101
|
Expression profiles of HMGB1 on B-CLL related leukocytes contribute to prediction of relapse. Immunobiology 2020; 226:152048. [PMID: 33485134 DOI: 10.1016/j.imbio.2020.152048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/22/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The High Mobility Group Box 1 (HMGB1) is a nuclear protein that is frequently overexpressed in hematologic diseases and might be of relevance in immunogenic cancer control thus correlating with patients' (pts.) prognosis in diseases such as acute myeloid, acute lymphatic and chronic lymphocytic leukemia. MATERIALS AND METHODS Expression profiles of blasts from AML (n = 21), ALL (n = 16) and of B-lymphocytes of CLL (n = 9) pts. were analyzed for surface expression of HMGB1 using flow cytometry. Expression was quantified and correlated with clinically and prognostically relevant markers. RESULTS Expression profiling of HMGB1 in blasts of AML and ALL subtypes did not show differences between primary vs. secondary disease development and gender related differences. In ALL pts. however, age groups at initial diagnosis between ≥20 vs. <20 years were compared and showed significant differences (≥20 vs. <20 years; 89% vs. 49%, p <0.05) with higher expression in higher age. In AML and CLL these differences were not visible. To evaluate the prognostic significance of HMGB1 expression, expression quantity was correlated with established and prognostic classification systems (in AML ELN, in ALL GMALL) and probability to relapse. No significant correlation was seen in these entities. However, when AML pts. were analyzed for remission rates after first anthracycline based induction therapy, in those who did not experience a complete remission significantly enhanced HMGB1 surface expression was seen (98 vs. 94%; p < 0.05; n = 20). Furthermore, for CLL it was shown that higher HMGB1 expression was found in pretreated patients with relapsed or/and refractory disease (1 vs. more relapses; 94 vs. 98%; p <0.05; n = 9). CONCLUSION HMGB1 is frequently expressed in hematologic malignancies. In this study it was shown that HMGB1 surface expression on AML blasts can be used as predictors for treatment response. In CLL it may be a marker for advanced disease. In order to implement this marker in FACS routine it could be a useful and practical tool for prognostic assessment and treatment planning.
Collapse
|
102
|
Gou X, Ying J, Yue Y, Qiu X, Hu P, Qu Y, Li J, Mu D. The Roles of High Mobility Group Box 1 in Cerebral Ischemic Injury. Front Cell Neurosci 2020; 14:600280. [PMID: 33384585 PMCID: PMC7770223 DOI: 10.3389/fncel.2020.600280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that plays an important role in stabilizing nucleosomes and DNA repair. HMGB1 can be passively released from necrotic neurons or actively secreted by microglia, macrophages/monocytes, and neutrophils. Cerebral ischemia is a major cause of mortality and disability worldwide, and its outcome depends on the number of neurons dying due to hypoxia in the ischemic area. HMGB1 contributes to the pathogenesis of cerebral ischemia via mediating neuroinflammatory responses to cerebral ischemic injury. Extracellular HMGB1 regulates many neuroinflammatory events by interacting with its different cell surface receptors, such as receptors for advanced glycation end products, toll-like receptor (TLR)-2, and TLR-4. Additionally, HMGB1 can be redox-modified, thus exerting specific cellular functions in the ischemic brain and has different roles in the acute and late stages of cerebral ischemic injury. However, the role of HMGB1 in cerebral ischemia is complex and remains unclear. Herein, we summarize and review the research on HMGB1 in cerebral ischemia, focusing especially on the role of HMGB1 in hypoxic ischemia in the immature brain and in white matter ischemic injury. We also outline the possible mechanisms of HMGB1 in cerebral ischemia and the main strategies to inhibit HMGB1 pertaining to its potential as a novel critical molecular target in cerebral ischemic injury.
Collapse
Affiliation(s)
- Xiaoyun Gou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Peng Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
103
|
Acetaminophen-Induced Rat Hepatotoxicity Based on M1/M2-Macrophage Polarization, in Possible Relation to Damage-Associated Molecular Patterns and Autophagy. Int J Mol Sci 2020; 21:ijms21238998. [PMID: 33256230 PMCID: PMC7730394 DOI: 10.3390/ijms21238998] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Overdose of acetaminophen (APAP), an antipyretic drug, is an important cause of liver injury. However, the mechanism in the rat model remains undetermined. We analyzed APAP-induced hepatotoxicity using rats based on M1/M2-macrophage functions in relation to damage-associated molecular patterns (DAMPs) and autophagy. Liver samples from six-week-old rats injected with APAP (1000 mg/kg BW, ip, once) after 15 h fasting were collected at hour 10, and on days 1, 2, 3, and 5. Liver lesions consisting of coagulation necrosis and inflammation were seen in the affected centrilobular area on days 1 and 2, and then, recovered with reparative fibrosis by day 5. Liver exudative enzymes increased transiently on day 1. CD68+ M1-macrophages increased significantly on days 1 and 2 with increased mRNAs of M1-related cytokines such as IFN-g and TNF-α, whereas CD163+ M2-macrophages appeared later on days 2 and 3. Macrophages reacting to MHC class II and Iba1 showed M1-type polarization, and CD204+ macrophages tended to be polarized toward M2-type. At hour 10, interestingly, HMGB1 (representative DAMPs) and its related signals, TLR-9 and MyD88, as well as LC3B+ autophagosomes began to increase. Collectively, the pathogenesis of rat APAP hepatotoxicity, which is the first, detailed report for a rat model, might be influenced by macrophage functions of M1 type for tissue injury/inflammation and M2-type for anti-inflammatory/fibrosis; particularly, M1-type may function in relation to DAMPs and autophagy. Understanding the interplayed mechanisms would provide new insight into hepato-pathogenesis and contribute to the possible development of therapeutic strategies.
Collapse
|
104
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
105
|
Manivannan S, Marei O, Elalfy O, Zaben M. Neurogenesis after traumatic brain injury - The complex role of HMGB1 and neuroinflammation. Neuropharmacology 2020; 183:108400. [PMID: 33189765 DOI: 10.1016/j.neuropharm.2020.108400] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is amongst the leading causes of morbidity and mortality worldwide. Despite evidence of neurogenesis post-TBI, survival and integration of newborn neurons remains impaired. High Mobility Group Box protein 1 (HMGB1) is an 'alarmin' released hyper-acutely following TBI and implicated in hosting the neuro-inflammatory response to injury. It is also instrumental in mediating neurogenesis under physiological conditions. Given its dual role in mediating neuro-inflammation and neurogenesis, it serves as a promising putative target for therapeutic modulation. In this review, we discuss neurogenesis post-TBI, neuro-pharmacological aspects of HMGB1, and its potential as a therapeutic target. METHODS PubMed database was searched with varying combinations of the following search terms: HMGB1, isoforms, neurogenesis, traumatic brain injury, Toll-like receptor (TLR), receptor for advanced glycation end-products (RAGE). RESULTS Several in vitro and in vivo studies demonstrate evidence of neurogenesis post-injury. The HMGB1-RAGE axis mediates neurogenesis throughout development, whilst interaction with TLR-4 promotes the innate immune response. Studies in the context of injury demonstrate that these receptor effects are not mutually exclusive. Despite recognition of different HMGB1 isoforms based on redox/acetylation status, effects on neurogenesis post-injury remain unexplored. Recent animal in vivo studies examining HMGB1 antagonism post-TBI demonstrate predominantly positive results, but specific effects on neurogenesis and longer-term outcomes remain unclear. CONCLUSION HMGB1 is a promising therapeutic target but its effects on neurogenesis post-TBI remains unclear. Given the failure of several pharmacological strategies to improve outcomes following TBI, accurate delineation of HMGB1 signalling pathways and effects on post-injury neurogenesis are vital.
Collapse
Affiliation(s)
- S Manivannan
- Department of Neurosurgery, Southampton General Hospital, Southampton, UK
| | - O Marei
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, UK
| | - O Elalfy
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, UK
| | - M Zaben
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, UK; Department of Neurosurgery, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
106
|
Xue J, Suarez JS, Minaai M, Li S, Gaudino G, Pass HI, Carbone M, Yang H. HMGB1 as a therapeutic target in disease. J Cell Physiol 2020; 236:3406-3419. [PMID: 33107103 DOI: 10.1002/jcp.30125] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022]
Abstract
High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Jiaming Xue
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Joelle S Suarez
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Michael Minaai
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Shuangjing Li
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Giovanni Gaudino
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York, USA
| | - Michele Carbone
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Haining Yang
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
107
|
Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells 2020; 9:cells9112350. [PMID: 33114371 PMCID: PMC7693759 DOI: 10.3390/cells9112350] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is involved in the progression or secondary injury of multiple brain conditions, including stroke and neurodegenerative diseases. Alarmins, also known as damage-associated molecular patterns, are released in the presence of neuroinflammation and in the acute phase of ischemia. Defensins, cathelicidin, high-mobility group box protein 1, S100 proteins, heat shock proteins, nucleic acids, histones, nucleosomes, and monosodium urate microcrystals are thought to be alarmins. They are released from damaged or dying cells and activate the innate immune system by interacting with pattern recognition receptors. Being principal sterile inflammation triggering agents, alarmins are considered biomarkers and therapeutic targets. They are recognized by host cells and prime the innate immune system toward cell death and distress. In stroke, alarmins act as mediators initiating the inflammatory response after the release from the cellular components of the infarct core and penumbra. Increased c-Jun N-terminal kinase (JNK) phosphorylation may be involved in the mechanism of stress-induced release of alarmins. Putative crosstalk between the alarmin-associated pathways and JNK signaling seems to be inherently interwoven. This review outlines the role of alarmins/JNK-signaling in cerebral neurovascular inflammation and summarizes the complex response of cells to alarmins. Emerging anti-JNK and anti-alarmin drug treatment strategies are discussed.
