1053/j.gastro.2018.08.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Intestinal bacteria can modify the composition of bile acids and bile acids, which are regulated by the farnesoid X receptor, affect the survival and growth of gut bacteria. We studied the effects of obeticholic acid (OCA), a bile acid analogue and farnesoid X receptor agonist, on the intestinal microbiomes of humans and mice. METHODS We performed a phase I study in 24 healthy volunteers given OCA (5, 10, or 25 mg/d for 17 days). Fecal and plasma specimens were collected at baseline (day 0) and on days 17 (end of dosing) and 37 (end of study). The fecal specimens were analyzed by shotgun meta-genomic sequencing. A Uniref90 high-stringency genomic analysis was used to assign specific genes to the taxonomic signature of bacteria whose abundance was associated with OCA. Male C57BL/6 mice were gavage fed daily with water, vehicle, or OCA (10 mg/kg) for 2 weeks. Small intestine luminal contents were collected by flushing with saline and fecal pellets were collected at baseline and day 14. Mouse samples were analyzed by 16S-tagged sequencing. Culture experiments were performed to determine the taxonomic-specific effects of bile acids and OCA on bacterial growth. RESULTS Suppression of endogenous bile acid synthesis by OCA in subjects led to a reversible induction of gram-positive bacteria that are found in the small intestine and are components of the diet and oral microbiota. We found that bile acids decreased proliferation of these bacteria in minimum inhibitory concentration assays. In these organisms, there was an increase in the representation of microbial genomic pathways involved in DNA synthesis and amino acid metabolism with OCA treatment of subjects. Consistent with these findings, mice fed OCA had lower endogenous bile acid levels and an increased proportion of Firmicutes, specifically in the small intestine, compared with mice fed water or vehicle. CONCLUSIONS In studying the effects of OCA in humans and mice, we found evidence for interactions between bile acids and features of the small intestinal microbiome. These findings indicate that farnesoid X receptor activation alters the intestinal microbiota and could provide opportunities for microbiome biomarker discovery or new approaches to engineering the human microbiome. ClinicalTrials.gov, NCT01933503.
Collapse
Affiliation(s)
- Elliot S. Friedman
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack Jiang
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian Chau
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luciano Adorini
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Farah Babakhani
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Jeffrey Edwards
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - David Shapiro
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rotonya M. Carr
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gary D. Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Correspondence:
| |
Collapse
|
105
|
Suzuki TA, Martins FM, Nachman MW. Altitudinal variation of the gut microbiota in wild house mice. Mol Ecol 2018; 28:2378-2390. [PMID: 30346069 DOI: 10.1111/mec.14905] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/25/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
The maintenance of oxygen homeostasis in the gut is critical for the maintenance of a healthy gut microbiota. However, few studies have explored how the concentration of atmospheric oxygen affects the gut microbiota in natural populations. High-altitude environments provide an opportunity to study the potential effects of atmospheric oxygen on the composition and function of the gut microbiota. Here, we characterized the caecal microbial communities of wild house mice (Mus musculus domesticus) in two independent altitudinal transects, one in Ecuador and one in Bolivia, from sea level to nearly 4,000 m. First, we found that differences in altitude were associated with differences in the gut microbial community after controlling for the effects of body mass, diet, reproductive status and population of origin. Second, obligate anaerobes tended to show a positive correlation with altitude, while all other microbes tended to show a negative correlation with altitude. These patterns were seen independently in both transects, consistent with the expected effects of atmospheric oxygen on gut microbes. Prevotella was the most-enriched genus at high elevations in both transects, consistent with observations in high-altitude populations of pikas, ruminants and humans, and also consistent with observations of laboratory mice exposed to hypoxic conditions. Lastly, the renin-angiotensin system, a recently proposed microbiota-mediated pathway of blood pressure regulation, was the top predicted metagenomic pathway enriched in high altitudes in both transects. These results suggest that high-altitude environments affect the composition and function of the gut microbiota in wild mammals.
Collapse
Affiliation(s)
- Taichi A Suzuki
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California
| | - Felipe M Martins
- Department of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California
| |
Collapse
|
106
|
Segura A, Bertoni M, Auffret P, Klopp C, Bouchez O, Genthon C, Durand A, Bertin Y, Forano E. Transcriptomic analysis reveals specific metabolic pathways of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Genomics 2018; 19:766. [PMID: 30352567 PMCID: PMC6199705 DOI: 10.1186/s12864-018-5167-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Background The cattle gastrointestinal tract (GIT) is the main enterohemorrhagic Escherichia coli (EHEC) reservoir. In order to identify nutrients required for the survival or multiplication of EHEC in the bovine GIT, we compared the transcriptomes of the EHEC O157:H7 reference strain EDL933 cultured in vitro in bovine digestive contents (DCs) (rumen, small intestine and rectum) using RNA-sequencing. Results Gene expression profiles showed that EHEC EDL933 activated common but also specific metabolic pathways to survive in the different bovine DCs. Mucus-derived carbohydrates seem important in EHEC nutrition in posterior DCs (small intestine and rectum) but not in rumen content. Additional carbohydrates (xylose, ribose, mannitol, galactitol) as well as gluconeogenic substrates (aspartate, serine, glycerol) would also be used by EHEC as carbon and/or nitrogen sources all along the bovine GIT including the rumen. However, xylose, GalNac, ribose and fucose transport and/or assimilation encoding genes were over-expressed during incubation in rectum content compared with rumen and intestine contents, and genes coding for maltose transport were only induced in rectum. This suggests a role for these carbohydrates in the colonization of the cattle rectum, considered as the major site for EHEC multiplication. In contrast, the transcription of the genes associated with the assimilation of ethanolamine, an important nitrogen source for EHEC, was poorly induced in EHEC growing in rectum content, suggesting that ethanolamine is mainly assimilated in the cattle rumen and small intestine. Respiratory flexibility would also be required for EHEC survival because of the redundancy of dehydrogenases and reductases simultaneously induced in the bovine DCs, probably in response to the availability of electron donors and acceptors. Conclusion EHEC EDL933 showed a high flexibility in the activation of genes involved in respiratory pathways and assimilation of carbon and nitrogen sources, most of them from animal origin. This may allow the bacterium to adapt and survive in the various bovine GIT compartments. Obtaining a better understanding of EHEC physiology in bovine GIT is a key step to ultimately propose strategies to limit EHEC carriage and shedding by cattle. Electronic supplementary material The online version of this article (10.1186/s12864-018-5167-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Audrey Segura
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Marine Bertoni
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.,Present address : Institut National de Police Scientifique - Laboratoire de Police Scientifique de Marseille, Marseille, France
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.,Present address : Ifremer, UMR 241 EIO, Tahiti, French Polynesia
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, Auzeville, Castanet-Tolosan, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Alexandra Durand
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Yolande Bertin
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
107
|
Kuhn P, Kalariya HM, Poulev A, Ribnicky DM, Jaja-Chimedza A, Roopchand DE, Raskin I. Grape polyphenols reduce gut-localized reactive oxygen species associated with the development of metabolic syndrome in mice. PLoS One 2018; 13:e0198716. [PMID: 30308002 PMCID: PMC6181265 DOI: 10.1371/journal.pone.0198716] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
High-fat diet (HFD)-induced leaky gut syndrome combined with low-grade inflammation increase reactive oxygen species (ROS) in the intestine and may contribute to dysbiosis and metabolic syndrome (MetS). Poorly bioavailable and only partially metabolizable dietary polyphenols, such as proanthocyanidins (PACs), may exert their beneficial effects on metabolic health by scavenging intestinal ROS. To test this hypothesis, we developed and validated a novel, noninvasive, in situ method for visualizing intestinal ROS using orally administered ROS-sensitive indocyanine green (ICG) dye. C57BL/6J mice fed HFD for 10 weeks accumulated high levels of intestinal ROS compared to mice fed low-fat diet (LFD). Oral administration of poorly bioavailable grape polyphenol extract (GPE) and β-carotene decreased HFD-induced ROS in the gut to levels comparable to LFD-fed mice, while administration of more bioavailable dietary antioxidants (α-lipoic acid, vitamin C, vitamin E) did not. Forty percent of administered GPE antioxidant activity was measured in feces collected over 24 h, confirming poor bioavailability and persistence in the gut. The bloom of beneficial anaerobic gut bacteria, such as Akkermansia muciniphila, associated with improved metabolic status in rodents and humans may be directly linked to protective antioxidant activity of some dietary components. These findings suggest a possible mechanistic explanation for the beneficial effects of poorly bioavailable polyphenols on metabolic health.
Collapse
Affiliation(s)
- Peter Kuhn
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - Hetalben M. Kalariya
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - Alexander Poulev
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - David M. Ribnicky
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - Asha Jaja-Chimedza
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - Diana E. Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health, Center for Digestive Health, New Brunswick, NJ, United States of America
| | - Ilya Raskin
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| |
Collapse
|
108
|
Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA, Reeder PJ, Momin MM, Bergeron CG, Guilmain SE, Miller PF, Kurtz CB, Falb D. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 2018; 36:857-864. [DOI: 10.1038/nbt.4222] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 07/20/2018] [Indexed: 01/01/2023]
|
109
|
Wang J, Xing X, Yang X, Jung IJ, Hao G, Chen Y, Liu M, Wang H, Zhu J. Gluconeogenic growth of Vibrio cholerae is important for competing with host gut microbiota. J Med Microbiol 2018; 67:1628-1637. [PMID: 30248003 DOI: 10.1099/jmm.0.000828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The gastrointestinal tract is home to thousands of commensal bacterial species. Therefore, competition for nutrients is paramount for successful bacterial pathogen invasion of intestinal ecosystems. The human pathogen Vibrio cholerae, the causative agent of the severe diarrhoeal disease, cholera, is able to colonize the small intestine, which is protected by mucus. However, it is unclear which metabolic pathways or nutrients V. cholerae utilizes during intestinal colonization and growth. METHODOLOGY In this study, we investigated the effect of various metabolic key genes, including those involved in the gluconeogenesis pathway, on V. cholerae physiology and in vivo colonization. RESULTS We found that gluconeogenesis is important for infant mouse colonization. Growth assays showed that mutations in the key components of gluconeogenesis pathway, PpsA and PckA, lead to a growth defect in a minimal medium supplemented with mucin as a carbon source. Furthermore, the ppsA/pckA mutants colonized poorly in the adult mouse intestine, particularly when more gut commensal flora are present. CONCLUSION Gluconeogenesis biosynthesis is important for the successful colonization of V. cholerae in a niche that is full of competing microbiota.
Collapse
Affiliation(s)
- Jipeng Wang
- 1College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaolin Xing
- 1College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaoman Yang
- 1College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - I-Ji Jung
- 2Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Guijuan Hao
- 1College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Yaran Chen
- 1College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Ming Liu
- 1College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Hui Wang
- 1College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Jun Zhu
- 2Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
110
|
Desmet CM, Tran LBA, Danhier P, Gallez B. Characterization of a clinically used charcoal suspension for in vivo EPR oximetry. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:205-212. [DOI: 10.1007/s10334-018-0704-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
|
111
|
Bertin Y, Segura A, Jubelin G, Dunière L, Durand A, Forano E. Aspartate metabolism is involved in the maintenance of enterohaemorrhagicEscherichia coliO157:H7 in bovine intestinal content. Environ Microbiol 2018; 20:4473-4485. [DOI: 10.1111/1462-2920.14380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Yolande Bertin
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Audrey Segura
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Gregory Jubelin
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Lysiane Dunière
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
- Lallemand Animal Nutrition Blagnac France
| | - Alexandra Durand
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| |
Collapse
|
112
|
Hedblom GA, Reiland HA, Sylte MJ, Johnson TJ, Baumler DJ. Segmented Filamentous Bacteria - Metabolism Meets Immunity. Front Microbiol 2018; 9:1991. [PMID: 30197636 PMCID: PMC6117376 DOI: 10.3389/fmicb.2018.01991] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
Segmented filamentous bacteria (SFB) are a group of host-adapted, commensal organisms that attach to the ileal epithelium of vertebrate and invertebrate hosts. A genetic relative of the genus Clostridium, these morphologically unique bacteria display a replication and differentiation lifecycle initiated by epithelial tissue binding and filamentation. SFB intimately bind to the surface of absorptive intestinal epithelium without inducing an inflammatory response. Rather, their presence impacts the generation of innate and differentiation of acquired immunity, which impact the clearance of extracellular bacterial or fungal pathogens in the gastrointestinal and respiratory tracts. SFB have recently garnered attention due to their role in promoting adaptive and innate immunity in mice and rats through the differentiation and maturation of Th17 cells in the intestinal tract and production of immunoglobulin A (IgA). SFB are the first commensal bacteria identified that impact the maturation and development of Th17 cells in mice. Recently, microbiome studies have revealed the presence of Candidatus Arthromitus (occasionally designated as Candidatus Savagella), a proposed candidate species of SFB, in higher proportions in higher-performing flocks as compared to matched lower-performing flocks, suggesting that SFB may serve to establish a healthy gut and protect commercial turkeys from pathogens resulting in morbidity and decreased performance. In this review we seek to describe the life cycle, host specificity, and genetic capabilities of SFB, such as bacterial metabolism, and how these factors influence the host immunity and microbiome. Although the role of SFB to induce antigen-specific Th17 cells in poultry is unknown, they may play an important role in modulating the immune response in the intestinal tract to promote resistance against some infectious diseases and promote food-safety. This review demonstrates the importance of studying and further characterizing commensal, host-specific bacteria in food-producing animals and their importance to animal health.
Collapse
Affiliation(s)
- Grant A Hedblom
- Department of Food Science and Nutrition, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Holly A Reiland
- Department of Food Science and Nutrition, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, USDA-ARS National Animal Disease Center, Ames, IA, United States
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota Twin Cities, Saint Paul, MN, United States.,The Microbial and Plant Genomics Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota Twin Cities, Saint Paul, MN, United States.,The Microbial and Plant Genomics Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States.,The Biotechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| |
Collapse
|
113
|
Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci Rep 2018; 8:12727. [PMID: 30143657 PMCID: PMC6109158 DOI: 10.1038/s41598-018-30932-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
In addition to its value in meat production, the pig is an interesting animal model for human digestive tract studies due to its physiological similarities. The aim of this study was to describe the microbiome composition, distribution and interaction along the Iberian pig intestinal tract and its role in whole-body energy homeostasis. The V3-V4 region of the 16S rRNA gene was amplified and sequenced from the microbiomes of five gut sections (duodenum, jejunum, ileum, and proximal and distal colon) in thirteen castrated male pigs. A total of 1,669 operational taxonomic units distributed in 179 genera were found among all samples. The two most abundant genera in the small intestine were Lactobacillus and Clostridium, while Prevotella was predominant in the colon. The colon samples were more similar among the pigs and richer in species than the small intestine samples were. In the small intestine, the metagenome prediction pointed to rapid internalization and conversion of the available simple carbohydrates for microbial proliferation and maintenance. In the colon, a competition among anaerobic bacteria for plant polysaccharide degradation to produce short chain fatty acids was found. This study confirms that the energy pathways of the gut microbiome differ along its sections and provides a description of the correlations between genera.
Collapse
|
114
|
Wang Z, Sun J, Xia T, Liu Y, Fu J, Lo YK, Chang C, Yan A, Liu X. Proteomic Delineation of the ArcA Regulon in Salmonella Typhimurium During Anaerobiosis. Mol Cell Proteomics 2018; 17:1937-1947. [PMID: 30038032 DOI: 10.1074/mcp.ra117.000563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most used models for bacterial pathogenesis and successful infection requires its adaptation to the low oxygen environment in host gastrointestinal tracts. Central to this process is the Arc (aerobic respiratory control) two-component regulatory system that contains a sensor kinase ArcB and a response regulator ArcA. Nevertheless, a comprehensive profile of the ArcA regulon on the proteome level is still lacking in S. Typhimurium. Here we quantitatively profiled Salmonella proteome during anaerobiosis in an arcA-deleting mutant compared with its parental strain. In addition to known processes under its control, notably we found that ArcA represses ethanolamine utilization by directly binding to the promoter region of the eut operon. Furthermore, we found opposing changes of several bacterial genes on the protein and transcript levels in the arcA-deleting mutant including the virulence genes of Salmonella pathogenicity island 1 (SPI-1), thereby indicating potentially prevalent post-transcriptional regulatory mechanisms. Altogether, our study provides important new insights into ArcA-dependent bacterial physiology and virulence during Salmonella anaerobiosis.
Collapse
Affiliation(s)
- Zhen Wang
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingjing Sun
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tingying Xia
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yanhua Liu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Fu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yat Kei Lo
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Cheng Chang
- ¶State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (Beijing), Beijing 102206, P.R. China
| | - Aixin Yan
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China;
| | - Xiaoyun Liu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
115
|
Alves Batista DF, de Freitas Neto OC, Maria de Almeida A, Maboni G, de Carvalho TF, de Carvalho TP, Barrow PA, Berchieri A. Evaluation of pathogenicity of Salmonella Gallinarum strains harbouring deletions in genes whose orthologues are conserved pseudogenes in S. Pullorum. PLoS One 2018; 13:e0200585. [PMID: 30028856 PMCID: PMC6054384 DOI: 10.1371/journal.pone.0200585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
The diseases caused by Salmonella Gallinarum and S. Pullorum in chickens known as fowl typhoid and pullorum disease, respectively, pose a great threat to the poultry industry mainly in developing countries, since they have already been controlled in the developed ones. These bacteria are very similar at the genomic level but develop distinct host-pathogen relationships with chickens. Therefore, a deep understanding of the molecular mechanisms whereby S. Gallinarum and S. Pullorum interact with the host could lead to the development of new approaches to control and, perhaps, eradicate both diseases from the chicken flocks worldwide. Based on our previous study, it was hypothesised that metabolism-related pseudogenes, fixed in S. Pullorum genomes, could play a role in the distinct host-pathogen interaction with susceptible chickens. To test this idea, three genes (idnT, idnO and ccmH) of S. Gallinarum str. 287/91, which are pseudogenes on the S. Pullorum chromosomes, were inactivated by mutations. These genetically engineered strains grew well on the solid media without any colony morphology difference. In addition, similar growth curves were obtained by cultivation in M9 minimal medium containing D-gluconate as the sole carbon source. Infection of chickens with idnTO mutants led to increased numbers of bacteria in the livers and spleens at 5 days post-infection, but with slightly decreased heterophil infiltration in the spleens when compared to the wild-type strain. On the other hand, no significant phenotypic change was caused by mutation to ccmH genes. Apart from the above-mentioned alterations, all S. Gallinarum strains provoked similar infections, since mortality, clinical signs, macroscopic alterations and immune response were similar to the infected chickens. Therefore, according to the model applied to this study, mutation to the idnTO and ccmH genes showed minor impact on the fowl typhoid pathogenesis and so they may be relics from the ancestor genome. Our data hints at a more complex mechanism driving the distinct host-pathogen interaction of S. Gallinarum/Pullorum with chickens than differential inactivation of a few genes.