Collapse
|
108
|
Hoste E, Maueröder C, van Hove L, Catrysse L, Vikkula HK, Sze M, Maes B, Karjosukarso D, Martens L, Gonçalves A, Parthoens E, Roelandt R, Declercq W, Fuentes I, Palisson F, Gonzalez S, Salas-Alanis JC, Boon L, Huebener P, Mulder KW, Ravichandran K, Saeys Y, Schwabe RF, van Loo G. Epithelial HMGB1 Delays Skin Wound Healing and Drives Tumor Initiation by Priming Neutrophils for NET Formation. Cell Rep 2020; 29:2689-2701.e4. [PMID: 31775038 DOI: 10.1016/j.celrep.2019.10.104] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Regenerative responses predispose tissues to tumor formation by largely unknown mechanisms. High-mobility group box 1 (HMGB1) is a danger-associated molecular pattern contributing to inflammatory pathologies. We show that HMGB1 derived from keratinocytes, but not myeloid cells, delays cutaneous wound healing and drives tumor formation. In wounds of mice lacking HMGB1 selectively in keratinocytes, a marked reduction in neutrophil extracellular trap (NET) formation is observed. Pharmacological targeting of HMGB1 or NETs prevents skin tumorigenesis and accelerates wound regeneration. HMGB1-dependent NET formation and skin tumorigenesis is orchestrated by tumor necrosis factor (TNF) and requires RIPK1 kinase activity. NETs are present in the microenvironment of keratinocyte-derived tumors in mice and lesional and tumor skin of patients suffering from recessive dystrophic epidermolysis bullosa, a disease in which skin blistering predisposes to tumorigenesis. We conclude that tumorigenicity of the wound microenvironment depends on epithelial-derived HMGB1 regulating NET formation, thereby establishing a mechanism linking reparative inflammation to tumor initiation.
Collapse
Affiliation(s)
- Esther Hoste
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Christian Maueröder
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lisette van Hove
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Leen Catrysse
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Hanna-Kaisa Vikkula
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mozes Sze
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Bastiaan Maes
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Dyah Karjosukarso
- Department of Molecular Developmental Biology, Radboud University, 6525 XZ Nijmegen, the Netherlands
| | - Liesbet Martens
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB Bio-Imaging Core, 9052 Ghent, Belgium
| | - Eef Parthoens
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB Bio-Imaging Core, 9052 Ghent, Belgium
| | - Ria Roelandt
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Wim Declercq
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Ignacia Fuentes
- Fundación DEBRA Chile, Santiago, Chile; Centro de Genetica y Genomica, Clinica Allemana, Universidad de Desarrollo, Santiago, Chile
| | - Francis Palisson
- Fundación DEBRA Chile, Santiago, Chile; Facultad de Medicina, Universidad de Desarrollo, Santiago, Chile
| | - Sergio Gonzalez
- Departemento de Patología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Louis Boon
- Bioceros, 3584 CM Utrecht, the Netherlands
| | - Peter Huebener
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Klaas Willem Mulder
- Department of Molecular Developmental Biology, Radboud University, 6525 XZ Nijmegen, the Netherlands
| | - Kodi Ravichandran
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, 9052 Ghent, Belgium
| | | | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
109
|
Li J, Bao G, Wang H. Time to Develop Therapeutic Antibodies Against Harmless Proteins Colluding with Sepsis Mediators? Immunotargets Ther 2020; 9:157-166. [PMID: 33117741 PMCID: PMC7547129 DOI: 10.2147/itt.s262605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis refers to a systemic inflammatory response syndrome resulting from microbial infections, and is partly attributable to dysregulated inflammation and associated immunosuppression. A ubiquitous nuclear protein, HMGB1, is secreted by activated leukocytes to orchestrate inflammatory responses during early stages of sepsis. When it is released by injured somatic cells at overwhelmingly higher quantities, HMGB1 may induce macrophage pyroptosis and immunosuppression, thereby impairing the host's ability to eradicate microbial infections. A number of endogenous proteins have been shown to bind HMGB1 to modulate its extracellular functions. Here, we discuss an emerging possibility to develop therapeutic antibodies against harmless proteins that collude with pathogenic mediators for the clinical management of human sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030, USA
| | - Guoqiang Bao
- Department of General Surgery, Tangdu Hospital, Xi’an, Shaanxi710032, People’s Republic of China
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549, USA
| |
Collapse
|
110
|
Wang M, Theis T, Kabat M, Loers G, Agre LA, Schachner M. Functions of Small Organic Compounds that Mimic the HNK-1 Glycan. Int J Mol Sci 2020; 21:ijms21197018. [PMID: 32987628 PMCID: PMC7582369 DOI: 10.3390/ijms21197018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Because of the importance of the HNK-1 carbohydrate for preferential motor reinnervation after injury of the femoral nerve in mammals, we screened NIH Clinical Collection 1 and 2 Libraries and a Natural Product library comprising small organic compounds for identification of pharmacologically useful reagents. The reason for this attempt was to obviate the difficult chemical synthesis of the HNK-1 carbohydrate and its isolation from natural sources, with the hope to render such compounds clinically useful. We identified six compounds that enhanced neurite outgrowth from cultured spinal motor neurons at nM concentrations and increased their neurite diameter, but not their neurite branch points. Axons of dorsal root ganglion neurons did not respond to these compounds, a feature that is in agreement with their biological role after injury. We refer to the positive functions of some of these compounds in animal models of injury and delineate the intracellular signaling responses elicited by application of compounds to cultured murine central nervous system neurons. Altogether, these results point to the potential of the HNK-1 carbohydrate mimetics in clinically-oriented settings.
Collapse
Affiliation(s)
- Minjuan Wang
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Maciej Kabat
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Lynn A. Agre
- Rutgers School of Arts and Sciences, Department of Statistics and Rutgers Business School, Rutgers University, Piscataway, NJ 08854, USA;
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
111
|
Sung HY, Dowarha D, Chou RH, Yu C. Blocking the interface region amongst S100A6 and RAGE V domain via S100B protein. Biochem Biophys Res Commun 2020; 533:332-337. [PMID: 32958253 DOI: 10.1016/j.bbrc.2020.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
The Ca2+-mediated S100 family protein S100A6 has a crucial task in various intracellular and extracellular activities thereby demonstrating a possible involvement in the advancement and development of malignant tumors. S100A6 has been found to associate with receptor for advanced glycation end products, RAGE, through its extracellular extension. This extension is famously identified as a prominent receptor for many S100 family associates. Additionally, S100A6 binds to S100B protein and forms a heterodimer. Thus, we consider the S100B protein to be a prospective drug molecule to obstruct the interacting regions amongst S100A6 and RAGE V domain. We applied the NMR spectroscopy method to locate the binding area amid the S100A6m (mutant S100A6, cysteine at 3rd position of S100A6 is replaced with serine, C3S) and S100B proteins. The 1H-15N HSQC NMR titrations revealed the probable requisite dynamics of S100A6m and S100B interfaces. Utilizing data from the NMR titrations as input parameters, we ran the HADDOCK program and created a S100A6m-S100B heterodimer complex. The obtained complex was then superimposed with the reported complex of S100A6m-RAGE V domain. This superimposition displayed the possibility of S100B to be a potential antagonist that can block the interface area of the S100A6m and the RAGE V domain. Moreover, an in vitro cancer model using SW480 cells in water-soluble tetrazolium-1 assay (WST-1) showed a noticeable change in the cell proliferation as an effect of these proteins. Our study indicates the possibility to develop a S100B-like competitor that could play a key role in the treatment of S100- and RAGE-mediated human diseases.
Collapse
Affiliation(s)
- Hsin-Yen Sung
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Deepu Dowarha
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, No. 500, Lioufeng Road, Wufeng, Taichung 41354, Taiwan.