Collapse
Affiliation(s)
- Diego Felipe Alves Batista
- Post Graduate Program in Agricultural and Livestock Microbiology, Department of Veterinary Pathology, School of Agriculture and Veterinarian Sciences, São Paulo State University (Unesp), campus at Jaboticabal, São Paulo, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Post Graduate Program in Agricultural and Livestock Microbiology, Department of Veterinary Pathology, School of Agriculture and Veterinarian Sciences, São Paulo State University (Unesp), campus at Jaboticabal, São Paulo, Brazil
- Department of Veterinary Sciences, Federal University of Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| | - Adriana Maria de Almeida
- Post Graduate Program in Agricultural and Livestock Microbiology, Department of Veterinary Pathology, School of Agriculture and Veterinarian Sciences, São Paulo State University (Unesp), campus at Jaboticabal, São Paulo, Brazil
| | - Grazieli Maboni
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Tatiane Furtado de Carvalho
- Department of Veterinary Clinic and Surgery, School of Veterinary, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Thaynara Parente de Carvalho
- Department of Veterinary Clinic and Surgery, School of Veterinary, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Paul Andrew Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Angelo Berchieri
- Post Graduate Program in Agricultural and Livestock Microbiology, Department of Veterinary Pathology, School of Agriculture and Veterinarian Sciences, São Paulo State University (Unesp), campus at Jaboticabal, São Paulo, Brazil
| |
Collapse
|
116
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|
117
|
Listeria monocytogenes Response to Propionate Is Differentially Modulated by Anaerobicity. Pathogens 2018; 7:pathogens7030060. [PMID: 29966268 PMCID: PMC6161076 DOI: 10.3390/pathogens7030060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Propionate is a common food preservative and one of the major fermentation acids in the intestines. Therefore, exposure to propionate is frequent for foodborne pathogens and likely takes place under suboxic conditions. However, it is not clear whether the absence of oxygen affects how pathogens respond to propionate. Here, we investigated how propionate exposure affects Listeria monocytogenes growth and virulence factor production under aerobic or anaerobic conditions and showed that oxygen indeed plays a key role in modulating L. monocytogenes response to propionate. Under aerobic conditions, propionate supplementations had no effect on planktonic growth but resulted in decreased adherent growth. Under anaerobic conditions, propionate supplementations resulted in a pH-dependent inhibition of planktonic growth and increased adherent growth. Cultures grown with propionate accumulated higher levels of acetoin under aerobic conditions but lower levels of ethanol under both aerobic and anaerobic conditions. Metabolic perturbations by propionate were also evident by the increase in straight chain fatty acids. Finally, propionate supplementations resulted in increased listeriolyin O (LLO) production under anaerobic conditions but decreased LLO production under aerobic conditions. These results demonstrate for the first time that the presence or absence of oxygen plays a critical role in shaping L. monocytogenes responses to propionate.
Collapse
|
118
|
Lourenço M, De Sordi L, Debarbieux L. The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity. Viruses 2018; 10:v10060327. [PMID: 29914064 PMCID: PMC6024678 DOI: 10.3390/v10060327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Phage therapy is based on a simple concept: the use of a virus (bacteriophage) that is capable of killing specific pathogenic bacteria to treat bacterial infections. Since the pioneering work of Félix d’Herelle, bacteriophages (phages) isolated in vitro have been shown to be of therapeutic value. Over decades of study, a large number of rather complex mechanisms that are used by phages to hijack bacterial resources and to produce their progeny have been deciphered. While these mechanisms have been identified and have been studied under optimal conditions in vitro, much less is known about the requirements for successful viral infections in relevant natural conditions. This is particularly true in the context of phage therapy. Here, we highlight the parameters affecting phage replication in both in vitro and in vivo environments, focusing, in particular, on the mammalian digestive tract. We propose avenues for increasing the knowledge-guided implementation of phages as therapeutic tools.
Collapse
Affiliation(s)
- Marta Lourenço
- Department of Microbiology, Institut Pasteur, F-75015 Paris, France.
- Collège Doctoral, Sorbonne Université, F-75005 Paris, France.
| | - Luisa De Sordi
- Department of Microbiology, Institut Pasteur, F-75015 Paris, France.
| | | |
Collapse
|
119
|
Fricker M, Goggins BJ, Mateer S, Jones B, Kim RY, Gellatly SL, Jarnicki AG, Powell N, Oliver BG, Radford-Smith G, Talley NJ, Walker MM, Keely S, Hansbro PM. Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight 2018; 3:94040. [PMID: 29415878 PMCID: PMC5821186 DOI: 10.1172/jci.insight.94040] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 01/10/2018] [Indexed: 01/05/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract (GIT). Cigarette smoke (CS) exposure and chronic obstructive pulmonary disease (COPD) are risk factors for CD, although the mechanisms involved are poorly understood. We employed a mouse model of CS-induced experimental COPD and clinical studies to examine these mechanisms. Concurrent with the development of pulmonary pathology and impaired gas exchange, CS-exposed mice developed CD-associated pathology in the colon and ileum, including gut mucosal tissue hypoxia, HIF-2 stabilization, inflammation, increased microvasculature, epithelial cell turnover, and decreased intestinal barrier function. Subsequent smoking cessation reduced GIT pathology, particularly in the ileum. Dimethyloxaloylglycine, a pan-prolyl hydroxylase inhibitor, ameliorated CS-induced GIT pathology independently of pulmonary pathology. Prior smoke exposure exacerbated intestinal pathology in 2,4,6-trinitrobenzenesulfonic acid-induced (TNBS-induced) colitis. Circulating vascular endothelial growth factor, a marker of systemic hypoxia, correlated with CS exposure and CD in mice and humans. Increased mucosal vascularisation was evident in ileum biopsies from CD patients who smoke compared with nonsmokers, supporting our preclinical data. We provide strong evidence that chronic CS exposure and, for the first time to our knowledge, associated impaired gas exchange cause systemic and intestinal ischemia, driving angiogenesis and GIT epithelial barrier dysfunction, resulting in increased risk and severity of CD.
Collapse
Affiliation(s)
- Michael Fricker
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Bridie J. Goggins
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Sean Mateer
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Bernadette Jones
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Richard Y. Kim
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Shaan L. Gellatly
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Andrew G. Jarnicki
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Nicholas Powell
- Faculty of Translational Medicine, Guy’s and St. Thomas’ and King’s College London Comprehensive Biomedical Research Centre, Great Maze Pond, London, United Kingdom
| | - Brian G. Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- School of Life Sciences, The University of Technology, Sydney, New South Wales, Australia
| | - Graham Radford-Smith
- Royal Brisbane and Women’s Hospital, Brisbane, School of Medicine, University of Queensland, and
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas J. Talley
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, New South Wales, Australia
| | - Marjorie M. Walker
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, New South Wales, Australia
| | - Simon Keely
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, New South Wales, Australia
| | - Philip M. Hansbro
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, New South Wales, Australia
| |
Collapse
|
120
|
Guariglia-Oropeza V, Orsi RH, Guldimann C, Wiedmann M, Boor KJ. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon. Front Microbiol 2018; 9:120. [PMID: 29467736 PMCID: PMC5808219 DOI: 10.3389/fmicb.2018.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/18/2018] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes uses a variety of transcriptional regulation strategies to adapt to the extra-host environment, the gastrointestinal tract, and the intracellular host environment. While the alternative sigma factor SigB has been proposed to be a key transcriptional regulator that facilitates L. monocytogenes adaptation to the gastrointestinal environment, the L. monocytogenes' transcriptional response to bile exposure is not well-understood. RNA-seq characterization of the bile stimulon was performed in two L. monocytogenes strains representing lineages I and II. Exposure to bile at pH 5.5 elicited a large transcriptomic response with ~16 and 23% of genes showing differential transcription in 10403S and H7858, respectively. The bile stimulon includes genes involved in motility and cell wall modification mechanisms, as well as genes in the PrfA regulon, which likely facilitate survival during the gastrointestinal stages of infection that follow bile exposure. The fact that bile exposure induced the PrfA regulon, but did not induce further upregulation of the SigB regulon (beyond that expected by exposure to pH 5.5), suggests a model where at the earlier stages of gastrointestinal infection (e.g., acid exposure in the stomach), SigB-dependent gene expression plays an important role. Subsequent exposure to bile induces the PrfA regulon, potentially priming L. monocytogenes for subsequent intracellular infection stages. Some members of the bile stimulon showed lineage- or strain-specific distribution when 27 Listeria genomes were analyzed. Even though sigB null mutants showed increased sensitivity to bile, the SigB regulon was not found to be upregulated in response to bile beyond levels expected by exposure to pH 5.5. Comparison of wildtype and corresponding ΔsigB strains newly identified 26 SigB-dependent genes, all with upstream putative SigB-dependent promoters.