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| |
Collapse
|
112
|
Yano T, Hagiwara Y, Ando A, Kanazawa K, Koide M, Sekiguchi T, Itaya N, Onoki T, Suzuki K, Tsuchiya M, Sogi Y, Yabe Y, Itoi E. RAGE-dependent NF-kB inflammation processes in the capsule of frozen shoulders. J Shoulder Elbow Surg 2020; 29:1884-1891. [PMID: 32279986 DOI: 10.1016/j.jse.2020.01.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The etiology of frozen shoulder (FS) remains uncertain. Advanced glycation end-products (AGEs) cause the cross-linking and stabilization of collagen and are increased in FS. The purpose of this study was to elucidate the pathogenesis of FS by evaluating the receptor of AGE (RAGE)-dependent pathways. METHODS Tissue samples of the coracohumeral ligament (CHL) and anterior inferior glenohumeral ligament (IGHL) were collected from 33 patients with FS, with severe stiffness, and 25 with rotator cuff tears (RCTs) as controls. Gene expression levels of RAGE, high-mobility group box 1 (HMGB1), Toll-like receptor 2 (TLR2), TLR4, nuclear factor-kappa B (NF-kB), and cytokines were evaluated using a quantitative real-time polymerase chain reaction. The immunoreactivities of carboxymethyllysine (CML), pentosidine, and RAGE were also evaluated. CML and pentosidine were further evaluated using high-performance liquid chromatography. RESULTS Gene expression levels of RAGE, HMGB1, TLR2, TLR4, and NF-kB were significantly greater in the CHLs and IGHLs from the FS group than in those from the RCT group. Immunoreactivities of RAGE and CML were stronger in the CHLs and IGHLs from the FS group than in those from the RCT group. Pentosidine was weakly immunostained in the CHLs and IGHLs from the FS group. CML using high-performance liquid chromatography was significantly greater in the CHLs and IGHLs from the FS group than in those from the RCT group. CONCLUSIONS AGEs and HMGB1 might play important roles in the pathogenesis of FS by binding to RAGE and activating NF-kB signaling pathways. Suppression of these pathways could be a treatment option for FS.
Collapse
Affiliation(s)
- Toshihisa Yano
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan.
| | - Akira Ando
- Department of Orthopaedic Surgery, Matsuda Hospital, Sendai, Japan
| | - Kenji Kanazawa
- Department of Orthopaedic Surgery, South Miyagi Medical Center, Ogawara, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Matsuda Hospital, Sendai, Japan
| | - Takuya Sekiguchi
- Department of Orthopaedic Surgery, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Nobuyuki Itaya
- Department of Orthopaedic Surgery, Sendai Hospital of East Japan Railway Company, Sendai, Japan
| | - Takahiro Onoki
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuaki Suzuki
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | | | - Yasuhito Sogi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Yutaka Yabe
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
113
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
114
|
Regulation of Neurogenesis in Mouse Brain by HMGB1. Cells 2020; 9:cells9071714. [PMID: 32708917 PMCID: PMC7407245 DOI: 10.3390/cells9071714] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The High Mobility Group Box 1 (HMGB1) is the most abundant nuclear nonhistone protein that is involved in transcription regulation. In addition, HMGB1 has previously been found as an extracellularly acting protein enhancing neurite outgrowth in cultured neurons. Although HMGB1 is widely expressed in the developing central nervous system of vertebrates and invertebrates, its function in the developing mouse brain is poorly understood. Here, we have analyzed developmental defects of the HMGB1 null mouse forebrain, and further examined our findings in ex vivo brain cell cultures. We find that HMGB1 is required for the proliferation and differentiation of neuronal stem cells/progenitor cells. Enhanced apoptosis is also found in the neuronal cells lacking HMGB1. Moreover, HMGB1 depletion disrupts Wnt/β-catenin signaling and the expression of transcription factors in the developing cortex, including Foxg1, Tbr2, Emx2, and Lhx6. Finally, HMGB1 null mice display aberrant expression of CXCL12/CXCR4 and reduced RAGE signaling. In conclusion, HMGB1 plays a critical role in mammalian neurogenesis and brain development.
Collapse
|
115
|
Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2019-0363. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
High-mobility group box 1 (HMGB1), also called amphoterin, HMG1 and p30, is a highly conserved protein between different species that has various functions in nucleus such as stabilization of nucleosome formation, facilitation of deoxyribonucleic acid (DNA) bending and increasing the DNA transcription, replication and repair. It has also been indicated that HMGB1 acts as a potent pro-inflammatory cytokine with increasing concentrations in acute and chronic inflammatory diseases. Asthma is a common chronic respiratory disease associated with high morbidity and mortality rates. One central characteristic in its pathogenesis is airway inflammation. Considering the inflammatory role of HMGB1 and importance of inflammation in asthma pathogenesis, a better understanding of this protein is vital. This review describes the structure, cell surface receptors, signaling pathways and intracellular and extracellular functions of HMGB1, but also focuses on its inflammatory role in asthma. Moreover, this manuscript reviews experimental and clinical studies that investigated the pathologic role of HMGB1.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
116
|
Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 2020; 13:91. [PMID: 32660524 PMCID: PMC7359022 DOI: 10.1186/s13045-020-00920-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin-associated protein that has been widely reported to play a pivotal role in the pathogenesis of hematopoietic malignancies. As a representative damage-associated molecular pattern (DAMP), HMGB1 normally exists inside cells but can be secreted into the extracellular environment through passive or active release. Extracellular HMGB1 binds with several different receptors and interactors to mediate the proliferation, differentiation, mobilization, and senescence of hematopoietic stem cells (HSCs). HMGB1 is also involved in the formation of the inflammatory bone marrow (BM) microenvironment by activating proinflammatory signaling pathways. Moreover, HMGB1-dependent autophagy induces chemotherapy resistance in leukemia and multiple myeloma. In this review, we systematically summarize the emerging roles of HMGB1 in carcinogenesis, progression, prognosis, and potential clinical applications in different hematopoietic malignancies. In summary, targeting the regulation of HMGB1 activity in HSCs and the BM microenvironment is highly beneficial in the diagnosis and treatment of various hematopoietic malignancies.
Collapse
Affiliation(s)
- Shunling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
117
|
Wyganowska-Swiatkowska M, Nohawica M, Grocholewicz K, Nowak G. Influence of Herbal Medicines on HMGB1 Release, SARS-CoV-2 Viral Attachment, Acute Respiratory Failure, and Sepsis. A Literature Review. Int J Mol Sci 2020; 21:E4639. [PMID: 32629817 PMCID: PMC7370028 DOI: 10.3390/ijms21134639] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
By attaching to the angiotensin converting enzyme 2 (ACE2) protein on lung and intestinal cells, Sudden Acute Respiratory Syndrome (SARS-CoV-2) can cause respiratory and homeostatic difficulties leading to sepsis. The progression from acute respiratory failure to sepsis has been correlated with the release of high-mobility group box 1 protein (HMGB1). Lack of effective conventional treatment of this septic state has spiked an interest in alternative medicine. This review of herbal extracts has identified multiple candidates which can target the release of HMGB1 and potentially reduce mortality by preventing progression from respiratory distress to sepsis. Some of the identified mixtures have also been shown to interfere with viral attachment. Due to the wide variability in chemical superstructure of the components of assorted herbal extracts, common motifs have been identified. Looking at the most active compounds in each extract it becomes evident that as a group, phenolic compounds have a broad enzyme inhibiting function. They have been shown to act against the priming of SARS-CoV-2 attachment proteins by host and viral enzymes, and the release of HMGB1 by host immune cells. An argument for the value in a nonspecific inhibitory action has been drawn. Hopefully these findings can drive future drug development and clinical procedures.