Collapse
Affiliation(s)
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Claudia Guldimann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Kathryn J Boor
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
121
|
Giordano N, Hastie JL, Carlson PE. Transcriptomic profiling of Clostridium difficile grown under microaerophillic conditions. Pathog Dis 2018; 76:4830101. [DOI: 10.1093/femspd/fty010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nicole Giordano
- Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jessica L Hastie
- Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Paul E Carlson
- Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
122
|
Zhang L, Wu W, Lee YK, Xie J, Zhang H. Spatial Heterogeneity and Co-occurrence of Mucosal and Luminal Microbiome across Swine Intestinal Tract. Front Microbiol 2018; 9:48. [PMID: 29472900 PMCID: PMC5810300 DOI: 10.3389/fmicb.2018.00048] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Pigs are one of the most important economic livestock. Gut microbiota is not only critical to the health but also the production efficiency of pigs. Manipulating gut microbiota relies on the full view of gut microbiome and the understanding of drive forces shaping microbial communities. 16s rDNA sequencing was used to profile microbiota along the longitudinal and radical axes to obtain the topographical map of microbiome in different intestinal compartments in young pigs. Alpha and beta-diversities revealed distinct differences in microbial compositions between the distal ileum and cecum and colon, as well as between the lumen and mucosa. Firmicutes and Proteobacteria dominated in the ileum, constituting 95 and 80% of the luminal and mucosa-attached microbiome. Transitioning from the small intestine to the large intestine, luminal Bacteroidetes increased from 1.69 to 45.98% in the cecum and 40.09% in the colon, while mucosal Bacteroidetes raised from 9 to 35.36% and 27.96%. Concurrently, luminal Firmicutes and Proteobacteria and mucosal-attached Proteobacteria remarkably decreased. By co-occurrence network analyses, Prevotellaceae, Ruminococcaceae, Lachnospiraceae and Veillonellaceae were recognized as the central nodes of luminal microbial network, and Prevotellaceae and Enterobacteriaceae, Caulobacteraceae, Enterococcaceae, Xanthomonadaceae, Pseudomonadaceae were identified as mucosal central nodes. Co-abundance was uncovered among Prevotellaceae, Lachnospiraceae, and Veillonellaceae in the luminal and mucosal microbiome, while opportunistic pathogens from γ-Proteobacteria in the mucosa. Strong co-exclusion was shown between Enterobacteriaceae with Prevotellaceae-centered microbial groups in the lumen. Redundancy analysis found bile acids and short chain fatty acids explained 37.1 and 41% of variations in the luminal microbial composition, respectively. Primary bile acid, taurine- and glycine- conjugated bile acids were positively correlated with Lactobacillaceae, Enterobacteriaceae, Clostridiaceae_1, Peptostreptococcaceae, whereas secondary bile acids, acetate, propionate, butyrate, and valerate were positively correlated with Prevotellaceae, Acidaminococcaceae, Ruminococcaceae, Lachnospiraceae, Desulfovibronaceae, Veillonellaceae. Functional analyses demonstrated that Prevotella, Veillonellaceae, Lachnospiraceae, and Ruminococcaceae were positively correlated with gene functions related to amino acids, energy, cofactors and vitamins metabolism, which are indispensable for the hosts. These results suggested site specific colonization and co-occurrence of swine gut microbiome closely relate to the microenvironment in each niche. Interactions of core gut microbiome greatly contributed to metabolism and/or immunity in the swine intestine.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan-Kun Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
123
|
Kondrashina A, Papkovsky D, Giblin L. Physiological Gut Oxygenation Alters GLP-1 Secretion from the Enteroendocrine Cell Line STC-1. Mol Nutr Food Res 2018; 62. [DOI: 10.1002/mnfr.201700568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Alina Kondrashina
- Food for Health Ireland; Teagasc Food Research Centre; Moorepark Fermoy Co. Cork Ireland
| | - Dmitri Papkovsky
- School of Biochemistry and Cell Biology; University College Cork; Cork Ireland
| | - Linda Giblin
- Food for Health Ireland; Teagasc Food Research Centre; Moorepark Fermoy Co. Cork Ireland
| |
Collapse
|
124
|
Interactions between Enteric Bacteria and Eukaryotic Viruses Impact the Outcome of Infection. Viruses 2018; 10:v10010019. [PMID: 29301335 PMCID: PMC5795432 DOI: 10.3390/v10010019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/23/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022] Open
Abstract
Enteric viruses encounter a multitude of environments as they traverse the gastrointestinal tract. The interaction of enteric eukaryotic viruses with members of the host microbiota impacts the outcome of infection. Infection with several enteric viruses is impaired in the absence of the gut microbiota, specifically bacteria. The effects of bacteria on virus biology are diverse. Poliovirus capsid stability and receptor engagement are positively impacted by bacteria and bacterial lipopolysaccharides. Norovirus utilizes histo-blood group antigens produced by enteric bacteria to attach and productively infect B cells. Lipopolysaccharides on the envelope of mouse mammary tumor virus promote a tolerogenic environment that allows for the establishment of viral persistence. Reovirus binds Gram negative and Gram-positive bacteria through bacterial envelope components to enhance virion thermostability. Through the direct engagement of bacteria and bacterial components, viruses evolved diverse ways to impact the outcome of infection.
Collapse
|
125
|
Kim YE, Lee M, Gu H, Kim J, Jeong S, Yeo S, Lee YJ, Im SH, Sung YC, Kim HJ, Weissman IL, Ahn GO. Hypoxia-inducible factor-1 (HIF-1) activation in myeloid cells accelerates DSS-induced colitis progression in mice. Dis Model Mech 2018; 11:dmm.033241. [PMID: 29967068 PMCID: PMC6078398 DOI: 10.1242/dmm.033241] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease, in which the intestinal epithelium loses its barrier function. Given the existence of the oxygen gradient in the intestinal epithelium and that inflammation further contributes to the tissue hypoxia, we investigated the role of hypoxia-inducible factor (HIF), a transcription factor activated under hypoxic conditions in myeloid cells, in the progression of IBD. To do this, we utilized myeloid-specific knockout (KO) mice targeting HIF pathways, created by a Cre-loxP system with human MRP8 (hMRP8), an intracellular calcium-binding protein, as the myeloid promoter. By feeding 5% dextran sodium sulfate (DSS) to hMRP8 von Hippel Lindau (Vhl) KO mice, in which HIF-1α and HIF-2α are constitutively activated in myeloid cells, we found that these mice were highly susceptible to DSS-induced colitis, demonstrating greater body weight loss, increased mortality, faster onset of rectal bleeding, shortened colon length, and increased CD11b- or Gr-1-positive myeloid cells in the colon compared with wild-type (WT) mice. These parameters were restored to, if not better than, the WT levels when we examined hMRP8 Hif-1a KO mice upon 5% DSS feeding. hMRP8 Hif-2a KO mice, on the other hand, exhibited a similar degree of DSS-induced colitis to that of WT mice. Lastly, when DSS was given together with azoxymethane to induce tumorigenesis in the colon, we found that hMRP8 Hif-1a KO mice exhibited comparable levels of colorectal tumors to those of WT mice, indicating that HIF-1α in myeloid cells is dispensable for tumorigenesis. Collectively, our results suggest that HIF-1α activation in myeloid cells critically regulates IBD progression. Summary: We challenged myeloid-specific knockout mice targeting the hypoxia-inducible factor (HIF) pathway to dextran sodium sulfate-induced colitis, demonstrating that HIF-1α, but not HIF-2α, activation in myeloid cells regulates colitis severity in mice.