Collapse
Affiliation(s)
- Marzena Wyganowska-Swiatkowska
- Chair of Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Michal Nohawica
- Chair of Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Katarzyna Grocholewicz
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland;
| | - Gerard Nowak
- Department of Medicinal and Cosmetic Natural Products, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland;
| |
Collapse
|
118
|
Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2020; 21:ijms21134609. [PMID: 32610502 PMCID: PMC7370155 DOI: 10.3390/ijms21134609] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Brain injuries are devastating conditions, representing a global cause of mortality and morbidity, with no effective treatment to date. Increased evidence supports the role of neuroinflammation in driving several forms of brain injuries. High mobility group box 1 (HMGB1) protein is a pro-inflammatory-like cytokine with an initiator role in neuroinflammation that has been implicated in Traumatic brain injury (TBI) as well as in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Herein, we discuss the implication of HMGB1-induced neuroinflammatory responses in these brain injuries, mediated through binding to the receptor for advanced glycation end products (RAGE), toll-like receptor4 (TLR4) and other inflammatory mediators. Moreover, we provide evidence on the biomarker potential of HMGB1 and the significance of its nucleocytoplasmic translocation during brain injuries along with the promising neuroprotective effects observed upon HMGB1 inhibition/neutralization in TBI and EBI induced by SAH. Overall, this review addresses the current advances on neuroinflammation driven by HMGB1 in brain injuries indicating a future treatment opportunity that may overcome current therapeutic gaps.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| |
Collapse
|
119
|
Tsujita R, Tsubota M, Sekiguchi F, Kawabata A. Role of high-mobility group box 1 and its modulation by thrombomodulin/thrombin axis in neuropathic and inflammatory pain. Br J Pharmacol 2020; 178:798-812. [PMID: 32374414 DOI: 10.1111/bph.15091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a nuclear protein, once released to the extracellular space, facilitates pain signals as well as inflammation. Intraplantar or intraspinal application of HMGB1 elicits hyperalgesia/allodynia in rodents by activating the advanced glycosylation end-product specific receptor (receptor for advanced glycation end-products; RAGE) or Toll-like receptor 4 (TLR4). Endogenous HMGB1 derived from neurons, perineuronal cells or immune cells accumulating in the dorsal root ganglion or sensory nerves participates in somatic and visceral pain consisting of neuropathic and/or inflammatory components. Endothelial thrombomodulin (TM) and recombinant human soluble TM, TMα, markedly increase thrombin-dependent degradation of HMGB1, and systemic administration of TMα prevents and reverses various HMGB1-dependent pathological pain. Low MW compounds that directly inactivate HMGB1 or antagonize HMGB1-targeted receptors would be useful to reduce various forms of intractable pain. Thus, HMGB1 and its receptors are considered to serve as promising targets in developing novel agents to prevent or treat pathological pain. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Ryuichi Tsujita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formally known as Kinki University), Higashiosaka, Japan.,Project Management Department, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formally known as Kinki University), Higashiosaka, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formally known as Kinki University), Higashiosaka, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (formally known as Kinki University), Higashiosaka, Japan
| |
Collapse
|
120
|
RAGE acts as an oncogenic role and promotes the metastasis of human lung cancer. Cell Death Dis 2020; 11:265. [PMID: 32327633 PMCID: PMC7181650 DOI: 10.1038/s41419-020-2432-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
RAGE (receptor for advanced glycation end-product) is thought to be associated with metastasis and poor prognosis of various types of cancer. However, RAGE is constitutively expressed in the normal lung and down-regulated in cancerous lung, while the opposite evidence shows that RAGE-mediated signaling contributes to the tumorigenesis of lung cancer. Therefore, the role of RAGE in lung cancer progression is still unclear to be further investigated. In this study, RAGE-overexpressed stable clones of human lung cancer A549 cells and two local lung adenocarcinoma cell lines CL1-0 and CL1-5 were utilized to verify the effect of RAGE on lung cancer cells while the in vivo xenograft animal model was further performed to evaluate the role of RAGE in the progression of lung cancer. The growth of A549 cells was inhibited by RAGE overexpression. p53-dependent p21CIP1 expression contributed to RAGE-induced growth inhibition by suppressing CDK2 kinase activity and retinoblastoma protein (RB) phosphorylation in vitro. On the other hand, RAGE overexpression promoted migration, invasion, and mesenchymal features of lung adenocarcinoma cells through ERK signaling. Furthermore, an in vivo xenograft experiment indicated that RAGE promoted the metastasis of lung cancer cells with p21CIP1 up-regulation, ERK activation, and the changes of EMT markers. Regarding to the involvement of tumor-associated macrophage (TAM) in the microenvironment, we monitored the expressions of TAM markers including CD68 and CD163 as well as angiogenesis marker CD31 in xenograft slice. The data showed that RAGE might induce the accumulation of TAM in lung cancer cells and further accelerate the in vivo tumor growth. In summary, our study provides evidence indicating the distinct in vitro and in vivo effects of RAGE and related mechanisms on tumor growth and metastasis, which shed light on the oncogenic role of RAGE in lung cancer.
Collapse
|
121
|
Omolaoye TS, du Plessis SS. Male infertility: A proximate look at the advanced glycation end products. Reprod Toxicol 2020; 93:169-177. [DOI: 10.1016/j.reprotox.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 01/07/2023]
|
122
|
Konopka CJ, Woźniak M, Hedhli J, Siekierzycka A, Skokowski J, Pęksa R, Matuszewski M, Munirathinam G, Kajdacsy-Balla A, Dobrucki IT, Kalinowski L, Dobrucki LW. Quantitative imaging of the receptor for advanced glycation end-products in prostate cancer. Eur J Nucl Med Mol Imaging 2020; 47:2562-2576. [PMID: 32166512 DOI: 10.1007/s00259-020-04721-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE Current screening and monitoring of prostate cancer (PCa) is insufficient, producing inaccurate diagnoses. Presence of the receptor for advanced glycation end-products (RAGE) is associated with signature characteristics of PCa development such as cell proliferation, anchorage-independent growth, angiogenesis, migration, invasion, and poor patient survival. Therefore, we developed a preclinical multimodal imaging strategy targeted at RAGE to diagnose and monitor PCa. METHODS In this work, RAGE-targeted multimodal nanoparticles (64Cu-Cy5-G4-CML) were synthesized and rendered functional for nuclear and optical imaging using previously established methods. The probe's binding affinity and targeting specificity was assessed in androgen-dependent (LNCaP) and androgen-independent (DU145) prostate cancer cells using flow cytometry and confocal microscopy. In vivo PET-CT imaging was used to evaluate RAGE levels in DU145 and LNCaP xenograft models in mice. Then, tumors were excised post-imaging for histological staining and autoradiography to further assess RAGE levels and targeting efficiency of the tracer. Finally, RAGE levels from human PCa samples of varying Gleason Scores were evaluated using Western blot and immunohistochemical staining. RESULTS PCa cell culture studies confirmed adequate RAGE-targeting with 64Cu-Cy5-G4-CML with KD between 360 and 540 nM as measured by flow cytometry. In vivo PET-CT images of PCa xenografts revealed favorable kinetics, rapid blood clearance, and a non-homogenous, enhanced uptake in tumors, which varied based on cell type and tumor size with mean uptake between 0.5 and 1.4%ID/g. RAGE quantification of human samples confirmed increased RAGE uptake corresponding to increased Gleason scoring. CONCLUSIONS Our study has shown that RAGE-targeted cancer imaging is feasible and could significantly impact PCa management.
Collapse
Affiliation(s)
- Christian J Konopka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Marcin Woźniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Jamila Hedhli
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Jarosław Skokowski
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Rafał Pęksa
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| | | | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA. .,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland. .,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.
| |
Collapse
|
123
|
Gross C, Belville C, Lavergne M, Choltus H, Jabaudon M, Blondonnet R, Constantin JM, Chiambaretta F, Blanchon L, Sapin V. Advanced Glycation End Products and Receptor (RAGE) Promote Wound Healing of Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:14. [PMID: 32176265 PMCID: PMC7401750 DOI: 10.1167/iovs.61.3.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose We used a human corneal epithelial cell (HCE) line to determine the involvement of the advanced glycation end products (AGEs) / receptor for AGEs (RAGE) couple in corneal epithelium wound healing. Methods After wounding, HCE cells were exposed to two major RAGE ligands (HMGB1 and AGEs), and wound healing was evaluated using the in vitro scratch assay. Following wound healing, the HCE cells were used to study the influence of the RAGE ligands on HCE proliferation, invasion, and migration. Activation of the nuclear factor (NF)-κB signaling pathway by the AGEs/RAGE couple was tested using a luciferase reporter assay. Functional transcriptional regulation by this pathway was confirmed by quantification of expression of the connexin 43 target gene. For each experiment, specific RAGE involvement was confirmed by small interfering RNA treatments. Results AGEs treatment at a dose of 100 µg/mL significantly improved the wound healing process in a RAGE-dependent manner by promoting cell migration, whereas HMGB1 had no effect. No significant influence of the AGEs/RAGE couple was observed on cell proliferation and invasion. However, this treatment induced an early activation of the NF-κB pathway and positively regulated the expression of the target gene, connexin 43, at both the mRNA and protein levels. Conclusions Our results demonstrate that the RAGE pathway is activated by AGEs treatment and is involved in the promotion of corneal epithelial wound healing. This positive action is observed only during the early stages of wound healing, as illustrated by the quick activation of the NF-κB pathway and induction of connexin 43 expression.
Collapse
MESH Headings
- Cell Line
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Cells, Cultured
- Connexin 43/genetics
- Connexin 43/metabolism
- Corneal Injuries/pathology
- Corneal Injuries/physiopathology
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelium, Corneal/cytology
- Epithelium, Corneal/drug effects
- Epithelium, Corneal/injuries
- Epithelium, Corneal/physiology
- Glycation End Products, Advanced/administration & dosage
- Glycation End Products, Advanced/pharmacology
- Glycation End Products, Advanced/physiology
- HMGB1 Protein/administration & dosage
- HMGB1 Protein/pharmacology
- Humans
- NF-kappa B/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Receptor for Advanced Glycation End Products/genetics
- Receptor for Advanced Glycation End Products/physiology
- Signal Transduction/physiology
- Wound Healing/drug effects
- Wound Healing/physiology
Collapse
Affiliation(s)
- Christelle Gross
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Corinne Belville
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Marilyne Lavergne
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Héléna Choltus
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Department of Perioperative Medicine, Clermont-Ferrand, France
| | - Raïko Blondonnet
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Department of Perioperative Medicine, Clermont-Ferrand, France
| | - Jean-Michel Constantin
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Department of Perioperative Medicine, Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, Clermont-Ferrand, France
| | - Loïc Blanchon
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Vincent Sapin
- Team “Translational approach to epithelial injury and repair”, Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| |
Collapse
|
124
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|
125
|
Böhme R, Becker C, Keil B, Damm M, Rasch S, Beer S, Schneider R, Kovacs P, Bugert P, Riedel J, Griesmann H, Ruffert C, Kaune T, Michl P, Hesselbarth N, Rosendahl J. Serum levels of advanced glycation end products and their receptors sRAGE and Galectin-3 in chronic pancreatitis. Pancreatology 2020; 20:187-192. [PMID: 31870801 DOI: 10.1016/j.pan.2019.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND /Objectives: AGE and their receptors like RAGE and Galectin-3 can activate inflammatory pathways and have been associated with chronic inflammatory diseases. Several studies investigated the role of AGE, Galectin-3 and sRAGE in pancreatic diseases, whereas no comprehensive data for chronic pancreatitis (CP) are available. METHODS Serum samples from CP patients without an active inflammatory process (85 ACP; 26 NACP patients) and 40 healthy controls were collected. Levels of AGE, sRAGE and Galectin-3 were measured by ELISA. To exclude potential influences of previously described RAGE SNPs on detected serum levels, we analyzed variants rs207128, rs207060, rs1800625, and rs1800624 by melting curve technique in 378 CP patients and 338 controls. RESULTS AGE and Galectin-3 serum levels were significantly elevated in both ACP and NACP patients compared to controls (AGE: 56.61 ± 3.043 vs. 31.71 ± 2.308 ng/mL; p < 0.001; Galectin-3: 16.63 ± 0.6297 vs. 10.81 ± 0.4835 ng/mL; p < 0.001). In contrast, mean serum sRAGE levels were significantly reduced in CP patients compared to controls (sRAGE: 829.7 ± 37.10 vs. 1135 ± 55.74 ng/mL; p < 0.001). All results were consistent after correction for gender, age and diabetes mellitus. No genetic association with CP was found. CONCLUSIONS Our extensive analysis demonstrated the importance of aging related pathways in the pathogenesis of CP. As the results were consistent in ACP and NACP, both entities most likely share common pathomechanisms. Most probably the involved pathways are a general hallmark of an inflammatory state in CP that is even present in symptom-free intervals.
Collapse
Affiliation(s)
- Richard Böhme
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Carla Becker
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Bettina Keil
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Marko Damm
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Sebastian Rasch
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany
| | - Sebastian Beer
- Department for Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Rick Schneider
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany
| | - Jan Riedel
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Claudia Ruffert
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Tom Kaune
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Nico Hesselbarth
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany.
| |
Collapse
|
126
|
Le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev 2020; 40:1200-1219. [PMID: 32112452 DOI: 10.1002/med.21654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases manifesting in early life, with the prevalence increasing worldwide at a rate of approximately 3% per annum. The prolonged hyperglycaemia characteristic of T1D upregulates the receptor for advanced glycation end products (RAGE) and accelerates the formation of RAGE ligands, including advanced glycation end products, high-mobility group protein B1, S100 calcium-binding proteins, and amyloid-beta. Interestingly, changes in the expression of RAGE and these ligands are evident in patients before the onset of T1D. RAGE signals via various proinflammatory cascades, resulting in the production of reactive oxygen species and cytokines. A large number of proinflammatory ligands that can signal via RAGE have been implicated in several chronic diseases, including T1D. Therefore, it is unsurprising that RAGE has become a potential therapeutic target for the treatment and prevention of disease. In this review, we will explore how RAGE might be targeted to prevent the development of T1D.
Collapse
Affiliation(s)
- Selena Le Bagge
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia K Fotheringham
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sherman S Leung
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mater Clinical School, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
127
|
Ferrari C, Barili V, Varchetta S, Mondelli MU. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2020:821-850. [DOI: 10.1002/9781119436812.ch63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
128
|
Role of S100 proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
The S100 family of proteins contains 25 known members that share a high degree of sequence and structural similarity. However, only a limited number of family members have been characterized in depth, and the roles of other members are likely undervalued. Their importance should not be underestimated however, as S100 family members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflammation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100 target protein interactions that underpin the mechanistic basis to their function, and discuss potential intervention strategies targeting S100 proteins in both preclinical and clinical situations.
Collapse
|
129
|
Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury. Sci Rep 2020; 10:289. [PMID: 31937858 PMCID: PMC6959219 DOI: 10.1038/s41598-019-57205-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023] Open
Abstract
Acute kidney injury (AKI) complicated by acute lung injury has a detrimental effect on mortality among critically ill patients. Recently, a renal ischemia-reperfusion (IR) model suggested the involvement of histones and neutrophil extracellular traps (NETs) in the development of distant lung injury after renal IR. Given that recombinant thrombomodulin (rTM) has anti-inflammatory roles by binding to circulating histones, we aimed to clarify its effect on distant lung injury induced by AKI in a murine bilateral renal IR model. Both pretreatment and delayed treatment with rTM significantly decreased pulmonary myeloperoxidase activity, but they did not affect renal dysfunction at 24 h after renal IR. Additionally, rTM mitigated the renal IR-augmented expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin-6, and keratinocyte-derived chemokine), and vascular leakage, as well as the degree of lung damage. Intense histone accumulation and active NET formation occurred in both the kidneys and the lungs; however, rTM significantly decreased the histone and NET accumulation only in the lungs. Administration of rTM may have protective impact on the lungs after renal IR by blocking histone and NET accumulation in the lungs, although no protection was observed in the kidneys. Treatment with rTM may be an adjuvant strategy to attenuate distant lung injury complicating AKI.
Collapse
|
130
|
Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Hissar S, Kornfeld H, Babu S. Systemic RAGE ligands are upregulated in tuberculosis individuals with diabetes co-morbidity and modulated by anti-tuberculosis treatment and metformin therapy. BMC Infect Dis 2019; 19:1039. [PMID: 31818258 PMCID: PMC6902343 DOI: 10.1186/s12879-019-4648-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Ligands of the receptor for advanced glycation end products (RAGE) are key signalling molecules in the innate immune system but their role in tuberculosis-diabetes comorbidity (TB-DM) has not been investigated. Methods We examined the systemic levels of soluble RAGE (sRAGE), advanced glycation end products (AGE), S100A12 and high mobility group box 1 (HMGB1) in participants with either TB-DM, TB, DM or healthy controls (HC). Results Systemic levels of AGE, sRAGE and S100A12 were significantly elevated in TB-DM and DM in comparison to TB and HC. During follow up, AGE, sRAGE and S100A12 remained significantly elevated in TB-DM compared to TB at 2nd month and 6th month of anti-TB treatment (ATT). RAGE ligands were increased in TB-DM individuals with bilateral and cavitary disease. sRAGE and S100A12 correlated with glycated hemoglobin levels. Within the TB-DM group, those with known diabetes (KDM) revealed significantly increased levels of AGE and sRAGE compared to newly diagnosed DM (NDM). KDM participants on metformin treatment exhibited significantly diminished levels of AGE and sRAGE in comparison to those on non-metformin regimens. Conclusions Our data demonstrate that RAGE ligand levels reflect disease severity and extent in TB-DM, distinguish KDM from NDM and are modulated by metformin therapy.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health-NIRT- International Center for Excellence in Research, No. 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India.
| | - Kadar Moideen
- National Institutes of Health-NIRT- International Center for Excellence in Research, No. 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India
| | - Arul Nancy
- National Institutes of Health-NIRT- International Center for Excellence in Research, No. 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India.,Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | | | | | | | - Syed Hissar
- National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Subash Babu
- National Institutes of Health-NIRT- International Center for Excellence in Research, No. 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India.,LPD, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
131
|
Maeda R, Kawasaki Y, Kume Y, Go H, Suyama K, Hosoya M. Involvement of high mobility group box 1 in the pathogenesis of severe hemolytic uremic syndrome in a murine model. Am J Physiol Renal Physiol 2019; 317:F1420-F1429. [DOI: 10.1152/ajprenal.00263.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Typical hemolytic uremic syndrome is caused by Shiga toxin (Stx2) and lipopolysaccharide (LPS) of Escherichia coli and leads to acute kidney injury. The role of innate immunity in this pathogenesis is unclear. We analyzed the role of high mobility group box 1 (HMGB1) at the onset of disease in a murine model. C57BL/6 mice were intraperitoneally administered saline ( group A), anti-HMGB1 monoclonal antibody ( group B), Stx2 and LPS to elicit severe disease ( group C), or Stx2, LPS, and anti-HMGB1 antibody ( group D). While all mice in group C died by day 5 of the experiment, all mice in group D survived. Anemia and thrombocytopenia were pronounced and plasma creatinine levels were significantly elevated in group C only at 72 h. While at 72 h after toxin administration the glomerulus tissue in group C showed pathology similar to that of humans, mesangial cell proliferation was seen in group D. Plasma HMGB1 levels in group C peaked 3 h after administration and were higher than those in other groups. Expression of the receptor of advanced glycation end products and NF-κB, involved in HMGB1 signaling, was significantly elevated in group C but not in group D. Administration of anti-HMGB1 antibody in a murine model of severe disease inhibited plasma HMGB1 and promoted amelioration of tissue damage. HMGB1 was found to be involved in the disease pathology; therefore, controlling HMGB1 activity might inhibit disease progression.