Collapse
Affiliation(s)
- Young-Eun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Minji Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Korea
| | - Hyejung Gu
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Jeongwoo Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Seongju Jeong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sujin Yeo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - You Jeong Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Korea
| | - Young-Chul Sung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Irving L. Weissman
- Stem Cell Institute and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - G-One Ahn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheong Am-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
126
|
Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 2017; 17:774-785. [PMID: 28972206 PMCID: PMC5799081 DOI: 10.1038/nri.2017.103] [Citation(s) in RCA: 461] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, 80045 Colorado, USA
| |
Collapse
|
127
|
Evaluation of oxidized phospholipids analysis by LC-MS/MS. Anal Bioanal Chem 2017; 410:633-647. [DOI: 10.1007/s00216-017-0764-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
|
128
|
Ponomarenko O, La Porte PF, Singh SP, Langan G, Fleming DEB, Spallholz JE, Alauddin M, Ahsan H, Ahmed S, Gailer J, George GN, Pickering IJ. Selenium-mediated arsenic excretion in mammals: a synchrotron-based study of whole-body distribution and tissue-specific chemistry. Metallomics 2017; 9:1585-1595. [PMID: 29058732 DOI: 10.1039/c7mt00201g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Arsenicosis, a syndrome caused by ingestion of arsenic contaminated drinking water, currently affects millions of people in South-East Asia and elsewhere. Previous animal studies revealed that the toxicity of arsenite essentially can be abolished if selenium is co-administered as selenite. Although subsequent studies have provided some insight into the biomolecular basis of this striking antagonism, many details of the biochemical pathways that ultimately result in the detoxification and excretion of arsenic using selenium supplements have yet to be thoroughly studied. To this end and in conjunction with the recent Phase III clinical trial "Selenium in the Treatment of Arsenic Toxicity and Cancers", we have applied synchrotron X-ray techniques to elucidate the mechanisms of this arsenic-selenium antagonism at the tissue and organ levels using an animal model. X-ray fluorescence imaging (XFI) of cryo-dried whole-body sections of laboratory hamsters that had been injected with arsenite, selenite, or both chemical species, provided insight into the distribution of both metalloids 30 minutes after treatment. Co-treated animals showed strong co-localization of arsenic and selenium in the liver, gall bladder and small intestine. X-ray absorption spectroscopy (XAS) of freshly frozen organs of co-treated animals revealed the presence in liver tissues of the seleno bis-(S-glutathionyl) arsinium ion, which was rapidly excreted via bile into the intestinal tract. These results firmly support the previously postulated hepatobiliary excretion of the seleno bis-(S-glutathionyl) arsinium ion by providing the first data pertaining to organs of whole animals.
Collapse
Affiliation(s)
- Olena Ponomarenko
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Kalnins G, Sevostjanovs E, Hartmane D, Grinberga S, Tars K. CntA oxygenase substrate profile comparison and oxygen dependency of TMA production in Providencia rettgeri. J Basic Microbiol 2017; 58:52-59. [PMID: 29110324 DOI: 10.1002/jobm.201700428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023]
Abstract
CntA oxygenase is a Rieske 2S-2Fe cluster-containing protein that has been previously described as able to produce trimethylamine (TMA) from carnitine, gamma-butyrobetaine, glycine betaine, and in one case, choline. TMA found in humans is exclusively of bacterial origin, and its metabolite, trimethylamine oxide (TMAO), has been associated with atherosclerosis and heart and renal failure. We isolated four different Rieske oxygenases and determined that there are no significant differences in their substrate panels. All three had high activity toward carnitine/gamma-butyrobetaine, medium activity toward glycine betaine, and very low activity toward choline. We tested the influence of low oxygen concentrations on TMA production in CntA-containing Providencia rettgeri cell cultures and discovered that this process, although dependent on the amount of oxygen, is still feasible in environments with 1 and 0.2% oxygen, which is comparable to oxygen levels in some parts of the digestive system.
Collapse
Affiliation(s)
- Gints Kalnins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Dace Hartmane
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
130
|
Bauwens A, Kunsmann L, Marejková M, Zhang W, Karch H, Bielaszewska M, Mellmann A. Intrahost milieu modulates production of outer membrane vesicles, vesicle-associated Shiga toxin 2a and cytotoxicity in Escherichia coli O157:H7 and O104:H4. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:626-634. [PMID: 28675605 DOI: 10.1111/1758-2229.12562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Outer membrane vesicles (OMVs) are important virulence tools of enterohaemorrhagic Escherichia coli (EHEC), but other biological functions of these nanostructures are unknown. We tested the hypothesis that modulation of OMV production enables EHEC to resist the intrahost environment during infection by investigating if simulated human gastrointestinal conditions affect OMV production in EHEC O157:H7 and O104:H4. All the conditions tested including a low pH, simulated ileal and colonic media, presence of mucin, intestinal epithelial cell lysate or antimicrobial peptides, as well as iron limitation, significantly increased OMV production by these pathogens. Accordingly, a maximum vesiculation in EHEC O104:H4 was observed immediately after its isolation from a patient's intestine, and rapidly decreased during passages in vitro. Most of the simulated intrahost conditions also upregulated the OMV-associated Shiga toxin 2a (Stx2a), the major EHEC virulence factor, and, as a result, OMV cytotoxicity. The data indicates that upregulation of OMV production by the human gastrointestinal milieu contributes to EHEC survival and adaptation within the host during infection. Moreover, the intrahost increase of vesiculation and OMV-associated Stx2a may augment EHEC virulence.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, 48149 Münster, Germany
| | - Lisa Kunsmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany
| | - Monika Marejková
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, 100 42 Prague, Czech Republic
| | - Wenlan Zhang
- Institute for Hygiene, University of Münster, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany
| | | | - Alexander Mellmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany
| |
Collapse
|
131
|
Biofilm Formation by Uropathogenic Escherichia coli Is Favored under Oxygen Conditions That Mimic the Bladder Environment. Int J Mol Sci 2017; 18:ijms18102077. [PMID: 28973965 PMCID: PMC5666759 DOI: 10.3390/ijms18102077] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
One of the most common urologic problems afflicting millions of people worldwide is urinary tract infection (UTI). The severity of UTIs ranges from asymptomatic bacteriuria to acute cystitis, and in severe cases, pyelonephritis and urosepsis. The primary cause of UTIs is uropathogenic Escherichia coli (UPEC), for which current antibiotic therapies often fail. UPEC forms multicellular communities known as biofilms on urinary catheters, as well as on and within bladder epithelial cells. Biofilm formation protects UPEC from environmental conditions, antimicrobial therapy, and the host immune system. Previous studies have investigated UPEC biofilm formation in aerobic conditions (21% oxygen); however, urine oxygen tension is reduced (4–6%), and urine contains molecules that can be used by UPEC as alternative terminal electron acceptors (ATEAs) for respiration. This study was designed to determine whether these different terminal electron acceptors utilized by E. coli influence biofilm formation. A panel of 50 urine-associated E. coli isolates was tested for the ability to form biofilm under anaerobic conditions and in the presence of ATEAs. Biofilm production was reduced under all tested sub-atmospheric levels of oxygen, with the notable exception of 4% oxygen, the reported concentration of oxygen within the bladder.
Collapse
|
132
|
Zhang K, Griffiths G, Repnik U, Hornef M. Seeing is understanding: Salmonella's way to penetrate the intestinal epithelium. Int J Med Microbiol 2017; 308:97-106. [PMID: 28939439 DOI: 10.1016/j.ijmm.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The molecular processes that govern host-microbial interaction illustrate not only the sophisticated and multifaceted mechanisms that protect the host from infection, but also the elaborated features of microbial pathogens that have evolved to overcome or evade the host's immune system. Here we focus on Salmonella that like other enteric pathogens must overcome the intestinal mucosal immune system, a surface constantly on alert and evolved to restrict the enteric microbiota. We discuss the initial step of Salmonella infection, the penetration of the intestinal epithelial barrier and the models used to study this fascinating aspect of microbial pathogenesis.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
133
|
Prieto D, Román E, Alonso-Monge R, Pla J. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans. Front Cell Infect Microbiol 2017; 7:389. [PMID: 28955659 PMCID: PMC5600957 DOI: 10.3389/fcimb.2017.00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| |
Collapse
|
134
|
Celiker H. A new proposed mechanism of action for gastric bypass surgery: Air hypothesis. Med Hypotheses 2017; 107:81-89. [PMID: 28915970 DOI: 10.1016/j.mehy.2017.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery is one of the most effective treatments for obesity and type II diabetes. RYGB was originally believed to work by mechanically restricting caloric intake or causing macronutrient malabsorption. However, such mechanical effects play no role in the remarkable efficacy of gastric bypass. Instead, mounting evidence shows that altered neuroendocrine signaling is responsible for the weight reducing effects of RYGB. The exact mechanism of this surgical response is still a mystery. Here, we propose that RYGB leads to weight loss primarily by inducing a functional shift in the gut microbiome, manifested by a relative expansion of aerobic bacteria numbers in the colon. We point to compelling evidence that gastric bypass changes the function of the microbiome by disrupting intestinal gas homeostasis, causing excessive transit of swallowed air (oxygen) into the colon.
Collapse
Affiliation(s)
- Hasan Celiker
- Xeno Biosciences Inc., 12 Mt Auburn St #7, Cambridge, MA, USA.
| |
Collapse
|
135
|
Herrmann E, Young W, Rosendale D, Conrad R, Riedel CU, Egert M. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing. Front Microbiol 2017; 8:1331. [PMID: 28790981 PMCID: PMC5522855 DOI: 10.3389/fmicb.2017.01331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023] Open
Abstract
The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA-SIP to link specific groups of microorganisms with fermentation of a specific substrate. The application of RNA-SIP in future in vivo studies will help to better understand the mechanisms behind functionality of a prebiotic carbohydrate and its impact on an intestinal ecosystem with potential implications for human health.