Collapse
Affiliation(s)
- Ryo Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukihiko Kawasaki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yohei Kume
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hayato Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuhide Suyama
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
132
|
Watanabe M, Toyomura T, Wake H, Liu K, Teshigawara K, Takahashi H, Nishibori M, Mori S. Differential contribution of possible pattern-recognition receptors to advanced glycation end product-induced cellular responses in macrophage-like RAW264.7 cells. Biotechnol Appl Biochem 2019; 67:265-272. [PMID: 31654427 DOI: 10.1002/bab.1843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/19/2019] [Indexed: 01/10/2023]
Abstract
Advanced glycation end products (AGEs) are considered to be related to the pathogenesis of some inflammatory diseases. AGEs were reported to stimulate the receptor for AGEs (RAGE), which causes inflammatory reactions. However, recently, toll-like receptors (TLRs), in addition to RAGE, have been reported to be related to AGE-mediated cellular responses, and it remains unclear which receptor is responsible for AGE recognition. To reveal the role of pattern-recognition receptors, including TLRs and/or RAGE, in AGE-mediated cellular responses, we generated macrophage-like RAW264.7 knockout (KO) cells lacking these receptors by genome editing using the CRISPR/Cas9 system and assessed AGE-stimulated changes in these cells. Comparison of the established clones suggested that RAGE partially affects the expression of TLRs. In the KO clone lacking TLR4 and TLR2, AGE-stimulated tumor necrosis factor alpha (TNF-α) expression and phosphorylation of IκBα, p38, and extracellular signal-regulated kinase (ERK) were significantly attenuated, suggesting that AGE-mediated responses are largely dependent on TLRs. On the other hand, on comparison of the AGE-stimulated responses between the KO clone lacking TLR4 and TLR2, and the clone lacking TLR4, TLR2, and RAGE, RAGE played little role in AGE-stimulated TNF-α transcription and ERK phosphorylation. Taken together, this study suggested that AGE-stimulated inflammatory responses occur mainly through TLRs rather than RAGE.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| |
Collapse
|
133
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
134
|
de Carvalho GC, Borget MY, Bernier S, Garneau D, da Silva Duarte AJ, Dumais N. RAGE and CCR7 mediate the transmigration of Zika-infected monocytes through the blood-brain barrier. Immunobiology 2019; 224:792-803. [DOI: 10.1016/j.imbio.2019.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
|
135
|
Son M, Oh S, Choi CH, Park KY, Son KH, Byun K. Pyrogallol-Phloroglucinol-6,6-Bieckol from Ecklonia cava Attenuates Tubular Epithelial Cell (TCMK-1) Death in Hypoxia/Reoxygenation Injury. Mar Drugs 2019; 17:E602. [PMID: 31652920 PMCID: PMC6891818 DOI: 10.3390/md17110602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023] Open
Abstract
The hypoxia/reoxygenation (H/R) injury causes serious complications after the blood supply to the kidney is stopped during surgery. The main mechanism of I/R injury is the release of high-mobility group protein B1 (HMGB1) from injured tubular epithelial cells (TEC, TCMK-1 cell), which triggers TLR4 or RAGE signaling, leading to cell death. We evaluated whether the extracts of Ecklonia cava (E. cava) would attenuate TEC death induced by H/R injury. We also evaluated which phlorotannin-dieckol (DK), phlorofucofuroeckol A (PFFA), pyrogallol phloroglucinol-6,6-bieckol (PPB), or 2,7-phloroglucinol-6,6-bieckol (PHB)-would have the most potent effect in the context of H/R injury. We used for pre-hypoxia treatment, in which the phlorotannins from E. cava extracts were added before the onset of hypoxia, and a post- hypoxia treatment, in which the phlorotannins were added before the start of reperfusion. PPB most effectively reduced HMGB1 release and the expression of TLR4 and RAGE induced by H/R injury in both pre- and post-hypoxia treatment. PPB also most effectively inhibited the expression of NF-kB and release of the inflammatory cytokines TNF-α and IL-6 in both models. PPB most effectively inhibited cell death and expression of cell death signaling molecules such as Erk/pErk, JNK/pJNK, and p38/pp38. These results suggest that PPB blocks the HGMB1-TLR4/RAGE signaling pathway and decreases TEC death induced by H/R and that PPB can be a novel target for renal H/R injury therapy.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea.
| | - Kook Yang Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea.
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea.
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| |
Collapse
|
136
|
Liu Q, Hua B, Su W, Di B, Yu S, Gao S, Liu H, Zhao X, Li W, Li H. AGEs impair Kv channel-mediated vasodilation of coronary arteries by activating the NF-κB signaling pathway in ZDF rats. Biomed Pharmacother 2019; 120:109527. [PMID: 31629953 DOI: 10.1016/j.biopha.2019.109527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023] Open
Abstract
Excessive formation of advanced glycation end products (AGEs) impairs voltage-gated potassium (Kv) channels in rat coronary artery smooth muscle cells (CSMCs), resulting in weakened Kv-mediated coronary vasodilation. We hypothesized that induction of the nuclear factor-κB (NF-κB) signaling pathway by AGEs plays a significant role in the regulation of Kv channel-mediated vasodilation in Zucker diabetic fatty (ZDF) rats. Assays of mRNA transcripts, protein expression, and intracellular localization as well as patch-clamp experiments in cultured CSMCs revealed that AGEs significantly induced activation of the NF-κB signaling pathway, reduced Kv1.2/1.5 expression, and inhibited Kv currents. In addition, silencing of the receptor for AGEs (RAGE) or p65 with siRNA and treatment with alagrebrium (ALA) or pyrrolidine dithiocarbamate (PDTC) alleviated the AGE-induced impairment of Kv channels in CSMCs. Compared with Zucker lean (ZL) rats, the amount of AGEs, RAGE protein expression, and NF-κB activity in coronary arteries were higher in ZDF rats; whereas Kv1.2/1.5 expression was significantly lower in ZDF rats. Reduced Kv1.2/1.5 expression in coronary arteries and impaired Kv-mediated coronary relaxation tested by wire myography in ZDF rats were markedly improved by treatment with aminoguanidine (AG), ALA, or PDTC. These effects were accompanied by diminished NF-κB activity, inflammation, and oxidative stress. Taken together, these results indicate that an increased interaction between AGEs and RAGE in diabetic rats leads to impaired Kv channel-mediated coronary vasodilation. Moreover, activation of the NF-κB signaling pathway and a subsequent increase of inflammation and oxidative stress may play an important role in AGE-induced impairment of coronary vasodilation in diabetes.
Collapse
Affiliation(s)
- Qingbo Liu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Bing Hua
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Wen Su
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Beibing Di
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Shandong Yu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Side Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Huirong Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Disease, Beijing 100069, PR China
| | - Xueqiao Zhao
- Clinical Atherosclerosis Research Lab, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Disease, Beijing 100069, PR China.
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Department of Internal Medicine, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Disease, Beijing 100069, PR China.
| |
Collapse
|
137
|
Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol 2019; 170:113664. [PMID: 31606409 DOI: 10.1016/j.bcp.2019.113664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Several biomarkers are used to monitor organ damage caused by drug toxicity. Traditional markers of kidney function, such as serum creatinine and blood urea nitrogen are commonly used to estimate glomerular filtration rate. However, these markers have several limitations including poor specificity and sensitivity. A number of serum and urine biomarkers have recently been described to detect kidney damage caused by drugs such as cisplatin, gentamicin, vancomycin, and tacrolimus. Neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP), kidney injury molecule-1 (KIM-1), monocyte chemotactic protein-1 (MCP-1), and cystatin C have been identified as biomarkers for early kidney damage. Hy's Law is widely used as to predict a high risk of severe drug-induced liver injury caused by drugs such as acetaminophen. Recent reports have indicated that glutamate dehydrogenase (GLDH), high-mobility group box 1 (HMGB-1), Keratin-18 (k18), MicroRNA-122 and ornithine carbamoyltransferase (OCT) are more sensitive markers of hepatotoxicity compared to the traditional markers including the blood levels of amiotransferases and total bilirubin. Additionally, the rapid development of proteomic technologies in biofluids and tissue provides a new multi-marker panel, leading to the discovery of more sensitive biomarkers. In this review, an update topics of biomarkers for the detection of kidney or liver injury associated with pharmacotherapy.
Collapse
Affiliation(s)
- Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Nanae Yamamoto
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan; Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare Narita Hospital, Japan.
| |
Collapse
|
138
|
Bartling B, Zunkel K, Al-Robaiy S, Dehghani F, Simm A. Gene doubling increases glyoxalase 1 expression in RAGE knockout mice. Biochim Biophys Acta Gen Subj 2019; 1864:129438. [PMID: 31526867 DOI: 10.1016/j.bbagen.2019.129438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice. METHODS Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques. RESULTS We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice. CONCLUSION A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function. GENERAL SIGNIFICANCE RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before.
Collapse
Affiliation(s)
- Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Katja Zunkel
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Samiya Al-Robaiy
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Institute of Anatomy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
139
|
Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VR, Othman I, Shaikh MF. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol 2019; 858:172487. [DOI: 10.1016/j.ejphar.2019.172487] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
|
140
|
Radiological assessment of effectiveness of soluble RAGE in attenuating Angiotensin II-induced LVH mouse model using in vivo 9.4T MRI. Sci Rep 2019; 9:8475. [PMID: 31186521 PMCID: PMC6559980 DOI: 10.1038/s41598-019-44933-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/30/2019] [Indexed: 01/11/2023] Open
Abstract
We investigated the effectiveness of soluble Receptor for Advanced Glycation Endproducts (sRAGE) in attenuating angiotensin II (AngII)-induced left ventricular hypertrophy (LVH) using in vivo 9.4T cine-magnetic resonance imaging (CINE-MRI). Mice were divided into four groups: AngII (n = 9), saline (n = 10), sRAGE (n = 10), and AngII + sRAGE (n = 10). CINE-MRI was performed in each group after administration of the AngII or sRAGE, and CINE-MR images were analyzed to obtain parameters indicating cardiac anatomical and functional changes including end-diastolic and end-systolic blood volume, end-diastolic and end-systolic myocardial volume, ejection fraction, end-diastolic and end-systolic myocardial mass, and LV wall thickness. LVH observed in AngII group was significantly attenuated by sRAGE. These trends were also observed in histological analysis, demonstrating that cardiac function tracking using in vivo and real-time 9.4T MR imaging provides valuable information about the cardiac remodeling induced by AngII and sRAGE in an AngII-induced LV hypertrophy mice model.
Collapse
|
141
|
Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, Xiu J, Xu Q. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway. Aging Dis 2019; 10:611-625. [PMID: 31165005 PMCID: PMC6538223 DOI: 10.14336/ad.2018.0707] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Diabetes is a systemic disease that can cause brain damage such as synaptic impairments in the hippocampus, which is partly because of neuroinflammation induced by hyperglycemia. Brain-derived neurotrophic factor (BDNF) is essential in modulating neuroplasticity. Its role in anti-inflammation in diabetes is largely unknown. In the present study, we investigated the effects of BDNF overexpression on reducing neuroinflammation and the underlying mechanism in mice with type 1 diabetes induced by streptozotocin (STZ). Animals were stereotactically microinjected in the hippocampus with recombinant adeno-associated virus (AAV) expressing BDNF or EGFP. After virus infection, four groups of mice, the EGFP+STZ, BDNF+STZ, EGFP Control and BDNF Control groups, received STZ or vehicle treatment as indicated. Three weeks later brain tissues were collected. We found that BDNF overexpression in the hippocampus significantly rescued STZ-induced decreases in mRNA and protein expression of two synaptic plasticity markers, spinophilin and synaptophysin. More interestingly, BDNF inhibited hyperglycemia-induced microglial activation and reduced elevated levels of inflammatory factors (TNF-α, IL-6). BDNF blocked the increase in HMGB1 levels and specifically, in levels of one of the HMGB1 receptors, RAGE. Downstream of HMGB1/RAGE, the increase in the protein level of phosphorylated NF-κB was also reversed by BDNF in STZ-treated mice. These results show that BDNF overexpression reduces neuroinflammation in the hippocampus of type 1 diabetic mice and suggest that the HMGB1/RAGE/NF-κB signaling pathway may contribute to alleviation of neuroinflammation by BDNF in diabetic mice.
Collapse
Affiliation(s)
- Rongrong Han
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zeyue Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Sun
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
142
|
Therapeutic Role of Recombinant Human Soluble Thrombomodulin for Acute Exacerbation of Idiopathic Pulmonary Fibrosis. ACTA ACUST UNITED AC 2019; 55:medicina55050172. [PMID: 31137593 PMCID: PMC6571552 DOI: 10.3390/medicina55050172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is an acute respiratory worsening of unidentifiable cause that sometimes develops during the clinical course of IPF. Although the incidence of AE-IPF is not high, prognosis is poor. The pathogenesis of AE-IPF is not well understood; however, evidence suggests that coagulation abnormalities and inflammation are involved. Thrombomodulin is a transmembranous glycoprotein found on the cell surface of vascular endothelial cells. Thrombomodulin combines with thrombin, regulates coagulation/fibrinolysis balance, and has a pivotal role in suppressing excess inflammation through its inhibition of high-mobility group box 1 protein and the complement system. Thus, thrombomodulin might be effective in the treatment of AE-IPF, and we and other groups found that recombinant human soluble thrombomodulin improved survival in patients with AE-IPF. This review summarizes the existing evidence and considers the therapeutic role of thrombomodulin in AE-IPF.
Collapse
|
143
|
Berbets A, Koval H, Barbe A, Albota O, Yuzko O. Melatonin decreases and cytokines increase in women with placental insufficiency. J Matern Fetal Neonatal Med 2019; 34:373-378. [PMID: 31023180 DOI: 10.1080/14767058.2019.1608432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose: To investigate the levels of melatonin, proinflammatory and anti-inflammatory cytokines in pregnant women with placental insufficiency (PI).Materials and Methods: The PI was manifested as the intrauterine growth restriction syndrome of fetus (IUGR) in the third pregnancy trimester. The control group consisted of 20 women with uncomplicated pregnancy in the same term. The blood concentrations of melatonin, proinflammatory cytokines, such as tumor necrotizing factor-α (TNF-α), interleukin-1-β (IL-1-β), interleukin-6 (IL-6), and anti-inflammatory cytokines, such as interleukin-4 (IL-4), and interleukin-10 (IL-10), were studied.Results: The concentration of melatonin was found to decrease significantly if pregnancy was complicated by intrauterine fetal growth retardation (study group -126.87 ± 14.87 pg/ml, control group -231.25 ± 21.56 pg/ml, p < .001). The levels of proinflammatory cytokines in the study group were significantly higher as compared with the control group (TNF-α: study group -10.05 ± 1.35 pg/ml, control group -5.60 ± 1.50 pg/ml, p < .05; IL-1-β: study group -14.67 ± 2.13 pg/ml, control group -3.96 ± 0.92 pg/ml, p < .001; IL-6: study group -6.91 ± 0.99 pg/ml, control group -2.69 ± 0.99 pg/ml, p < .05). The same is true about anti-inflammatory cytokines (IL-4: study group -5.97 ± 0.50 pg/ml, control group -3.74 ± 0.62 pg/ml, p < .05; IL-10: study group -11.40 ± 1.50 pg/ml, control group -4.70 ± 3.20 pg/ml, p < .001). A moderate negative correlation between melatonin and IL-1-β in the group with PI (r = -0.3776, p = .0097), a closed negative correlation between the same indexes in the control group (r = -0.6785, p = .001), and a moderate negative correlation between melatonin and TNF-α (r = -0.4908, p = .02) were found.Conclusions: The blood level of melatonin significantly decreases in case of placental insufficiency, manifested as intrauterine fetal growth restriction. Strengthening of the proinflammatory immunity shown as the increasing of the levels of TNF-α, IL-1-β, and IL-6 levels is also present in case of IUGR. Increase of the serum concentration of the anti-inflammatory cytokines, such as IL-4 and IL-10, in our opinion, can be explained by activation of compensatory mechanisms, which decrease the risk of premature labor.