Collapse
Affiliation(s)
- Elena Herrmann
- Faculty of Medical & Life Sciences, Institute of Precision Medicine, Furtwangen UniversityVillingen-Schwenningen, Germany
| | - Wayne Young
- AgResearch Ltd., Food Nutrition and Health Team, Grasslands Research CentrePalmerston North, New Zealand
| | - Douglas Rosendale
- The New Zealand Institute for Plant & Food Research Ltd.Palmerston North, New Zealand
| | - Ralf Conrad
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of UlmUlm, Germany
| | - Markus Egert
- Faculty of Medical & Life Sciences, Institute of Precision Medicine, Furtwangen UniversityVillingen-Schwenningen, Germany
| |
Collapse
|
136
|
Epel B, Kotecha M, Halpern HJ. In vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:149-157. [PMID: 28552587 PMCID: PMC11866405 DOI: 10.1016/j.jmr.2017.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
The value of any measurement and a fortiori any measurement technology is defined by the reproducibility and the accuracy of the measurements. This implies a relative freedom of the measurement from factors confounding its accuracy. In the past, one of the reasons for the loss of focus on the importance of imaging oxygen in vivo was the difficulty in obtaining reproducible oxygen or pO2 images free from confounding variation. This review will briefly consider principles of electron paramagnetic oxygen imaging and describe how it achieves absolute oxygen measurements. We will provide a summary review of the progress in biomedical EPR imaging, predominantly in cancer biology research, discuss EPR oxygen imaging for cancer treatment and tissue graft assessment for regenerative medicine applications.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States; Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Mrignayani Kotecha
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago IL 60607, United States
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States; Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
137
|
Finn TJ, Shewaramani S, Leahy SC, Janssen PH, Moon CD. Dynamics and genetic diversification of Escherichia coli during experimental adaptation to an anaerobic environment. PeerJ 2017; 5:e3244. [PMID: 28480139 PMCID: PMC5419217 DOI: 10.7717/peerj.3244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023] Open
Abstract
Background Many bacteria are facultative anaerobes, and can proliferate in both anoxic and oxic environments. Under anaerobic conditions, fermentation is the primary means of energy generation in contrast to respiration. Furthermore, the rates and spectra of spontaneous mutations that arise during anaerobic growth differ to those under aerobic growth. A long-term selection experiment was undertaken to investigate the genetic changes that underpin how the facultative anaerobe, Escherichia coli, adapts to anaerobic environments. Methods Twenty-one populations of E. coli REL4536, an aerobically evolved 10,000th generation descendent of the E. coli B strain, REL606, were established from a clonal ancestral culture. These were serially sub-cultured for 2,000 generations in a defined minimal glucose medium in strict aerobic and strict anaerobic environments, as well as in a treatment that fluctuated between the two environments. The competitive fitness of the evolving lineages was assessed at approximately 0, 1,000 and 2,000 generations, in both the environment of selection and the alternative environment. Whole genome re-sequencing was performed on random colonies from all lineages after 2,000-generations. Mutations were identified relative to the ancestral genome, and based on the extent of parallelism, traits that were likely to have contributed towards adaptation were inferred. Results There were increases in fitness relative to the ancestor among anaerobically evolved lineages when tested in the anaerobic environment, but no increases were found in the aerobic environment. For lineages that had evolved under the fluctuating regime, relative fitness increased significantly in the anaerobic environment, but did not increase in the aerobic environment. The aerobically-evolved lineages did not increase in fitness when tested in either the aerobic or anaerobic environments. The strictly anaerobic lineages adapted more rapidly to the anaerobic environment than did the fluctuating lineages. Two main strategies appeared to predominate during adaptation to the anaerobic environment: modification of energy generation pathways, and inactivation of non-essential functions. Fermentation pathways appeared to alter through selection for mutations in genes such as nadR, adhE, dcuS/R, and pflB. Mutations were frequently identified in genes for presumably dispensable functions such as toxin-antitoxin systems, prophages, virulence and amino acid transport. Adaptation of the fluctuating lineages to the anaerobic environments involved mutations affecting traits similar to those observed in the anaerobically evolved lineages. Discussion There appeared to be strong selective pressure for activities that conferred cell yield advantages during anaerobic growth, which include restoring activities that had previously been inactivated under long-term continuous aerobic evolution of the ancestor.
Collapse
Affiliation(s)
- Thomas J Finn
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand.,New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sonal Shewaramani
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand.,New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand.,Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America
| | - Sinead C Leahy
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Peter H Janssen
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Christina D Moon
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
138
|
Sacco SA, Adolfsen KJ, Brynildsen MP. An integrated network analysis identifies how ArcAB enables metabolic oscillations in the nitric oxide detoxification network of Escherichia coli. Biotechnol J 2017; 12. [PMID: 28449226 DOI: 10.1002/biot.201600570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 11/06/2022]
Abstract
The virulences of many pathogens depend on their abilities to detoxify the immune antimicrobial nitric oxide (NO•). The functions of bacterial NO• detoxification machinery depend on oxygen (O2 ), with O2 inhibiting some enzymes, whereas others use it as a substrate. Previously, Escherichia coli NO• detoxification was found to be highly attenuated under microaerobic conditions and metabolic oscillations were observed. The oscillations in [NO•] and [O2 ] were found to result from the inhibitory action of NO• on aerobic respiration, the catalytic inactivation of NO• by Hmp (an NO• dioxygenase), and an imbalanced competition for O2 between Hmp and cytochrome terminal oxidase activity. Here the authors investigated the role of the ArcAB two component system (TCS) in microaerobic NO• detoxification. The authors observed that wild-type, ΔarcA, and ΔarcB had comparable initial NO• clearance times; however, the mutant cultures failed to exhibit [NO•] and [O2 ] oscillations. Using an approach that employed experimentation and computational modeling, the authors found that the loss of oscillations in ΔarcA was due to insufficient induction of cytochrome bd-I expression. Collectively, these results establish ArcAB as a TCS that influences NO• detoxification in E. coli within the physiologically-relevant microaerobic regime.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
139
|
Li D, Chen H, Mao B, Yang Q, Zhao J, Gu Z, Zhang H, Chen YQ, Chen W. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Sci Rep 2017; 8:45840. [PMID: 28374781 PMCID: PMC5379200 DOI: 10.1038/srep45840] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
As a long-standing biomedical model, rats have been frequently used in studies exploring the correlations between gastrointestinal (GI) bacterial biota and diseases. In the present study, luminal and mucosal samples taken along the longitudinal axis of the rat digestive tract were subjected to 16S rRNA gene sequencing-based analysis to determine the baseline microbial composition. Results showed that the community diversity increased from the upper to lower GI segments and that the stratification of microbial communities as well as shift of microbial metabolites were driven by biogeographic location. A greater proportion of lactate-producing bacteria (such as Lactobacillus, Turicibacter and Streptococcus) were found in the stomach and small intestine, while anaerobic Lachnospiraceae and Ruminococcaceae, fermenting carbohydrates and plant aromatic compounds, constituted the bulk of the large-intestinal core microbiota where topologically distinct co-occurrence networks were constructed for the adjacent luminal and mucosal compartments. When comparing the GI microbiota from different hosts, we found that the rat microbial biogeography might represent a new reference, distinct from other murine animals. Our study provides the first comprehensive characterization of the rat GI microbiota landscape for the research community, laying the foundation for better understanding and predicting the disease-related alterations in microbial communities.
Collapse
Affiliation(s)
- Dongyao Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Qin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China.,Departments of Cancer Biology and Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, P.R. China
| |
Collapse
|
140
|
Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol 2017; 19:1366-1378. [PMID: 28035742 PMCID: PMC5412925 DOI: 10.1111/1462-2920.13659] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations.
Collapse
Affiliation(s)
- Fátima C. Pereira
- Department of Microbiology and Ecosystem Science, Division of Microbial EcologyUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial EcologyUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| |
Collapse
|
141
|
Metabolic determinants in Listeria monocytogenes anaerobic listeriolysin O production. Arch Microbiol 2017; 199:827-837. [PMID: 28289786 PMCID: PMC5504256 DOI: 10.1007/s00203-017-1355-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022]
Abstract
Listeria monocytogenes is a human pathogen and a facultative anaerobe. To better understand how anaerobic growth affects L. monocytogenes pathogenesis, we first showed that anaerobic growth led to decreased growth and changes in surface morphology. Moreover, compared to aerobically grown bacteria, anaerobically grown L. monocytogenes established higher level of invasion but decreased intracellular growth and actin polymerization in cultured cells. The production of listeriolysin O (LLO) was significantly lower in anaerobic cultures—a phenotype observed in wild type and isogenic mutants lacking transcriptional regulators SigB or CodY or harboring a constitutively active PrfA. To explore potential regulatory mechanisms, we established that the addition of central carbon metabolism intermediates, such as acetate, citrate, fumarate, pyruvate, lactate, and succinate, led to an increase in LLO activity in the anaerobic culture supernatant. These results highlight the regulatory role of central carbon metabolism in L. monocytogenes pathogenesis under anaerobic conditions.
Collapse
|
142
|
Phippen BL, Oliver JD. Impact of hypoxia on gene expression patterns by the human pathogen, Vibrio vulnificus, and bacterial community composition in a North Carolina estuary. GEOHEALTH 2017; 1:37-50. [PMID: 32158978 PMCID: PMC7007117 DOI: 10.1002/2016gh000024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 05/11/2023]
Abstract
Estuarine environments are continuously being shaped by both natural and anthropogenic sources which directly/indirectly influence the organisms that inhabit these important niches on both individual and community levels. Human infections caused by pathogenic Vibrio species are continuing to rise, and factors associated with global climate change have been suggested to be impacting their abundance and geographical range. Along with temperature, hypoxia has also increased dramatically in the last 40 years, which has led to persistent dead zones worldwide in areas where these infections are increasing. Thus, utilizing membrane diffusion chambers, we investigated the impact of in situ hypoxia on the gene expression of one such bacterium, Vibrio vulnificus, which is an inhabitant of these vulnerable areas worldwide. By coupling these data with multiple abiotic factors, we were able to demonstrate that genes involved in numerous functions, including those involved in virulence, environmental persistence, and stressosome production, were negatively correlated with dissolved oxygen. Furthermore, comparing 16S ribosomal RNA, we found similar overall community compositions during both hypoxia and normoxia. However, unweighted beta diversity analyses revealed that although certain classes of bacteria dominate in both low- and high-oxygen environments, there is the potential for quantitative shifts in lower abundant species, which may be important for effective risk assessment in areas that are becoming increasingly more hypoxic. This study emphasizes the importance of investigating hypoxia as a trigger for gene expression changes by marine Vibrio species and highlights the need for more in depth community analyses during estuarine hypoxia.
Collapse
Affiliation(s)
- Britney L. Phippen
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - James D. Oliver
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
- Duke University Marine LaboratoryDuke UniversityBeaufortNorth CarolinaUSA
| |
Collapse
|
143
|
Kelly J, Daly K, Moran AW, Ryan S, Bravo D, Shirazi-Beechey SP. Composition and diversity of mucosa-associated microbiota along the entire length of the pig gastrointestinal tract; dietary influences. Environ Microbiol 2017; 19:1425-1438. [PMID: 27871148 DOI: 10.1111/1462-2920.13619] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Mucosa-associated microbial populations of the gastrointestinal tract are in intimate contact with the outer mucus layer. This proximity offers these populations a higher potential, than lumenal microbiota, in exerting effects on the host. Functional characteristics of the microbiota and influences of host-physiology shape the composition and activity of the mucosa-associated bacterial community. We have shown previously that inclusion of an artificial sweetener, SUCRAM, included in the diet of weaning piglets modulates the composition of lumenal-residing gut microbiota and reduces weaning-related gastrointestinal disorders. In this study, using Illumina sequencing we characterised the mucosa-associated microbiota along the length of the intestine of piglets, and determined the effect of SUCRAM supplementation on mucosa-associated populations. There were clear distinctions in the composition of mucosa-associated microbiota, between small and large intestine, concordant with differences in regional oxygen distribution and nutrient provision by the host. There were significant differences in the composition of mucosa-associated compared with lumenal microbiota in pig caecum. Dietary supplementation with SUCRAM affected mucosa-associated bacterial community structure along the length of the intestinal tract. Most notably, there was a substantial reduction in predominant Campylobacter populations proposing that SUCRAM supplementation of swine diet has potential for reducing meat contamination and promoting food safety.
Collapse
Affiliation(s)
- Jennifer Kelly
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Kristian Daly
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Andrew W Moran
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Sheila Ryan
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David Bravo
- Pancosma SA, Voie-des-Traz 6, Le Grand-Sacconex, Geneva, CH 1218, Switzerland
| | - Soraya P Shirazi-Beechey
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
144
|
Zhdanov AV, Okkelman IA, Golubeva AV, Doerr B, Hyland NP, Melgar S, Shanahan F, Cryan JF, Papkovsky DB. Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue. Cell Mol Life Sci 2017; 74:141-151. [PMID: 27510419 PMCID: PMC11107550 DOI: 10.1007/s00018-016-2323-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022]
Abstract
Colonic inflammation is associated with decreased tissue oxygenation, significantly affecting gut homeostasis. However, the crosstalk between O2 consumption and supply in the inflamed tissue are not fully understood. Using a murine model of colitis, we analysed O2 in freshly prepared samples of healthy and inflamed colon tissue. We developed protocols for efficient ex vivo staining of mouse distal colon mucosa with a cell-penetrating O2 sensitive probe Pt-Glc and high-resolution imaging of O2 concentration in live tissue by confocal phosphorescence lifetime-imaging microscopy (PLIM). Microscopy analysis revealed that Pt-Glc stained mostly the top 50-60 μm layer of the mucosa, with high phosphorescence intensity in epithelial cells. Measured O2 values in normal mouse tissue ranged between 5 and 35 μM (4-28 Torr), tending to decrease in the deeper tissue areas. Four-day treatment with dextran sulphate sodium (DSS) triggered colon inflammation, as evidenced by an increase in local IL6 and mKC mRNA levels, but did not affect the gross architecture of colonic epithelium. We further observed an increase in oxygenation, partial activation of hypoxia inducible factor (HIF) 1 signalling, and negative trends in pyruvate dehydrogenase activity and O2 consumption rate in the colitis mucosa, suggesting a decrease in mitochondrial respiration, which is known to be regulated via HIF-1 signalling and pyruvate oxidation rate. These results along with efficient staining with Pt-Glc of rat and human colonic mucosa reveal high potential of PLIM platform as a powerful tool for the high-resolution analysis of the intestinal tissue oxygenation in patients with inflammatory bowel disease and other pathologies, affecting tissue respiration.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | - Irina A Okkelman
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Barbara Doerr
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| |
Collapse
|
145
|
Interspecies Interactions between Clostridium difficile and Candida albicans. mSphere 2016; 1:mSphere00187-16. [PMID: 27840850 PMCID: PMC5103046 DOI: 10.1128/msphere.00187-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
Candida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease. The facultative anaerobic polymorphic fungus Candida albicans and the strictly anaerobic Gram-positive bacterium Clostridium difficile are two opportunistic pathogens residing in the human gut. While a few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, the nature of the interactions between these two microbes has not been studied thus far. In the current study, both chemical and physical interactions between C. albicans and C. difficile were investigated. In the presence of C. albicans, C. difficile was able to grow under aerobic, normally toxic, conditions. This phenomenon was neither linked to adherence of bacteria to hyphae nor to biofilm formation by C. albicans. Conditioned medium of C. difficile inhibited hyphal growth of C. albicans, which is an important virulence factor of the fungus. In addition, it induced hypha-to-yeast conversion. p-Cresol, a fermentation product of tyrosine produced by C. difficile, also induced morphological effects and was identified as an active component of the conditioned medium. This study shows that in the presence of C. albicans, C. difficile can persist and grow under aerobic conditions. Furthermore, p-cresol, produced by C. difficile, is involved in inhibiting hypha formation of C. albicans, directly affecting the biofilm formation and virulence of C. albicans. This study is the first detailed characterization of the interactions between these two gut pathogens. IMPORTANCECandida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease.
Collapse
|
146
|
Rocha BS, Correia MG, Fernandes RC, Gonçalves JS, Laranjinha J. Dietary nitrite induces occludin nitration in the stomach. Free Radic Res 2016; 50:1257-1264. [PMID: 27607739 DOI: 10.1080/10715762.2016.1234049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The clinical implications of the nitrate-nitrite-nitric oxide pathway have been extensively studied in recent years. However, the physiological impact of bioactive nitrogen oxides produced from dietary nitrate has remained largely elusive. Here, we report a hitherto unrecognized nitrite-dependent nitrating pathway that targets tight junction proteins in the stomach. Inorganic nitrate, nitrite or saliva obtained after the consumption of lettuce were administered by oral gavage to Wistar rats. The enterosalivary circulation of nitrate was allowed to occur for 4 h after which the animals were euthanized and the stomach collected. Nitrated occludin was detected by immunoprecipitation in the gastric epithelium upon inorganic nitrite administration (p < .05) but was not observed in the case of inorganic nitrate or human saliva administration. This observation, along with differences in •NO production rates from inorganic and salivary nitrite under simulated gastric conditions, suggests that competing reactions at acidic pH determine the production of nitrating agents (•NO2) or other, more stable, oxides. Accordingly, it is shown in vitro that salivary nitrite yields higher steady state concentrations of •NO (0.37 ± 0.01 μM) than sodium nitrite (0.12 ± 0.03 μM). Dietary-dependent reactions involving the production of nitrogen oxides should be further investigated as, in the context of occludin nitration, the consumption of green leafy vegetables (with high nitrate content), if able to modulate gut barrier function, may have important implications in the context of leaky gut disorders.