Collapse
Affiliation(s)
- Andrii Berbets
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Halyna Koval
- Department of Clinical Immunology and Endocrinology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Adrian Barbe
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Olena Albota
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Oleksandr Yuzko
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| |
Collapse
|
144
|
Ma KC, Schenck EJ, Pabon MA, Choi AMK. The Role of Danger Signals in the Pathogenesis and Perpetuation of Critical Illness. Am J Respir Crit Care Med 2019; 197:300-309. [PMID: 28977759 DOI: 10.1164/rccm.201612-2460pp] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kevin C Ma
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| | - Edward J Schenck
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| | - Maria A Pabon
- 3 Division of General Internal Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and.,2 New York-Presbyterian Hospital, New York, New York
| | - Augustine M K Choi
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| |
Collapse
|
145
|
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology 2019; 20:279-301. [PMID: 30968282 DOI: 10.1007/s10522-019-09808-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) was initially characterized and named for its ability to bind to advanced glycation end-products (AGEs) that form upon the irreversible and non-enzymatic interaction between nucleophiles, such as lysine, and carbonyl compounds, such as reducing sugars. The concentrations of AGEs are known to increase in conditions such as diabetes, as well as during ageing. However, it is now widely accepted that RAGE binds with numerous ligands, many of which can be defined as pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). The interaction between RAGE and its ligands mainly results in a pro-inflammatory response, and can lead to stress events often favouring mitochondrial dysfunction or cellular senescence. Thus, RAGE should be considered as a pattern recognition receptor (PRR), similar to those that regulate innate immunity. Innate immunity itself plays a central role in inflammaging, the chronic low-grade and sterile inflammation that increases with age and is a potentially important contributory factor in ageing. Consequently, and in addition to the age-related accumulation of PAMPs and DAMPs and increases in pro-inflammatory cytokines from senescent cells and damaged cells, PRRs are therefore important in inflammaging. We suggest here that, through its interconnection with immunity, senescence, mitochondrial dysfunction and inflammasome activation, RAGE is a key contributor to inflammaging and that the pro-longevity effects seen upon blocking RAGE, or upon its deletion, are thus the result of reduced inflammaging.
Collapse
Affiliation(s)
- Thibault Teissier
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.
| | - Éric Boulanger
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.,Department of Geriatrics and Ageing Biology, School of Medicine, Lille University, Lille, France.,Department of Geriatrics, Lille University Hospital, Lille, France
| |
Collapse
|
146
|
Ye Y, Zeng Z, Jin T, Zhang H, Xiong X, Gu L. The Role of High Mobility Group Box 1 in Ischemic Stroke. Front Cell Neurosci 2019; 13:127. [PMID: 31001089 PMCID: PMC6454008 DOI: 10.3389/fncel.2019.00127] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
High-mobility group box 1 protein (HMGB1) is a novel, cytokine-like, and ubiquitous, highly conserved, nuclear protein that can be actively secreted by microglia or passively released by necrotic neurons. Ischemic stroke is a leading cause of death and disability worldwide, and the outcome is dependent on the amount of hypoxia-related neuronal death in the cerebral ischemic region. Acting as an endogenous danger-associated molecular pattern (DAMP) protein, HMGB1 mediates cerebral inflammation and brain injury and participates in the pathogenesis of ischemic stroke. It is thought that HMGB1 signals via its presumed receptors, such as toll-like receptors (TLRs), matrix metalloproteinase (MMP) enzymes, and receptor for advanced glycation end products (RAGEs) during ischemic stroke. In addition, the release of HMGB1 from the brain into the bloodstream influences peripheral immune cells. However, the role of HMGB1 in ischemic stroke may be more complex than this and has not yet been clarified. Here, we summarize and review the research into HMGB1 in ischemic stroke.
Collapse
Affiliation(s)
- Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Jin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongfei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
147
|
Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis 2019; 10:367-382. [PMID: 31011483 PMCID: PMC6457053 DOI: 10.14336/ad.2018.0324] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.
Collapse
Affiliation(s)
- Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
- Pathological and Analytical Center, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Sangwoon Chung
- Department of Internal Medicine, Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea.
| | - Arnold Y. Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| | - Young Suk Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Jaewon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea.
| | - Dong Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA.
| |
Collapse
|
148
|
Schmidt AM. Diabetes Mellitus and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:558-568. [PMID: 30786741 PMCID: PMC6532416 DOI: 10.1161/atvbaha.119.310961] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality in people with types 1 or 2 diabetes mellitus. Although beneficial roles for strict control of hyperglycemia have been suggested, such a strategy is not without liabilities. Specifically, the risk of hypoglycemia and its consequences remain an omnipresent threat with such approaches. The advent of the CVOT (Cardiovascular Outcomes Trials) for new antidiabetes mellitus treatments has uncovered unexpected benefits of cardiovascular protection in some of the new classes of agents, such as the GLP-1 RAs (glucagon-like peptide-1 receptor agonists) and the SGLT-2 (sodium-glucose cotransporter-2) inhibitors. Further, state-of-the-art approaches, such as antibodies to PCKSK9 (proprotein convertase subtilisin-kexin type 9); RNA therapeutics; agents targeting distinct components of the immune/inflammatory response; and novel small molecules that block the actions of RAGE (receptor for advanced glycation end products) signaling, also hold potential as new therapies for diabetes mellitus and cardiovascular disease. Finally, interventions such as weight loss, through bariatric surgery, may hold promise for benefit in diabetes and cardiovascular disease. In this Brief Review, some of the novel approaches and emerging targets for the treatment of diabetes mellitus and cardiovascular disease are discussed. Ultimately, identification of the optimal timing and combinations of such interventions, especially in the context of personalized approaches, together with emerging disease-modifying agents, holds great promise to reduce the burden that diabetes poses to the cardiovascular system.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York
| |
Collapse
|
149
|
Huang YF, Li QP, Dou YX, Wang TT, Qu C, Liang JL, Lin ZX, Huang XQ, Su ZR, Chen JN, Xie YL. Therapeutic effect of Brucea javanica oil emulsion on experimental Crohn's disease in rats: Involvement of TLR4/ NF-κB signaling pathway. Biomed Pharmacother 2019; 114:108766. [PMID: 30901719 DOI: 10.1016/j.biopha.2019.108766] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Brucea javanica is an important Chinese folk medicine traditionally used for the treatment of dysentery (also known as inflammatory bowel diseases). Brucea javanica oil emulsion (BJOE), the most common preparation of Brucea javanica, has a variety of pharmacological activities. In this follow-up investigation, we endeavored to illuminate the potential benefit of BJOE on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced Crohn's disease (CD) in rats and decipher the mechanism of action. The result illustrated that BJOE treatment significantly reduced the body weight loss, disease activity index and macroscopic scores, ameliorated shortening of colon length, arrested colonic histopathological deteriorations, lowered the histological scores in parallel to the model group. Furthermore, BJOE also decreased the levels of MPO and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, IL-23 and IFN-γ), and increased the levels of anti-inflammatory cytokines (IL-4, IL-10 and TGF-β) as compared with the model group. In addition, the elevated mRNA expression of MMP-1, MMP-3 and RAGE induced by TNBS was remarkably inhibited by BJOE, SASP or AZA treatments, while the mRNA expression of PPAR-γ was significantly enhanced. Furthermore, the activation of TLR4/NF-κB signaling pathway was significantly inhibited by AZA and BJOE treatment when compared with that of TNBS-treated rats. Our study suggested that BJOE exerted superior therapeutic effect to SASP and AZA in treating TNBS-induced colitis in rats. The protective effect of BJOE may involve the inhibition of the TLR4/NF-κB-mediated inflammatory responses. These results indicated that BJOE held promising potential to be further developed into a novel candidate for the treatment of CD.
Collapse
Affiliation(s)
- Yan-Feng Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Qiao-Ping Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yao-Xing Dou
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Tong-Tong Wang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chang Qu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jia-Li Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xiao-Qi Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jian-Nan Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - You-Liang Xie
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
150
|
The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol 2019; 12:468-478. [PMID: 30542111 DOI: 10.1038/s41385-018-0119-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions of the intestinal tract. IBD are believed to result from an inappropriate immune response against the intestinal flora in genetically predisposed patients. The precise etiology of these diseases is not fully understood, therefore treatments rely on the dampening of symptoms, essentially inflammation, rather than on the cure of the disease. Despite the availability of biologics, such as anti-TNF antibodies, some patients remain in therapeutic failure and new treatments are thus needed. The multiligand receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor implicated in inflammatory reactions and immune system activation. Here, we investigated the role of RAGE in intestinal inflammation and its potential as a therapeutic target in IBD. We showed that RAGE was upregulated in inflamed tissues from IBD patients compared to controls. Rage-/- mice were less susceptible to intestinal and colonic inflammation development than WT mice. WT mice treated with the RAGE-specific inhibitor FPS-ZM1 experienced less severe enteritis and colitis. We demonstrated that RAGE could induce intestinal inflammation by promoting oxidative stress and endothelial activation which were diminished by FPS-ZM1 treatment. Our results revealed the RAGE signaling pathway as a promising therapeutic target for IBD patients.
Collapse
|