Collapse
Affiliation(s)
- Bárbara S Rocha
- a Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b Center for Neurosciences and Cell Biology , University of Coimbra , Coimbra , Portugal
| | - Mariana G Correia
- b Center for Neurosciences and Cell Biology , University of Coimbra , Coimbra , Portugal
| | - Rita C Fernandes
- a Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - João S Gonçalves
- a Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - João Laranjinha
- a Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b Center for Neurosciences and Cell Biology , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
147
|
Suzuki TA, Nachman MW. Spatial Heterogeneity of Gut Microbial Composition along the Gastrointestinal Tract in Natural Populations of House Mice. PLoS One 2016; 11:e0163720. [PMID: 27669007 PMCID: PMC5036816 DOI: 10.1371/journal.pone.0163720] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023] Open
Abstract
There is a growing appreciation of the role of gut microbial communities in host biology. However, the nature of variation in microbial communities among different segments of the gastrointestinal (GI) tract is not well understood. Here, we describe microbial communities from ten different segments of the GI tract (mouth, esophagus, stomach, duodenum, ileum, proximal cecum, distal cecum, colon, rectum, and feces) in wild house mice using 16S rRNA gene amplicon sequencing. We also measured carbon and nitrogen stable isotopic ratios from hair samples of individual mice as a proxy for diet. We identified factors that may explain differences in microbial composition among gut segments, and we tested for differences among individual mice in the composition of the microbiota. Consistent with previous studies, the lower GI tract was characterized by a greater relative abundance of anaerobic bacteria and greater microbial diversity relative to the upper GI tract. The upper and lower GI tracts also differed in the relative abundances of predicted microbial gene functions, including those involved in metabolic pathways. However, when the upper and lower GI tracts were considered separately, gut microbial composition was associated with individual mice. Finally, microbial communities derived from fecal samples were similar to those derived from the lower GI tract of their respective hosts, supporting the utility of fecal sampling for studying the gut microbiota of mice. These results show that while there is substantial heterogeneity among segments of the GI tract, individual hosts play a significant role in structuring microbial communities within particular segments of the GI tract.
Collapse
Affiliation(s)
- Taichi A. Suzuki
- Department of Integrative Biology, Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Michael W. Nachman
- Department of Integrative Biology, Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
148
|
The UbiI (VisC) Aerobic Ubiquinone Synthase Is Required for Expression of Type 1 Pili, Biofilm Formation, and Pathogenesis in Uropathogenic Escherichia coli. J Bacteriol 2016; 198:2662-72. [PMID: 27161114 DOI: 10.1128/jb.00030-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/04/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Uropathogenic Escherichia coli (UPEC), which causes the majority of urinary tract infections (UTI), uses pilus-mediated adherence to initiate biofilm formation in the urinary tract. Oxygen gradients within E. coli biofilms regulate expression and localization of adhesive type 1 pili. A transposon mutant screen for strains defective in biofilm formation identified the ubiI (formerly visC) aerobic ubiquinone synthase gene as critical for UPEC biofilm formation. In this study, we characterized a nonpolar ubiI deletion mutant and compared its behavior to that of wild-type bacteria grown under aerobic and anoxic conditions. Consistent with its function as an aerobic ubiquinone-8 synthase, deletion of ubiI in UPEC resulted in reduced membrane potential, diminished motility, and reduced expression of chaperone-usher pathway pili. Loss of aerobic respiration was previously shown to negatively impact expression of type 1 pili. To determine whether this reduction in type 1 pili was due to an energy deficit, wild-type UPEC and the ubiI mutant were compared for energy-dependent phenotypes under anoxic conditions, in which quinone synthesis is undertaken by anaerobic quinone synthases. Under anoxic conditions, the two strains exhibited wild-type levels of motility but produced diminished numbers of type 1 pili, suggesting that the reduction of type 1 pilus expression in the absence of oxygen is not due to a cellular energy deficit. Acute- and chronic-infection studies in a mouse model of UTI revealed a significant virulence deficit in the ubiI mutant, indicating that UPEC encounters enough oxygen in the bladder to induce aerobic ubiquinone synthesis during infection. IMPORTANCE The majority of urinary tract infections are caused by uropathogenic E. coli, a bacterium that can respire in the presence and absence of oxygen. The bladder environment is hypoxic, with oxygen concentrations ranging from 4% to 7%, compared to 21% atmospheric oxygen. This work provides evidence that aerobic ubiquinone synthesis must be engaged during bladder infection, indicating that UPEC bacteria sense and use oxygen as a terminal electron acceptor in the bladder and that this ability drives infection potential despite the fact that UPEC is a facultative anaerobe.
Collapse
|
149
|
Aviv G, Rahav G, Gal-Mor O. Horizontal Transfer of the Salmonella enterica Serovar Infantis Resistance and Virulence Plasmid pESI to the Gut Microbiota of Warm-Blooded Hosts. mBio 2016; 7:e01395-16. [PMID: 27601577 PMCID: PMC5013300 DOI: 10.1128/mbio.01395-16] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Salmonella enterica serovar Infantis is one of the prevalent salmonellae worldwide. Recently, we showed that the emergence of S Infantis in Israel was facilitated by the acquisition of a unique megaplasmid (pESI) conferring multidrug resistance and increased virulence phenotypes. Here we elucidate the ecology, transmission properties, and regulation of pESI. We show that despite its large size (~280 kb), pESI does not impose a significant metabolic burden in vitro and that it has been recently fixed in the domestic S Infantis population. pESI conjugation and the transcription of its pilus (pil) genes are inhibited at the ambient temperature (27°C) and by ≥1% bile but increased under temperatures of 37 to 41°C, oxidative stress, moderate osmolarity, and the microaerobic conditions characterizing the intestinal environment of warm-blooded animals. The pESI-encoded protein TraB and the oxygen homeostasis regulator Fnr were identified as transcriptional regulators of pESI conjugation. Using the mouse model, we show that following S Infantis infection, pESI can be horizontally transferred to the gut microbiota, including to commensal Escherichia coli strains. Possible transfer, but not persistence, of pESI was also observed into Gram-positive mouse microbiota species, especially Lactobacillus reuteri Moreover, pESI was demonstrated to further disseminate from gut microbiota to S. enterica serovar Typhimurium, in the context of gastrointestinal infection. These findings exhibit the ability of a selfish clinically relevant megaplasmid to distribute to and from the microbiota and suggest an overlooked role of the microbiota as a reservoir of mobile genetic elements and intermediator in the spread of resistance and virulence genes between commensals and pathogenic bacteria. IMPORTANCE Plasmid conjugation plays a key role in microbial evolution, enabling the acquisition of new phenotypes, including resistance and virulence. Salmonella enterica serovar Infantis is one of the ubiquitous salmonellae worldwide and a major cause of foodborne infections. Previously, we showed that the emergence of S Infantis in Israel has involved the acquisition of a unique megaplasmid (pESI) conferring multidrug resistance and increased virulence phenotypes. Recently, the emergence of another S Infantis strain carrying a pESI-like plasmid was identified in Italy, suggesting that the acquisition of pESI may be common to different emergent S Infantis populations globally. Transmission of this plasmid to other strains or bacterial species is an alarming scenario. Understanding the ecology, regulation, and transmission properties of clinically relevant plasmids and the role of the microbiota in their spreading offers a new mechanism explaining the emergence of new pathogenic and resistant biotypes and may assist in the development of appropriate surveillance and prevention measures.
Collapse
Affiliation(s)
- Gili Aviv
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
150
|
Horizontal Transfer of the Salmonella enterica Serovar Infantis Resistance and Virulence Plasmid pESI to the Gut Microbiota of Warm-Blooded Hosts. mBio 2016. [PMID: 27601577 DOI: 10.1128/mbio.01395‐16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Salmonella enterica serovar Infantis is one of the prevalent salmonellae worldwide. Recently, we showed that the emergence of S Infantis in Israel was facilitated by the acquisition of a unique megaplasmid (pESI) conferring multidrug resistance and increased virulence phenotypes. Here we elucidate the ecology, transmission properties, and regulation of pESI. We show that despite its large size (~280 kb), pESI does not impose a significant metabolic burden in vitro and that it has been recently fixed in the domestic S Infantis population. pESI conjugation and the transcription of its pilus (pil) genes are inhibited at the ambient temperature (27°C) and by ≥1% bile but increased under temperatures of 37 to 41°C, oxidative stress, moderate osmolarity, and the microaerobic conditions characterizing the intestinal environment of warm-blooded animals. The pESI-encoded protein TraB and the oxygen homeostasis regulator Fnr were identified as transcriptional regulators of pESI conjugation. Using the mouse model, we show that following S Infantis infection, pESI can be horizontally transferred to the gut microbiota, including to commensal Escherichia coli strains. Possible transfer, but not persistence, of pESI was also observed into Gram-positive mouse microbiota species, especially Lactobacillus reuteri Moreover, pESI was demonstrated to further disseminate from gut microbiota to S. enterica serovar Typhimurium, in the context of gastrointestinal infection. These findings exhibit the ability of a selfish clinically relevant megaplasmid to distribute to and from the microbiota and suggest an overlooked role of the microbiota as a reservoir of mobile genetic elements and intermediator in the spread of resistance and virulence genes between commensals and pathogenic bacteria. IMPORTANCE Plasmid conjugation plays a key role in microbial evolution, enabling the acquisition of new phenotypes, including resistance and virulence. Salmonella enterica serovar Infantis is one of the ubiquitous salmonellae worldwide and a major cause of foodborne infections. Previously, we showed that the emergence of S Infantis in Israel has involved the acquisition of a unique megaplasmid (pESI) conferring multidrug resistance and increased virulence phenotypes. Recently, the emergence of another S Infantis strain carrying a pESI-like plasmid was identified in Italy, suggesting that the acquisition of pESI may be common to different emergent S Infantis populations globally. Transmission of this plasmid to other strains or bacterial species is an alarming scenario. Understanding the ecology, regulation, and transmission properties of clinically relevant plasmids and the role of the microbiota in their spreading offers a new mechanism explaining the emergence of new pathogenic and resistant biotypes and may assist in the development of appropriate surveillance and prevention measures.
Collapse
|